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Abstract— Static Routing and Wavelength Assignment (RWA) 

problem for wavelength routing optical networks has 
traditionally been solved using Integer Linear Programming 
(ILP) and graph colouring. These problem domain search 
schemes become inefficient for solving large NP-hard (Non 
Polynomial Time - hard) optimization problems and in dynamic 
environments because of their computational complexity and 
execution time. In this paper, a heuristic approach inspired by 
Particle Swarm Optimization (PSO) is proposed for solving static 
RWA. A novel encoding scheme for members of the swarm 
population is proposed. To help the particles to converge towards 
optimal solution quickly, a novel scheme is devised for route 
selection, during particle’s search. In order to diversify the 
search in problem space, a special operation is proposed for 
global best particle. The proposed scheme achieves optimal 
solution in significantly lower number of iterations. 
 

Index Terms— All Optical networking, Particle Swarm 
Optimization, ASON, Wavelength Continuity Constraint, Static 
RWA, ILP. 

I. INTRODUCTION 
n WDM networks, communication is achieved by setting up 
all-optical channels called lightpaths between end-points 

[1]. A lightpath can traverse multiple optical link fibres; 
however, the information sent by the lightpath does not need 
Optical-Electrical-Optical conversion at intermediate nodes. 
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Figure 1:- 14 Node, Wavelength Routed WDM NSFNET 

with lightpath connections 
Establishment of lightpaths creates a logical topology on 

the top of physical topology of WDM optical network. If the 
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intermediate nodes in the route, chosen for lightpath setup, are 
not equipped with wavelength-conversion capability, then 
same wavelength needs to be assigned to the lightpath over all 
fibre links. This property is called the wavelength continuity 
constraint. Two lightpaths sharing a common edge of the 
network need to be assigned unique wavelengths. This is 
called the wavelength clash constraint. To set up a lightpath, 
an appropriate route from the source to destination node needs 
to be selected and unique wavelength assigned. Typically, 
connection requests to setup lightpaths can be categorized into 
following types: (1) Static (2) Scheduled (3) Incremental (4) 
Dynamic. 

In the static demands, all the connection requests are known 
in advance. In scheduled lightpath demands, all the connection 
requests plus their set-up and tear-down times are also known 
in advance. In incremental lightpath demands, connection 
requests arrive one-by-one, without any prior knowledge, and 
will stay in the network for indefinite time [1]. In dynamic 
lightpath demands, connection requests arrive unexpectedly 
without any prior knowledge, and after lightpath setup, they 
will remain in the network for limited amount of time. The 
problem of finding an appropriate route and wavelength for 
setting up lightpath is known as the Routing and Wavelength 
Assignment problem (RWA). 

II. STATIC ROUTING & WAVELENGTH ASSIGNMENT 
In this paper the static routing and wavelength assignment 

problem, also known as Static Lightpath Establishment (SLE) 
problem, is addressed for wavelength routing optical networks 
with wavelength continuity constraint. Static RWA is NP 
(Nondeterministic - polynomial time) hard optimization 
problem and is performed offline [1, 2]. The objective is to 
minimize the number of wavelengths required to setup 
lightpaths for a given set of connection requests. 
Alternatively, the objective of static RWA can be defined as 
maximizing the number of lightpaths that can be setup from a 
given number of wavelengths.  

A. Integer Linear Programming (ILP) Formulation 
Static RWA problem can be formulated as multi-

commodity problem with integer flows in each link. The 
objective function in this case is to minimize the flow in each 
link, which, in turn, corresponds to minimizing the number of 
lightpaths passing through a particular link [2]. Let,  
λsd = Traffic (i.e. lightpath) from source ‘s’ to 

destination ‘d’; 
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λsd = 1 if there is a lightpath from source ‘s’ to 
destination ‘d’, considering at most one lightpath at 
a time, otherwise λsd = 0; 

Fij
sd = Traffic (in terms of number of lightpaths) that is 

flowing from source‘s’ to destination ‘d’ on 
physical link ‘ij’. 

 
The ILP formulation can be written as:  

Minimize: maxF  
Such that:  
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B. Static RWA Problem 
When static RWA is solved by integer linear programming 

using a multi-commodity formulation, it results in rapid 
increase in the number of equations and variables. Let’s 
consider an example of a NSFNET having 14 nodes, and 21 
edges, and an average of 5 unidirectional lightpaths per node.  
Then… 

 
The number of λsd variables = 14 * 13 = 182 ‘sd’ pairs. 
The number of Fij

sd variables = 182 ‘sd’ pairs * 21 ‘ij’ pairs = 
3822. 
The number of Equations = [1 + 21 + 2548 + 182 + 3822]2 = 
(6574)2 

 
In order to decrease the computational complexity, different 

problem space pruning techniques are used like randomized 
rounding, path stripping etc. These search space reduction 
schemes can be found in [2, 3]. Even after applying problem-
space reduction techniques, solving static RWA using ILP is 
computationally extensive and typically requires a huge 
execution time. 

Therefore, to decrease the computational power and time 
required to solve NP-hard optimization problems, different 
heuristic based algorithms like greedy search, Tabu search, 
local search, simulated annealing, stochastic diffusion search, 
swarm intelligence algorithms (like ant colony optimization, 
genetic algorithms, particle swarm optimization) and many 
more have been used successfully. Unlike mathematical 
problem-domain search algorithms like ILP, heuristic 
algorithms don’t guarantee an optimal solution to the problem 
domain. Each heuristic technique has its own advantages and 
disadvantages and the efficiency of applying a particular 
technique depends on many factors like computational 
complexity, execution time, quality of solution, robustness 

and so forth.  

C. Related Work 
Heuristic algorithms usually divide static RWA problem 

into two sub-problems; routing sub-problem and wavelength 
assignment sub-problem. An overview of well-known static 
RWA algorithms, their functional classification, advantages 
and disadvantages can be found in [4]. In [2], routing and 
wavelength assignment sub-problems are solved 
independently. For solving routing sub-problem, multi-
commodity flow formulation is used. For reducing the size of 
problem search space, randomized rounding is employed. The 
wavelength assignment sub-problem is solved using a graph-
colouring technique. In [5], the authors used an iterative 
algorithm based on local random search for finding a 
reasonably good route. To assign an appropriate wavelength, a 
greedy graph colouring algorithm is employed. A 
generalization of graph colouring problem, called partition 
colouring problem, and its application for solving static RWA 
in WDM all-optical network is proposed in [6]. In [7], a 
conflict graph is constructed by computing alternative routes 
for each connection request and then a Tabu search heuristic is 
applied for solving partition colouring problem.  

A unified approach to solve static RWA is proposed in [8] 
where both routing and wavelength assignment sub-problems 
are solved simultaneously using an integer formulation and a 
column generation technique. A heuristic based algorithm 
using bin-packing approach is proposed in [9]. In [10] the 
static RWA is solved using a genetic algorithm where 
members of population called chromosomes, use genetic 
operators to generate new members and then members are 
selected for new generation based on fitness function. In [11], 
ant colony optimization is used to minimize the number of 
wavelengths required to provision all the given connection 
requests. Particle swarm optimization is used to solve the 
static RWA in [12].  In [12], like traditional techniques, the 
objective is to minimize the number of wavelengths. Routing 
and wavelength assignment sub-problems are solved 
separately. While solving routing sub-problem, a first-fit 
algorithm is applied to determine the number of wavelengths 
required, in every iteration of each particle. This increases the 
computational complexity and time required to solve the 
RWA problem. A desirable feature of any heuristic algorithm 
for static RWA is its ability to solve problem space optimally 
using fewer iterations and thus in lesser time. 

III. ROUTING & WAVELENGTH ASSIGNMENT USING PARTICLE 
SWARM OPTIMIZATION (STATIC TRAFFIC CASE) 

In this paper, a PSO technique is used to solve Routing and 
Wavelength Assignment problem (RWA) for static traffic, 
where all the connection requests are known in advance. PSO 
is a population-based algorithm based on the social 
psychology metaphor. Members of the population observe 
other members of the population and try to improve 
themselves. The whole population of individuals is called the 
swarm, while each individual is called a particle. A particle is 
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an encoding of a candidate solution. Every particle has a 
fitness value that represents the quality of the particle as a 
solution. . Unlike ACO, in PSO no pheromone table needs to 
be maintained for next hop decision-making. In GA, the 
fitness function is used to determine which member of the 
population will stay in the next generation and which will be 
excluded. This requires the need for careful design of fitness 
function. In PSO, there is no selection operation based on the 
fitness function. Rather, each member of the population 
evolves towards better a solution through the iterative process. 
So there is always a chance that a member of population 
having a bad initial fitness value, evolving over time to 
become the best member in the entire population of particles.  

The neighbourhood for a particle is defined as a sub-
collection of particles that are within a certain distance from it. 
Distance here is defined in terms of degree of similarity in the 
number of routes between two particles. The size of the 
neighbourhood is a user defined parameter. When using PSO 
for solving any problem, first of all particles are initialized 
randomly or using some suitable scheme. Then fitness 
function is applied to each particle in order to quantize its 
fitness. The particle with best fitness value in the 
neighbourhood is marked as local best particle and the particle 
having best fitness value in the swarm is marked global best. 
For each particle, its velocity is computed. Then that velocity 
is applied to that particle. As a result, the particle will move to 
another position, representing another candidate solution for 
the problem domain. The magnitude of this move is a function 
of current position of the particle and the distance between 
itself and global best (or local best) particle. Particles continue 
to move around synchronously in this manner trying to better 
themselves in comparison with their own performance and 
that of their neighbours. 

A.  PSEUDO CODE for PSO Algorithm 
The generalized pseudo-code of particle swarm 

optimization is as follows: 
• Initialize the particles 
• Quantize each particle using fitness 

function. 
• The particle having best fitness value 

will be marked as GLOBAL BEST, and the 
particle having best fitness value in 
the neighbourhood will be marked as 
LOCAL BEST particle. 

• For each particle Do: 
o Find its velocity according to 

Global best and/or local best 
particle. 

o Apply the velocity to the 
particle. 

o After this, the particle will 
move to another (new) position. 

o Then re-apply fitness function to 
update the Global/Local best 
particles. 

• Iterate until optimal solution or 
solution of desired quality is not 
found. 

B. Modified PSO equations for solving RWA 
In order to apply PSO for solving the RWA problem, the 

general PSO equations are modified so that PSO can be 
mapped for RWA. In the proposed static RWA algorithm, the 
velocity of movement for each particle is either 
influenced/governed according to global best or local best 
particle but not both at any one time as shown in equation 1. 
The velocity is then used in the determination of the next 
position to move to in the solution space where this movement 
is represented by equation 2. In any iteration, we will change 
the position of the particle either according to the global best 
particle or local best particle. So the equation to find out 
velocity for the particle has been modified as follows.  

 
Vi+1 = α * C1 (Pgb – Pxi) + (1 – α) * C2 (Plb – Pxi)       (1) 
  where α is either 0 or 1  
Xi+1 = Xi + Vi+1 (2) 

C1 & C2 are social learning parameters 
Pgb = Position of global best particle 
Plb = Position of local best particle 
Pxi = Position of current particle. 

C. Novel Encoding Scheme for Particles 
For each connection request, an appropriate route is 

selected randomly from pre-computed k-shortest paths, where 
each route is identified by a unique route-id. Particle is 
represented as a vector of route ids. E.g. In the case NSFNET 
shown in figure 1, let’s say we have eight connection requests. 
The chosen routes, routes id and the particle having these 
chosen routes may look like, as shown in the figure 2.5 (a) & 
2.5 (b) respectively. 
(a)

R39
R73
R312
R1096
R747
R201
R627
R559

1  0  3
4  6  7  10  8
9  13  11
12 10  8  5
9  5  2
6  4  5  9  13
8  10  7
6  4  5  2  0

1    3
4    8
9    11
12  5
9    2
6    13
8    7
6    0

1
2
3
4
5
6
7
8

Route IdChosen RoutesConnection RequestConnection #

(b)

R559R627R201R747R1096R312R73R39
 

Figure 2.5: (a) Connection requests to be provisioned, 
chosen routes and their corresponding IDs. (b) Particle’s 
representation corresponding to the chosen routes. 

 
With each particle, a common edge usage table is attached, 

which will show the edge usage in the network, after 
assigning the routes represented in that particle. This table will 
help us to determine which edges of the network will be 
overloaded, if we choose the routes of the current particle.  

D. Calculating the Velocity of a Particle 
 

Equation 1 is used to calculate the velocity for any particle. 
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Velocity here is a vector of routes that will be replaced in the 
current particle according to routes in global or local best 
particle.  

• (Pgb – Pxi) = Routes that are different in the global 
best particle and current particle. 

• (Plb – Pxi) = Routes that are different in the local 
best particle and current particle. 

• C1 and C2 represent social learning parameters 
and will determine the number of routes to be 
replaced. 

• ‘α' is used to select whether we will be changing 
routes in the current particle according to either 
global best particle or local best particle, but not 
both in a single iteration for any particle.  

 
Unlike [12], while calculating velocity, instead of randomly 

picking up routes from (Pgb – Pxi) or (Plb – Pxi) vector, those 
routes are chosen which traverse the most congested edges in 
the network. For this purpose, edge usage table will give 
information about degree of congestion (number of lightpaths, 
traversing) on each edge of the network. Velocity here will be 
a vector of route ids, which indicate the routes to be replaced 
in the current particle by the corresponding routes in the 
global best or local best particle. For example: As shown in 
the figure 2.6(a), let’s say particle P2 needs to update its 
position according to the position of particle P1. The particles 
P1 and P2 have six different routes (at position 1, 2, 3, 5, 6 and 
7) as shown in figure 2.6(b).  

R101R81R55R546R117R11R258R125

R101R97R49R581R117R3R73R10

P1

P2

(a)

(b)

R81R55R546R11R258R125P1 Š P2 

(c)

R546R258R125V i+1  
Figure 2.6: (a, b) Two particles P1 and P2 (b) Routes that 
are different P1 and P2. (c) New velocity for particle P2 

 
If the social learning parameter is 0.5, then three routes in 

P2 need to be replaced by the routes in the P1 (corresponding 
to the respective connection request). Instead of picking up 
routes randomly from P1 – P2 vector, those routes are picked 
that traverse the most overloaded edges of the networks. 
According to the edge usage table of P2, let’s say route R11, 
R55 and R81 are traversing most overloaded edges of the 
network, then the resulting new velocity for particle P2 is 
shown in the figure 2.6 (c).  

E. Applying Velocity to a Particle (Redefining the ‘+’ 
operator): 

Equation 2 is used to give the velocity calculated, to the 
current particle so that it can move to a new position. For the 
RWA problem, we need to redefine the meaning of ‘+’ 
operator.  The routes in the velocity vector will replace the 

corresponding routes in the current particle as shown in the 
example in figure 2.7. 

 
Xi

+
R546R258R125V i+1 

=

R101R97R49R581R117R3R73R10

Xi+1 R101R97R49R546R117R3R258R125  
Figure 2.7: Applying velocity to a particle to move it to a 
new position. 

F. The Fitness Function: 
Equation 3 is used to quantize the particles in terms of their 

fitness. 
 F(x) = 1 / Cost(x)              (3) 
Cost(x) = P1*APL +   P2*ϑ 
APL = Average Path Length, ϑ = Number of ‘directed edge 

disjoint route’ sets. P1&P2 are user-defined constants. 
‘ϑ’, here is equivalent to the number of wavelengths 

required to set up given lightpath requests, using routes in the 
current particle. All the routes in each of these ‘directed edge 
disjoint route’ set can be assigned same wavelength, as no two 
routes in a single set will share a common directed edge of the 
network.  In other words, all the routes in the same set will be 
assigned same wavelength, however each set will be assigned 
a distinct wavelength. This also removes the need to have a 
separate ‘wavelength assignment’ algorithm, for calculating 
appropriate wavelength for each route calculated.  

To find number of edge disjoint route sets from the routes 
chosen for any particle, create an empty set and sort all the 
chosen routes of the current particle in non-increasing order. 
Pick up a route, and starting from first set, attempt to insert it 
in the set such that no two routes with a common directed 
edge should lie in the same set. If route cannot be placed in all 
the previous sets, create a new set and place the route there. 

G. Proposed Novel Strategies to Improve Problem Space 
Search: 

In order to help the particles, find a combination of routes 
that can move them to a position with better fitness value, a 
strategy called St. (1) here, has been proposed. This scheme 
helps to prioritize the replacement of routes within in a 
particle. To help the particles to move towards a better 
position quickly, while avoiding local minima as much as 
possible, a strategy called St. (2) has been proposed. At the 
same time, to diversify the problem space search, a novel 
operation has been proposed for global best particle, in St. (3). 
This operation attempts to improve the fitness value of global 
best particle. Unlike traditional particle swarm optimization, 
St. (3) causes the global best particle to explore the problem 
search space. However, the advantage of this operation is, that 
the global best particle will always more to a better position, 
i.e. towards the best position within the locality. 

• St. (1): For the current particle, select those routes 
which traverse the most congested edges of the 
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network. Edge usage table associated with the 
particle can help to determine this. 

• St. (2): Instead of randomly selecting the routes over 
the most congested edges to be replaced by routes in 
global/local best particle, replace a route in the 
current particle with an alternate route (from 
global/local best) only when the number of channels 
(congestion) of the most loaded link in the alternative 
route is lower than the congestion of the most loaded 
link in the previously assigned route. 

• St. (3): For global best and local best particle in the 
swarm, attempt‘t’ times to find an alternate route 
from pre-computed k-shortest paths, and replace it, 
such that congestion on the most loaded link in the 
alternative route is lower than the congestion of the 
most loaded link in the previously assigned route. 
(For all simulation results presented in this paper, the 
value of ‘t’ is assumed to be 3) 

H. Simulation Results and Analysis: 
The proposed algorithm has been implemented using Visual 

C++.net, without any code optimization on Dell optiplex 
GX520 (CPU 3.00 GHz, 1.99 GB of RAM) in windows 
environment. In order to determine the performance measures 
of the proposed algorithm, lower bound for the number of 
wavelength required presented in [9] has been used. The 
bound on the number of wavelengths needed to establish a 
given set ‘T’ of ‘n’ lightpath requests in a network ‘G’ with 
|V| nodes and |Ep| edges can be calculated by (4), as follows: 

  
 (4) 

 
  
 
 
Δl (i) represents the logical degree of node i, i.e. the number of 
lightpaths for which node i is the source node. Δp (i) 
represents the physical degree of node i. l(SPj) is the length of 
the shortest path in  G of lightpath request (sj,dj), where ‘sj’ is 
the source node and ‘dj’ is the destination node.  
 For the experiments, uniform traffic demand is assumed, 
where all the node pairs are assigned a lightpath consisting of 
a physical path and a unique wavelength. Then, if l(SPj) is the 
length of the shortest path in ‘G’ of lightpath request (sj,dj), 
and |V| is the number of nodes in the network, then the lower 
bound for the average path length can be calculated by (5), as 
follows:  
 
         
     
     
     
    (5) 
    

 These lower bounds are theoretical bounds and may not be 
achievable practically. Simulations have been done using 
proposed algorithm for the networks shown in the figure 1, 
2.8 and 2.9. For each network, table 1 illustrates the LBW 
(Lower bound on the number of wavelength required), LBAPL 
(Lower bound on the average path length), user defined 
algorithmic parameters like number of particles used, size of 
neighbourhood (NS), social learning parameter (C1, C2) and 
maximum iterations allowed in each set of simulations. It also 
shows the iteration number when the swarm achieved best 
fitness value; average path length (APL) and the number of 
edge disjoint route sets (ϑ). 

 
 
 
 
 
 

Figure 2.8 
   
Figure 2.9: 
20 Node, EON 
 

The results in table 1, shows clearly that the proposed 
algorithm achieves lower bound on the number of 
wavelengths required while minimizing the average path 
length (APL) as compared to [12], in significantly lesser 
number of iterations. For example, in the case on NSFNET, 
[12] achieves LBW = 13, in 9299 iterations with average path 
length of 2.5400. On the other hand, the proposed algorithm 
achieves LBW = 13, in just 3640 iteration with an average path 
length of 2.39011. So there’s significant improvement both in 
terms of number of iterations required and average path 
length, while reaching LBW = 13, for NSFNET. Similarly, as 
compared to a genetic algorithm proposed in [10], which 
requires 23 wavelengths to set up 100 SD pairs (source-
destination pair) in NSFNET, the proposed algorithm can set 
up 182 SD pairs in just 13 wavelengths (First-Fit algorithm 
requires 41 wavelength to set up 100 SD pairs in NSFNET 
[10]).    
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Table 1: Static RWA PSO Performance for Networks 
Shown in the Figure 1, 2.8 and 2.9.  

Values in bold indicates the best values of ‘APL’ and ‘ϑ’ achieved by the 
swarm. Using all three strategies, St. (1), St. (2) & St.(3)  

 
Table 2 summarize the comparative results of using 

different combinations of proposed strategies for NSFNET 
under the same network conditions. The results show that St. 
(1) and St. (3) significantly improve the results both in terms 
of wavelengths and APL. St. (2) shows improvement, but not 
as significant as St. (1) and St. (3) does alone. St. (1) indirectly 
decreases the number of wavelengths required and average 
path length, by replacing routes traversing the most congested 
edges of the network. St. (3) on the other hand, diversifies the 
problem search by giving the global best particle in the 
swarm, an opportunity to fine tune and improve its position 
towards better fitness value.  

Table 2: Static RWA PSO Performance for Different 
Combinations of the Proposed Strategies 

 (B.F.V = Iterate for Best fitness Value, until all the particles converge) 

IV. CONCLUSIONS 

In this paper swarm intelligence based, particle swarm 

optimization is proposed to solve static routing and 
wavelength assignment problem, with wavelength continuity 
constraint applied. Unlike traditional schemes where the 
objective of static RWA problem is to minimize the number of 
wavelengths required, the proposed algorithm takes into 
account both average path length of the chosen routes and the 
number of wavelengths required. A novel encoding scheme 
has been proposed for particles of the swarm. In order to 
diversify the search, a novel operation, St. (3) has been 
proposed for global best particle. For replacement of routes 
with the respective routes in global/local best particle, a novel 
strategy, St. (1) has been adopted that helps to better converge 
towards optimal solution in significantly lesser iterations, as 
compared to [12]. Instead of random selection, St. (2) has 
been proposed that also shows some improvement in the 
results. The proposed scheme also shows significantly better 
results as compared to a genetic algorithm presented in [10]. 

In the future, the quality of solutions obtained from 
proposed scheme will be compared against techniques like 
ILP and other swarm intelligence algorithms like genetic 
algorithms and ant colony optimization, in terms of different 
network performance parameters. This work will be extended 
to consider optical networks with full or partial wavelength 
conversion capability and survivable optical networks. 
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