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Abstract: A new distributed computing architecture, Dynamic Virtual 
Private Network (DVPN), is introduced. The DVM (Dynamic VPN 
Manager) works as the Autonomous System (AS) administrator in the 
DVPN system to perform resource scheduling and liaise with the 
underlying connection management. The approach combines 
on-demand reservation of both the communications infrastructure 
and various higher-level processing facilities. This enables support of 
orchestrated computing where a complex job can be considered to be 
a VPN community. This job may be decomposed into tasks to be 
located at various distributed processing sites. Data can flow between 
them rather like a production line, in order to deliver the finished 
“product” to chosen end hosts. Two variants of a resource-scheduling 
algorithm are proposed for job scheduling in the DVPN system. 
Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO) 
mechanisms are considered for use within the optimization process. 
Simulation results show that both approaches are feasible. The 
authors then compare the performance of GA against PSO in this 
dynamic VPN environment to compare their suitability.  
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1. Introduction 

Layer-2 Virtual Private Networks (VPNs) can provide 
performance guaranteed communication for advanced IP 
applications such as Enterprise Resource Planning (ERP), 
Customer Relationship Management (CRM), 
video-conferencing, and other mission-critical applications. 
However, typical VPNs are operated and managed via manual 
intervention, which prevents implementations of the VPNs from 
supporting new forms of application desiring dynamic 
community relationships and short-lived access to processing 
resources. Various researchers have focused on this limitation; 
for example, a number of dynamic VPN initiatives have emerged 
[1-8]. In this paper, the authors introduced a novel DVPN 
solution to extend the flexibility of inter-domain VPN operations 
with dynamic resources exploration and allocation in 
accordance with the customers’ requirements. A new entity 
named the DVM (Dynamic VPN Manager) is introduced to 
provide enhancements to the MPLS signalling framework so that 
new functionality can be supported [9]. 

Two variants of a resource-scheduling algorithm are proposed to 
provide dynamic resource allocation in the DVPN system. 
Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO) 
[10] mechanisms are employed as the optimisation tools. Their 
performance is examined through simulations.  

The paper is organized as follows: Section 2 introduces the 
DVPN framework. Section 3 then describes the dynamic 
resource-scheduling algorithm. Next in Section 4 the 
performance of the proposed resource-scheduling algorithm is 
examined and a comparison is made between GA (Genetic 
Algorithm) and PSO (Particle swarm optimization) variants 
through simulations. Finally, conclusions are presented in 
Section 5. 

2. The Dynamic VPN Architecture 

Consider the scenario represented in Figure 1, where a job is 
launched by user A. This job consists of several sub tasks, T1, 
T2, T3, T4, T5 and the result will be transmitted to user D. 
According to the task dependence represented in Figure 1, T5 
can start when T4 and T3 have both completed; T4 can start 
when T2 has completed, and T2 and T3 can start when T1 
completed. Also, T3 is independent of T2 and T4. In this 
example, user A and user D are located in different domains 
(User A is in AS1 and User D in AS2). There are value-added 
processing resources available at B in AS1 and C in AS2. 

Assume that this job is calculation intensive and extra 
processing resources are required to carry out the calculation 
tasks. Since some tasks are parallel such as T2 and T3, placing 
independent tasks on different processing resources may obtain 
better performance. In this example, a possible scheme is to 
process T2, T4 in resource B and T3 in resource C. 

According to the above description, to process this job, a grid 
involving user A, user D, resource B and resource C is required. 
As mentioned before, a VPN can provide security and low cost 
links among the grid nodes. In order to use the network 
resources (i.e. bandwidth) efficiently, the VPN links (in the form 
of Label Switched Paths) are created only when the 
communications are necessary. After the data transitions are 
completed, the links are removed. At the same time, to better 
utilise the value-added resources such as processors, these 
resources can also be provided to the grid on-demand and 
dynamically. Meanwhile, the QoS requirements should be 
satisfied even when a VPN link crosses multiple domains (i.e. 
AS1 and AS2 in this example).  

Traditional VPNs are static and based on human operations, 
which limits the scalability and the system dynamics. In the 
above scenario, to perform the grid computing job, given a 
traditional VPN, user A would need to send a request to the 
network manager to create a VPN and the VPN links would be 
configured by human operators. Once the VPN is created, all the 
VPN links and the network resources are allocated for the whole 
VPN lifetime. It is difficult to introduce new resources to speed 
up the grid computing calculation although there could still be 
available resources. Automatic releasing of the unused network 
resources is also impossible, because the network manager is a 
human operator, there is no such mechanism to manage VPN 
and network resource automatically. Meanwhile, in this example, 
the destination (user D) is in a different AS from user A. The 
VPN includes a link that must cross the border between AS1 and 
AS2, which requires complex processing for the traditional VPN 
technologies. It is also difficult for user A to utilise the resources 
at C because these entities within AS2 are invisible outside the 
domain. 

Based on the above example, traditional technologies cannot 
efficiently provide dynamic and inter-domain services for the 
global computing.  For this reason, the authors propose a novel 



inter-domain MPLS Dynamic VPN architecture to provide the 
inter-domain dynamic connectivity and resource management. 
Shown as Figure 1, the key contribution of the architecture is the 
inclusion of new equipment within each Autonomous System 
(AS), referred to as the DVM. Never the less, as far as possible, 
this architecture makes use of the existing forwarding and 
signalling methods or schemes under consideration in IETF 
RFC documents [8][11]. 

 
Figure 1: Dynamic VPN Architectural Overview 

A DVM manages VPN communities under its jurisdiction. The 
user requests VPN services from the DVM. For example a user 
may request an MPLS connection between two sites where one 
of the sites hosts a processing resource. Data is to be sent from 
the first site to the second one for processing via an MPLS 
connection. When the processing is complete a second 
connection is temporarily established to return the results. The 
DVM will decide whether to provide this service and how to 
control the underlying network equipment to operate this MPLS 
VPN link. However, the DVM is not responsible for MPLS 
connection management and the formation of the Label 
Switched Paths (LSPs). This is the job of the separate 
connection management software existing within the operator’s 
domain. The DVM merely identifies the member end-points and 
requests the connection management function to interconnect 
them via LSPs that have the desired QoS characteristics [9].  

The end-point users may be human or CE-base software entities; 
they can request to create or join VPNs via the DVM 
User-Network Interface signalling. If the DVM accepts the user’s 
request, it will coordinate the setting up LSPs among the 
user-end sites or some value-added resources. In such a 
system, the individual users can reserve / access computers, 
databases and experimental facilities on-demand, simply and 
transparently, without having to consider where those facilities 
are located. At the same time, the operators can offer the 
on-demand resource “farms” to satisfy user applications such as 
grid computing. This provides the operators with a source of 
revenue beyond the connection services alone, by leasing the 
value added resources as a part of DVPN services.  

Figure 2 provides an example of how the orchestrated 
computing works in the DVPN system. The user submits the 
service requests to the DVM. The DVM makes the decision 
which resources will be employed to carry the tasks. DVMs will 
book the resource for the user’s tasks. The VPN links will be 
setup among the users and resources dynamically for the data 
transactions. After that, the VPN link will be removed 
automatically to release the network resources. If the 
inter-domain services are necessary (i.e. data needs to be 

transferred to a resource located outside local AS), the DVM will 
negotiate with the other DVM. The inter-domain service will be 
provided to the customers automatically through the cooperation 
among the DVMs. However, the location of these remains 
transparent to the customers. 

 
Figure 2: Orchestrated Computing in DVPN system 

 
3. Resource Scheduling Algorithm 

The DVPN architecture is designed to support services for 
applications that require access to on-demand and dynamic 
resources such as grid computing. A resource-scheduling 
algorithm is proposed to provide job scheduling in the DVPN 
environment.  

A job will typically consist of a number of tasks. There might be 
the data dependences among these tasks. At the same time the 
jobs (VPN instances) are independent each other. Resource 
scheduling in such a heterogeneous system has been a 
well-known NP-hard problem [13]. A number of researchers 
have addressed the resource-scheduling problem for static 
cases of dependent / independent mixed jobs [14]][18] which are 
similar to the DVPN scenario. They are static in the sense that 
the characteristics of the jobs (i.e. arrival time, processing 
complexity) are known in advance. However, in the DVPN 
system, the job scenarios are dynamic and consist of dependent 
and independent tasks together where none of the existing static 
solutions are suitable. For this reason, a new dynamic 
resource-scheduling algorithm is proposed. The architecture of 
this scheme is represented in Figure 3. 

 
Figure 3:  The Algorithm Architecture 

The jobs are represented as Directed Acyclic Graphs (DAGs) 
and task dependency information of the jobs is stored in the 



Jobs Set (JS). The Resource Set (RS) records the resource 
information including: availability, capacity and the currently 
allocated tasks. 

The algorithm is designed to operate in dynamic scenarios 
where new tasks/jobs can arrive at any time. As there are 
typically dependencies among tasks comprising each job, the 
tasks are separated into different layers in accordance with their 
dependency constraints. The tasks in the succeeding lower 
layer are always compared with their preceding upper layer 
dependent tasks.   

A task is “ready” for scheduling if all of its upper dependent tasks 
are already scheduled and their completion times are known. 
The scheduled tasks are the yellow nodes and the ready tasks 
are represented in blue. The red nodes indicate “un-ready” tasks 
that have some unresolved dependent uppers and so cannot be 
scheduled yet. 

The ready tasks are input into the Ready Tasks Set (RTS). All 
the tasks in the RTS are independent because none of them 
have any un-scheduled dependent uppers, even though some of 
them may be associated with the same job. The ready tasks are 
scheduled using an optimization tool. In this paper, both a GA 
[19][20] and PSO [21] approach are considered as they are 
currently regarded as the robust and efficient stochastic 
searching mechanisms for various optimisation problems [22].   

Whenever jobs arrive they are placed within the Jobs Set and 
arranged into layered tasks, bearing in mind their dependencies. 
From these jobs, tasks that have no dependent uppers may then 
be transferred to the RTS in preparation for a scheduling cycle. 
The scheduling processing cycle is initiated when there are 
tasks waiting in the RTS. While it executes, trying to find a 
suitable allocation of ready tasks to the available resources, no 
further tasks may enter the RTS. At the end of a scheduling 
cycle, the tasks in the RTS are assigned to the identified 
resources along with their start time. Also at this point the 
algorithm re-examines the Jobs Set, which may contain 
additional jobs that have arrived during the previous processing 
cycle as well as the residual tasks of the jobs that are currently 
being processed.  

Tasks effectively enter the RTS in a step-wise fashion. Various 
mapping arrangements onto the available resources are 
attempted until the one with the smallest job completion time is 
found by the optimization engine. The task resource allocation 
information is updated, and then another scheduling cycle starts. 
The processing mechanism loops until all the tasks are 
scheduled, which means that no more tasks/jobs enter the 
network and the RTS is empty. 

The advantage of this approach is that the optimization 
algorithm does not need complete information of all the jobs that 
will arrive; but only considers the tasks in the RTS, and 
possesses no foresight. The RTS updates in accordance with 
the current job information before each optimisation cycle starts. 
The algorithm can accommodate new jobs entering the system 
at any time. It is also possible that the resource availability can 
change whilst the algorithm is processing. The ability to 
accommodate these situations makes this algorithm feasible for 
use within the dynamic DVPN scenario and differentiates it from 
previous work. 

4. Optimization with GA and PSO  

In this paper, alternative GA and PSO optimization engines are 
considered for scheduling the ready tasks in the RTS at each 
resource-allocation cycle. Their performance is examined using 
simulations.  

To illustrate the resource allocation mechanism and the role 
played by the optimisation algorithms, consider the trivial 
scenario depicted in Figure 4. This shows an example job 
dependency DAG a corresponding job scheduling arrangement 
in Figure 4 (a) and Figure 4 (b), respectively. 
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Figure 4:  Example Job Scheduling Arrangement 

In this example, a job is consists of five tasks and is represented 
as a DAG. There are 3 network resources. The tasks are 
separated into different layers and numbered in accordance with 
their specific dependencies as shown in Figure 4 (a). A task’s 
number can never be smaller than the tasks in its upper layers. 
Also, a task cannot start until all its dependent uppers have 
finished execution. Considering the job scenario shown in Figure 
4 (a), a possible scheduling arrangement might looks like Figure 
4 (b). 
 
1) GA implementation 

GA [28][29] attempts to obtain an optimal solution through 
simulating the natural evolutionary process. The chromosome 
architecture employed in the proposed algorithm is illustrated in 
Figure 5. Each chromosome consists of a number of genes, 
where each gene represents a particular ready task awaiting 
scheduling. The value of the gene indicates the particular 
resource under consideration for allocating this task to. In the 
example of Figure 5, there are 5 genes in total, therefore 
representing 5 ready tasks. Assuming that there are 3 available 
resources (resources0, resources1, resources2), one allocation 
of the current ready tasks is shown in Table 1 in accordance with 
the chromosome of Figure 5. 
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Cell content is the suggested resource to be usedOne array cell for each ready task  
Figure 5: The Chromosome Architecture 

Table 1: Relationship between the Tasks and the Resources 
Represented by Figure 5 

Tasks to be scheduled Available resources 
Task 1 Resource 1 
Task 2 Resource 0 
Task 3 Resource2 
Task 4 Resource1 
Task 5 Resource 0 



The chromosome only contains the mapping information of 
tasks to resources; however, the dependencies are considered 
when the fitness is calculated and tasks are assigned to 
resources. 

The proposed GA-based dynamic algorithm was compared 
against a static algorithm. The static algorithm requires 
complete information concerning the whole scenario, specifically 
when each and every task will arrive and its burden. In the static 
case all the DAG tasks and the available resource information 
are read in before the optimization algorithm starts. The dynamic 
and static algorithms use GA as the optimization tool here. A 
similar chromosome arrangement is used in both of the two. The 
proposed algorithm outputs the scheduling arrangements for 
each set of ready tasks and terminates only when no more jobs 
enter the system. Conversely with the static scheme the final 
scheduling is output only once. This static algorithm provides a 
useful upper bound on the performance, as this complete 
knowledge of the job arrival sequence would not normally be 
available in a dynamic scenario. 
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Figure 6: Job Scenario Example 

In the simulation, the job scenario is generated as follows. Firstly, 
N tasks (for example N=100) are generated. Each task 
consumes a certain amount of the CPU resource. For example, 
if a task with task burden 4 is allocated to a resource with 
“capability” 2, the task will take two time units to complete. The 
burden of each task is uniformly randomly distributed (i.e. 
between 1 and 240). Then these tasks are separated into L 
levels (L=3 in Figure 6). The tasks 1 to i are located into level 1. 
i is a uniformly randomly-generated number between 1 and N-2. 
The tasks i to j are located into level 2, where j is a uniformly 
randomly-generated number between i+1 and N-1. The rest of 
the tasks are located in level 3. Thus there are i tasks in level 1 
(Numbered from 1 to i), j-i tasks in level 2 (Numbered from i+1 to 
j), and N-i-j tasks in level 3 (Numbered from j+1 to N). The tasks 
in top level have no dependent uppers, and each task in the 
other levels (level2 and level3) has on average D (i.e. D=4, 10, 
16, 22, 28 dependent uppers based upon the specific simulation 
scenario) that are Normally distributed (with mean=1, 
variance=1) dependent tasks in its preceding upper level. As a 
result, tasks are randomly arranged into several jobs that consist 
of a set of dependent tasks. 

The number of generations for both algorithms is set to 10. Five 
job scenarios were examined. All of them contain 100 tasks 
while the average number of upper dependent tasks of each 
task is different in each case. For example, the green line 
demonstrates the simulation results under the scenario where 
each task has on average 4 dependent uppers; the black one is 
for the job scenario whose tasks have on average 28 dependent 
uppers. 

From Figure 7 we can draw the conclusion that the dynamic 
algorithm’s performance is similar to the static one in scenarios 
where the upper dependent task number is small, and the 

dynamic algorithm performs worse when the upper dependent 
task number of each task increases. As expected, the dynamic 
algorithm works well if the tasks are not very dependent, 
otherwise this algorithm will lead to a worse scheduling 
compared to the static case, where it has the luxury of a 
complete job forecast. The reason is that the dynamic scheme 
only considers the ready tasks, while the static one schedules 
according to the whole scenario; the dependent relations are 
considered along with knowledge of when all jobs will arrive. As 
a result, if these tasks are very dependent, the lack of the 
dependency information will lead to worse scheduling 
performance with the proposed algorithm.   

Also from the Figure 7, we can find that both the static and 
dynamic GA-based algorithms achieve a shorter job completion 
time when the chromosome population number increases over a 
certain range. As previously pointed out, the task number in the 
RTS changes from time to time. Meanwhile, the GA’s 
performance is related to the ratio of chromosome population 
versus the ready tasks, as implied by the Figure 7. Therefore, 
the GA algorithm was modified to adjust its chromosome 
population size according the current number of ready tasks in 
the RTS. The GA with an adaptive chromosome population size 
was compared against the one with fixed chromosome 
population size. The chromosome population ratio is introduced 
as the parameter representing the ratio of chromosomes to the 
number of ready tasks. For example, with the population ratio 
0.5, the chromosome number should be 10 if there are currently 
20 ready tasks waiting for scheduling. This adaptation ensures 
the complexity of the GA calculation is kept small when the 
presence of fewer ready tasks makes it appropriate to do so. 
Figure 8 presents the performance of the adaptive GA scheme.  
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Figure 7: Job Completion Time Performance 

In the simulation, the job scenarios each contain 100 tasks in 
total and 3 resources (with capacity 1, 2 and 3 respectively) are 
available. Each task has on average 10 dependent uppers. The 
horizontal axis is the consumed CPU computation time (i.e. how 
long the CPU spends calculating the scheduling arrangement) 
and the vertical axis is the chromosome population. Two 
simulations with the fixed chromosome population sizes (5 and 
60) are carried out along with one simulation where the GA has 
the adaptive chromosome population size.  As already defined, 
the population ratio is the ratio of chromosomes population size 
to number of tasks in the current assignment level. The 
population ratio was set to 1 for the adaptive chromosome 
population GA in this simulation, which means that the 



chromosome population number always equals the current 
number of ready tasks. he simulation results show for the GA 
with a fixed chromosome population size (blue line in Figure 8), 
too small a fixed chromosome population number leads to poor 
scheduling, whilst too large a chromosome population number 
causes the CPU to spend too much CPU computation time 
calculating the assignment although its output scheduling is 
somewhat better than the GA with smaller chromosome 
population number. 
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Figure 8: Adaptive Chromosome Population 

On the other hand, the GA with adaptive-population size (red 
line in Figure 8) consumes less CPU computation time whilst 
outputting a similar scheduling result compared with the GA 
cases with large fixed chromosome population sizes. Its 
chromosome population size changes over time in order to 
maintain a relatively optimal chromosome population size 
according to the instantaneous ready tasks number. We can 
conclude that the GA with adaptive population size is more 
efficient than schemes with a fixed chromosome population size 
when considering the consumed CPU computation time and the 
resultant scheduling allocation. 

Figure 9 examines the relationship between the chromosome 
population ratio and the scheduling allocation performance. Five 
scenarios with 20, 40, 60, 80 and 100 tasks were considered. 
Again there are 3 available resources (with capacity 1, 2 and 3). 
In each scenario, simulations with different chromosome 
population ratios were performed and 20 repetitions were 
carried out with the same chromosome population ratio (where a 
random number generator was used to create various job arrival 
permutations).  
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Figure 9: Chromosome Population Ratio Performance 

Based on the results in Figure 9 we can see that increasing the 
chromosome population ratio over a certain range can improve 
the algorithm’s scheduling performance and reduce the 
performance variation; however, further increases in the 
chromosome population ratio have a minimal impact. 

As the chromosome population ratio increases, the time spent 
calculating the scheduling assignment also increases. The 
simulation results in Figure 10 show the relationship between 
the computation time and the job completion time for the 
proposed algorithm when the chromosome population ratio was 
varied from 0.1 to 2 (i.e. the same tests as used for Figure 9). As 
can be seen from the vertical axis, the range of job completion 
times achievable by different resource scheduling arrangements 
is limited in all cases. Also, especially when the RTS has more 
tasks for processing, increasing the chromosome population 
ratio can have a significant impact of the CPU computation time 
taken to arrive at a result for a given number of GA generations 
(i.e. from the increasing spread of values along the horizontal 
axis as the number of tasks mounts). This impact has little 
performance benefit as seen by the eventual plateau.  
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Figure 10: Job Completion Time versus Computing Time 

 
2) PSO Implementation 

Particle Swarm Optimization (PSO) is another evolutionary 
optimization technique. It simulates the process of a swarm of 
insects preying and works well in many global optimal problems 
[21][22].  

PSO is employed as the alternative optimization tool. Similar 
with GA’s chromosome, a PSO particle might be regard as one 
n-cell array where n equals the number of the tasks waiting for 
scheduling. Each cell maps a certain task and the cell value 
presented which resource this task is located.  For example, the 
job scheduling arrangement shown in Figure 4 could be 
represented as the particle shown in Figure 11. The mapping 
relationship between the tasks and resources is demonstrated in 
Table 1. 

{1, 0, 2, 1, 0} 
Figure 11: Particle Example 

The particle movement is achieved by swapping the number in 
each array cell which implies the resource-task pair. The velocity 
of the particle i in each dimension j, vij is determined by the 
number changed between the pij of last iteration to the next 
iteration. For example, if a particle’s position is {0,1,2} and the 



velocity is {1, 0, -1}, then the new position of this particle is 
{1,1,1}. 

As with the GA-based approach, the number of particles can be 
adjusted in accordance with the current ready tasks number. 
The particle ratio is defined as the ratio of particles to the 
number of ready tasks.  
 
3) Comparison between GA and PSO 

The authors compared the PSO performance against GA as the 
optimization engine with the same job scenario. 20 trials are 
carried out with the same chromosome population/particle ratio 
and generation/iteration number. The simulation results are 
shown in Figure 12. 

In Figure 12 (a), the GA chromosome population and PSO 
particle ratios are maintained at 0.3 while in Figure 12 (b) the 
generation/iteration count is kept at 30 and various chromosome 
population/particle ratios are considered.  

The PSO approach shows similar performance to the GA 
scheme. A shorter Job completion time is obtained by increasing 
the iteration count or the particle ratio over a certain range. Both 
GA and PSO converge close optimal solutions (shortest overall 
completion) if the chromosome population/particle ratio and 
generation/iteration number are large enough. However, GA can 
achieve a better solution when the chromosome 
population/particle ratio and generation/iteration number are 
small.  
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Figure 12: Performance Comparison between Static GA and 
Static PSO Resource Scheduling 

Meanwhile, as the scheduling algorithm must operate in a 
dynamic environment, the speed of the optimisation engines 
must also be considered. Based on the simulation results given 
in Figure 13, with same chromosome population/particle ratio 
and generation/iteration number, it is seen that GA requires 
considerably more computation time than the equivalent PSO 
scheme. 
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Figure 13:  PSO and GA Computation Time Comparison 

5. Inter-Domain Resource Allocation 

As considered in Section 4, the DVPN architecture is designed 
to provide inter-domain services for orchestrated computing. 
Through negotiation among DVMs, available resources can be 
shared across the domain borders. Normally, using the 
inter-domain resources will incur extra cost, which is different 
from the local scenario. To make the dynamic resource 
scheduling algorithm proposed in this thesis also applicable to 
the inter-domains scenario, the fitness function needs to be 
extended to consider the inter-domain cost. In the following 
paragraphs, the inter-domain cost is introduced into the fitness 
function and the behaviours of the proposed algorithm under the 
multiple domains scenarios are studied through simulations. 

The simulations are carried under a two-domain scenario shown 
in Figure 14. Only processing resources are considered. CPU 1, 
2, 3 are located in AS1, CPU 4, 5, 6 are located in AS2. The 
capacity of each CPU resource is listed in Table 2. 

 
 Figure 14: The Two-domain Scenario 

Table 2: Resource Capacity 

Resource Name Capacity 
CPU1 1 
CPU2 2 
CPU3 3 
CPU4 1 
CPU5 2 
CPU6 3 



During the simulation, DVM1 and DVM2 exchange the resource 
availability and keep resource information updated. For 
simplicity, the jobs are only submitted to DVM1 (the DVM of the 
AS1). Tasks allocated to CPU1, 2, 3 are performed locally; tasks 
allocated to CPU 4, 5, 6 are performed remotely, which incurs 
inter-domain cost. The inter-domain cost might take into account 
various factors, such as latency, inter-domain charging (fee paid 
for using resources), however, only the inter-domain charging 
fee is considered in these simulations and is represented as the 
cost in the simulation experiments. The fitness function is 
therefore extended as follows: 

Fitness = [a×OverallCompletionTime)] + [b×OverallCost] …(1) 

Where a is a time factor and b is a cost factor. Various values of 
a and b reflect how important the job Completion Time and 
Overall Cost are. For example, the bigger b is, the more 
important the inter-domain cost is regarded by the fitness 
function. 

In the simulation, all the local resources cost 0 units and all the 
inter-domain resources cost 1 unit / burden. In this thesis, the 
cost is calculated as 

Cost = (ResourceCapacity × Occupied Period) …(2) 

Where the Occupied Period is the time that the resource spends 
carrying out this task. 

The another Assumption is that all the jobs are submitted to the 
DVM in AS1, so if a task is carried out at any CPU resource in 
AS1, the cost will be 0; however, if a task is allocated to a CPU 
resource of AS2, an inter-domain cost is charged. For example, 
assuming the burden of a task is 1 the cost will be 1x1=1, if the 
burden is 10, then the cost for this task is 10x1=10 credit units. 

In the simulation, the total task number is set to 100, the mean 
task burden is 240 (normal distribution, variance 100) and each 
task has 5 dependent uppers on average (normal distribution, 
variance=1). In each simulation trial, the generation number is 
set to 30 and the chromosome population ratio is set to 1. 

In the first simulation experiment, the time factor “a” is always set 
to 1, the cost factor “b” is set to 0, which simulates the scenario 
where there is no inter-domain cost. The simulation results are 
shown in Figure 15. 

 
Figure 15: Task Number Distribution with no Inter-Domain 

Penalty(Inter-Domain Cost b=0) 

10 independent trials are carried out. The total task number 
located within AS1 and AS2 are the same on average. The 
conclusion can be drawn that the algorithm treats the local and 
remote resources the same in this scenario where the 
inter-domain cost is 0, as expected. 

In the second experiment, the inter-domain cost is considered. 
The cost factor b is set to 1. The simulation results are 
represented in Figure 16. As the inter-domain cost is considered 
when the fitness is calculated, the number of tasks located within 
AS1 (local AS) are more than the tasks located within AS2. This 
is because that the algorithm tries to avoid using the 
inter-domain resources which incur the extra cost. The average 
task number of 10 experiments is 65.300 for AS1 and 34.700 for 
AS2. 

 
Figure 16: Task Number Distribution with Inter-Domain Penalty 

(Inter-Domain Cost b=1) 

The relationship between the job completion time and the 
inter-domain cost factor b is also studied through simulations. 
Each simulation is repeated 20 times with same cost factor and 
the average job completion time is recorded. The results are 
shown in Figure 17, as the cost factor increases, the job 
completion time also increases. This is because a higher cost 
factor makes the cost a more significant factor for the fitness 
value. The algorithm is more likely to allocate tasks locally when 
the inter-domain cost is higher. Meanwhile the upper bound of 
the job completion time is same as the scenario where only local 
resources are available, because only the local resources will be 
employed if the cost factor is very large. 
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Figure 17: The Job Completion Time versus Cost Factor b 



According to the above simulation results, the conclusion can be 
drawn that the dynamic resource scheduling algorithm is also 
appropriate for the inter-domain scenario. By introducing the 
inter-domain cost into the fitness function, a DVPN operator can 
regulate the extent to which inter-domain resources are 
employed for a given offered task load relative to the estimated 
job completion time. 

6. Conclusions 

A dynamic VPN architecture is introduced and two variations of 
a novel dynamic resource-scheduling algorithm are proposed. 
The algorithms are examined using simulations. The results 
show that both algorithms are feasible and should operate 
efficiently within a typical DVPN scenario. The GA and PSO 
optimisation engines are also compared. Both of them converge 
to similar overall job completion times when a large 
generation/iteration number and a sufficient chromosome 
population/particle ratio are used. However, with a limited 
generation/iteration number and a small chromosome 
population/particle ratio, the GA approach can typically obtain 
better results although the PSO scheme requires a much 
smaller computation time. Meanwhile, by introducing the 
inter-domain cost into the fitness function, a DVPN operator can 
regulate the extent to which inter-domain resources are 
employed for a given offered task load relative to the estimated 
job completion time. 
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