
GA and PSO-based Resource Scheduling for Orchestrated, Distributed
Computing

Yiran Gao1, Chris Phillips1, Liwen He2

1 Queen Mary, University of London, Mile End Road, London, United Kingdom
2 BT Security Research Centre, Adastral Park, Ipswich, United Kingdom

Abstract: A new distributed computing architecture, Dynamic Virtual
Private Network (DVPN), is introduced. The DVM (Dynamic VPN
Manager) works as the Autonomous System (AS) administrator in the
DVPN system to perform resource scheduling and liaise with the
underlying connection management. The approach combines
on-demand reservation of both the communications infrastructure
and various higher-level processing facilities. This enables support of
orchestrated computing where a complex job can be considered to be
a VPN community. This job may be decomposed into tasks to be
located at various distributed processing sites. Data can flow between
them rather like a production line, in order to deliver the finished
“product” to chosen end hosts. Two variants of a resource-scheduling
algorithm are proposed for job scheduling in the DVPN system.
Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO)
mechanisms are considered for use within the optimization process.
Simulation results show that both approaches are feasible. The
authors then compare the performance of GA against PSO in this
dynamic VPN environment to compare their suitability.

Keywords: Grid Computing, GA, PSO, Resource Scheduling,

Inter-Domain, VPN

1. Introduction

Layer-2 Virtual Private Networks (VPNs) can provide
performance guaranteed communication for advanced IP
applications such as Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM),
video-conferencing, and other mission-critical applications.
However, typical VPNs are operated and managed via manual
intervention, which prevents implementations of the VPNs from
supporting new forms of application desiring dynamic
community relationships and short-lived access to processing
resources. Various researchers have focused on this limitation;
for example, a number of dynamic VPN initiatives have emerged
[1-8]. In this paper, the authors introduced a novel DVPN
solution to extend the flexibility of inter-domain VPN operations
with dynamic resources exploration and allocation in
accordance with the customers’ requirements. A new entity
named the DVM (Dynamic VPN Manager) is introduced to
provide enhancements to the MPLS signalling framework so that
new functionality can be supported [9].

Two variants of a resource-scheduling algorithm are proposed to
provide dynamic resource allocation in the DVPN system.
Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO)
[10] mechanisms are employed as the optimisation tools. Their
performance is examined through simulations.

The paper is organized as follows: Section 2 introduces the
DVPN framework. Section 3 then describes the dynamic
resource-scheduling algorithm. Next in Section 4 the
performance of the proposed resource-scheduling algorithm is
examined and a comparison is made between GA (Genetic
Algorithm) and PSO (Particle swarm optimization) variants
through simulations. Finally, conclusions are presented in
Section 5.

2. The Dynamic VPN Architecture

Consider the scenario represented in Figure 1, where a job is
launched by user A. This job consists of several sub tasks, T1,
T2, T3, T4, T5 and the result will be transmitted to user D.
According to the task dependence represented in Figure 1, T5
can start when T4 and T3 have both completed; T4 can start
when T2 has completed, and T2 and T3 can start when T1
completed. Also, T3 is independent of T2 and T4. In this
example, user A and user D are located in different domains
(User A is in AS1 and User D in AS2). There are value-added
processing resources available at B in AS1 and C in AS2.

Assume that this job is calculation intensive and extra
processing resources are required to carry out the calculation
tasks. Since some tasks are parallel such as T2 and T3, placing
independent tasks on different processing resources may obtain
better performance. In this example, a possible scheme is to
process T2, T4 in resource B and T3 in resource C.

According to the above description, to process this job, a grid
involving user A, user D, resource B and resource C is required.
As mentioned before, a VPN can provide security and low cost
links among the grid nodes. In order to use the network
resources (i.e. bandwidth) efficiently, the VPN links (in the form
of Label Switched Paths) are created only when the
communications are necessary. After the data transitions are
completed, the links are removed. At the same time, to better
utilise the value-added resources such as processors, these
resources can also be provided to the grid on-demand and
dynamically. Meanwhile, the QoS requirements should be
satisfied even when a VPN link crosses multiple domains (i.e.
AS1 and AS2 in this example).

Traditional VPNs are static and based on human operations,
which limits the scalability and the system dynamics. In the
above scenario, to perform the grid computing job, given a
traditional VPN, user A would need to send a request to the
network manager to create a VPN and the VPN links would be
configured by human operators. Once the VPN is created, all the
VPN links and the network resources are allocated for the whole
VPN lifetime. It is difficult to introduce new resources to speed
up the grid computing calculation although there could still be
available resources. Automatic releasing of the unused network
resources is also impossible, because the network manager is a
human operator, there is no such mechanism to manage VPN
and network resource automatically. Meanwhile, in this example,
the destination (user D) is in a different AS from user A. The
VPN includes a link that must cross the border between AS1 and
AS2, which requires complex processing for the traditional VPN
technologies. It is also difficult for user A to utilise the resources
at C because these entities within AS2 are invisible outside the
domain.

Based on the above example, traditional technologies cannot
efficiently provide dynamic and inter-domain services for the
global computing. For this reason, the authors propose a novel

inter-domain MPLS Dynamic VPN architecture to provide the
inter-domain dynamic connectivity and resource management.
Shown as Figure 1, the key contribution of the architecture is the
inclusion of new equipment within each Autonomous System
(AS), referred to as the DVM. Never the less, as far as possible,
this architecture makes use of the existing forwarding and
signalling methods or schemes under consideration in IETF
RFC documents [8][11].

Figure 1: Dynamic VPN Architectural Overview

A DVM manages VPN communities under its jurisdiction. The
user requests VPN services from the DVM. For example a user
may request an MPLS connection between two sites where one
of the sites hosts a processing resource. Data is to be sent from
the first site to the second one for processing via an MPLS
connection. When the processing is complete a second
connection is temporarily established to return the results. The
DVM will decide whether to provide this service and how to
control the underlying network equipment to operate this MPLS
VPN link. However, the DVM is not responsible for MPLS
connection management and the formation of the Label
Switched Paths (LSPs). This is the job of the separate
connection management software existing within the operator’s
domain. The DVM merely identifies the member end-points and
requests the connection management function to interconnect
them via LSPs that have the desired QoS characteristics [9].

The end-point users may be human or CE-base software entities;
they can request to create or join VPNs via the DVM
User-Network Interface signalling. If the DVM accepts the user’s
request, it will coordinate the setting up LSPs among the
user-end sites or some value-added resources. In such a
system, the individual users can reserve / access computers,
databases and experimental facilities on-demand, simply and
transparently, without having to consider where those facilities
are located. At the same time, the operators can offer the
on-demand resource “farms” to satisfy user applications such as
grid computing. This provides the operators with a source of
revenue beyond the connection services alone, by leasing the
value added resources as a part of DVPN services.

Figure 2 provides an example of how the orchestrated
computing works in the DVPN system. The user submits the
service requests to the DVM. The DVM makes the decision
which resources will be employed to carry the tasks. DVMs will
book the resource for the user’s tasks. The VPN links will be
setup among the users and resources dynamically for the data
transactions. After that, the VPN link will be removed
automatically to release the network resources. If the
inter-domain services are necessary (i.e. data needs to be

transferred to a resource located outside local AS), the DVM will
negotiate with the other DVM. The inter-domain service will be
provided to the customers automatically through the cooperation
among the DVMs. However, the location of these remains
transparent to the customers.

Figure 2: Orchestrated Computing in DVPN system

3. Resource Scheduling Algorithm

The DVPN architecture is designed to support services for
applications that require access to on-demand and dynamic
resources such as grid computing. A resource-scheduling
algorithm is proposed to provide job scheduling in the DVPN
environment.

A job will typically consist of a number of tasks. There might be
the data dependences among these tasks. At the same time the
jobs (VPN instances) are independent each other. Resource
scheduling in such a heterogeneous system has been a
well-known NP-hard problem [13]. A number of researchers
have addressed the resource-scheduling problem for static
cases of dependent / independent mixed jobs [14]][18] which are
similar to the DVPN scenario. They are static in the sense that
the characteristics of the jobs (i.e. arrival time, processing
complexity) are known in advance. However, in the DVPN
system, the job scenarios are dynamic and consist of dependent
and independent tasks together where none of the existing static
solutions are suitable. For this reason, a new dynamic
resource-scheduling algorithm is proposed. The architecture of
this scheme is represented in Figure 3.

Figure 3: The Algorithm Architecture

The jobs are represented as Directed Acyclic Graphs (DAGs)
and task dependency information of the jobs is stored in the

Jobs Set (JS). The Resource Set (RS) records the resource
information including: availability, capacity and the currently
allocated tasks.

The algorithm is designed to operate in dynamic scenarios
where new tasks/jobs can arrive at any time. As there are
typically dependencies among tasks comprising each job, the
tasks are separated into different layers in accordance with their
dependency constraints. The tasks in the succeeding lower
layer are always compared with their preceding upper layer
dependent tasks.

A task is “ready” for scheduling if all of its upper dependent tasks
are already scheduled and their completion times are known.
The scheduled tasks are the yellow nodes and the ready tasks
are represented in blue. The red nodes indicate “un-ready” tasks
that have some unresolved dependent uppers and so cannot be
scheduled yet.

The ready tasks are input into the Ready Tasks Set (RTS). All
the tasks in the RTS are independent because none of them
have any un-scheduled dependent uppers, even though some of
them may be associated with the same job. The ready tasks are
scheduled using an optimization tool. In this paper, both a GA
[19][20] and PSO [21] approach are considered as they are
currently regarded as the robust and efficient stochastic
searching mechanisms for various optimisation problems [22].

Whenever jobs arrive they are placed within the Jobs Set and
arranged into layered tasks, bearing in mind their dependencies.
From these jobs, tasks that have no dependent uppers may then
be transferred to the RTS in preparation for a scheduling cycle.
The scheduling processing cycle is initiated when there are
tasks waiting in the RTS. While it executes, trying to find a
suitable allocation of ready tasks to the available resources, no
further tasks may enter the RTS. At the end of a scheduling
cycle, the tasks in the RTS are assigned to the identified
resources along with their start time. Also at this point the
algorithm re-examines the Jobs Set, which may contain
additional jobs that have arrived during the previous processing
cycle as well as the residual tasks of the jobs that are currently
being processed.

Tasks effectively enter the RTS in a step-wise fashion. Various
mapping arrangements onto the available resources are
attempted until the one with the smallest job completion time is
found by the optimization engine. The task resource allocation
information is updated, and then another scheduling cycle starts.
The processing mechanism loops until all the tasks are
scheduled, which means that no more tasks/jobs enter the
network and the RTS is empty.

The advantage of this approach is that the optimization
algorithm does not need complete information of all the jobs that
will arrive; but only considers the tasks in the RTS, and
possesses no foresight. The RTS updates in accordance with
the current job information before each optimisation cycle starts.
The algorithm can accommodate new jobs entering the system
at any time. It is also possible that the resource availability can
change whilst the algorithm is processing. The ability to
accommodate these situations makes this algorithm feasible for
use within the dynamic DVPN scenario and differentiates it from
previous work.

4. Optimization with GA and PSO

In this paper, alternative GA and PSO optimization engines are
considered for scheduling the ready tasks in the RTS at each
resource-allocation cycle. Their performance is examined using
simulations.

To illustrate the resource allocation mechanism and the role
played by the optimisation algorithms, consider the trivial
scenario depicted in Figure 4. This shows an example job
dependency DAG a corresponding job scheduling arrangement
in Figure 4 (a) and Figure 4 (b), respectively.

Resource 0

Resource 1

Resource 2

Time Slot

Task 1

Task 2 Task 5

Task 4

Task 3

Layer 0

Layer 1

Layer 2

Layer 3

1

5

3 4

2

Layer 0

Layer 1

Layer 2

Layer 3

1

5

3 4

2

(a) (b)

Layer 0

Layer 1

Layer 2

Layer 3

1

5

3 4

2

Layer 0

Layer 1

Layer 2

Layer 3

1

5

3 4

2

(a) (b)
Figure 4: Example Job Scheduling Arrangement

In this example, a job is consists of five tasks and is represented
as a DAG. There are 3 network resources. The tasks are
separated into different layers and numbered in accordance with
their specific dependencies as shown in Figure 4 (a). A task’s
number can never be smaller than the tasks in its upper layers.
Also, a task cannot start until all its dependent uppers have
finished execution. Considering the job scenario shown in Figure
4 (a), a possible scheduling arrangement might looks like Figure
4 (b).

1) GA implementation

GA [28][29] attempts to obtain an optimal solution through
simulating the natural evolutionary process. The chromosome
architecture employed in the proposed algorithm is illustrated in
Figure 5. Each chromosome consists of a number of genes,
where each gene represents a particular ready task awaiting
scheduling. The value of the gene indicates the particular
resource under consideration for allocating this task to. In the
example of Figure 5, there are 5 genes in total, therefore
representing 5 ready tasks. Assuming that there are 3 available
resources (resources0, resources1, resources2), one allocation
of the current ready tasks is shown in Table 1 in accordance with
the chromosome of Figure 5.

01201 01201

Cell content is the suggested resource to be usedOne array cell for each ready task
Figure 5: The Chromosome Architecture

Table 1: Relationship between the Tasks and the Resources
Represented by Figure 5

Tasks to be scheduled Available resources
Task 1 Resource 1
Task 2 Resource 0
Task 3 Resource2
Task 4 Resource1
Task 5 Resource 0

The chromosome only contains the mapping information of
tasks to resources; however, the dependencies are considered
when the fitness is calculated and tasks are assigned to
resources.

The proposed GA-based dynamic algorithm was compared
against a static algorithm. The static algorithm requires
complete information concerning the whole scenario, specifically
when each and every task will arrive and its burden. In the static
case all the DAG tasks and the available resource information
are read in before the optimization algorithm starts. The dynamic
and static algorithms use GA as the optimization tool here. A
similar chromosome arrangement is used in both of the two. The
proposed algorithm outputs the scheduling arrangements for
each set of ready tasks and terminates only when no more jobs
enter the system. Conversely with the static scheme the final
scheduling is output only once. This static algorithm provides a
useful upper bound on the performance, as this complete
knowledge of the job arrival sequence would not normally be
available in a dynamic scenario.

1 2 3 4

5 6 7 8

9 10 11 12

Level 1

Level 2

Level 3

(i tasks)

(j tasks)

(N-i-j tasks)

Figure 6: Job Scenario Example

In the simulation, the job scenario is generated as follows. Firstly,
N tasks (for example N=100) are generated. Each task
consumes a certain amount of the CPU resource. For example,
if a task with task burden 4 is allocated to a resource with
“capability” 2, the task will take two time units to complete. The
burden of each task is uniformly randomly distributed (i.e.
between 1 and 240). Then these tasks are separated into L
levels (L=3 in Figure 6). The tasks 1 to i are located into level 1.
i is a uniformly randomly-generated number between 1 and N-2.
The tasks i to j are located into level 2, where j is a uniformly
randomly-generated number between i+1 and N-1. The rest of
the tasks are located in level 3. Thus there are i tasks in level 1
(Numbered from 1 to i), j-i tasks in level 2 (Numbered from i+1 to
j), and N-i-j tasks in level 3 (Numbered from j+1 to N). The tasks
in top level have no dependent uppers, and each task in the
other levels (level2 and level3) has on average D (i.e. D=4, 10,
16, 22, 28 dependent uppers based upon the specific simulation
scenario) that are Normally distributed (with mean=1,
variance=1) dependent tasks in its preceding upper level. As a
result, tasks are randomly arranged into several jobs that consist
of a set of dependent tasks.

The number of generations for both algorithms is set to 10. Five
job scenarios were examined. All of them contain 100 tasks
while the average number of upper dependent tasks of each
task is different in each case. For example, the green line
demonstrates the simulation results under the scenario where
each task has on average 4 dependent uppers; the black one is
for the job scenario whose tasks have on average 28 dependent
uppers.

From Figure 7 we can draw the conclusion that the dynamic
algorithm’s performance is similar to the static one in scenarios
where the upper dependent task number is small, and the

dynamic algorithm performs worse when the upper dependent
task number of each task increases. As expected, the dynamic
algorithm works well if the tasks are not very dependent,
otherwise this algorithm will lead to a worse scheduling
compared to the static case, where it has the luxury of a
complete job forecast. The reason is that the dynamic scheme
only considers the ready tasks, while the static one schedules
according to the whole scenario; the dependent relations are
considered along with knowledge of when all jobs will arrive. As
a result, if these tasks are very dependent, the lack of the
dependency information will lead to worse scheduling
performance with the proposed algorithm.

Also from the Figure 7, we can find that both the static and
dynamic GA-based algorithms achieve a shorter job completion
time when the chromosome population number increases over a
certain range. As previously pointed out, the task number in the
RTS changes from time to time. Meanwhile, the GA’s
performance is related to the ratio of chromosome population
versus the ready tasks, as implied by the Figure 7. Therefore,
the GA algorithm was modified to adjust its chromosome
population size according the current number of ready tasks in
the RTS. The GA with an adaptive chromosome population size
was compared against the one with fixed chromosome
population size. The chromosome population ratio is introduced
as the parameter representing the ratio of chromosomes to the
number of ready tasks. For example, with the population ratio
0.5, the chromosome number should be 10 if there are currently
20 ready tasks waiting for scheduling. This adaptation ensures
the complexity of the GA calculation is kept small when the
presence of fewer ready tasks makes it appropriate to do so.
Figure 8 presents the performance of the adaptive GA scheme.

Jo
b

C
om

pl
et

io
n

Ti
m

e

Chromosome Population Number

Generations: 10

Dynamic Algorithm

Static Algorithm

Mean Dependent Uppers
Green 4
Red 10
Blue 16
Cyan 22
Green 28

Figure 7: Job Completion Time Performance

In the simulation, the job scenarios each contain 100 tasks in
total and 3 resources (with capacity 1, 2 and 3 respectively) are
available. Each task has on average 10 dependent uppers. The
horizontal axis is the consumed CPU computation time (i.e. how
long the CPU spends calculating the scheduling arrangement)
and the vertical axis is the chromosome population. Two
simulations with the fixed chromosome population sizes (5 and
60) are carried out along with one simulation where the GA has
the adaptive chromosome population size. As already defined,
the population ratio is the ratio of chromosomes population size
to number of tasks in the current assignment level. The
population ratio was set to 1 for the adaptive chromosome
population GA in this simulation, which means that the

chromosome population number always equals the current
number of ready tasks. he simulation results show for the GA
with a fixed chromosome population size (blue line in Figure 8),
too small a fixed chromosome population number leads to poor
scheduling, whilst too large a chromosome population number
causes the CPU to spend too much CPU computation time
calculating the assignment although its output scheduling is
somewhat better than the GA with smaller chromosome
population number.

C
hr

om
os

om
e

P
op

ul
at

io
n

CPU Computation Time (seconds)

Figure 8: Adaptive Chromosome Population

On the other hand, the GA with adaptive-population size (red
line in Figure 8) consumes less CPU computation time whilst
outputting a similar scheduling result compared with the GA
cases with large fixed chromosome population sizes. Its
chromosome population size changes over time in order to
maintain a relatively optimal chromosome population size
according to the instantaneous ready tasks number. We can
conclude that the GA with adaptive population size is more
efficient than schemes with a fixed chromosome population size
when considering the consumed CPU computation time and the
resultant scheduling allocation.

Figure 9 examines the relationship between the chromosome
population ratio and the scheduling allocation performance. Five
scenarios with 20, 40, 60, 80 and 100 tasks were considered.
Again there are 3 available resources (with capacity 1, 2 and 3).
In each scenario, simulations with different chromosome
population ratios were performed and 20 repetitions were
carried out with the same chromosome population ratio (where a
random number generator was used to create various job arrival
permutations).

Chromosome Population Ratio

Jo
b

C
om

pl
et

io
n

Ti
m

e

Generations: 10
Blue 100Tasks
Yellow 80 Tasks
Red 60 Tasks
Pink 40 Tasks
Black 20 Tasks

Figure 9: Chromosome Population Ratio Performance

Based on the results in Figure 9 we can see that increasing the
chromosome population ratio over a certain range can improve
the algorithm’s scheduling performance and reduce the
performance variation; however, further increases in the
chromosome population ratio have a minimal impact.

As the chromosome population ratio increases, the time spent
calculating the scheduling assignment also increases. The
simulation results in Figure 10 show the relationship between
the computation time and the job completion time for the
proposed algorithm when the chromosome population ratio was
varied from 0.1 to 2 (i.e. the same tests as used for Figure 9). As
can be seen from the vertical axis, the range of job completion
times achievable by different resource scheduling arrangements
is limited in all cases. Also, especially when the RTS has more
tasks for processing, increasing the chromosome population
ratio can have a significant impact of the CPU computation time
taken to arrive at a result for a given number of GA generations
(i.e. from the increasing spread of values along the horizontal
axis as the number of tasks mounts). This impact has little
performance benefit as seen by the eventual plateau.

Jo
b

C
om

pl
et

io
n

Ti
m

e

CPU Computation Time (seconds)

Generations: 10
100 Tasks

60 Tasks

40 Tasks

20 Tasks

Jo
b

C
om

pl
et

io
n

Ti
m

e

CPU Computation Time (seconds)

Generations: 10
100 Tasks

60 Tasks

40 Tasks

20 Tasks

Figure 10: Job Completion Time versus Computing Time

2) PSO Implementation

Particle Swarm Optimization (PSO) is another evolutionary
optimization technique. It simulates the process of a swarm of
insects preying and works well in many global optimal problems
[21][22].

PSO is employed as the alternative optimization tool. Similar
with GA’s chromosome, a PSO particle might be regard as one
n-cell array where n equals the number of the tasks waiting for
scheduling. Each cell maps a certain task and the cell value
presented which resource this task is located. For example, the
job scheduling arrangement shown in Figure 4 could be
represented as the particle shown in Figure 11. The mapping
relationship between the tasks and resources is demonstrated in
Table 1.

{1, 0, 2, 1, 0}
Figure 11: Particle Example

The particle movement is achieved by swapping the number in
each array cell which implies the resource-task pair. The velocity
of the particle i in each dimension j, vij is determined by the
number changed between the pij of last iteration to the next
iteration. For example, if a particle’s position is {0,1,2} and the

velocity is {1, 0, -1}, then the new position of this particle is
{1,1,1}.

As with the GA-based approach, the number of particles can be
adjusted in accordance with the current ready tasks number.
The particle ratio is defined as the ratio of particles to the
number of ready tasks.

3) Comparison between GA and PSO

The authors compared the PSO performance against GA as the
optimization engine with the same job scenario. 20 trials are
carried out with the same chromosome population/particle ratio
and generation/iteration number. The simulation results are
shown in Figure 12.

In Figure 12 (a), the GA chromosome population and PSO
particle ratios are maintained at 0.3 while in Figure 12 (b) the
generation/iteration count is kept at 30 and various chromosome
population/particle ratios are considered.

The PSO approach shows similar performance to the GA
scheme. A shorter Job completion time is obtained by increasing
the iteration count or the particle ratio over a certain range. Both
GA and PSO converge close optimal solutions (shortest overall
completion) if the chromosome population/particle ratio and
generation/iteration number are large enough. However, GA can
achieve a better solution when the chromosome
population/particle ratio and generation/iteration number are
small.

Jo
b

C
om

pl
et

io
n

Ti
m

e

Generation/Iteration Number
(a)

Jo
b

C
om

pl
et

io
n

Ti
m

e

Chromosome Population/Particle Ratio
(b)

Figure 12: Performance Comparison between Static GA and
Static PSO Resource Scheduling

Meanwhile, as the scheduling algorithm must operate in a
dynamic environment, the speed of the optimisation engines
must also be considered. Based on the simulation results given
in Figure 13, with same chromosome population/particle ratio
and generation/iteration number, it is seen that GA requires
considerably more computation time than the equivalent PSO
scheme.

C
PU

 C
om

pu
ta

tio
n

Ti
m

e
(S

ec
on

ds
)

Chromosome / Particle Population Ratio

Generation/Iteration Number
Figure 13: PSO and GA Computation Time Comparison

5. Inter-Domain Resource Allocation

As considered in Section 4, the DVPN architecture is designed
to provide inter-domain services for orchestrated computing.
Through negotiation among DVMs, available resources can be
shared across the domain borders. Normally, using the
inter-domain resources will incur extra cost, which is different
from the local scenario. To make the dynamic resource
scheduling algorithm proposed in this thesis also applicable to
the inter-domains scenario, the fitness function needs to be
extended to consider the inter-domain cost. In the following
paragraphs, the inter-domain cost is introduced into the fitness
function and the behaviours of the proposed algorithm under the
multiple domains scenarios are studied through simulations.

The simulations are carried under a two-domain scenario shown
in Figure 14. Only processing resources are considered. CPU 1,
2, 3 are located in AS1, CPU 4, 5, 6 are located in AS2. The
capacity of each CPU resource is listed in Table 2.

 Figure 14: The Two-domain Scenario

Table 2: Resource Capacity

Resource Name Capacity
CPU1 1
CPU2 2
CPU3 3
CPU4 1
CPU5 2
CPU6 3

During the simulation, DVM1 and DVM2 exchange the resource
availability and keep resource information updated. For
simplicity, the jobs are only submitted to DVM1 (the DVM of the
AS1). Tasks allocated to CPU1, 2, 3 are performed locally; tasks
allocated to CPU 4, 5, 6 are performed remotely, which incurs
inter-domain cost. The inter-domain cost might take into account
various factors, such as latency, inter-domain charging (fee paid
for using resources), however, only the inter-domain charging
fee is considered in these simulations and is represented as the
cost in the simulation experiments. The fitness function is
therefore extended as follows:

Fitness = [a×OverallCompletionTime)] + [b×OverallCost] …(1)

Where a is a time factor and b is a cost factor. Various values of
a and b reflect how important the job Completion Time and
Overall Cost are. For example, the bigger b is, the more
important the inter-domain cost is regarded by the fitness
function.

In the simulation, all the local resources cost 0 units and all the
inter-domain resources cost 1 unit / burden. In this thesis, the
cost is calculated as

Cost = (ResourceCapacity × Occupied Period) …(2)

Where the Occupied Period is the time that the resource spends
carrying out this task.

The another Assumption is that all the jobs are submitted to the
DVM in AS1, so if a task is carried out at any CPU resource in
AS1, the cost will be 0; however, if a task is allocated to a CPU
resource of AS2, an inter-domain cost is charged. For example,
assuming the burden of a task is 1 the cost will be 1x1=1, if the
burden is 10, then the cost for this task is 10x1=10 credit units.

In the simulation, the total task number is set to 100, the mean
task burden is 240 (normal distribution, variance 100) and each
task has 5 dependent uppers on average (normal distribution,
variance=1). In each simulation trial, the generation number is
set to 30 and the chromosome population ratio is set to 1.

In the first simulation experiment, the time factor “a” is always set
to 1, the cost factor “b” is set to 0, which simulates the scenario
where there is no inter-domain cost. The simulation results are
shown in Figure 15.

Figure 15: Task Number Distribution with no Inter-Domain

Penalty(Inter-Domain Cost b=0)

10 independent trials are carried out. The total task number
located within AS1 and AS2 are the same on average. The
conclusion can be drawn that the algorithm treats the local and
remote resources the same in this scenario where the
inter-domain cost is 0, as expected.

In the second experiment, the inter-domain cost is considered.
The cost factor b is set to 1. The simulation results are
represented in Figure 16. As the inter-domain cost is considered
when the fitness is calculated, the number of tasks located within
AS1 (local AS) are more than the tasks located within AS2. This
is because that the algorithm tries to avoid using the
inter-domain resources which incur the extra cost. The average
task number of 10 experiments is 65.300 for AS1 and 34.700 for
AS2.

Figure 16: Task Number Distribution with Inter-Domain Penalty

(Inter-Domain Cost b=1)

The relationship between the job completion time and the
inter-domain cost factor b is also studied through simulations.
Each simulation is repeated 20 times with same cost factor and
the average job completion time is recorded. The results are
shown in Figure 17, as the cost factor increases, the job
completion time also increases. This is because a higher cost
factor makes the cost a more significant factor for the fitness
value. The algorithm is more likely to allocate tasks locally when
the inter-domain cost is higher. Meanwhile the upper bound of
the job completion time is same as the scenario where only local
resources are available, because only the local resources will be
employed if the cost factor is very large.

Cost Factor b

Jo
b

C
om

pl
et

io
n

Ti
m

e

Figure 17: The Job Completion Time versus Cost Factor b

According to the above simulation results, the conclusion can be
drawn that the dynamic resource scheduling algorithm is also
appropriate for the inter-domain scenario. By introducing the
inter-domain cost into the fitness function, a DVPN operator can
regulate the extent to which inter-domain resources are
employed for a given offered task load relative to the estimated
job completion time.

6. Conclusions

A dynamic VPN architecture is introduced and two variations of
a novel dynamic resource-scheduling algorithm are proposed.
The algorithms are examined using simulations. The results
show that both algorithms are feasible and should operate
efficiently within a typical DVPN scenario. The GA and PSO
optimisation engines are also compared. Both of them converge
to similar overall job completion times when a large
generation/iteration number and a sufficient chromosome
population/particle ratio are used. However, with a limited
generation/iteration number and a small chromosome
population/particle ratio, the GA approach can typically obtain
better results although the PSO scheme requires a much
smaller computation time. Meanwhile, by introducing the
inter-domain cost into the fitness function, a DVPN operator can
regulate the extent to which inter-domain resources are
employed for a given offered task load relative to the estimated
job completion time.

References

1. Kindred, D.; Sterne, D. “Dynamic VPN communities:
implementation and experience”, DARPA Information
Survivability Conference & Exposition II, 2001. DISCEX '01.
Proceedings Volume 1, 12-14 June 2001 Page(s):254 - 263
vol.1

2. Y. Jia et al, “Dynamic resource allocation in
QoS-enabled/MPLS supported virtual private networks and
its Linux based implementation”, IEEE CCECE 2002,
Volume 3, 12-15 May 2002 Page(s):1448 - 1454 vol.3

3. Refer to: http://www.leetnet.org/ (URL accessed 20th June
2005)

4. Refer to: http://www.nrns.ca/DRDC.htm (URL accessed 20th
June 2005)

5. P. Lago, R. Scandariato, “A TINA-based solution for dynamic
VPN Provisioning on heterogeneous Networks”, Proc. IEEE
Telecommunications Information Networking Architecture
Conference (TINA'2000), Paris, France, 13-15 Sep. 2000.

6. Rebecca Isaacs, and Ian Leslie, “Support for
Resource-Assured and Dynamic Virtual Private Networks”.
IEEE JSAC, Vol. 19, No. 3, March 2001.

7. Fujita, N. et al, “Scalable overlay network deployment for
dynamic collaborative groups”, Proc. 2005 Symposium on
Applications and the Internet, Page(s):102 – 109, 2005.

8. L. Andersson, T. Madsen, “Provider Provisioned Virtual
Private Network (VPN) Terminology”, IETF Request for
Comments: 4026, March 2005.

9. Yiran Gao, Chris Phillips, Liwen He, “DVM Based Dynamic
VPN Architecture for Group Working and Orchestrated
Distributed Computing”, Third IEEE International
Conference on Digital Information Management (ICDIM
2008), London, November 2008.

10. Lei Zhang1, et al, “A Task Scheduling Algorithm Based on
PSO for Grid Computing”, International Journal of
Computational Intelligence Research, ISSN 0973-1873
Vol.4, No.1 (2008), pp. 37–43.

11. E. Rosen, Y. Rekhter, “BGP/MPLS VPNs”, IETF Request for
Comments: 2547, March 1999.

12. Muthucumaru Maheswaran et al, “Dynamic Matching and
Scheduling of a Class of Independent Tasks onto
Heterogeneous Computing Systems”, 8th Heterogeneous
Computing Workshop, 1999.

13. Ajith Abraham et al, “Heuristics for Scheduling Jobs on
Computational Grids”, The 8th,IEEE International
Conference on Advanced Computing and Communications
(ADCOM 2000), 2000.

14. Juan Antonio Gonzalez et al, “A Hyper-heuristic for
scheduling independent jobs in Computational Grids”,
AEOLUS Workshop on Scheduling, 2007.

15. R. Armstrong, D. Hensgen, and T. Kidd, “The relative
performance of various mapping algorithm is independent of
sizable variance in run-time predictions,” 7th Heterogeneous
Computing Workshop (HCW’ 98), pp. 79-87, March 1998.

16. R. Freund et al, “SmartNet: a scheduling framework for
heterogeneous computing,” The International Symposium
on Parallel Architectures, Algorithms, and Networks, Beijing,
China, June 1996.

17. Ibarra and C. Kim, “Heuristic algorithms for scheduling
independent tasks on non identical processors.” Journal of
the ACM, 24(2):280-289, April 1977.

18. Tianchi Ma and Rajkumar Buyya “Critical-Path and Priority
based Algorithms for Scheduling Workflows with Parameter
Sweep Tasks on Global Grids”, SBAC-PAD, pp 251-258,
2005.

19. Edwin S . H . Hou, Member, IEEE, Ninvan Ansari, Member,
IEEE, and Hong Ren, “A Genetic Algorithm for
Multiprocessor Scheduling”, IEEE Transactions On Parallel
And Distributed Systems. Vol. 5, No. 2, February 1994.

20. Y. Gao, C. Phillips, “A GA Based Real-time Resource
Scheduling Algorithm”, IEEE ICTTA08, Syria, April 2008.

21. Kennedy J. and Eberhart R. “Swarm Intelligence”, Morgan
Kaufmann, 2001.

22. Lei Zhang, et al, “A Task Scheduling Algorithm Based on
PSO for Grid Computing”, International Journal of
Computational Intelligence Research, ISSN 0973-1873
Vol.4, No.1 (2008), pp. 37–43.

