
Intelligent Roaming for Nomadic Computing

Jun Zhang
EE Dept, Queen Mary University of London,

327 Mile End Road, London E1 4NS, UK
Jun.Zhang@elec.qmul.ac.uk

Chris Phillips
EE Dept, Queen Mary University of London,

327 Mile End Road, London E1 4NS, UK
Chris.Phillips@elec.qmul.ac.uk

Abstract—This paper provides details of a new system
architecture enabling users / applications to roam seamlessly
while they are actively processing executable code and / or
communicating with remote entities. This architecture effectively
decouples the running of applications from the underlying
environment, facilitating both security and opportunistic
processing on transitory resources. This decoupling also
promotes the ability to create multiple clones of an application
for performance gains. To improve the performance of the
system, Fuzzy logic [2][16][17][18] and Case Based Reasoning
(CBR) [3][19][20] have been applied to the system to better
regulate activities such as job migration between resources or
client connection handover from one Proxy to another. The paper
provides a full description of the system and some simulation
results to illustrate its functioning.

Keywords-Distributed Computing, Transparent Application
Migration, Fuzzy Logic, Case Based Reasoning

I. INTRODUCTION
In previous research [1], we outlined a new resource

management architecture enabling users / applications to roam
seamlessly while they are actively processing executable code
and / or communicating with remote entities. The motivation
for proposing such a system was observing that within an
organisation there exists a plethora of cheap, networked
computing power that is readily accessible, although transitory
in nature. Although grid computing aims to take advantage of
many networked computers to model a virtual computer
architecture that is able to distribute process execution across a
parallel infrastructure, the favoured approach is to provide a
feature-rich middleware layer that is tailored to solve large-
scale computation problems. However, we contend that a
leaner, Java-based processing communication infrastructure
provides an economical and more portable alternative.

The proposed system architecture makes use of a proxy
device located somewhere between the client and server end-
systems. In addition, either or both the clients and servers have
a shim control layer within their protocol stack that is capable
of monitoring the performance of the associated host and
intercepting flows between the network / transport layers and
the higher-level applications running on the host. We refer to
this control function as the Interface Controller (IC). Its
presence implies that both a traditional data path exists
between communicating clients and servers, relayed via the
external proxy, and a separate control channel from the IC in
each host to the proxy.

The control channel from the IC to the proxy is used for a
variety of purposes. It allows candidate hosts to register their
availability with the proxy. They can then act as transient
execution engines for either servers or clients. In addition, the
proxy provides a relay point for all data connections / flows
between the clients and the servers. The proxy employs a
form of spoofing, where a TCP connection is actually the
splicing together of a connection from the client to the proxy
and another from the proxy to the server. This allows either
the client or servers to migrate without the remote entity being
aware of the change as it continues to use the IP address of the
proxy. In addition, if the Java socket of the moving application
is to remain bound to a particular local IP address and port
number then the IC function can tunnel packets with a virtual
IP address and port number inside that of the current transient
host. The architecture also permits the use of cooperative
handover of applications between hosts in separate pools
administered by different proxies. In this case it is assumed
that both the client and the server application entities are
hosted on machines with IC functionality. Unlike previous
schemes, the transparent migration of applications can be
achieved either proactively or reactively to maintain efficient
operation or in anticipation of a host shutdown.

Recently, we have applied fuzzy logic and CBR to the
proxy device to enhance its performance. By using these
technologies, the proxy cannot only make reasonable decisions
but also has the ability to evaluate and improve its decisions.
The use of fuzzy logic enables a wealth of current and
historical data to be considered when evaluating the
performance of an application. It can also be used to determine
whether a migration should be triggered. Furthermore, once
completed, the performance of the application on the new
transient host can be used to refine the CBR decision
information in anticipation of similar conditions arising again.
In the following sections details of how the technologies are
applied will be described and evaluations are also provided.

II. RELATED WORK
In this section, work we consider particularly relevant to

our research will be introduced. We briefly describe their
contribution and, in addition, the benefits and limitations of
their approach. Points of novelty not addressed in research to-
date will also be discussed.

The first relevant research is the work of Disco lab [4][5][6].
They focus on providing a framework for migrating server

whilst keeping the TCP connection alive. They propose a
model called “Cooperative Service Model”. In this model,
they consider a “pool”, which comprises some distributed and
similar servers. These servers cooperate to sustain a service by
migrating client connections within the pool. In order to
cooperate successfully, they designed a new transport layer
protocol called “Migratory TCP (M-TCP)” to support efficient
migration of live connections. This work provides more
reliable services and resilient to network congestion as they
can migrate the connection to a suitable server, but the
migration is restricted within the server pool and no server
load-balancing scheme has been presented.

Another interesting approach is that of Zap. In this
work[7][8], researchers have developed a novel system for
transparent migration of legacy and networked application.
They designed a pod abstraction, which provides a collection
of processes with a host-independent virtualised view of the
operating system. This decouples processes located within the
pods from dependencies on the host operating system and
other processes. By integrating Zap virtualisation with a
checkpoint-restart mechanism, Zap can migrate a pod of
processes as a unit among machines running independent
operating systems without leaving behind any residual state
after the migration. Though transparent application migration
without modification to the operating system kernel or
application can be achieved, no intelligence control scheme
has been raised so that the migration still lacks intelligence.

In the vOS work [9][10][11], they designed a system that
consists of a group of computers. This system decouples the
application process from its physical environment by using
“virtual” technology, which means that the application uses
virtual files, virtual network connections and other virtual
resources. This “virtualisation” is achieved by using API
interception, which means intercepting calls made from the
application to the underlying runtime system and
reinterpreting the call. Similar to the work of Zap, transparent
application migration without modification to the operating
system kernel or application can also be achieved, but the
migration is restricted within a group of machines and lack of
an intelligent control plane.

In VMware[12][20], a software system Virtual Machine
Monitor(VMM) was introduced to run between host operating
system and guest application or guest operating system. It
enables multiple operating systems (e.g. Windows, Linux and
Mac) to run on a single machine at the same time. Each
operating system will be isolated in a secure virtual machine
and managed by the VMM. Physical resources like CPU,
memory, hard disks and I/O devices will be mapped from the
physical hardware to each virtual machine so that each
operating system running seems to its own physical resources.
It enables multiple operating systems to run on the same
physical computer, but it does not provide any intelligent
mechanism for migrating such a virtual machine.

III. SYSTEM ARCHITECTURE
Figure 1 shows the proposed system architecture [1].

Proxy Agent with NAT &
Tunnelling Functionality

Guest Application

JVM

Host System

Roaming
Network
Address
Translation
Table

I/F Controller

Remote
System

Control

Emulator Socket
Decapsulation / Mapper

This entity could
also be transient
in nature

The control connection used for
activities such as host discovery,
monitoring and migration
coordination

Data connection(s) used between the guest
application and remote entities; typically the socket
details are translated at the interface controller and
possibly tunnelled within IP datagrams assigned to
a different port

Figure 1. Proposed System Architecture

The system architecture consists of three main entities: the
Host System(s), the Proxy Agent(s) and the Remote
System(s). In figure 1 a client application and its associated
operating system are running on a transient system and this
client application communicates with a remote endpoint
through an Interface Controller and a Proxy Agent.

The Host System is composed of three components: the
Guest Application, the Interface Controller (IC) and the Java
Virtual Machine that encapsulates them. The IC main
functions include intercepting all the system calls sent from
the Guest Application and redirecting them according to
requirements, monitoring the execution performance of the
JVM on the Host System, setting up the control connection
between the Host System and the Proxy, tunnelling the data
packets sent from the Guest Application, check-pointing and
freezing the execution of the Guest Application, including the
information held in any dynamic memory such as the state of
variables.

The Proxy Agent has several functions including providing
a roaming Network Address Translation table, being a point of
presence for the Guest Application and so on. It acts as a
bridge between the Host System and outside world. If the Host
System uses TCP to communicate with the remote entities, the
communication pathway between them is actually comprised
of multiple connections spliced together to enable migration
without closing the end system sockets. Besides data
connection(s), there is also a control connection between the
Host System and the Proxy Agent.

The most important functions of the Proxy Agent are to
assign jobs to different resources, decide job / guest
application migration and to cooperate with other Proxy
Agents by using fuzzy logic and CBR. The proxy also
maintains a registry of available Host Systems and their
characteristics.

The Remote System can either be a traditional
communication endpoint or has the same structure as the Host
System. It can be a server or a client. If the Remote System is
a client, it always considers the Proxy as the server and just
knows the IP address of the Proxy. Service requests to the
Proxy will then redirected to a suitable Host System by the

Proxy transparently to the Remote System. When a Remote
System sends a job to the service which it believes is hosted
by the Proxy, the Proxy Agent will try to find a suitable
resource and assign the job to the resource. The Proxy Agent
monitors the performance of each resource on the Host System
and can make a migration decision if the performance of a
resource is lower than a standard and there is “better” Host
System available. A Proxy Agent is also able to perform
cooperative handover of applications between Host Systems
administered by a different Proxy Agent. This process may be
triggered by a worsening round-trip time between a Host
system and a roaming Remote System. Such a situation may
cause to proxy to move the application to a new host system
which is available via a Proxy that is closer to the Remote
System’s new location.

IV. INTELLIGENCE IN THE PROXY AGENT
In this section, details about how the fuzzy logic and Case-

Base Reasoning are implemented within the Proxy Agent are
given.

Intelligence plays an important role in the system
architecture. The Proxy needs to decide which resource should
be assigned to handle the job when the Proxy Agent receives a
request from a guest application. The Proxy Agent also needs
to make reasonable decisions about when and where to migrate
an application and / or the connections between the resource
and the guest application. By using intelligence, the load
between different resources can be balanced and speed up the
job completion time.

Fuzzy logic and Case Based Reasoning have been
introduced to fulfil the requirement of intelligence in the
system. Though there are many Artificial Intelligence (AI)
technologies available, fuzzy logic mixed with Case Based
Reasoning is considered suitable.

Using fuzzy logic, the Proxy Agent can make decision
quickly by. In a large network, the number of requests will be
numerous. Therefore, the Proxy Agent should find a suitable
resource and make decision in an acceptable period of time.
To make such a decision, the Proxy Agent may collect a lot of
information from the Host Systems. However, to judge
whether a Host System fulfils the requirement is not
straightforward. As Fuzzy logic is an imprecise logic, the
overall capability of a certain Host can be classified quickly so
that the Proxy Agent can make decisions quickly.
Nevertheless, “fuzzy logic is not any less precise than any
other form of logic: it is an organized and mathematical
method of handling inherently imprecise concepts” [15].
Fuzzy logic uses approximate to present things that cannot be
judged precisely. At the same time, CBR is a method of
solving problem based on the past experience. In our design,
fuzzy logic is used to propose solutions and CBR is used to
judge whether the solution is reasonable based on its past
experience. Therefore, the Proxy Agent can make decisions
reasonably. The Proxy Agent can adapt to changes in the
environment by using CBR.

Figure 2 shows the structure of the Proxy Agent. There are
three components in the Proxy Agent, Interface, AI component
and Execution.

Figure 2. The Structure of the Proxy Agent

The Interface component is connected with the monitored
hosts. Monitored hosts send their system performance
information to the Proxy Agent at regular intervals. After the
Information Receiver receives the information, it sends it to
Critic and Feedback components for further use. In addition,
the Interface component also sends the Proxy Agent’s
information to other proxies and receives information from
them.

The AI Component is the intelligent part of the Proxy
Agent. It is composed of four subcomponents, the Critic, the
Filter, the Decision Maker and the Reviser. The Critic
subcomponent evaluates the performance of the host. If the
performance is lower than a certain standard, it will raise a
migration proposal. It also compares the propagation delays
between different proxies and different hosts. If necessary, it
will raise a Proxy handover proposal. The Filter is used to
retrieve best available resource or Proxy Agent for job
migration or Proxy handover. The Decision Maker uses
historical decisions to decide whether to carry out a migration
or handover. If yes, it gives a migration/handover instruction
to the execution component. The Reviser is then used for
evaluating decisions. For example, if the performance of the
host is higher than a standard in a certain period of time after
the migration, the migration is considered to be successful. If
not, the migration is considered a poor choice. The Reviser
then updates the historical decision information database
accordingly. Finally the Execution entity carries out the host
migration and Proxy handover according to the
migration/handover instruction sent from the AI Component.

In addition to the components, there are three databases in
the Proxy Agent: the Host Information Database, the
Historical decision Information Database and the Proxy
Database. The Host Information Database records each host’s
system information. The information includes Host IP address,
CPU speed, physical memory capacity, available physical
memory, network speed, network utilisation, propagation
delay between the Proxy Agent and the host, and host

performance evaluation marks (Evaluated by the Critic). The
database is updated by the Interface component at regular
intervals. The Historical decision Information Database
records the host information with the Proxy Agent’s decisions.
The information includes details of both hosts (the host which
needs migration and the host which should be migrated to) and
the decision made by the Decision Maker. Lastly the Proxy
Database records other proxies’ information. The information
includes the proxies’ IP addresses.

A. Job Allocation Decision Making
Fuzzy logic and CBR are used when a Proxy Agent has to

make a decision. For example when a Proxy Agent receives a
job from a guest application, it has to find a suitable Host
System (a.k.a. resource) for the guest application. To make
such a decision, the Proxy Agent will look into its database and
choose the best available resource for the job. The procedure
for making such a decision is as follows:

1) The Interface receives a job from a client. Then it sends
the job request to the Critic.

2) As it is a new job request, so when the Critic sub-
component receives it, it redirects to the Filter.

3) The Filter chooses a suitable resource for the job according
to the job requirements. For example, some jobs prefer to
be finished as soon as possible but some other jobs prefer
to be finished successfully. As there are many kinds of
resources in the network, some may be powerful but not
reliable as they may not be available all the time and some
others may be reliable but not so powerful. Here the fuzzy
logic technology is used. The power level and the
reliability level are represented by fuzzy input variables.
For example, if a resource which has CPU with frequency
3GHz, the power of the resource may be represented as
“80% Powerful”. Another resource which has CPU with
frequency 1GHz may be represented as “30% powerful”.
As well as the power level, the reliability level is also
represented by some descriptions. If a job prefers to be
finished successfully rather than quickly, the filter will
choose the more reliable for the job. The magnitude of
participation of each input can be expressed as a
membership function. It associates a weighting with each
of the inputs that are processed, define functional overlap
between inputs, and ultimately determines an output
response. The rules use the input membership values as
weighting factors to determine their influence on the fuzzy
output sets of the final output conclusion.

4) After the Filter selects a resource, it sends the proposal to
the Decision Maker. As it is not a proposal for resource
migration or Proxy handover, the Decision Maker will
approve the proposal and send it to the Execution engine.
This will carry out the job of setting up the connection to
the resource and redirect the client job accordingly.

B. Application Migration Decision Making
After a Proxy Agent assigns a job to a resource, it monitors

the performance of the resource. If the performance of the
resource is lower than a certain level, or the performance of the

resource is lower than the requirement of the job, the Proxy
Agent will start the procedure of looking for a better resource
to take over the current job. Migrating the job may take place
for different reasons. One is to accelerate the speed of
processing the job and another is to balance the load between
different resources. The migration decision procedure is as
follows:

1) The Interface receives messages sent from each resource at
regular intervals. The message contains performance
information that the Interface then sends to the Critic.

2) When a Critic receives the message, it assesses the current
performance of the resource. Then the Critic retrieves the
information stored in the Host Information Database. If the
current performance of the resource cannot fulfil the
requirements of job(s), then the Critic will start to look for
other resources.

3) If the Critic decides to propose a migration proposal, it
will send the job’s requirement to the Filter. Then the filter
looks for a suitable resource in the Host Information
Database. This is the same procedure as used for
determining a suitable resource for a new job. If the Filter
can find a suitable resource, it will send the migration
proposal to the Decision Maker.

4) When the Decision Maker receives the migration proposal
from the Filter, it uses CBR technology to determine what
action should be taken. Firstly, it tries to retrieve a similar
case from Historical Decision Information Database. If
there is are similar migration cases in the past and most
migration cases show that migrations were successful, the
Decision Maker will elect to migrate the job. Conversely,
if most cases show that the migration is not viable, the
Decision Maker will probably decide not to proceed with
migration. By default, if the Decision Maker cannot find
any similar case in the database, it will opt to migrate the
job.

5) If the Decision Maker elects to migrate the job it sends a
migration instruction to the Execution engine. The
Decision Maker will also sends its decision to the Reviser
for further evaluation.

6) After the migration, the Proxy Agent will evaluate the
results of the migration. This step also uses CBR
technology. The evaluation is based on the monitoring
messages sent from the new resource. The Interface will
pass these to the Reviser. The Reviser evaluates the status
of the new resource and the jobs assigned to it. If the new
resource fulfils the job requirements, then the migration is
considered to be successful and the Reviser will record the
migration as being successful in the Historical Decision
Information Database. Otherwise, the migration will be
considered a failure and the Reviser will record the
migration result accordingly. This may in turn trigger a
further migration.

C. Proxy Handover Decision Making
Not only can a Proxy Agent migrate jobs between different

resources under its control, it is also able to handover the job to

another Proxy. This type of handover may be due increasing
propagation delay between the client and the resource. For
example, if the client is a mobile client and it roams between
different domains, the propagation delay between the client and
the Proxy Agent might become unacceptably high. If there is
another Proxy closer to the client, the original Proxy Agent
might consider handing over the job to the closer Proxy.
Another motivation might be as a result of a Proxy Denial of
Service attack. In this case the job migration can be used to
move essential services away from the threatened Proxy. The
procedure of making a handover decision is as follows:

1) The Interface monitors the propagation delay to each
resource and each client at regular intervals. At the same
time, the Interface also receives message from other Proxy
Agents. The message includes the information about the
resources and the clients registered at that Proxy Agent,
the propagation delay between each resource and that
Proxy Agent, propagation delay between each client and
that Proxy Agent.

2) The Interface sends the monitoring data and the
information received from other Proxy Agents to the
Critic. If a propagation delay to a certain client or resource
is over a threshold, the Critic might propose a Proxy
handover and send it to the Filter.

3) When the Filter receives this handover proposal, it will
look into the Proxy Database to find out whether there is
any Proxy that might be closer to the client’s new location.
If no Proxy Agent is available, the Filter will not send a
handover proposal to the Decision Maker.

4) When the Decision Maker receives the handover proposal
from the Filter, it uses CBR technology to make a
decision. Firstly, it tries to retrieve similar Proxy Agent
handover case from Historical Decision Information
Database to assist it. However, if the Decision Maker
cannot find any similar case in the database, it normally
elects to proceed as this allows it to speculatively learn
from the experience.

5) After making the decision, the Decision Maker will send
the Proxy Agent handover instruction to the Execution
engine to carry out the handover procedure. The Decision
Maker will also send the decision to the Reviser for further
evaluation.

6) After the Proxy Agent handover, the Reviser will evaluate
the migration in order to update the Historical Decision
Information Database uses CBR technology.

V. PERFORMANCE EVALUATION
In order to evaluate the intelligence mechanisms introduced

in the previous section, a simulation environment was created
and a number of tests carried out. The first one was to
determine the effect of migrating a job between Host System
resources. In this scenario, two sources keep sending jobs to
the Proxy Agent. The Proxy Agent redirects the jobs to two
resources in turn. The job size is defined as 10 units. The first
resource’s job processing capacity is set to 10000 units and the
second resource’s capacity varies from 1000 to 10000 (due to

unrelated demands on the system). Their residual job
processing capability changes along with the job being
processed, which means their residual capacity become lower
when they receive a new job and increases when they finish a
job. Their reliability is set to 10000 as they are considered
always available. The Proxy observes the residual capacity of
each resource. If a resource’s residual capacity is lower than
7000, the Proxy’s fuzzy logic inference engine will consider
the resource not sufficiently capable and it will try to find
whether the other resource has a greater residual capacity. If it
finds a more capable resource, the Proxy Agent migrates the
job that has the largest job size to that new Proxy. The length
of the simulation is set to 2000 units. The results shown in
figure 3 indicate that the total number of jobs processed
changes along with the capacity of resource 2.

400

600

800

1000

1200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Capacity of Resource 2

To
ta

l N
um

be
r o

f P
ro

ce
ss

ed
 J

ob
s

No job migration
Job migration

Figure 3. Example Job Migration Performance Relative to Fixed
Assignment”

The x-axis shows different capacity setting of resource 2
(from 1000 to 10000) and the y-axis shows the total number of
processed jobs during the simulation time. The result shows
that the “job migration” improves the overall performance of
the system.

A second test was setup to evaluate the CBR mechanism. In
this scenario, one source keeps sending jobs to a Proxy Agent
and the Proxy Agent redirects the jobs to two resources in turn.
The job size is also set to 10 units. The first resource’s
processing capacity is 10000 and the second resource’s
capacity is 6000. Their reliabilities are both set to 10000. In
this simulation, both resources are available from time zero to
time 500. Then resource 1 becomes unavailable between time
500 and 1000. The jobs running on this resource will fail to
finish. Later, resource 1 will become available again between
time 1000 and 1300. Then resource 1 becomes unavailable
between 1300 and 2000 again. The jobs running on resource 1
fail to finish as well.

To determine the benefit of CBR we implement fuzzy logic
without CBR, which does not learn from the change of the
environment, and fuzzy logic with CBR, which can learn from
previous experience. Firstly, the proxy migrates jobs from
resource 2 to resource 1, as resource 1 is more powerful. Later,
as resource 1 becomes unavailable and some jobs which
migrated from resource 2 to resource 1 will fail to finish. In the
mechanism of fuzzy logic without CBR, the Proxy Agent does
not take any measure to adapt this change. But in the fuzzy

logic with CBR case, the Proxy Agent learns from the fact that
some jobs migrated to resource 1 are not finishing. Resource 1
is not very reliable. Therefore, the Proxy will change the
reliability rating of resource 1 to lessen the likelihood of
migrating jobs to it. The results are shown in figure 4.

The x-axis shows the time from 0 to 2000 and the y-axis
show the number of processed jobs over every 100 time units.
From the figure we can see that both mechanisms perform the
same from time 0 to time 1000, as expected. However, the
fuzzy logic with CBR mechanism performs better than fuzzy
logic alone after time 1000. This is due to the Proxy Agent
learning from the change in the environment. As resource 1 is
not available from time 500 to 1000, the fuzzy logic with CBR
mechanism learns that resource 1 is not so reliable. In
consequence the Proxy Agent reduces the reliability of
resource 1. The reduction of reliability of resource 1 results in
the proxy migrating little or no jobs from resource 2 to resource
1 during the time 1000 and 1300. However, if the reliability of
resource 1 improves then the Proxy may choose to migrate
more jobs to it again, whilst monitoring their completion
success rate.

0
10
20
30
40
50
60
70

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Elapsed Simulation Time

Pr
oc

es
se

d
Jo

bs
 /

In
te

rv
al

Fuzzy Logic
without CBR
Fuzzy Logic
with CBR

Figure 4. Comparative Migration Performance between “Fuzzy Logic
with CBR” and “Fuzzy Logic without CBR”

VI. CONCLUSIONS
In this paper, we firstly introduced a new architecture for

enabling users / applications to roam seamlessly while they are
actively processing executable code and / or communicating
with remote entities. We then focused on introducing the
intelligence functionality of the system architecture in order to
better regulate the migration of events. This benefits from
being able to adapt its migration behaviour to changing
circumstances. We focus on a combination of fuzzy logic and
CBR as these are able to make reasonably good decisions
within a short time, which is essential for our dynamic
environment.

REFERENCES
[1] Zhang, J., Phillips, C., “Ubiquitous, Flexible and Distributed

Computing”, PGNet 2007,
http://www.cms.livjm.ac.uk/pgnet2007/Proceedings/Papers/2007-
060.pdf

[2] Cox, E, “Fuzzy fundamentals”, Spectrum, IEEE Volume 29, Issue 10,
October 1992, pp: 58 – 61G. Eason, B. Noble, and I. N. Sneddon, “On
certain integrals of Lipschitz-Hankel type involving products of Bessel
functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551,
April 1955.

[3] Aamodt, Agnar, and Enric Plaza. "Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches", Artificial
Intelligence Communications 7, no. 1, 1994, pp: 39-52

[4] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode,
“MigratoryTCP: Connection Migration for Service Continuity in the
Internet”, http://discolab.rutgers.edu/mtcp/icdcs02.ps

[5] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode,
“Migratory TCP: Highly Available Internet Services Using Connection
Migration”, http://discolab.rutgers.edu/mtcp/dcs-tr-462.ps

[6] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode, “Transport
Layer Support for Highly-Available Network Services”,
http://discolab.rutgers.edu/mtcp/hotos01.ps

[7] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh, “The
Design and Implementation of Zap: A System for Migrating
Computing Environment”,
http://www.ncl.cs.columbia.edu/publications/osdi2002_zap.pdf

[8] Shaya Potter, Jason Nieh, Dinesh Subhraveti, “Secure Isolation and
Migration of Untrusted Legacy Application”,
http://www.ncl.cs.columbia.edu/publications/cucs-005-04.pdf

[9] Tom Boyd and Partha Dasgupta, “Process Migration: A Generalized
Approach Using a Virtualizing Operating System”, Distributed
Computing Systems, 2002. Proceedings. 22nd International Conference
on 2-5 July 2002 Page(s):385 – 392 Digital Object Identifier
10.1109/ICDCS.2002.1022276,

[10] Ravikanth Nasika and Partha Dasgupta, “Transparent Migration of
Distributed Communicating Processes”,
http://cactus.eas.asu.edu/Partha/Papers-PDF/1900-2001/PDCS-
ISCA2000.pdf

[11] Tom Boyd, Partha Dasgupta, “Injecting Distributed Capabilities into
Legacy Applications Through Cloning and Virtualization”,
http://www.dvo.ru/bbc/pdpta/vol3/p251.pdf

[12] http://www.vmware.com/vinfrastructure/

[13] About the Java Technology,
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html

[14] James Gosling, Henry McGilton, A White Paper: The Java Language
Environment, http://java.sun.com/docs/white/langenv/index.html

[15] http://en.wikipedia.org/wiki/Fuzzy_logic

[16] Biacino, L.; Gerla, G. (2002). "Fuzzy logic, continuity and
effectiveness". Archive for Mathematical Logic 41 (7): 643-667.
doi:10.1007/s001530100128. ISSN 0933-5846.

[17] Vasudevau, C. Smith, S.M. Ganesan, K., “Fuzzy Logic in Case Based
Reasoning”, Dept. of Ocean Eng., Florida Atlantic Univ., Boca Raton,
FL, USA;This paper appears in: NAFIPS/IFIS/NASA '94. Proceedings
of the First International Joint Conference of the North American Fuzzy
Information Processing Society Biannual Conference. The Industrial
Fuzzy Control and Intelligent Systems Conference, and the NASA Joint
Technology

[18] Dick, S.; “Toward complex fuzzy logic”, Fuzzy Systems, IEEE
Transactions onVolume 13, Issue 3, June 2005 Page(s):405 - 414
Digital Object Identifier 10.1109/TFUZZ.2004.839669

[19] Leake, David. "CBR in Context: The Present and Future", In Leake, D.,
editor, Case-Based Reasoning: Experiences, Lessons, and Future
Directions. AAAI Press/MIT Press, 1996, 1-30.

[20] Zhi-Wei Ni; Shan-Lin Yang; Long-Shu Li; Rui-Yu Jia; “Integrated case-
based reasoning”, Machine Learning and Cybernetics, 2003
International Conference onVolume 3, 2-5 Nov. 2003 Page(s):1845 -
1849 Vol.3 Digital Object Identifier 10.1109/ICMLC.2003.1259797

[21] http://www.vmware.com/virtualization

