
Ubiquitous, Flexible and Distributed Computing

Jun Zhang and Chris Phillips
Electronic Engineering Department, Queen Mary, University of London

327 Mile End Road, London, UK. E1 4NS
{jun.zhang, chris.phillips}@elec.qmul.ac.uk

Abstract-Motivated by the observation that there exists a lot of

cheap and networked computing power and the inflexibility of
Transmission Control Protocol (TCP) in the context of mobility,
this research proposes a new system enabling applications to
roam seamlessly while they are actively processing executable
code and/or communicating with remote entities. By using this
architecture flaws/limitations of existing networking protocols
can be mitigated and it becomes possible to exploit this spare
computer power. By solving those problems, a number of
benefits can be achieved in the fields of application migration
and distributed computing.

I. INTRODUCTION
The Internet protocol suite provides a means by which

many applications can communicate via a shared
heterogeneous communication infrastructure. In the Internet
protocol suite, TCP [1] is one of the main protocols at the
Transport layer, which was designed to provide a reliable end-
to-end byte stream in any kind of network. In the Internet,
over 90% [2] of all transport layer data employs this protocol.
Using TCP, two application entities, usually located on
separate computers, can establish a connection and exchange
data with each other.

The connection endpoints at the server and the client,
known as sockets, are identified by TCP port numbers and
Internet Protocol (IP) [3] addresses. These are fixed after the
connection is established. This manner of working brings a lot
of benefits. For example, the destination address is implicit
with functions such as read() and write(), but it also brings
some limitations. One of the most important limitations is
service availability and performance under adverse conditions
such as network congestion or denial of service attacks.

At the same time, users are usually concerned with the
quality of service they receive rather than the exact identity of
the server and a lot of cheap and networked computing power
exists in the Internet. Therefore, server replication has been
raised as a solution. In this approach, several servers
cooperate together to provide the same service to the users
and users are allowed to use any one of these servers. Server
clusters have already been proposed [4][5]. Server clusters
consist of heterogeneous computers that perform like a single
system. However, simple replication of a server cannot solve
the problem of providing continued service when the
underlying resources may be transient in nature.

Later, some proposed solutions to provide connection
migration [6][7][8] to address the problem of continued
service are identified. Nevertheless, these solutions still have
some problems; they cannot provide connection migration

between different platforms and they cannot provide proactive
and intelligent connection migration.

In this paper, we propose a generic and intelligent
migration scheme for operation across multiple platforms.
This paper addresses these problems by using a new
architecture, which can enable services, applications or
resources to roam seamlessly whilst they are active and
communicating with remote entities.

II. RELATED WORK

Prior to our research, some relevant work has already been
done. In this section, we examine briefly what they tried to
achieve, and how they achieved it. In addition, the benefits
and limitations of their approach(es), and points of novelty not
addressed in research to-date will also be discussed.

The first relevant research is the work of Disco lab
[9][10][11]. They focus on providing a framework for
migrating servers whilst keeping alive the TCP connection.
They propose a model called “Cooperative Service Model”. In
this model, they consider a “pool”, which comprises some
distributed and similar servers. These servers cooperate to
sustain a service by migrating client connections within the
pool. In order to cooperate successfully, they designed a new
transport layer protocol called “Migratory TCP (M-TCP)” to
support efficient migration of live connections. This work
provides more reliable services and improved resilience to
network congestion as they can dynamically migrate
connections, though the migration is restricted to within the
server pool and no server load-balancing scheme has been
presented.

The scheme put forward by the Migrate Internet Mobility
Project (MIT) has a similar focus to Disco lab. However, they
achieve the goal through another approach. In their scheme,
the migration is requested through a TCP option field. A list
of available servers and a certificate for each server is passed
from the server to the client when the connection is first
established. Later, a migration request can be sent from the
client to one of the available servers for connection migration.
This work provides a unified framework to support Internet
mobility, but load balancing cannot be achieved as the
decision of connecting to which server is made by client
without a knowledge of the network conditions.

In another relevant study, Zap[12][13], researchers have
developed a novel system for transparent migration of legacy
and networked applications. They designed a pod abstraction,
which provides a collection of processes with a host-
independent virtualised view of the operating system. This
decouples processes located within the pods from

dependencies on the host operating system and other
processes. By integrating Zap virtualisation with a checkpoint-
restart mechanism, Zap can migrate a pod of processes as a
unit among machines running independent operating systems
without leaving behind any residual state after the migration.
Though transparent application migration without
modification to the operating system kernel or application can
be achieved, no control scheme has been presented so that the
migration still lacks intelligence.

In vOS [14][15][16], they designed a system that consists
of a group of computers. This system decouples the
application process from its physical environment by using
“virtual” technology, which means that the application uses
virtual files, virtual network connections and other virtual
resources. This “virtualisation” is achieved by using API
interception, which means intercepting calls made from the
application to the underlying runtime system and
reinterpreting the call. Similar to the work of Zap, transparent
application migration without modification to the operating
system kernel or application can also be achieved, but the
migration is restricted within a group of machines and there is
a lack of an intelligent control plane.

III. PROPOSED ARCHITECTURE

In our research, a new system architecture is proposed as
shown in Figure 1.

Proxy with NAT Functionality

Guest Application

JVM

Host System

Roaming
Network
Address
Translation
Table

I/F Controller

Remote
System

Control

Emulator Socket
Decapsulation / Mapper

Dynamic connection that
can change transparently to
the application layer

Fig. 1 Proposed System Architecture

This architecture consists of three main entities: the Host

System, the Proxy and the Remote System. In this figure, a
client application and its associated operating system are
running on a transient Host System and this client application
communicates with a remote endpoint through an Interface
Controller and the Proxy. Descriptions of components and
their functions are given below.

A. Host System
The Host System is composed of three components: the

Guest Application, the Interface Controller and the Java
Virtual Machine that encapsulates them.

The Guest Application is a Java based application running
within the JVM and its activities are monitored and controlled
by the Interface Controller.

The Interface Controller is Java software also running
within the JVM. It is a bridge between the Guest Application
and the underlying Host System and between the Host System
and the Proxy. Therefore, it plays an important role having a
number of key functions. Firstly, it intercepts all the system
calls sent from the Guest Application and redirects the system
calls according to requirements. For example, if the Guest
Application would like to access the hard disk located on a
remote computer, the Interface Controller will redirect the
system calls to the appropriate remote computer. Secondly, it
monitors the execution performance of the JVM on the Host
System. This information will be sent to the Proxy to
determine if/when to migrate the Guest Application, details of
which will be discussed later. Thirdly, it is responsible for
setting up the control connection between itself and the Proxy.
This connection is used for activities such as host discovery,
monitoring and migration coordination.. The Interface
Controller also tunnels the data packets sent from the Guest
Application. The destination IP address in the header of the
data packets sent from the Guest Application is the IP address
of the Remote System. But as the packets should get the
destination via the Proxy, the data packets are encapsulated
and sent to the Proxy first. Finally it performs check-pointing
and freezing the execution of the Guest Application, including
the information held in any dynamic memory such as the state
of variables. When the Proxy decides to migrate the Guest
Application to a new Host System, the image of the Guest
Application is frozen and transferred to the new host. Besides
the Guest Application, related data stored in the memory
should be also transferred to the new host as the migration
may be carried out when the application is active.

The last component in the Host System is the JVM. This is
the basic environment that the Guest Application and the
Interface Controller are running on. In fact, this basic
environment does not have to be JVM though the Java
programming language can be characterized as being a
simple, object oriented, distributed, multithreaded,
architecture with good portability and security features via the
JVM[17][18].

B. Proxy
The Proxy is another important entity in the proposed

system architecture. It is a bridge between the Host System
and outside world. If the Host System uses TCP to
communicate with the remote entities, the communication
pathway between them actually comprises multiple
connections to support TCP spoofing at the Proxy. Besides
data connection(s), there is a control connection between the
Host System and the Proxy.

The Proxy has two elements: a Roaming Network Address
Translation Table and a Control Plane. The Proxy has two
main functions with these two elements: Firstly, it provides
connection management services, including Network Address
Translation (NAT), to ensure that the communication path can
be set up and maintained between the Guest Application and a
remote entity. Secondly, it provides a higher-level control and
coordination function. This function includes monitoring the

Guest Application performance, configuration management,
and also determining when and where to move the Guest
Application to. These two main functions can be divided into
several sub-functions:

As shown in figure 1, the communication pathway between
the Guest Application and the remote entities is composed of
multiple connections. The first connection is between the Host
System and the Proxy. The Proxy is a point of presence for the
Guest Application and sets up another connection with the
Remote System, assuming the Guest Application is acting as a
client. In order to ensure that retransmission timeout
occurrences are limited and the TCP connection(s) are not
dropped during migrating the image of the Guest Application,
TCP spoofing is used to splice separate connections from the
Guest Application in the Host System to the Proxy and from
the Proxy to the Remote System. The remote entities do not
connect to the Guest Application directly as the remote
entities do not know the IP address of the Host System which
the Guest Application is running on.

If the Guest Application is a server and a remote entity
would like to connect to the Guest Application, the connection
request will firstly sent to the Proxy. Then the server will
redirect this request to the Guest Application as if it is the
remote entity. Therefore, the IP address of the Proxy must be
public so that the remote entities can know this IP address via
manual configuration or lookup via a DNS server.

The Proxy maintains the Roaming Network Address
Translation Table that lists the available Host Systems
(Roaming Network Address Translation Table in the proposed
system architecture) and information related to these Host
Systems. The information should include: the IP address and
the Interface Controller port number(s) of the Host System,
transmission time delay between the Host System and the
Proxy and system information of these hosts (Such as CPU
speed, CPU usage, total physical memory, available physical
memory, network link speed and network utilization).

When a Host System machine is ready to accept the Guest
Application, it sends a message to tell the Proxy that it is
available and ready to provide service. After the Proxy
receives this message, it updates the Roaming Network
Address Translation Table so that this machine is listed in the
table. Later, the Proxy will send a message to the Host System
if the Proxy decides to migrate the guest system to this Host
System.

The Proxy updates the Roaming Network Address
Translation Table regularly in order to make sure information
of the available Host Systems is up to date. This
communication is accomplished by a message sent by each
hosts at regular intervals. When the Proxy receives latest
information from the hosts, it updates the Roaming Network
Address Translation Table. If the Proxy cannot get the
updated information from a certain server for a period of time,
the Proxy will delete this host from the Table.

For a certain host, it may not be available any longer. To
inform the Proxy that it will not be available anymore, it sends

a message. When the Proxy receives this message, the host
will be purged from the Table.

The Proxy monitors the performance of Host Systems listed
in the table. That is for deciding whether to migrate the guest
system and where to migrate. This monitoring is based on the
information sent by each Host System and a performance
threshold. If the performance of the Host System falls below
this performance threshold for a certain period of time, the
Proxy will consider migrating the guest system to a better
host.

The Proxy decides the Guest Application migration.
Whether the Guest Application needs migration is based on
the performance of the Host System and where to migrate the
application is based on the information in the table and
artificial intelligence technologies.

C. Remote System
The Remote System can either be a traditional

communication endpoint or have the same structure as the
Host System, containing an Interface Controller. Besides, it
can be a server or a client. If the Remote System is a client, it
always considers the Proxy as the server and just knows the IP
address of the server. The connection request to the server will
be always sent to the Proxy and then redirected to a suitable
server by the Proxy.

IV. SYSTEM OPERATIONS SPECIFICATION

 After an overview of the whole system architecture and a
description of each system component, some system
operations will be discussed in this section.

A. Data Connection Establishment and Maintenance
The communication between the Guest Application and the

remote entities can be divided into two main types, UDP and
TCP. In the case of UDP, no connection is established
between the Guest Application and the remote entity. What
the Guest Application and the Remote System should do is
just to send messages to each other. If the message is sent
from the Guest Application, the message will firstly
intercepted by the Interface Controller. Then the Interface
Controller redirects the message to the Proxy. Later, the Proxy
redirects the message again to the Remote System. The
message sent from the Remote System goes the reverse way.
In the case of TCP, the process is more complex.

For TCP connection initiated by the Guest Application, the
general process is as follows:

1. The Guest Application tries to connect to the Remote
System by sending a connection request packet.

2. The Interface Controller intercepts the connection request
packet sent from the Guest Application.
The Interface Controller places the packets within the
payload of a further IP datagram whose destination port
conforms to the security constraints imposed on the JVM
and the destination IP address being the public address of
the Proxy.

3. The Proxy receives these data packets and decapsulates
them to liberate the inner IP data packets.

4. The Proxy redirects the data packets to the Remote
System.

5. If the remote entity accepts this connection request, it will
reply to the Proxy and sets up a connection with the
Proxy.

6. Once the connection between the Proxy and the remote
entity is established, the Proxy replies to the Interface
Controller and set up another connection with the
Interface Controller.

7. Once the connection between the Interface Controller and
the Proxy is established, the Interface Controller set up
another connection with the Guest Application.

Then a communication pathway between the Guest

Application and the remote entity is completed.

B. Resources Discovery
In order to utilise transient Host Systems’ resources

efficiently, the system architecture should have a mechanism
to discover available resources in the Internet. In our design,
the available resources should actively inform the Proxy that it
is available. The general process of resources discovery is as
follows:

1. After the resource (e.g. a computer) starts-up, a JVM
instance containing an Interface Controller application,
which located on this resource, runs automatically.

2. It sends connection request to the Proxy to set up a
control connection with the Proxy.

3. The Proxy accepts this connection request and replies to
the Interface Controller. As a result, a control connection
between the Interface Controller and the Proxy is set up.

4. After the control connection is set up, the Proxy adds a
new record to the Roaming Network Address Translation
Table to record the information of this new Host System.

5. The Interface Controller gathers the Host System’s
information and sends it to the Proxy. This information
includes: CPU speed, CPU usage, total physical memory,
available physical memory and network link speed.

6. The Proxy receives this information and updates the
record in the table.

7. The Interface Controller sends updated information to
the Proxy at regular intervals.

If the transient Host System is no longer available, the

record should be deleted from the table. This can be achieved
in two ways. The first is that the Interface Controller sends a
message to the Proxy to inform that it will not be available
anymore. After receiving this message, the Proxy deletes the
record of that Host System from the table. The second way is
that the Proxy has not received any monitoring message from
the Interface Controller after a certain period of time, and then
the Proxy considers that the Host System is not available
anymore so it deletes the record of that Host System from the
table.

C. Performance Monitoring and Migration Determination

One goal of this system architecture is to provide migration
capabilities to the running Guest Applications. This migration
is firstly determined by the Proxy based on the performance of
the Host System that the Guest Application is running on. As
discussion in previous sections, the Proxy gets this
information from the Interface Controller on the Host System.
For a certain period of time, the Interface Controller on the
Host System gathers the updated information of the system
and sends to the Proxy. After receiving the updated
information, the Proxy updates the Roaming Network Address
Translation Table.

After updating the information, the Proxy checks the
performance of the Host System. The performance can be
assessed by a calculation model. In this model, the utility of
some important system components will be calculated. If the
average utility of these system components is below a certain
level, the Proxy will consider of migrating the application.

Besides the performance of the Host System, other factors
need to be taken into account when deciding whether to
migrate or not. The first factor is whether there is any other
resource available and second factor is that whether those
resource(s) are better than those currently offered. The general
process of migration determination is as follows:

1. The Proxy checks the Roaming Network Address
Translation Table. If there is any other resource available,
the Proxy begins to compare the old resource (the Host
System which the Guest Application is running on) and
the new resource(s).

2. The comparison is also based on a calculation model, like
benchmark test of computer hardware. If the performance
of the candidate Host System is better than the current
Host System, the Proxy will consider migration the Guest
Application. In addition to this calculation result, there
are still some issues that should be addressed before
making migration decision. These issues include risk
quantification and risk hedging. Risk arises when the
Proxy makes a migration decision. For example, a Host
System may be very powerful but it may not be available
for a long time. If the Guest Application is running a task
which should be completed within a limited time and the
Proxy considers of migrating it to the powerful Host
System, the Proxy should also consider the risk whether
the powerful Host System can complete the task before it
is not available.

3. The consideration can be based on “machine learning”.
By using knowledge like statistics, belief networks and
decision trees, the Proxy quantifies the risk of migration.
If the Proxy still decides to migrate the task to a new Host
System, the Proxy can hedge the risk by preparing a
backup plan if there is any other Host System available.

D. Process of Migration
After the Proxy makes the migration decision, the process

of Guest Application migration needs to be carried out. The
general process of migration is as follows:

1. The Proxy sends a migration request message to the
Interface Controller on the current Host System through
the control connection.

2. After the Interface Controller receives this message, it
sends an ACK message back to the Proxy.

3. The Interface Controller of the current Host System
redirects a migration request message to the Interface
Controller of the candidate Host System.

4. After the Interface Controller on the candidate Host
System receives this message, it sends an ACK message
back to the Interface Controller of the current Host
System.

5. After the Interface Controller on the current Host System
receives this ACK message, it sends a connection request
to the candidate Host System to set up a TCP connection.

6. After the connection is set up, the Interface Controller
freezes the Guest Application.

7. The Interface Controller transfers the image of the Guest
Application and information held in the memory to the
new Host System. During the period of freezing and
transferring, if the Guest Application has connection with
the remote entity and the remote entity has sent data
packets to the Guest Application, the Interface Controller
will store these packets in a buffer and redirect them to
the new Host System.

8. After transferring the image and information held in the
memory of the old Host System, the Guest Application
resumes its execution. The Interface Controller on the
new Host System sends a inform message to the Proxy to
tell the Proxy that the migration completed.

V. EXAMPLE SCENARIOS

Some use-case scenarios have been created in order to
assess the performance of the proposed architecture under
different circumstances. One scenario is roaming guest
application. The processes of resource discovery, monitoring
the performance of host system, migration determination and
guest system migration have been discussed in the previous
section. A scenario which extends this basic example is
considered next.

Consider a “virtual” computer application that comprises a
number of distributed components, such as a storage unit and
a CPU engine. Each of these Guest Application elements is
housed in a different host together with the Interface
Controller. The CPU engine communicates with the
component resources via the Proxy. However, when the CPU
engine roams to a new location the pathways to the resources
may become rather long, leading to unacceptable latencies.
Under these circumstances, the Proxy locates and negotiates
with another Proxy that is closer to the terminal’s new
location. Assuming the new Proxy is willing, the terminal
“reconnected” to the new, closer Proxy. Some time later the
component resources are moved one-by-one to hosts that are
closer to the new Proxy and the latencies are reduced,
accordingly. This approach also allows different transient
resources in the Internet to be used flexibly based on their
instantaneous availability.

A further scenario is the use of proactive and reactive
protection schemes against distributed “denial of service”
attacks using a roaming server mechanism. Proactive
protection will either require the server application to roam at
approximately regular intervals, based on guest system
availability and so forth. Alternatively, security measures
located within the Interface Controller and/or the Proxy, such
as intrusion detection or profiling could indicate impending
trouble and so trigger the server to move.

Yet another example scenario showing the flexibility of the
architecture is the case of transparent parallelism. In this
scenario an application provides service to remote clients
carrying out some computing task. All client applications
connect to one server. This may lead to overload of the first
server. Later, based on increasing client demand the Proxy
decides to lighten the load of the first server and provide
better service to the clients. It decides to clone the server
application onto other server(s) and some client applications
can then be redirected to the new server(s). Therefore, the
load of each server can be maintained at an acceptable level
and the service to the clients can be more reliable.

VI. CONCLUSIONS
In this paper a novel system architecture is proposed for

enabling applications to roam seamlessly while they are
actively processing executable code and/or communicating
with remote entities. The important components are
introduced, namely the Interface Controller within the JVM
and the Proxy. The architecture enables the decoupling of
running applications from the underlying environment,
facilitating both robustness and opportunistic processing on
transitory resources, as well as permitting the ability to create
multiple clones of an application for performance gains. The
architecture can also be used to allow complex services to be
delivered to a terminal with limited local processing capability
even whilst it is “on the move” using the intelligent control
plane to manage the migration mechanism as needed.

REFERENCES

[1] RFC 793, Transmission Control Protocol,
http://www.ietf.org/rfc/rfc0793.txt
[2] ntop, http://status2.ira.cnr.it:3000/ipProtoDistrib.html
[3] RFC 791, Internet Protocol, http://www.ietf.org/rfc/rfc0791.txt
[4] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer,
Paul Gauthier, Cluster-Based Scalable Network Services. In Proceedings of
SOSP ’97, October 1997.
http://www.cs.berkeley.edu/~brewer/cs262b/TACC.pdf#search=%22cluster-
based%20scalable%20network%20services%22
[5] Trevor Schroeder, Steve Goddard, and Byrav Ramamurthy, Scalable
Web Server Clustering Technologies, Network, IEEE, Volume 14, Issue 3,
May-June 2000 Page(s):38-45
[6] Alex C. Snoeren, David G. Andersen, and Hari Balakrishnan, Fine-
Grained Failover Using Connection Migration. In Proceedings of 3rd USENIX
Symp. On Internet Technologies and Systems (USITS), Mar. 2001.
[7] Chu-Sing Yang and Mon-Yen Luo, Realizing Fault Resilience in Web
Server Cluster. SuperComputing ACM/IEEE 2000 Conference.
[8] Florin Sultan, Kiran Srinivasan, Deepa Lyer, Liviu Lftode, Migratory
TCP: Highly Available Internet Services Using Connection Migration, Rutger
University Technical Report DCS-TR-462, December 2001.

[9] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode,
“MigratoryTCP: Connection Migration for Service Continuity in the Internet”,
http://discolab.rutgers.edu/mtcp/icdcs02.ps
[10] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode,
“Migratory TCP: Highly Available Internet Services Using Connection
Migration”, http://discolab.rutgers.edu/mtcp/dcs-tr-462.ps
[11] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode,
“Transport Layer Support for Highly-Available Network Services”,
http://discolab.rutgers.edu/mtcp/hotos01.ps
[12] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh, “The
Design and Implementation of Zap: A System for Migrating Computing
Environment”,
http://www.ncl.cs.columbia.edu/publications/osdi2002_zap.pdf
[13] Shaya Potter, Jason Nieh, Dinesh Subhraveti, “Secure Isolation and
Migration of Untrusted Legacy Application”,
http://www.ncl.cs.columbia.edu/publications/cucs-005-04.pdf
[14] Tom Boyd and Partha Dasgupta, “Process Migration: A Generalized
Approach Using a Virtualizing Operating System”, Distributed Computing
Systems, 2002. Proceedings. 22nd International Conference on 2-5 July 2002
Page(s):385 – 392.
[15] Ravikanth Nasika and Partha Dasgupta, “Transparent Migration of
Distributed Communicating Processes”,
http://cactus.eas.asu.edu/Partha/Papers-PDF/1900-2001/PDCS-ISCA2000.pdf
[16] Tom Boyd, Partha Dasgupta, “Injecting Distributed Capabilities into
Legacy Applications Through Cloning and Virtualization”,
http://www.dvo.ru/bbc/pdpta/vol3/p251.pdf
[17] About the Java Technology,
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html
[18] James Gosling, Henry McGilton, A White Paper: The Java Language
Environment, http://java.sun.com/docs/white/langenv/index.html

