

Architecture for Dynamic and Secure Group Working

Ivan Đorđević

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Department of Electronic Engineering

Queen Mary, University of London

United Kingdom

June 2004

 2

To my Family

 3

Acknowledgements

I would like to thank my supervisor Dr Chris Phillips, for all his help,

continuous encouragement, and belief in me during my PhD. Also, to the

academic members of staff in the Department of Electronic Engineering,

Queen Mary, whom I have been interacting with, for their comments and

suggestions. In addition, I am thankful to Dr Theo Dimitrakos from CCLRC,

for numerous technical discussions.

My PhD has been partly supported by EPSRC, Grant GR/R97733/01, which I

would like to acknowledge.

I am also grateful to everyone in the Department for making my days at

Queen Mary memorable, during both relaxing and working hours.

Finally, my love and gratitude goes to my family, especially my parents

�ivkica and Radi�a, and my sister Jelena, for their love and care during the

years of my study in London.

 4

Abstract

The main motivation for this research comes from an examination of existing approaches to

group working within distributed communication systems. The overall contribution is the

development of a novel hybrid architecture for secure corporate communication, supporting

dynamic closed user groups operating across a distributed and non-secured infrastructure. It

employs protection mechanisms that are enforced at the end-user terminal but can be controlled

from a scalable administration control plane.

The architecture comprises a population of client terminals and one or more administrator

nodes. The formation and maintenance of groups is controlled by the administrator(s). This is

achieved by using a signalling protocol with encrypted messages that contain certificates to

provide authorisation and authentication. Clients liase with the administrator to request joining

or creating a working group. The group members are issued with certificates specific to the

group. An administrator is also able to set policy constraints, regulating the actions permitted by

individual group members. This is enforced by management and policing functionality present

within each client machine�s operating system.

Once the group is established, communication between the group members can take place using

peer-to-peer mechanisms, preceded by the authentication process based on certificates. The

administrator only needs to be contacted if there is a change of group structure or operational

parameters. This provides one form of scalability. Furthermore, rather than providing a single

administrator, multiple administrators can be used to each manage a cohort of clients. This is

particularly beneficial if cross-organisational groups are to be formed. Using a proxy

mechanism, an administrator may permit a selection of its clients to join groups managed by

other administrators, whilst ensuring all interaction with the remote administrator is channelled

through the clients� local one in order to support policy management and vetting functions.

In addition to a detailed assessment of the relative operational performance of the architecture,

various security features are proposed and evaluated, particularly relating to the access control

and authorisation of clients� actions. The complete system constitutes a distributed firewall,

where the administrator configures the policy rules, either individually or through agreement

with other administrator nodes, if inter-organisational groups are to be formed. The firewall

instantiation on each client machine, containing only the set of policies relevant to that client, is

used to enforce the actions corresponding to the detected authorisation level.

 5

Table of Contents

Acknowledgements ...3

Abstract ...4

Table of Contents ..5

List of Figures ...8

List of Tables...10

Glossary ..11

Chapter 1 Introduction ...13
1.1 Motivations and Objectives ... 13
1.2 Contribution of the Thesis ... 14
1.3 Structure of the Thesis... 15

Chapter 2 Information Security Overview...16

2.1 Basic Security Requirements and Threats ... 16
2.2 Basics of Secure Communication.. 19

2.2.1 Symmetric Cryptography .. 19
2.2.2 Public-Key Cryptography ... 19
2.2.3 Digital Signatures and Hash Functions ... 21

2.3 Digital Certificates and Supporting Infrastructures... 22
2.3.1 Authentication ... 22
2.3.2 Authorisation... 27
2.3.3 Access Control and Trust Management Systems .. 31

2.4 Host Security ... 35
2.4.1 Distributed Firewalls... 38

2.5 Summary.. 41

Chapter 3 Functionalities and Security of Distributed Collaborative Systems42

3.1 Virtual Private Networks ... 42
3.2 Secure Multicast for Group Communication... 47
3.3 Peer-to-Peer Networks... 49

3.3.1 Current Status in Peer-to-Peer Security... 54
3.4 Grid Framework and Web Services... 55
3.5 Summary.. 58

Chapter 4 Framework for Distributed and Secure Group Communication59

4.1 Motivating Example: Inter-Organisational Collaboration... 59
4.2 Closed User Groups (CUG) Architecture Overview... 61

4.2.1 Basic Interactions in the System � Hybrid Architecture 63
4.2.1.1 Interactions for Supporting Inter-Domain Groups 65

 6

4.3 Security Policy and CUG Management... 66
4.3.1 Authentication ... 67
4.3.2 Authorisation... 70

4.3.2.1 Roles and Privileges ... 71
4.3.3 Confidentiality... 73
4.3.4 Centralised Policy Management: Administrator ... 74

4.3.4.1 Names and Identities .. 77
4.3.5 Distributed Policy Enforcement: The Client ... 78
4.3.6 Policy Updating... 82

4.4 Description of Security Protocol ... 84
4.4.1 Administrator � Client Messages (hierarchical).. 84

4.4.1.1 Initial Setup of Client (Registration) .. 85
4.4.1.2 Deregistering a Client... 87
4.4.1.3 CUG Creation... 88
4.4.1.4 Joining CUG... 89
4.4.1.5 Leaving CUG.. 91
4.4.1.6 CUG Removal .. 91
4.4.1.7 CUG Broadcast (Administrator�s Update Info).. 92

4.4.2 Client � Client Messages (peer-to-peer).. 92
4.4.2.1 Authentication of CUG Peers (Session Establishment)................................ 92
4.4.2.2 Data Transfer .. 94
4.4.2.3 Optional Client�s Functionalities.. 94

4.4.3 Administrator - Administrator Messages (peer-to-peer) 95
4.4.3.1 Establishment of Initial Relationship for Remote CUG Management 95
4.4.3.2 Message Interception.. 97

4.4.4 Examples of Protocol Functionalities ... 97
4.4.4.1 Remote CUG Joining and P2P Session Establishment................................. 98
4.4.4.2 Group Membership Revocation.. 101

4.5 Motivating Example Revisited: CUG-Enabled Cross-Organisation Collaboration 105
4.6 Architecture Summary... 106

Chapter 5 Simulation Modelling ...108
5.1 Introduction ... 108
5.2 Network Model.. 109
5.3 Node Models ... 109

5.3.1 Unique Node Identifiers .. 110
5.3.2 Administrator .. 110
5.3.3 Client ... 115
5.3.4 Queues... 118

 7

5.4 Format of Messages... 120
5.4.1 Certificates .. 122

5.5 Traffic Modelling .. 124
5.5.1 Processing Delays ... 124
5.5.2 Signalling Messages.. 125

5.6 Simulation Modelling Summary ... 127

Chapter 6 Simulation Results and Analysis...128

6.1 Verification and Validation of the Simulation Model ... 128
6.1.1 Verification ... 128
6.1.2 Validation.. 132

6.1.2.1 ARQ Protocol ... 137
6.1.3 Credibility of the Results... 139

6.1.3.1 Random Number Generator (RNG) ... 139
6.1.3.2 Output Data Analysis ... 142
6.1.3.3 Choice of Simulation Parameters for Initial Registration........................... 143

6.2 Performance Simulation Results ... 146
6.2.1 General Evaluation of the Architecture... 147

6.2.1.1 Functionalities of Signalling Protocol .. 147
6.2.1.2 Performance of Signalling Protocol ... 150
6.2.1.3 Choice of Revocation Mechanism.. 154

6.2.2 Evaluation of Architecture with Encryption and Authentication 157
6.2.2.1 Scalability ... 157
6.2.2.2 Impact of Remote Join / Leave... 161
6.2.2.3 Scalability of Grouping .. 165
6.2.2.4 Frequency of Periodic Updates... 168
6.2.2.5 Robustness.. 170

6.3 Analysis of Simulation Results.. 173

Chapter 7 Conclusion and Further Works ...174
7.1 Discussion.. 174
7.2 Conclusions ... 181
7.3 Further Work ... 182

References ...184

Appendix: Author�s Publications..193

 8

List of Figures

Figure 1: Encryption/Decryption Process: a) Symmetric; b) Asymmetric... 20
Figure 2: a) Digital Signature with Public-Key Scheme; b) Authentication and Confidentiality through

combined use of Asymmetric and Symmetric Encryption .. 22
Figure 3: Typical Architecture of Trust Management Systems.. 34
Figure 4: Distributed Firewall Paradigm.. 39
Figure 5: Different Deployment Types of Virtual Private Networks ... 43
Figure 6: Basic Peer-to-Peer Architectures .. 51
Figure 7: Motivating Example: Distributed Collaborative Project... 60
Figure 8: CUG framework: hybrid architecture and entities involved .. 62
Figure 9: Types of interactions and groups within CUG environment... 64
Figure 10: Relevant Fields of PKI and AC Certificates ... 69
Figure 11: Example of Logical CUG Policy Expressed as Role-Matrix .. 72
Figure 12: Functionalities of Administrator Node ... 75
Figure 13: Functionalities of Client Node and Security Policy Enforcement .. 79
Figure 14: Initial setup of remote client ... 85
Figure 15: Deregistration of client: a) requested; b) forced ... 87
Figure 16: Creation of a CUG .. 89
Figure 17: Client joining CUG: a) requested; b) appointed ... 90
Figure 18: Client leaving CUG: a) requested; b) expulsion ... 91
Figure 19: CUG session establishment and data transfer: a) unicast; b) multicast..................................... 93
Figure 20: Peer-to-peer interactions of administration nodes: a) initial authentication; b) message

interception.. 96
Figure 21: Joining and P2P Session in Remote CUG .. 99
Figure 22: Membership revocation mechanisms: a) instant administrator's update; b) periodic

administrator's update; c) update via appointed member...101
Figure 23: Generic Simulation Model of a Node (both for Client and/or Administrator)........................110
Figure 24: Data Structures Maintained at Administrator ...111
Figure 25: Finite State Machine of the Administrator Module ..113
Figure 26: Data Structures Maintained at Client ..116
Figure 27: Finite State Machine of the Client Module...117
Figure 28: Finite State Machine of the Modified acb_fifo OPNET Queue Module.................................119
Figure 29: Placement of Queue Modules within Network Nodes and Inter-Module Communication.....120
Figure 30: Message Format Used in Simulation Model...121
Figure 31: Modelling of Certificates for Simulation ..123
Figure 32: Number of Packets over Time ..129
Figure 33: Example of Messages Generated at a Single Client Node over time......................................130
Figure 34: Queue Size with Remote Operation Disabled, with 1000 Client nodes per One Administrator

node ...131
Figure 35: Increase of Administrators' Queue Size as a Function of the number of Client Nodes131

 9

Figure 36: 95% Confidence Intervals for Simulation Results of Number of Register Request Messages136
Figure 37: Number of Register Request Messages in Function of Number of Clients: Calculated vs.

Simulated values..137
Figure 38: ARQ protocol in the presence of loss: a) Average number of request retransmissions (a value

of 1 means that the original request was successful); b) Percentage of non-delivered messages after

10 retransmission attempts ..138
Figure 39: Plot of 95% Confidence Intervals from Table 14 ...141
Figure 40: Estimation of Steady State: a) Queue Size in time; b) Accuracy of Experiments142
Figure 41: Impact of Initial Registration Period on Processes in the Model: a) number of registered

Clients; b) active packets; c) percentage of active packets..144
Figure 42: Oscillations in the System: Traffic Volume vs. Number of Clients..145
Figure 43: Overview of Signalling Messages in the System..147
Figure 44: Types of Signalling Messages ..148
Figure 45: Hierarchical and Peer-to-Peer Signalling Messages ...149
Figure 46: Local vs. Remote Communication in Multi-Administrator Environment150
Figure 47: Egress Queue Size at Administrator vs. Number of Clients, for Low Processing Delay........151
Figure 48: Ingress Queue Size at Administrator vs. Number of Clients, for Low Processing Delay.......152
Figure 49: Processing Time at Administrator vs. Number of Clients, for Low Processing Delay...........153
Figure 50: Packet Round Trip Time in Function of Number of Hops..154
Figure 51: Performance of Administrator Node in Different Revocation Scenarios................................155
Figure 52: Comparison of Administrator's and Members' Queue Performance in 'Appointed Member

Update' Revocation Scenario...156
Figure 53: Processing Delay at Administrator vs. Number of Clients ...157
Figure 54: Ingress Queue Size at Administrator vs. Number of Clients ..159
Figure 55: Egress Queue Size at Administrator vs. Number of Clients ...159
Figure 56: Change of Traffic Structure with Increase of a Number of Administrator Nodes: a) total

messages; b) forwarded & update messages ...160
Figure 57: Egress Queue Size at Administrator vs. Remote Operation Probability161
Figure 58: Ingress Queue Size at Administrator vs. Remote Operation Probability162
Figure 59: Packet Round Trip Time in function of Remote Operation Probability162
Figure 60: Processing Delay per Time Unit ...163
Figure 61: Change of Traffic Structure with Increase of Remote Operation Probability.........................163
Figure 62: Processing Delay per Executed Event ..164
Figure 63: Performance of Administrator Queue for Different Group Sizes ...166
Figure 64: Processing Delays for Different Group Sizes ...167
Figure 65: Delays in the System for Different Group Sizes...168
Figure 66: Administrator Queue Size for Different Periodic Update Values...169
Figure 67: Processing Delay for Different Values of Periodic Updates...169
Figure 68: Architecture Robustness Achieved through ARQ Protocol..172
Figure 69: Performance Overhead due to ARQ Mechanism..172

 10

List of Tables

Table 1: Summary of encryption keys and its usage in CUG architecture... 74
Table 2: Policy Updates Affecting a Single Client .. 83
Table 3: Policy Updates Affecting a Number of Clients / CUGs... 84
Table 4: Acronyms and Notation Used for Protocol Description... 84
Table 5: Content of the Messages Generated at the Administrator Module. (In addition, all the messages

are accompanied with the model of the administrator�s PKI certificate)...114
Table 6: Security Procedures at Administrator Performed for Different Types of Messages115
Table 7: Scheduling of Events for Generation of Request Messages at Client Process Module..............117
Table 8: Security Procedures at Client Performed for Different Types of Messages...............................118
Table 9: Values used for Modelling of Security Procedures in the Simulations, taken from [143],[144]125
Table 10: Parameters from Simulation Scenarios, used for Estimating Number of Requests..................134
Table 11: Theoretical Values for Number of Requests, Calculated from Equation (8)............................134
Table 12: Simulation values for the number register requests, run for different seeds134
Table 13: 95% confidence intervals, obtained with data from Table 12 ..135
Table 14: Comparison of the in-built Visual Studio 6.0 RNG and the Mersenne-Twister RNG140

 11

Glossary

3-DES Triple- Digital Encryption Standard

AA Attribute Authority

AC Attribute Certificate

AES Advanced Encryption Standard

AH Authentication Header

ARPANET Advanced Research Project Agency Network

ARQ Automatic Repeated Request

CA Certification Authority

CAS Community Authorisation Service

CPU Central Processing Unit

CRL Certificate Revocation Lists

CUG Closed User Group

DAC Discretionary Access Control

DES Data Encryption Standard

DH Diffie-Hellman (cryptographic technique for key generation and agreement)

ESP Encapsulation Security Payload

GSI Grid Security Infrastructure

GSM Global System for Mobile Communications

HTTP Hyper Text Transfer Protocol

IBE Identity-Based Encryption

ID Identity; the unique identifier that distinguishes different entities in a given domain

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPSec IP Security Protocol

ISP Internet Service Provider

IPv6 Internet Protocol version 6 (with enhanced capabilities compared to its predecessor

IPv4; both are now in use on the Internet)

ITU International Telecommunication Union

JXTA short for �Juxtapose, as in side by side�; P2P Project of Sun Microsystems

KDC Key Distribution Centre

LA Local Administrator

LAN Local Area Network

MAC Mandatory Access Control

OCSP Online Certificate Status Protocol

OPNET Optimum Network Performance

 12

OS Operating System

P2P Peer-to-Peer

PGP Pretty Good Privacy

PKC Public Key Certificate

PKI Public Key Infrastructure

PKIX IETF Standard for Digital Certificates

PMI Privilege Management Infrastructure

PLMN Public Land Mobile Network

RADIUS Remote Authentication Dial In User Service

RBAC Role-Based Access Control

RB-RBAC Rule-Based RBAC

RFC Request for Comments, proposals for Internet standards

RM Remote Group Manager

RML Remote Members List

RNG Random Number Generator

RSA (Rivest/Shamir/Adleman) asymmetric encryption and authentication system

SDSI Simple Distributed Security Infrastructure

SEM Semi Trusted Mediator

SP Service Provider

SPKI Simple Public Key Infrastructure

SSL Secure Socket Layer

SSP Security Service Provider

TCP Transmission Control Protocol

TLS Transport Layer Security

TTP Trusted Third Party

UDP User Datagram Protocol

URI Uniform Resource Identifier

UUCP UNIX-to-UNIX Copy Program

VA Validation Authority

VO Virtual Organisation

VOMS Virtual Organisation Membership Service

VPN Virtual Private Network

WAN Wide Area Network

X.509 ITU Standard for Digital Certificates

 13

Chapter 1 Introduction

1.1 Motivations and Objectives
The main motivation for this research comes from looking at existing solutions for providing

flexible and scalable distributed collaborative working, and especially the way security is

implemented and supported within them.

With the rapid development of computer networks and Internet-based communication, there is

an increasing trend of using these functionalities and new developing technologies for business-

related purposes. Even as recent as 1990, most desktop computers were considered to be stand-

alone machines. Inter-networking of computers on a global scale has changed the perception of

computers as stand-alone machines, and the continuing exploitation of the Internet has

witnessed the development of new working patterns including nomadic computing and the

formation of extranets. Within this context, protection of dynamic group working environment

is one of the essential aspects. With the current solutions, this is provided by protecting campus

boundaries with a firewall and using encryption techniques to interconnect remote sites, while

assuming that all employees located behind the firewall are trusted. However, a recent survey on

security breaches in corporate e-business environments has demonstrated that 35% of

respondents did not know if an attack came from inside or outside of the company network [1].

Also, the annual survey by FBI and US Computer Security Institute [2], for several years now

continuously reports that significant number of computer security breaches originate inside

organisations and are made by insiders, be them employees, business partners, subsidiaries or

3rd party suppliers.

In addition, lack of a common standard for e-business applications results in employing security

solutions on top of the communication infrastructure, in many cases only after potential or

exploited vulnerabilities are revealed on an already developed system [3]. The general drawback

with such an approach is that adding security mechanisms at that stage of the system

development severely undermines the performance and flexibility of the system. New means for

group collaboration, communication, and large-scale, cheap dissemination of information,

through enhancements of Virtual Private Networks, Peer-to-Peer infrastructures, and increased

use of digital certificates infrastructures, are trying to address some of these problems. For

example, recent EU initiative (see [4]) aims to address the requirements for next generation

collaborative working environments. It emphasises on the need for such middleware technology

to support dynamics, mobility, and security and privacy of users, collaboration through un-

trusted domains, as well as management support for inter-organisational processes and

processes across the disciplines.

 14

The main objective of this research was to develop a framework that can provide a new

distributed, secure working environment based on robust and efficient network mechanisms,

allowing for dynamic collaboration groups without topological constraints. By bringing together

aspects of peer-to-peer and client-server communication model, with digital certificates for

distribution of security policies and distributed firewalls for policy enforcement, a novel hybrid

architecture has been developed. The architecture offers a unified approach for supporting

communication and security within cross-domain dynamic distributed collaborative groups,

through: flexible and scalable way of the communication, robustness and dynamics of the group

management, and security of the overall environment (both that of the users and of actual

communication).

1.2 Contribution of the Thesis
The main contribution of the thesis is a design of hybrid architecture for secure and distributed

collaborative working. A novel combination of peer-to-peer and client-server communication

models is proposed for enabling dynamic closed user groups that are non-dependant on

geographic topology or administrative domains. The architecture includes:

o A framework for dynamic and scalable security management of closed user groups,

enabled through usage of digital certificates for authentication and authorisation.

o Separation of the security policy deployment model into centralised policy definition and

distributed end-entity enforcement of the security policy.

o A detailed description of a set of security protocols for supporting authenticated and

confidential communication within the architecture, which consists of a:

• Hierarchical protocol for communication between administrators and their clients

within an administrative domain.

• Peer-to-Peer protocol for communication between different administrators across the

administrative domains.

• Peer-to-Peer protocol for supporting communication between the clients within a

closed user group, which is totally transparent to the administrative domains and can

be used equally to support intra- or inter-domain group interaction.

In addition to a detailed survey and evaluation of the security support for current distributed

dynamic collaboration environments, and dissemination of the author�s research findings, the

contribution of the work reported in this thesis is:

• A detailed description of the functionalities and requirements for the proposed architecture,

as well as possible directions to further develop and improve the architecture of Closed User

Groups.

• A simulation model of the above architecture and a performance evaluation of the

communication protocol in a large-scale system setup. In particular, overheads introduced

 15

by security mechanisms and certificate manipulation have been examined through a range

of different scenarios.

1.3 Structure of the Thesis
The main part of the report consists of eight chapters, including the introduction, the discussion

and the conclusion. Each chapter begins with a brief description of its scope and ends with a

brief summary of its outcome.

Chapter 2 reviews current approaches in providing information security, with the particular

emphasis on their suitability for protecting dynamic distributed systems. The main paradigms

for supporting distributed collaborative communication, and the state-of-the-art with respect to

the security features deployed are reviewed in Chapter 3.

Chapter 4 introduces a hybrid architecture developed during the author�s PhD research. It

discusses functionalities and requirements of the architecture, and gives the details of the

security protocols.

The simulation model, developed to evaluate the proposed architecture, is described in Chapter

5. Chapter 6 then discusses validation and verification of the simulation model and analyses the

performance results obtained.

Chapter 7 provides a discussion and evaluation of the work, and also considers future work

placing the architecture in a larger context. Conclusions are given in Chapter 8.

The author�s publications and references are provided at the end of the thesis.

 16

Chapter 2 Information Security Overview

Increased capacity of communication links and computational power of machines are

stimulating new applications and roles of computers in every day life, having a major influence

on the requirements for achieving information security within an organisation. Firstly, before

computer connectivity and networking had been introduced, computers were solitary machines

protected only by password and/or encryption of confidential data on the hard-disc 1. However,

since the widespread development of digital telecommunication networks in last several

decades, protection of the communication has been becoming increasingly important.

From this perspective, studying security can be divided into two major aspects: computer

security, which deals with controlled access to information using protected hardware and

software, and communication security2, which deals with protection of information using

encryption techniques while information is stored or transmitted over an unprotected medium

[5].

The aim in applying information security is to establish a security perimeter, defined as �the

boundary of the domain (introduced by space or logical architecture of the system) in which

security policy or security architecture applies� [11]. Current approaches for providing overall

information security are a combined usage of several features: cryptographic algorithms (for

protection of data), authentication (for authorisation of the communicating entities), and devices

such as firewalls and intrusion detection systems (IDS), placed on the borders of the corporate

network to protect the enterprise intranet and regulate traffic flows[2] [3]. Also, the emerging

trends for nomadic computing and distributed services and applications are setting new

requirements for more comprehensive and sophisticated management of security policies and

information exchange, involving for example digital certificates or message time-stamping.

This chapter reviews the above technologies, and examines their applicability for securing

distributed and dynamic inter-organisational infrastructures.

2.1 Basic Security Requirements and Threats
A computer system can be considered as a set of resources available for use by the authorised

users. Maintaining security of the system and at the same time obtaining secure communication

requires several aspects to be considered, which altogether define information security [3],[6]:

1 In this context, a number of dumb terminals connected to a minicomputer etc. is considered a solitary system.
2 Sometimes, communication security has been referred to as network security.

 17

• Confidentiality - the ability to protect transmitted messages in a way that the intended

recipients know what was being sent, while unintended parties cannot observe source and

destination, content, frequency, length or other characteristics of the traffic.

• Data Integrity - the property of ensuring that data is transmitted from source to destination

without modification in message contents (e.g. duplication, insertion in, destruction of the

packet stream etc.).

• Message Authentication - the property of knowing that the data received is the same as the

data that was sent and that the claimed sender is the actual sender.

• Entity Authentication (identification) � confirmation of the identity of an entity.

• Non-repudiation - the property that enables sender or receiver to prove the transmission of

the message if the other party denies it. Thus, recipient can prove that the particular sender

actually did send a certain message; also, sender can prove that the message has been

received by a particular recipient.

• Authorisation � conveyance (to another entity) of official permissions to do or be

something.

• Access Control � ability to limit and control the access to resources to the privileged

entities. This includes authentication and authorisation of the entities involved.

• Availability � of (authorised) communicating parties or stored information.

There is a number of general techniques and security mechanisms that address various aspects

of information security. However, depending on the type of system/ interaction that needs to be

protected, some of these security requirements may be more difficult and/or more important to

achieve than others. If not designed and implemented properly to fit the system they aim to

protect, each of the above security requirements could represent an obstacle to the system

functionality, and more importantly a potential vulnerability that can be exploited through a

security attack.

A security attack can be defined as �any action that compromises the security of information

owned by an organisation� [3]. More specifically (according to [7],[8],[9]), it can be defined as

a formulation or execution of a plan to carry out a threat, where:

• A threat is an action or event performed by an attacker that exploits system vulnerability in

a malicious way (i.e. that jeopardizes any aspect of information security or breaches system�

security policy).

• A vulnerability is a known or suspected flaw in the hardware, software, or operation of a

system that can be used to compromise any of the system�s security requirements.

• An attacker is a malicious entity (normally a human user), which can be either authorised or

non-authorised.

 18

Generally, attacks on computer systems can be divided into passive and active attacks [3],[10].

Passive attacks involve interception of the communication without modifying the data

(eavesdropping). Therefore, it is very difficult to discover them and the emphasis is more on

prevention rather than detection. Active attacks, on the other hand, involve modification of the

data, either by modifying the original or by creating a false data stream, or modifying stored

information. Both of these types of attacks can be performed either from inside or outside of

security perimeters, which is another important classification of computer attacks [11]. Some of

the most common (types of) attacks, based on the way they are carried out are listed below

[3],[8],[9],[12],[13]:

• Denial of Service: technique of disrupting system by denying use or degrading the service.

In this case, the attacker is not so much trying to reach the secret data as to prevent or delay

the system operation, by re-directing the traffic or flooding the system with false data

streams.

• Social Engineering: the attacker tries to persuade someone in an organisation to disclose

sensitive access-control information, such as user IDs and passwords.

• File manipulation: creation, removal or modification of data.

• Brute Force: searching for password or username by trying every possible combination.

• Meet-in-the-middle: this attack assumes that a �third party� is involved in communication

between two entities, where none of them is aware of third party�s presence. The attack is

performed in manner that third party presents itself as entity B when communicating to

entity A, and vice-versa.

• Sniffing (passive wiretapping): eavesdropping the traffic flow on the communication link in

order to gain knowledge of information it contains.

• Session Hijacking: the attacker attempts to take control over one side of an existing

(authenticated) connection. Since authentication generally takes place only at the start of a

connection, this will allow the attacker to fully masquerade as the other side without further

security checks.

• Spoofing (identity forgery): the attacker masquerades as a trusted/authorised entity in order

to gain access to a system.

• Viruses, Trojan Horses and Worms: a program or piece of software with a potentially

malicious function that runs on the host machine without the owner�s knowledge. Some of

them may replicate themselves, consume resources destructively or propagate through the

system. This is the most common computer security threat, since viruses and other types of

malicious code can be easily shared through data exchange, particularly by receiving

infected document from a known party (e-mail attachments are the source in 80% cases

[14]).

 19

2.2 Basics of Secure Communication
This section gives a brief reviews of the general properties of current cryptographic techniques.

A more detailed overview and in-depth description of various mechanisms can be found in

[3],[6].

2.2.1 Symmetric Cryptography
Symmetric cryptography, also known as conventional or single-key encryption was the only

cryptography technique used before the invention of public-key encryption in 1976.

The main property of the symmetric encryption technique is that the same key that is used to

encrypt the data is also used for decryption and recovering the clear text (Figure 1a). Encryption

and decryption are inverse processes, usually based on mathematically complex non-linear

permutations. Frequently used algorithms, such as DES and 3-DES (Data Encryption Standard),

AES (Advanced Encryption Standard) [15] etc., have been widely studied for their strength and

security. However, a way of breaking them with significantly less effort than a brute-force

attack has not been found.

For a good algorithm, it must be impractical to decrypt a message on the basis of known

ciphertext and the algorithm itself, meaning that the security depends only on the secrecy of the

key used, which would normally need to be exchanged by some out-of-band means (i.e. non-

electronically, face-to-face). However, key management is a big drawback of the symmetric

cryptography approach. Since both the sender and the receiver must share the same key,

efficient key distribution is very difficult to achieve in large environments without

compromising any of the keys.

2.2.2 Public-Key Cryptography
Public-key cryptography (also known as asymmetric encryption) was first proposed in 1976

[16]. A year later the first practical scheme was proposed (RSA cryptosystem [17]), and there

have been several more realisations of public key systems since [3],[6].

An important property of public-key cryptography is that the key used for encryption cannot be

used to decrypt the data; a different key is needed to recover the clear text. This key pair is

called a public key and a private key, respectively. They are uniquely related through a specific

mathematical operation that may differ depending on the scheme used 3. The essential property

of public key cryptography is that it is mathematically infeasible to compute the private key if

the public key is known. This enables two parties (e.g. Alice and Bob) involved in the

3 For example, RSA uses factoring of prime numbers as its basis, while some other approaches are based on a discrete logarithm,

elliptic curves, etc.

 20

communication to freely exchange their public keys, whilst keeping their private keys to

themselves.

If Alice wants to send the confidential message to Bob, she encrypts it with Bob�s public key.

The message can be decrypted only with Bob�s private key (Figure 1b). Since Bob is the only

one possessing this private key, the message secrecy is assured.

Encrypt Decrypt

Alice Bob

plaintext
message

plaintext
message

encrypted
message

shared
secret key

shared
secret key

a) Confidentiality with Symmetric Encryption

Encrypt Decrypt

Alice Bob

plaintext
message

plaintext
message

encrypted
message

Bob’s
public key

Bob’s
private key

b) Confidentiality with Asymmetric Encryption

Figure 1: Encryption/Decryption Process: a) Symmetric; b) Asymmetric

A major obstacle to the wider use of asymmetric cryptosystems is computational speed when

compared to symmetric encryption. For example, [3] reports that it takes about 1000 times

longer to encrypt the same data with RSA (an asymmetric algorithm) than with DES (a

symmetric algorithm). Therefore, practical applications tend to use symmetric keys for the

encryption of the actual data, whereas the asymmetric encryption is normally used for

authentication and exchange of secret (symmetric) keys.

In addition, both schemes (as explained in Figure 1) are prone to the famous meet-in-the-middle

attack. The issue is somewhat similar in both schemes, as the emphasis is on the authentication

of the entities, rather than the confidentiality of the communication; therefore sharing of a secret

key in the symmetric scheme, and exchange of public keys in the asymmetric scheme are

analogous problems. The problem is that the entities involved do not have any assurance in each

other�s identities. Through impersonation, a third party can stand �in the middle�, presenting

 21

itself as Bob to Alice (and vice versa), intercepting and potentially modifying all the

communication, while Alice and Bob are not aware of the deception.

In order to provide authentication for the communicating entities, a form of message signing is

introduced.

2.2.3 Digital Signatures and Hash Functions
Public-key cryptosystems provide a mechanism for message signing by their very nature. In a

same way that message sent by Alice can be encrypted with Bob�s public key (and upon receipt

decrypted with his private key), it is possible for Alice to encrypt the message with her private

key. Upon receipt, Bob will be able to decrypt the message using Alice�s public key, but so will

anyone else who possess Alice�s public key. Therefore, this approach does not provide

confidentiality, but it assures that the message has been sent by Alice (since she is the only one

in possession of her private key). This operation is called digital signature and it forms the basis

for authentication of entities and message origin. It is possible to achieve authentication by

using symmetric encryption only � if a symmetric key is shared only by the communicating

entities; this, however, assumes secret distribution of keys, a requirement which is avoided by

using public-key cryptography. There are systems for secure communication over the public

network that use only symmetric encryption (such as Kerberos system developed at MIT [18]),

but that normally involves a rather complex authentication procedure and does not scale well in

large, inter-organisational environments 4.

In order to make a digital signature with public-key scheme more practical, and if

confidentiality is not needed, the encrypting operation is applied only to a small part of the

message called the hash. A hash is created when a one-way function is applied to the whole

message, giving a fixed-size string from the message of any size. For example, if Alice wants to

send an authenticated message to Bob (Figure 2a), she would encrypt only the hash value with

her private key, add it to the original plaintext message and send to Bob. Upon receipt, Bob

decrypts the hash using Alice�s public key, and at the same time applies hash function to the rest

of the message (i.e. the original message). If those two values match, he is assured that the

message originates from Alice.

If confidentiality is needed in addition to authentication, Alice could encrypt the signed message

with Bob�s public key. In practice, however, encryption of full message would be normally

performed with a symmetric encryption, using previously distributed symmetric key (e.g.

through mechanism in Figure 1b). This process is depicted in Figure 2b.

4 Motivated by rapid development of supproting infrastructures for public-key cryptohraphy, current advancements in Kerberos

system are considering use of public-key cryptohraphy for initial authnetication [19].

 22

enc

dec

Alice
Bob

plaintext
message

signed
message

Alice’s
private key

b) Authentication and Confidentiality

hash

enc

shared
secret

key

hash

dec

Alice’s
public

key

compare

signed
message

enc

Alice
Bob

plaintext
message

signed
message

Alice’s
private key

a) Authentication with Asymmetric Encryption

hash

hash

dec

Alice’s
public key

compare

plaintext
message

shared
secret

key

encrypted
message

Figure 2: a) Digital Signature with Public-Key Scheme; b) Authentication and Confidentiality
through combined use of Asymmetric and Symmetric Encryption

The issue with digital signatures is the trustworthy distribution of public keys, since a genuine

copy of the sender�s public key is required by the recipient. For example, Bob may receive a

public key from someone that he thinks is Alice, but in electronic environment he has no means

to check whether it is really Alice or someone impersonating her. He will receive messages with

a valid signature, and he can send encrypted messages that only �Alice� will be able to decrypt

and read, but none of the above techniques provides a means to relate someone�s identity to the

keys he or she presents. This problem has been addressed through digital certificates.

2.3 Digital Certificates and Supporting Infrastructures

2.3.1 Authentication
In order to increase the confidence in the authenticity of the public keys, the concepts of public-

key certificate and Public-Key Infrastructure (PKI) were introduced [20],[21]. A public key

certificate is a statement, digitally signed by the authorised entity, which confirms authenticity

of someone�s public key5. PKI is a supporting security architecture that facilitates publishing

and management of public-key certificates.

5 The first notion of digital certificate dates from 1978, from Loren Kohnfelder�s bachelor's thesis in electrical engineering from

MIT [22]: "Diffie and Hellman introduce a central authority known as the Public File. Each individual has a name in the system
by which he is referenced in the Public File. Once two communicants have gotten each other's keys from the Public File they can

 23

The main property of the public key certificate is that it relates one�s public key with the

additional information (which in some form identifies the entity � key owner). This relationship

is achieved with a digital signing of the body of the certificate, which consists of a number of

fields. At creation (certification), when all the data of interest is put together, the whole

certificate is digitally signed by the issuer (by hashing and encrypting with the private key, as

explained in the previous section). This additional piece of information represents the digital

signature, and together with the rest of the data forms the certificate. Therefore, the certificate

effectively represents the signed (but not encrypted) message. If one needs to validate the

certificate, one first needs to obtain the public key of the certificate issuer, and then to perform

the validation, generally following the process depicted in the right-hand part of Figure 2a. Any

of the public-key cryptography algorithms could be used for building a PKI. However, the RSA

system is particularly suitable, due to a property that lies in the very nature of the RSA

algorithm. In any PKI system, signing of the certificates (done with a private key) is performed

only once, whereas the validation (done with a public key) is performed many times. The

underlying property of the RSA algorithm is that a �public-key operation� takes much less time

than a �private-key operation�, and indeed much less when compared to the corresponding

public-key operations performed with Diffie-Hellman or elliptic curve encryption [23].

The processes of certification and validation are two basic operations common to all PKIs [24].

However, current PKI systems can be divided in two main groups based on the certification

process, namely which entity is authorised to sign the certificate.

In the first approach, known as PGP (Pretty Good Privacy, [25]), users would normally act as

their own issuing authority. The PGP framework [26] specifies a protocol for message

exchange, encryption algorithms, and certificate fields of which the main ones are: certificate

holder�s public key, the certificate holder�s information, and digital signature(s). Initially, at the

certificate creation, the certificate owner (e.g. Alice) puts together her public key and some form

of her identity (e.g. Alice Smith, alice@hotmail.com, etc.), and signs it with her own private

key. This self-certification is one of the main PGP properties, aiming to remove certificate

hierarchy and introduce flexibility in the certificate-supported communication. The scheme also

allows extension of signatures, which is its unique property: if Bob interacts with Alice and has

confidence that Alice�s PGP certificate reflects Alice�s real identity, he can also sign her

certificate, additionally verifying it. Furthermore, while signing it, he can associate his own

expression of confidence in Alice and the validity of her certificate. This approach aims to

create a so-called �Web-of-Trust�, without a strict certification hierarchy, using �chain of

securely communicate. The Public File digitally signs all of its transmissions so that enemy impersonation of the Public File is
precluded." (Since primary reference was unavailable, the citation was taken from [42].)

 24

authenticators�, where trust is built through the interactions between the entities, and is reflected

through the numbers of signatures and levels of trust associated with each of them [27]. PGP

was originally developed for securing e-mails, and operates successfully in small, informal

surroundings. However, in addition to scalability, it has some security concerns for its practical

usage in commercial situations; there is no entity (even the certificate owner) ultimately

responsible for issues related to certificate validity, actions performed, etc. This is in strong

conflict with the environment where business interests are protected through a �well-defined

contract with loss responsibilities and fines� [28].

The other approach to PKI, X.509 defined by ITU (International Telecommunication Union)

[20] and PKIX of IETF (Internet Engineering Task Force) [29],6 introduces the hierarchical

relationship between the certificate verifiers and public-key certificate holders (owners of

public-private key pair). Users� public keys are created and signed (verified) by a recognized

entity called Certification Authority (CA). This type of infrastructure has several important

features which are discussed in the remainder of this section as follows (for more details, please

see [24],[30],[31]):

Certificate Verification process consists of creating and signing a certificate. It is performed by

the CA, and it can be done in two ways. In the first approach, the user creates its own public-

private key pair, and delivers the public key to the CA, which creates the corresponding

certificate and signs it. The benefit of this approach is that it does not jeopardize the user�s

private key by sending it over the unsecured network. In the other approach, the CA creates key

pair for the user; it also creates and signs the public-key certificate and delivers it to the user.

The drawback of this scenario is that user�s private key also needs to be delivered, and in a

secure way; the potential benefit (in a corporate environment) is that the private key is also

known to the CA. For example, if Alice is dismissed, the organisation can still access her work-

related files by obtaining her private key from the CA (the feature called key escrow). However,

both of the approaches assume initial mutual authentication between two parties, which ideally

needs to happen off-line.

CA Arrangements and Certificate Delegation. Ultimately, each PKI has its source of the

certification path, known as a root CA, which is self-certified and which is implicitly trusted. In

order to avoid the situation where one CA would need to verify the certificates of all the users

(on a global scale), the root CA can certify other CAs, by delegating them a right to issue

certificates. This effectively creates a chain of certificates, where the last CAs in hierarchy can

issue certificates only to users, but cannot certify other CAs. CAs are normally arranged in a

top-down hierarchy, where parent CAs can certify only their children. When communication

6 These two approaches are essentially the same. PKIX has initially adoopted ITU X.509 standard, and develops it further for the

particular use on the Internet.

 25

between two users takes place, they need to validate the certificates of all the CAs that separate

them in order to verify each other�s public keys (a so-called certificate path validation).

Therefore, scalability of the PKI depends on the length of the certificate chain. In order to

decrease the length of the certificate path, cross-certification between the CAs of different

branches (on the same or different levels of hierarchy) is supported, which on the other hand

may add to the complexity of the certificate path discovery. An additional drawback is that the

trust of the whole PKI is put in the root CA.

Certificate Validation is a process of examining whether the specific certificate is valid at the

time of usage. Two methods for validation are supported in the PKI: online validation

(certificate is validated every time it is used), and offline validation (certificate contains validity

period, defined at the creation time).

Certificate Revocation is a method for revoking the certificates that are no longer valid (e.g. if

user�s private key is stolen, if any details in the certificate are changed, etc.). The revocation

mechanism is closely related to the supported validation method. Although a number of

approaches have been proposed, this is commonly recognized as an open problem in the PKI

research. The most common revocation techniques are:

• Certificate Revocation List (CRL) [32]. This is the most widely used approach. It is a list

which contains all the revoked certificates where the validity period has still not passed. It is

periodically signed and issued by the CA in general, but the CA may delegate this

responsibility to other authorities (validation authority � VA). This approach requires user

to download the whole CRL if it wishes to validate a particular certificate. In large

environments CRLs can become very long, for which reason the alternative ∆-CRLs were

introduced. ∆-CRL is effectively the list containing the updates from the previous posting of

a CRL. The common problem with revocation lists is that a certificate becomes revoked

only when it is on the list, and not when its validity actually stops. Therefore, the frequency

of updating CRLs is obvious trade-off between the scalability and security.

• Online Certificate Status Protocol (OCSP) [33]. This enables timely information regarding

the revocation status of a certificate. To validate the specific certificate, a user sends a

request to validation authority (VA), which sends back signed response. This approach

eliminates CRLs. However, since the request is sent at every user-to-user communication,

performance is an obvious concern. One of the proposed improvements is to have several

VAs, which brings security concerns, since the VA�s private key is multiplied over a

number of entities (since every response needs to be signed).

There are approaches that aim to solve the problem of certificate revocation. For example, [34]

introduces an entity called the SEM (semi-trusted mediator) that works in conjunction with the

CA. The private key of each user is split in two parts, of which one is kept at the SEM, and

another with the user. If the user�s certificate is revoked, it is not granted by SEM to either

encrypt or sign the message. However, this mechanism has some scalability issues since user

 26

needs to query the SEM for decryption of every message received and for signing of every

message sent. A way of solving this is to replicate SEMs, which on the other hand brings

security considerations, especially in large, inter-organisational environments, as the authors

suggest themselves.

A public key certificate contains a number of fields. There are several versions of PKIX/X.509

certificates. The latest one, version 3, supports the following fields in the certificate [32]7:

• Version (i.e. 1, 2 or 3)

• Serial Number (must be unique per CA)

• Issuer (the field that uniquely identifies the CA)

• Validity Period (contains time of issuing and time of expiration; global reference time needs

to be agreed or specified within the certificate)

• Subject (the field that uniquely identifies the key owner)

• Subject Public Key Info (value of user�s public key and identifier of the encryption

algorithm with which key is used)

• Extensions (this field is fundamental distinction to v01 & v02 which do not have it); this can

contain a number of things, such as: the additional attributes about certificate owner,

constraints on certification path, reference to CA�s public key (corresponding to the private

key used to sign the certificate), reference to CRL where the certificate should appear if

revoked, etc.

• Signature Algorithm (reference to a specific algorithm used by the CA to sing the certificate

with its private key)

• Signature Value (CA�s digital signature, with which CA certifies the validity of the

information in the rest of the certificate).

X.509 is a result of a significant effort over the period of last 10 years, and as such represents a

comprehensive infrastructure for supporting trust and security of the communication over the

insecure Internet. However, one of the main pitfalls of the paradigm is a requirement to be

achievable on the global scale. It has proved highly impractical (and perhaps impossible) to

create globally unique identifiers of certificate holders. Another obvious issue is legal aspect

and responsibilities of the CAs and other parties in case of breach of the agreement, a way to

pursue corrective actions, etc., especially on the global, international scale. For example, there is

a number of successfully operating CAs [38], but they are normally grouped in different PKIs

that conform the law of different countries, company policies, etc. This goes so far that Verisign

[39], one of today�s most recognized commercial CAs, explicitly states in the certification

7 Section 4 of [32] describes these in detail, and Appendix C of the same document lists some examples of PKIX v03certificates.

 27

contract that it is exempt from all the responsibilities regarding the certificate, accuracy of its

data, and its usage (see point 5 of [40]).

It is a common observation that achieving a global PKI is currently not feasible, but that it can

be very useful approach for managing and supporting security within closed/isolated

environments.

The certificate infrastructures described in this section assume the systems based on RSA

encryption method. One of the common problems for RSA-based systems is key generation:

due to a large keys (1024 or 2048 bits) the process is time-consuming, and it also requires a key

to be stored on an electronic medium, since it would not be possible to remember it. A recent

proposal [35], based on elliptic curve cryptography, offers a practical solution to this problem. It

is called Identity-Based Encryption (IBE), and it has been developed particularly to secure e-

mail communication [36]. It allows any string to be used as a public key8 (in particular e-mail

addresses). It employs the mechanism where the �master secret� is kept at the central server

(presumably a CA), and for every interaction a private key is calculated based on the public key

and the master secret. Similar to the previous scheme, the central server can refuse to grant a

decryption key. However, the mechanism has some performance concerns, firstly since user

needs to query server for decryption of every message received, and secondly since the private

key needs to be computed every time. Also, since a public key of a user can be chosen as a

string that relates to a user�s identity, it multiplies the number of keys used (e.g. is it

alice@hotmail.com or alice@yahoo.com ?), makes typing errors a significant problem (e.g.

Alicia instead of Alice), and makes key revocation more complex (if the key is related to the

user�s privileges or e-mail address) [37]. This is still new approach and does not interoperate

with current PKI systems. It has been mentioned here for clarifying its existence, rather than as

a serious consideration within this research.

2.3.2 Authorisation
The main motivation for developing public key certificates and PKI systems was to enable

secure and controlled authorised access to the resources in a structured way. The main

shortcoming of authentication certificates is their lack of expressiveness, which limits their

ability to support the requirements for several levels (most commonly hierarchical) of

authorisation. Since they bind owner�s public key to its name (or some other form of

identification), they can normally express which entity is permitted access, but do not specify

what level of access should be allowed. Version 3 of the X.509 authentication certificate

improves this to some extent, by allowing certain freedom in defining the �extensions�

8 Therefore the name of the scheme.

 28

contained in the certificate. However, there are a number of approaches developed in the last

five years, specifically addressing the problem of authorisation via certificates.

The SPKI (Simple Public-Key Infrastructure) certificates [41],[42] were initially developed to

address the problem of globally unique names in X.509 authentication certificates. Instead of

trying to find a unique name for the user and then relate it to a public key via certificate

signature, SPKI certificates consider public keys themselves to be globally unique user

identifiers. (This approach is supported by the very basic assumption behind cryptography, that

the encryption keys are unique9 - otherwise, what is the use of them anyway?).

Therefore, SPKI certificates contain the issuer�s public key (that identifies certificate issuer) and

the subject�s public key (that identifies key owner). Including the actual names of certificate

issuer and owner within the certificate is completely optional. The rest of certificate fields are:

authorisation rights, validity period, and boolean �delegation� flag. This structure enables the

certificate issuer-key to grant certain privileges to a subject-key, and also to specify whether

these privileges can be further delegated by the subject-key. All the information is signed by the

private key corresponding to the issuer�s public key. A subject-key (certificate holder) can

further delegate the authorisation contained in the certificate by acting as an issuer [43].

The consequence of this approach is that the last subject-key in the delegation chain needs to

present all the certificates in order to claim certain authorisation rights. By the very nature of the

system, certificate chains can become very long, therefore making validation process time-

consuming. SPKI system allows chain �reduction� in two ways, both of them resulting in one

certificate with intersected authorisation rights and validity period. For either of two approaches,

the whole certificate chain needs to be presented by a subject: 1) if presented to the first issuer,

it can create new certificate and sign it with its private key; 2) if presented to a server, the server

can create new certificate and sign it with issuer�s private key. The first approach assumes that

the original issuer needs to be located, and also increases its communication burden. The second

approach assumes that a server is a type of secure server that keeps all the private keys, in

addition to providing services, which may not be acceptable in a fully distributed environment.

Although the SPKI approach gave a possible solution to unique identifiers (via public keys), it

created a problem of relating a public key to a real identity. The problem was addressed by

taking the approach of a local namespace proposed in SDSI scheme (Simple Distributed

Security Infrastructure) [44], and eventually two schemes merged into SPKI/SDSI [45], an

experimental project of the IETF SPKI working group [46]. Effectively, the original �SPKI

9 For example, [3] reports estimations made in 1996 that 430-bit RSA key could be obtained by brute-force attack in 500 MIPS-

years (milion instructions per second).

 29

certificate� is split into two: name certificates and authorisation certificates. Through name

certificates, an issuer can introduce new entities into its local namespace, by relating their public

keys to some locally defined identifier and signing it with its public key. Authorisation

certificates preserve all the features of already described �SPKI certificates�, with the additional

flexibility of defining certificate owner either through its public key, or through an identifier

defined within certificate issuer�s local namespace. An additional capability of name certificate

is that it enables the issuer to define links between different identifiers from its local namespace.

Therefore, it can define an �abstract� identifier and relate it to the �real� ones. This provides

straightforward way of grouping, which is the unique feature of this certification system.

The SPKI/SDSI approach was developed to operate in distributed environment without defined

hierarchy. However, applying it to a corporate, inter-organisational environment creates several

concerns. The delegation of authorisation certificates introduces scalability, but once delegated,

the issuer completely looses control on how far the authorisation will propagate; it cannot track

the chain, and the only way to gain such information is if the whole chain is presented to the

issuer for reduction10. Also, the way authorisation rules are defined depends only on the

certificate issuer, and in the system where anyone is allowed to create such certificates (or

modify the existing ones) it may be difficult to achieve a common representation. Finally, the

scheme does not support certificate revocation at all, and completely relies on short lifetime of

the certificates.

Another approach that addresses the problem of authorisation via certificates is developed

within IETF� PKIX working group [29]. Some of the requirements for authorisation certificates

have been addressed in the independent proposal called �Smart Certificates� [47], which

suggests modifications and enhancements of X.509 public-key certificates. Most of these are

covered by IETF�s Attribute Certificates (AC) [48], which are fully compatible with version_2

of X.509 public-key certificates and further extend their functionalities. The paradigm of X.509

attribute certificate and supporting infrastructure is known as Privilege Management

Infrastructure (PMI).

The main difference between a public-key certificate and an attribute certificate 11 is that AC

does not contain public-key. Instead, link between the owner�s PKC and AC is provided

through a dedicated field within AC. Therefore, AC is considered to be valid only if presented

with valid PKC. In this sense, AC can be seen as more powerful way to grant certain attributes

10 The obvious improvement could be to specify the length of chain, but such a feature has not been introduced in any version of

SPKI/SDSI scheme.
11 Further on, if abbrevations PKC and AC are used, they will refer to IETF�s PKIX X.509 public-key and attribute certificate,

respectively.

 30

to an entity, which would be otherwise contained in the extensions field of PKC. Such an

approach has several advantages:

• Firstly, the validity period of authorisation rights is not necessarily the same as the validity

of someone�s public key (e.g. if Alice has access to Bob�s files while they are working on

the project, this privilege may need to be revoked after the project is finished; however,

Alice would still remain the employee of the organisation, identified by her PKC).

• Secondly, the issuer of PKC may not be eligible to define authorisation policy � separation

of certificates enables separation of the certificate issuing authorities. The authority issuing

ACs is known as Attribute Authority (AA). As stated in [48], the AA and CA (Certificate

Authority) should not be the same entity.

• Finally, authorisation-related information is very often confidential; the separation between

PKC and AC enables entities first to establish a secure connection (by authentication each

other via PKCs), and then to make a specific request (by presenting the AC). Some of the

attributes can be encrypted by AA before the attribute certificate is signed. This feature is

optional, and if used it is targeted for set of predetermined recipients.

The attribute certificate consists of the following fields:

• Version (v2)

• Holder - the field that uniquely identifies the holder of the authorisation rights, through one

of the following means: reference to holder�s public key certificate, entity name (as

specified in the subject field of its public key certificate), or reference to an object (such as

entity�s public key)

• Issuer (the field that uniquely identifies the AA)

• Serial Number (must be unique per AA)

• Validity Period (contains time of issuing and time of expiration; global reference time needs

to be agreed or specified within the certificate)

• Attributes � contains information about certificate holder. Examples of common attributes

(but not limited to) are: service-specific authentication, identity to be charged (for the

service), group membership, role (of the AC holder). If the certificate is used for

authorisation, this field will normally contain set of privileges, as a sequence of attributes.

• Extensions � similar to public key certificate, this field can contain reference to AA�s public

key (corresponding to the private key used to sign the certificate), reference to CRL where

the certificate should appear if revoked, etc. However, this field would not contain

authorisation-related data, as it may be the case in PKC�s �extensions� field.

• Signature Algorithm (reference to a specific algorithm used by the AA to sing the certificate

with its private key)

• Signature Value (AA�s digital signature, with which AA certifies the validity of the

information in the rest of the certificate).

 31

General framework for management of ACs and PKCs is to the large extent analogous.

However, there are few distinctions. According to [48], the use of AC chains is not

recommended. Also, it is possible to issue short-lived ACs without revocation. Validation of

ACs is typically performed when the appropriate PKC is presented in addition (or beforehand).

The link between two certificates, defined at the AC�s creation, enables recipient to relate them

and authenticate the sender before the authorisation can take place.

2.3.3 Access Control and Trust Management Systems
Once authorisation certificates are used to allow (or constrain) a users� access to the resources,

the question of what the attributes (or authorisation rights, in case of SPKI/SDSI) represent

becomes apparent. This is closely related with the way access-control policy of the system is

defined. Traditionally, two approaches were used: Discretionary Access Control, DAC (specific

authorisations, either as permissions or prohibitions, are defined for each user) and Mandatory

Access Control, MAC (security level are defined for users and objects, and strict hierarchy

defines relationships among them). The approach of Role-Based Access Control (RBAC) started

emerging in the beginning of 1990ies, and it has been proved since that DAC and MAC are

special cases of RBAC. Current state-of-the-art in the area (see Sandhu, [50]) suggests that the

Role-Based Access Control (RBAC) is currently (and will remain in the foreseeable future) a

dominant model for access-control 12.

The biggest improvement of RBAC is more abstract way of treating security policy. Instead of

specifying all the accesses each user is allowed to execute, access authorisations are specified

for roles. Each role, defined as �set of actions and responsibilities associated with a particular

working activity� [49], is more generic and includes many users (also, one user can hold a

number of roles in various contexts). Specification of users� authorisations is divided in two

independent parts: one to assign users to roles, and another to assign access right to the roles.

Therefore, it was a natural approach to include roles as (some of) the attributes within attribute

certificates [52]. During the communication, by associating role-attribute with the access control

mechanism at recipient, the appropriate privileges are retrieved and authorisation is granted. If,

for example, Alice�s role changes, she needs to obtain new attribute certificate (AC) that

describes her new role. On the other hand, if an organisation�s policy changes, privileges

associated with each role (or some of them) will change. Consequently, an access-matrix at each

12 However, access control is only one aspect of role-based policy management. Comprehensive policy specification languages, such

as Ponder [51], allow complex relationships to be expressed within the policy deployment model, addressing aspects such as
authorisation, delegation, information filtering, and refrain policies. One can argue that the appropriate role-based model can
capture these aspects via attributes suitable for certificates, but that discussion, no matter how attractive, goes beyond the scope of
this thesis.

 32

of the access points needs to be updated 13. However, Alice (and other users) do not need to

obtain new certificates. This has obvious advantages over the approach where particular

privileges are specified within the authorisation certificate (as proposed in SPKI/SDSI 14), in

which case changes in the policy structure would force re-issuing of Alice�s certificate.

RBAC was originally developed to enable more flexible policy management in closed

environments, where security administrators assign roles manually to the users, based on

predefined user�s responsibilities in the organisation. Work in [53], and subsequently in [54]

discusses the problem of automated �mapping of users to roles�. In [54], Rule-based RBAC

(RB-RBAC) is proposed, a mechanism that allows automatic assignment of roles to users, based

on the credentials they present. In [53] the authors propose credentials that can be carried as

authorisation attributes within the certificates. Different services in a distributed system may

need only a subset of the privileges associated to a role in order to grant access. If the role is

described as a set of rules, it can be �decomposed� into several certificates. At the access

request, only the certificate(s) with relevant rules can be presented in order to claim a privilege,

therefore revealing only a minimum of the authorisation rights needed for access. For example,

Alice�s role as a �senior manager� may include privileges to sign expenses, read administrative

files, and receive emails. On the other hand, Bob�s role as �secretary� may include privileges to

read administrative files, print, and send emails. With RBAC, Alice and Bob would need to

present a certificate confirming their full role, regardless of what action they want to take. With

RB-RBAC, these two roles could be broken into three rules. For reading administrative files,

both Alice and Bob would have a certificate with the same rule. For other actions, they would

have a certificate each, with different rules. Their roles would be described with two certificates

each, but they would need to present only one in order to gain access to any service they are

authorised to use. This makes it more difficult for a malicious entity to discover their role and

full privilege rights.

Recently, several infrastructures for supporting access control through credential-based

authorisation in distributed environments have been proposed. Most representative of these

infrastructures, commonly known as trust management systems, are KeyNote [55], PERMIS

[56], and Akenti [57]. Essentially, they consist of:

• A policy language for defining security policy by means of: access rules to the resources,

and privileges of users.

• An authorised entity (�root of trust�, �source of authority�, etc.) that verifies access policy to

the resources and privileges of users, and prescribes it by means of digitally signed piece(s)

13 Access-matrix is logical representation of relationships between users and access objects, based on which relationships between

roles and privileges can be derived. As pointed in [49], more optimal implementation methods exist in practice.
14 The author does not argue that it is not possible to apply role-based approach onto SPKI/SDSI scheme, but rather that it may be

very difficult to maintain coherent and consistent definition of roles in such a distributed system without introducing some degree
of hierarchy.

 33

of information (e.g. authorisation certificates). The two types are essentially different, as

they carry requirements to access the resources or credentials associated with users.

• A mechanism (�compliance checker�, �policy decision point�, etc.) that, upon user�s request,

combines relevant policies with user�s credentials and compares it against the request. It is

responsibility of this mechanism to gather all the relevant information, part of which may be

presented by a user, resource, or stored elsewhere. Based on the outcome, the access control

point is advised to grant or deny request.

Although the general approach is very similar, the above-mentioned systems fundamentally

differ in the way their policy language operates, and also at the level of implementation [58] 15.

However, as already stated, discussion on the capabilities of policy languages, and policy

deployment model in general, goes beyond the scope of this thesis. The motivation here is to

discuss the main architectural characteristics of trust management systems, as they are powerful

mechanisms to support secure and authorised interactions in distributed environments.

KeyNote [55] takes SPKI-like approach, by relating authorisation rights to a public key and

allowing delegation of the authorisation. It does not specify how credentials are created, nor

prescribes any certification system to be used. It does not give details of where and how policy

information is kept, nor what type of authentication should be used. That is left to the installer,

while the system relies on the common representation of simple expressions of policy language

to match requirements and credentials and make a decision. A unique entity called �root of trust�

initially defines policy, and grants certain privileges (which is effectively a portion of the

policy) to the users. In the same way, users can further delegate (any part of) privileges they

possess. This loose arrangement removes nearly all hierarchy and makes it difficult to deploy

more structured role-based approach 16. This also makes it difficult to make more detailed

parallel with PERMIS and Akenti, which are much more specific proposals.

The general architectures of PERMIS [56] and Akenti [57] are very similar. Both infrastructures

build on top of PKIX X.509 Privilege Management Infrastructure; they are developed to support

RBAC policy authorisation, and do not support delegation of privileges. Central authority

defines policy and stores it in the �policy� certificate: in case of PERMIS, a whole policy is

stored in one certificate, whereas in the case of Akenti, different certificates may be issued for

different resources, containing the relevant part of access policy. This information is stored at

public directories (of which there can be several). Another type of certificate supported is the

authorisation certificate, created by authorised entities for users, and carrying users� role and

15 Note that there is no uniform implementation of KeyNote, since [55] outlines only general approach, and leaves a lot (perhaps too

much) freedom to the developers.
16 In order to be able to do so, more elaborate expression of relationships and constraints is needed. As evaluated in [57], KeyNote

policy language is not explicit enough to support that.

 34

additional privileges 17. Both approaches deploy the pull model, where authorisation certificates

are stored in public directories (which also store certificate revocation lists), and are �pulled� by

a policy decision point on as-needed basis. Akenti explicitly requires authentication via X.509

public-key certificate (only strong authentication) and relies on external Certification Authority

for that purpose, whereas PERMIS is �authentication agnostic� and accepts both public-key

certificate and username/password authentication.

Both schemes allow resources to be controlled by several authorities, in which case all the

relevant policy-certificates need to be gathered and evaluated. In any case, the particular

decision is made by a policy decision point at the run-time. Such an approach assures up-to-date

policy information, but still assumes that centralised point(s) need to be contacted at every

user�s request, which may create a bottleneck in large environments or disrupt a service (if some

of the central points are not available) 18. Another concern of this approach is a requirement for

the systems� policy and users� credentials to be stored in public non-secure directories, which

creates an attractive target, either for Denial-of-Service, or intrusion with the aim of stealing

policy information.

User
Access
control
point

resources

Local environment

Policy,
credentials,
certificates

Policy
decision

point

1

2 4

7

3

5

6

Can be located
either locally
or remotely

Part of it can be
local, but part
is distributed

- req

- res

- req fwd

- res fwd

(query) (res)

- collect

Figure 3: Typical Architecture of Trust Management Systems

17 The �additional privileges� are interpreted different in two approaches, due to (optional) capability of role inheritance. Again, this

is due to difference in the policy language expressions. (See [58] for more details.)
18 Note that this is a similarity with the SEM [34] (Semi-Trusted Mediator) and IBE [35] (Identity-Based Encryption) approaches

described in previous Section 2.3.1. Of course, trust management systems are much moe complex systems that provide access
control, and not only authentication.

 35

Trust management systems (Figure 3) offer a new attractive approach for managing

authorisation in a distributed inter-organisational environment. However, they are more suited

for client-server oriented architectures, where access of a large number of users to a few

resources needs to be controlled by one or more authorities. They do not scale well in an

environment such as peer-to-peer networks or collaborative communities, where every user may

represent a potential resource, and vice versa.

2.4 Host Security
So far, the most of this chapter deals with the establishment of secure communication between

the entities over a non-secure, distributed network. The other important aspect of information

security is protection of the resources and entities from malicious intruders or non-authorised

actions. For that purpose special devices and techniques are developed: Firewalls and Intrusion

Detection Systems (IDS). They represent the means and the location of the actual enforcement

of security policy.

A firewall is defined as a device (or collection of devices) placed between two networks, that

has the following properties [59]:

1. All traffic from inside to outside (and vice-versa) must pass through the firewall.

2. Only authorised traffic (as defined by the local security policy) is allowed to pass.

3. The firewall itself is immune to penetration.

In a traditional corporate environment, where �inside� is considered everything within corporate

LAN (Local Area Network), the first requirement is relatively simple to satisfy, by placing the

firewall on the edge of LAN, and assuring that it is the only access point (so-called �choke-

point�) to the external, non-secure network (e.g. the Internet). The accomplishment of the third

requirement takes the approach of installing as little software as needed for functioning of the

firewall (which depends on the experience of security administrator), or preferably in using

some of the proprietary devices, such as Cisco, CheckPoint, etc. In addition to reducing the

possibility of misuse, this also assures the maximum firewall performance on the network [60].

Although there is a lot that can be said about the above, perhaps the second requirement is the

most interesting, since that is the functionality that distinguishes different types of the firewall.

Three main approaches in the firewall design exist [59]:

• Packet-Filtering Gateway works by inspecting (and discarding) packets based on their

source or destination address, or application port number. The administrator makes a list of

(un)acceptable machines and services, creating an enforcement policy that adds up to and

overrides one of the following default policies [3]: that is either �what is not explicitly

permitted is prohibited�, or �what is not explicitly prohibited is permitted�. The filtering can

 36

be done either for incoming packets, outgoing packets, or both. Discarded packets are not

kept, and the decision is normally based only on the content of the current packet. An

enhancement of packet filtering is stateful-inspection firewall [61]: besides looking at the

individual packet contents, it also inspects the attributes of the multi-packet flows.

However, this type of firewall requires more administrative setup (the connection table has

to be built to track individual packet flows). In general, the advantage of a packet-filtering

firewall is its simplicity and performance (they are normally very fast). The drawbacks are

difficulty of setting up firewall rules correctly and lack of authentication.

• Application-Level Gateway (proxy) contains special purpose code for each desired

application, effectively simulating the effects of the application [61]. When data is

transferred from the source to the destination, a proxy gateway stands in the middle of the

protocol exchange, establishing two connections: one between the source and the proxy and

one between the proxy and the destination. Though the proxy seems to be transparent from

the point of view of the communicating parties, it is capable of monitoring and filtering any

specific type of data, such as protocol commands, before sending it to the destination. This

type of firewall has the ability to perform the authentication function, and also to audit and

log all the traffic. The main disadvantage is the additional processing overhead introduced.

Also, only installed applications are supported, which makes it very expensive to implement

and maintain.

• Circuit Gateway controls the flow of data at the TCP/UDP layer, and it can be

implemented as a stand-alone system or as a special function of application-level gateway

[3]. It does not permit end-to-end connections. It sets up two TCP connections, one between

itself and inside user, and one between itself and outside user. Once the connections are

established, TCP segments are copied without examining the content. The security function

consists in examining which connections are allowed [3]. This type of firewall is typically

used for outgoing connections, and only if inside users are considered trusted (measures like

limiting the duration and frequency of usage, allowed addresses of outsiders, and even

authentication of inside users before connection establishment takes place [59]). It does not

have large performance overheads, and enables logging number of bytes and the TCP

destinations.

Depending on the size of the organisation and protection needed, different firewall

configurations are possible. Various types of firewalls can be combined to provide protection

across multiple layers of a protocol stack; as well as to provide different levels of protection

according to geographical regions, such as the use of a DMZ (de-militarised zone) which

commonly offers access to a corporate LAN for semi-trusted users (e.g. dial-up remote

employees). Although firewalls are normally designed as separate hardware machines, software

applications known as personal firewalls (or desktop firewalls) are available since recently [61].

 37

They are used to provide the protection to increasing number of home users. Similar to a normal

firewall, they screen traffic according to pre-configured and user-configured rules, and can be

combined with an anti-virus scanner (causing it to activate and screen inbound traffic the

moment it reaches the target host).

Although firewalls provide strong and important protection to the organisational LAN, they

have a number of potential drawbacks. The firewall �choke-point� tends to create a performance

bottleneck and congestion points in the network; in order to avoid it, inside users can setup dial-

up connections, creating completely unprotected �backdoor� entrance for an attacker. End-to-

end encryption, often used to secure traffic between the hosts residing in different organisational

sites, cannot be inspected by the firewall. Also, new applications use more executable fragments

embedded inside the transmitted data (Word macros, JavaScript, etc. [9]) that can be easily used

maliciously, not only against the recipient but also against all the entities within the firewall

perimeters 19. Finally, firewalls do not protect from the malicious insiders, which is a significant

concern to organisations. 20

Firewall systems are used as a preventive security measure. In order to detect the attacks that

pass the firewall (or are initiated by inside users), Intrusion Detection Systems (IDS) are

deployed within the secured part of the network/system, as the second line of defence. IDS can

be defined as a security system that monitors and analyses computer system events and network

traffic for the purpose of finding, and providing real-time or near real-time warning of, attempts

to access system resources in an unauthorised manner [11],[61].

Functionally, there are two types of IDS [3],[61]: misuse detection (mainly used in current

industrial products), and anomaly detection (subject to significant research). Misuse detection

(also known as signature-based) works by matching the current occurrences in the system

against the defined attack patterns (so-called attack signatures, which capture the patterns of

known attacks). The problem with this type of IDS is a large number of false negatives (the

actual malicious action is not detected), since a minor modification in the way attack is carried

out creates different pattern. Anomaly detection (also, heuristic-based) correlates the current

behaviour patterns to already defined profiles of legitimate behaviour (normally defined by the

statistical analysis of the users� behaviour in the system, or recently from state-based models of

the protocol specifications [64]). The problem with this approach is a large number of false

positives (legitimate action that is classified as a malicious), since any deviation from the

adopted pattern of users� behaviour is flagged as an intrusion. Learning mechanisms and

19 [62] points some of the firewall-related concerns, perhaps in unconventional, but in a rather straightforward and consise way.
20 For example, a recent survey on security breaches in corporate e-business environments has demonstrated that 35% of

respondents did not know if an attack came from inside or outside of the company network [1]. Also, [63] reports that equal
number of attacks originate from outside as well as from inside the organisations.

 38

updates on the behavioural patterns are normally used to try to minimize this. For best results,

intrusion detection systems combine both approaches.

These types of IDS can be implemented as: passive-listening network hardware devices

(network-based IDS), dedicated software that monitors events on a single machine (host-based

IDS), or centrally controlled collection of monitoring sensors (either software or hardware)

placed at various point inside the organisational LAN (distributed IDS) [65]. Similar to

firewalls, the structure of the protected system and the level of security required can dictate any

suitable combination of the above. Since they are expensive to deploy and maintain, and require

human administrator to monitor the alarms, IDS are normally placed to monitor high-security

servers of the inner LAN, or the exposed side of the firewall.

Recent research efforts are trying to develop more distributed IDS, following the paradigm of

peer-to-peer networking [66], or hierarchical semi-centralised distributed systems [67]. Indra

[66] proposes associating pluggable daemons with peer hosts, which should provide monitoring

and reporting of the network activity. The challenges yet to be addressed are: the process of

evaluation of the gathered information, assessment of the trustworthiness of the entities sharing

the data, and the details of the communication protocol for collection and distribution of logged

data and alarms. EU project SAFEGUARD [67] develops an agent-based architecture for

increasing the survivability of the management networks for large complex critical

infrastructures. It proposes various types of agents for distributed monitoring and reasoning on

different levels of the system hierarchy, aiming to provide an automated response and self-

healing of the system. The author has been collaborating with the SAFEGUARD participants

from within the Electronic Engineering Department at Queen Mary, University of London. The

initial screening [BIG] has indicated that their approach may suitably complement for the novel

distributed architecture that is described in Chapter 4.

2.4.1 Distributed Firewalls
The approach of distributed firewalls, proposed by Bellovin [68], aims to address the protection

of organisational environment when users are distributed across the Internet. In such an

environment, usage of traditional firewall does not offer protection, since �inside� users are not

concentrated within the geographical boundaries covered by the firewall. With a distributed

firewall approach, security policy is still centrally defined by the security administrator, who is

not necessarily topologically the �local� administrator. Enforcement, however, takes place on

each endpoint, by each individual host that participates in a distributed firewall (Figure 4).

Authentication between the administrator and the users needs to be provided (the original

proposal suggests using some form of certificates), and all the communication can be

(optionally) encrypted. There are several benefits of such a distributed approach [68]:

 39

• Security does not depend anymore on restricting the network topology. The security

perimeter can easily be extended to safely include remote hosts and networks (e.g.,

telecommuters, extranets).

• If a single user were compromised, that would not create vulnerability for the whole system.

• End-to-end encryption is made possible without sacrificing security, since the distributed

firewall is effectively the end point.

• Policy rules are distributed on as-needed basis: the end hosts maintain and enforce only the

policy that is relevant for their communication. This does not require each host/firewall to

maintain the complete set of policies, which may be very large for large networks.

• It eliminates a single firewall �chokepoint�. This is a benefit both from the performance and

availability point: throughput is no longer limited by the speed of the firewall, and there is

no a single point of failure that can isolate an entire network.

• Also, it can be deployed behind the traditional firewall, providing a second layer of defence.

Dist FW: Policy
enforcement

User
Host

Administrator
Policy definition
and management

Dist FW: Policy
enforcement

User

Dist FW: Policy
enforcement

User

Internet

Signalling

Data

Figure 4: Distributed Firewall Paradigm

A suitable mechanism for defining and distributing firewall policy, and the end-host

enforcement mechanism are two important issues that need to be considered in order to allow

practical use of distributed firewalls.

Further work of Bellovin and his colleagues [69],[70], as well as an independent approach (so-

called micro-firewalls) proposed in [71], focus on the implementation of the security

enforcement mechanism at each distributed firewall instance. The approach taken is to modify

 40

the kernel of host�s operating system in order to accept dynamically defined rules for access

control. These proposals inherit the KeyNote approach in policy definition, allowing self-signed

certificates and privilege delegation. Although details of enforcement mechanisms are provided,

the schemes do not address communication mechanism further than pointing a need for

authenticated exchange of credentials. As already discussed in the previous section, the loose

arrangement of the KeyNote approach removes nearly all hierarchy and makes it difficult to

deploy a more structured role-based approach, which may be needed to support a corporate-

oriented way of working and inter-organisational collaborations.

Work on micro-firewalls [71] and related research known under the same name [72], suggest

integration of a host-based intrusion detection mechanism with a micro-firewall implemented in

the Linux kernel. The main motivation is to provide a monitoring mechanism at the same point

(and time) with the firewall-based security enforcement. The idea is to provide feedback to the

collection points, where such data can be analysed and a corresponding response action taken.

The scheme suggests use of agents for collecting the intrusion reports and distributing the

updated policy, but without detailed elaboration on how collected data is correlated and used for

deriving suitable policy updates. The approach is very similar to the SAFEGUARD architecture

mentioned in the previous section [67], with SAFEGUARD focusing more on information

correlation and decision making, instead of middleware based monitoring.

The architecture summarised in [73] takes different approach in exploiting the distributed

firewall concept. It proposes an autonomic distributed firewall implemented as a network

interface card. Such a device, placed at the endpoint (between the host machine and the network

connection) is controlled from the centralised location by a common protocol. The card stores

cryptographic keys, packet filtering rules, and a list of group members (for supporting encrypted

group communication). Policy is created and/or updated manually by the administrator behind

the centralised policy server, and distributed to the users [74]. The proposal indicates that

communication between different servers is supported, but authentication mechanisms or

protocol details are not specified. The communication between users, who are members of the

same group, is encrypted with the symmetric key provided by the server. In general,

authentication for both user-server and user-user communication is based on the encryption of

the request with the symmetric key embedded in the hardware interface. This provides limited

sender authentication (any traffic encrypted with the appropriate key is accepted), and relies on

the strength of the encryption key and physical protection achieved with the hardware. The main

argument for the advantages of such hardware-based approach is separate memory and

processing power for the traffic monitoring, as well as tamper-proof hardware which provides

 41

protection from the malicious user21 or executable code from the application level. This also

introduces the main limitation of the scheme. Since it operates on a network level, functionality

of the network interface card is limited to a packet filtering; packets are either allowed or denied

based on the specific protocol, port number or IP address. However, once access is permitted, it

is out of control of the network interface card, and the sender�s actions still may need to be

authorised by some other means (e.g. role-based access control).

An OS kernel-based firewall implementation is advantageous compared to packet filtering

mechanism, since it enables more thorough traffic inspection, and access control based on

presented credentials. Alternative approaches to achieve controlled software execution have

been reported, such as profiling of nominal software execution as described in [75], or based on

the system call policies as proposed in [76]. These approaches, although they have not been

applied for security of distributed environment, demonstrate the availability of a number of the

dynamically definable/modifiable mechanisms for controlling the software application.

2.5 Summary
This chapter has reviewed approaches for providing information security relevant to this

research. Traditional mechanisms for weak authentication and firewall-protection of sites fail to

provide good security for the emerging applications, both in terms of flexibility and more fine-

grained controlled access to the resources.

New approaches, such as digital certificates for authentication and authorisation, and role-based

access control are therefore being developed and improved in order to accommodate more

dynamic systems. Mechanisms such as distributed firewalls and distributed intrusion detection

are being developed for protection of distributed entities, and a suitable communication

mechanism is needed to provide distribution of the security policy.

The next chapter reviews the main paradigms for supporting distributed communication, and the

state-of-the-art with respect to the security features deployed.

21 However, a malicious user can always remove such a device.

 42

Chapter 3 Functionalities and Security of Distributed

Collaborative Systems

The implementation of groupware has come a long way since the original reliance on email

delivered via UUCP 22. Motivated by commercial applications, further research in the area of

network protocols and security mechanisms has led to the development of Virtual Private

Networks [77] that offer a consistent security model but are rather inflexible. Secure multicast

[90] and peer-to-peer networking [104] were introduced to meet the requirements for more

scalable and flexible group-oriented working environments 23. Finally, increased power of

desktop computers and the rising trend for pervasive computing is witnessing the emergence of

frameworks such as Grid computing [122] and Web Services, aiming to facilitate

comprehensive services in a secure, yet ubiquitous environment [123].

All of the above approaches will be discussed in subsequent sections, with particular focus on

the security mechanisms as one of the biggest challenges these architectures are facing.

3.1 Virtual Private Networks
One of the first solutions to offer a secure communication network for distributed corporate

sites was Virtual Private Network (VPN). VPN can be defined as a communications

environment in which access is permitted only within a defined community of interest [77]. It is

a logical network that uses underlying network infrastructure to connect the �community of

interest�. This means that VPN does not have its own physical infrastructure.

There are two main motivations for building VPNs [77]. Using public infrastructure and ISP

services gives much more cost-effective and flexible communications infrastructure compared

to the dedicated leased lines. Another motivation lies in the privacy of communication, where

the characteristics and integrity of communication services within one closed environment are

isolated from all other environments that share the common underlying infrastructure.

Three main architectural types of VPN deployment can be distinguished [78]:

• Intranet (site-to-site or LAN-to-LAN) VPNs allow private networks to be extended across

the Internet or other public network service in a secure way, facilitating secure

communications between internal departments and branch offices of a single company. In

Intranet VPNs the primary technology requirements are strong data encryption to protect

22 An acronym for UNIX-to-UNIX Copy Program, UUCP is a protocol for transferring files, news, and mail, and executing remote

commands between machines.
23 Mobile ad-hoc networks share the similar aims, but having somewhat different requirements imposed by its specific setup. That

area has not been surveyed since the requirements for the node mobility goes beyond the scope of this work.

 43

sensitive information; reliability to ensure the prioritisation of critical applications, database

management, and document exchange; and scalable management to accommodate the

rapidly growing number of new users, new offices and new applications.

• Remote access VPNs support mobile and telecommuting employees with dial-up connection

(or increasingly, permanent broadband line) to connect to the organisation�s intranet across

the Internet or other public network service in a secure way. One of the main requirements

is strong authentication in order to verify remote and mobile users� identities in an accurate

and efficient manner. On the management side, remote access VPNs require centralized

management and a high degree of scalability to handle the vast number of users accessing

the VPN.

• Extranet VPNs allow secure connections with business partners, suppliers and customers for

the purpose of e-business. It is effectively a combination of previous two deployment types.

Extranet VPNs require an open, standards-based solution to ensure interoperability with the

various solutions that the business partners might implement. Equally important is traffic

control to eliminate bottlenecks at network access points and guarantee quick delivery and

response times for critical data.

LAN

Host

Host

Host

LAN

Host
Host

LAN

Host

Host

Host

Internet

Fire-
Wall

Fire-
Wall

Fire-
Wall

Host Host

Personal firewall
(optional)

- Intranet VPN
- Remote access VPN
- Extranet VPN
- Organisation A
- Organisation B

Figure 5: Different Deployment Types of Virtual Private Networks

Intranet and Extranet VPNs are normally established as long-term infrastructures, where the

basic formation changes mainly to include new LANs (or to exclude the existing ones). On the

other hand, remote access VPNs are much more dynamic, where a connection between remote

 44

user and central site is established on as-needed basis (normally via VPN Gateway, responsible

for client�s authentication).

One of the most common methods for implementing authentication services for remote VPN

users is RADIUS server (Remote Authentication Dial In User Service) [80]. Within a single

LAN, it consists of one secure central location for storing all the information about users, their

passwords and access privileges (RADIUS Server) and several remote access servers (known as

NAS � Network Access Server) that remote user connects to. For protection against

eavesdropping, the NAS, acting as the RADIUS client, encrypts the user�s authentication

password before it sends it to the authentication server. If the primary security server cannot be

reached, the security client or NAS device can route the request to an alternate server. When an

authentication request is received, the authentication server validates the request and then

decrypts the data packet to access the user name and password information. If the user name and

password are correct, the server sends an Authentication Acknowledgment packet, and an

authentication key (or signature), identifying itself to the security client. Once the NAS receives

this information, it enables the necessary configuration to allow the user the access rights to

network services and resources. If at any point in this login process all necessary authentication

conditions are not met, the security database server sends an authentication reject message to the

NAS device and the user is denied access to the network. The RADIUS server itself can act as a

client (effectively as a proxy) at another RADIUS server (or other kind of authentication server)

in order to retrieve authentication data of a user from another administrative domain. This

permits two or more administrative entities to allow each other's users to dial in to either entity's

network for service. Experience has shown that RADIUS servers can suffer degraded

performance and data loss when used in large-scale systems, partly since they do not include

provision for congestion control [81].

A typical approach for facilitating extranet VPNs, enriched with the usage of public-key

certificates for authentication (instead of Kerberos system, for example) is described in a recent

publication [82]. It introduces a trusted third party that acts as a certification authority. For the

organisations to participate in extranet VPNs, their administrators first need to register and

obtain a public key certificate from a trusted third party (TTP). Also, the administrators specify

the policies for inter-organisational communication and forward them to the TTP. The TTP,

after receiving policies from different organisations, relates the relevant ones. For example, if

organisation A wants to communicate with B and C it defines its policy constraints towards

them; in a similar way, B and C define their policy towards A. The TTP then creates combined

A/B and A/C policy, both of which are sent to A, but only the corresponding ones to B and C.

Once compiled, the policy is signed by TTP�s key and sent back to the security server of the

organisation, which is effectively a firewall of the Intranet. If Alice (from organisation A) wants

 45

to communicate with Bob (who belongs to B), a connection is established in two steps: Alice

first authenticates herself to her local security server, and then the server from organisation A

performs mutual authentication with a server at organisation B, which then contacts Bob. Once

the link is established, all the communication between Alice and Bob goes via both security

servers A and B, which effectively act as firewall proxies. The added value is that relationships

are previously agreed (through the TTP), which increases trustworthiness of the entities. The

pitfall of such a scheme is the separation of the relationships between different organisations:

Alice is accountable only to firewall A, and all that firewall B considers is the policy

relationship towards firewall A. Eventually, all the privileges are enforced properly (Alice�s by

server A, and organisation A�s by server B), but the artificial layer created by proxy servers

unnecessarily burdens the communication. Ideally, Alice and Bob should be able to

communicate directly; however, this problem is not solved by VPNs, but with some other

architectures as it will be described in the following sections.

The scenarios where a remote user attempts to create an extranet VPN relationship are avoided

in practice due to complex policy requirements (typically, a user would need to use dial-in VPN

service to its Intranet, and then to connect to the external organisation via already defined

extranet VPN links).

From the technological perspective, VPN deployment takes a number of the approaches in order

to accommodate different network protocols and service requirements. As noted in [79],

predecessors of VPNs appeared in the 1970s, in the form of privately operated network devices

connected over a carrier�s dial-up or dedicated leased lines. Since the emergence of VPNs in

1990s a range of existing as well as purpose-built protocols have been used for VPN

deployment [77]. One of the common ways for creating a VPN is tunneling. A tunneling

protocol encapsulates the data packet in another packet with the additional header that provides

routing information to enable the encapsulated payload to securely cross the network. The entire

process of encapsulation and transmission of packets is called tunneling, and the logical

connection through which the packets travel is known as a tunnel. In general, VPN

implementation method depends to the large extent on the underlying transport mechanism.

Different literature sources give somewhat different VPN taxonomy [77],[78],[79],[87].

However, they agree that the VPN architecture can be generally divided into three main types,

depending on the level of protocol stack where they are implemented:

Link Layer VPNs share a common switched public network infrastructure (such as Frame

Relay or ATM networks), while the VPNs have no visibility of each other. This is commonly

achieved by creation of the �virtual circuit� between the sender and the recipient, available only

for the duration of the connection. The main characteristics of this approach are their flexibility

and cost-effectiveness, but also scaling limitations and complexity of configuration

 46

management. Also, data confidentiality is very difficult to achieve, especially in heterogeneous

environments.

Network Layer VPNs are usually based on the Internet Protocol (IP). Using IPSec (IP Security

Protocol, [83]) tunnel mode, the original IP packet is augmented with the additional fields (AH -

authentication header and/or ESP - encapsulation security payload) for authentication and

(optional) encryption, and a new IP header is added. The new IP header is used to route the IP

packet through the Internet. The receiver removes and discards the IP header, processes and

removes the additional security headers, and processes the original IP packet in the usual way.

The advantage of this approach is that full separation and high security of the communication

can be achieved. A disadvantage is processing overhead introduced by the

encryption/authentication, as well as the vulnerability of the tunnel at the end points (normally

the firewall or VPN gateway), where extra headers are stripped off and packet is visible in its

original form.

Transport and Application Layer VPNs are mostly based on the use of encryption, aiming to

provide privacy and data integrity between two communicating applications. The commonly

used TLS/SSL (Transport Layer Security / Secure Socket Layer) protocol effectively consists of

two protocols [84]; handshaking is used to negotiate the session (normally by some means of

authentication, e.g. certificates), and record protocol is used for transmission of data encrypted

with symmetric key. The protocol provides full confidentiality and message integrity. However,

it requires modifications to the application programs and support of additional infrastructure

such as certificates.

In general, VPN deployment has two conflicting requirements: flexibility and security.

Preserving flexibility of communication (such as mobility of users) requires easy VPN

implementation, but also more careful security considerations. On the other hand, mechanisms

that allow simple and easier deployment (at the lower level of protocol stack), set more

challenging security requirements [87].

The main benefit of using VPNs is that a Wide Area Network (WAN) environment can be

constructed at lower cost, as dedicated and long distance lines are replaced with local

connections to the network/service providers and shared long distance connections. Also, virtual

private networks, particularly Internet-based, allow greater flexibility when deploying nomadic

computing, telecommuting and branch office networking. On the other hand, there are several

weaknesses of VPNs, most of them related to the scalability and security [85]:

 47

• VPN Gateways 24, centralized points of VPN traffic, represent the single points of failure,

potential traffic congestion points, and are at the same time an obstacle to the dynamics of

user connectivity and their direct communication.

• Higher levels of security (such as strong authentication and data encryption), introduced to

ensure integrity and confidentiality of data impact on the performance both on the user and

server side in increased protocol header overhead and authentication latency.

• Finally, although VPNs offer protection to the network communication, protection of the

users at corporate sites has to be achieved through other means, such as firewall. Bearing in

mind that protocols encapsulated by VPN tunnels can effectively bypass the network

security policy enforced at the local firewall, this raises other security issues [86].

There are efforts attempting to enhance the existing concepts of VPNs, especially from the

security viewpoint. Perhaps the most significant is the IETF�s attempt to unify the underlying

protocol by using IP and its embedded IPSec mechanisms (i.e. for IPv6) [88],[83]. However, the

problem of a scaleable authentication mechanism and security of the communication once it has

left encrypted VPN tunnel, still remains.

3.2 Secure Multicast for Group Communication
Multicasting is a technique that enables a single packet transmission to be sent to one or more

destinations or to a group. Typically, group membership is dynamic (i.e. members can join or

leave at any time). In such an environment, a secure multicast protocol must provide group

membership control, secure key distribution, and secure data transfer [89]. Typically, this is

achieved by distributing the group key only to the participants in a multicast session (control of

the group membership), and using that key for encryption of the multicast traffic (secrecy of

exchanged data). In addition, in a dynamic environment, where members can freely join and

leave, new members need to be prevented from acquiring the data sent before they have joined

(so-called backward secrecy) or after they have left (so-called forward secrecy) [90].

The above requirements are normally addressed by refreshing the group key (also known as

rekeying) whenever a member has left the group, or even when a new member joins. The main

issues related to the key distribution are that it needs to be done in a secure way (i.e. the key is

disclosed only to the group members), and that the mechanism is scaleable (ideally, it should

not depend on the size of the group � known as the �1 affects N� property [89]). In this respect, a

number of different schemes for key management and distribution have been proposed. A

comprehensive overview of different techniques is given in [90]. According to [90], the

approaches for group key management in multicast can be divided in three main classes:

24 VPN Gateways are normally implemented as a part of firewall infrastructure at the edge of organisation�s Intranet.

 48

• Centralised, where a single entity is in charge of the group control. Ultimately one entity is

responsible for generating a group key and maintaining the group membership, which

makes them relatively easy to implement but puts a significant burden on the single group

controller (also known as the Key Distribution Centre - KDC). However, there are number

of methods for communicating the new key to the group members, aiming to achieve better

scalability. Examples of this approach are the simple pair-wise scheme (where KDC shares

different key with each of the members, and uses these keys to distribute the group key), or

mechanisms based on a hierarchical tree (where each group member possess a number of

keys, based on its path in binary (or n-ary) tree to the root) [91].

• Decentralised, where a large single group is divided into a number of subgroups, and each

of them is managed independently via dedicated subgroup controller. A typical example is

the Iolus framework [92]. In Iolus, a large group effectively consists of a number of

subgroups, where each subgroup is controlled by independent Group Security Agent (GSA),

and these are managed by a top-level Group Security Controller (GSC). For a subgroup it

manages, the GSA maintains subgroup key and pairwise keys with each member. For its

parent group, the GSA maintains a subgroup key and a pairwise key with the GSC.

Therefore, GSAs are in charge of �translating� data from/to their subgroups (by re-crypting

the data). Similar approaches have been proposed (see [90] for overview) to address the

issues of timely group key distribution (either through synchronised or periodic rekeying, or

by introducing a central entity which is in contact with subgroup controllers), or for

removing trusted third parties (i.e. preventing subgroup controllers to obtain the group

key)25. In decentralised schemes, the problem of key management is shifted to smaller

groups by delegating it to a number of KDCs. Therefore, this approach tends to be more

scaleable, but normally requires synchronised key distribution among sub-groups and

typically makes data transfer between the members of different sub-groups more complex.

• Distributed, where group members perform key generation themselves: either by all of them

contributing to the key, or that being done by one of the members. The scalability problem

of this type of key agreement lies either in the number of message transactions needed in

order to derive the group key, or in the computation needed to be performed by each of the

group members or a group leader [96]. However, this approach may be preferable for ad-

hoc communities, as it does not require an explicit group manager (i.e. KDC).

Regardless on the type of multicast groups (with respect to the group key management scheme),

there are two important issues related to the group security: authentication and access control.

Commonly, authentication provided with a key management is recognised as a group

authentication, meaning that participating entities can authenticate each other as a group

25 Please note that terminology may differ in various approaches. However, concepts are fundamentally the same.

 49

member, but not necessarily on the level of an individual user (so-called, sender authentication

[93]). Group authentication is naturally provided by encrypting multicast data with a group key

which is (by definition) known only to the valid group members. However, authentication of

each entity (if needed) is far more complex. In [94], usage of authentication tokens is proposed,

but still not on the level of a single entity and it does not address nomadic users 26. The approach

described in [95] suggests introducing a third party to issue public-key certificates for group

members, for certifying a group, a member�s identity and a validity period. In [96], a

mechanism based on Diffie-Hellman agreement (see [6]) is proposed, which (being developed

for distributed ad-hoc communities) avoids centralised authority but introduces significant

communication overhead.

The second issue, of access control, is normally concerned with admission to a group, i.e.

whether or not an entity is a valid member of a group [94]. This is provided through timely

update and distribution of a group key. However, this does not provide any means of

constraining actions of an entity once it is allocated to a group, or for defining more fine-grained

group policy other than inclusion/exclusion. Work reported in [97],[98] tackle this problem to

some extent, by proposing a policy negotiation during the group establishment (typically, policy

is proposed by group controller/initiator). However, it mainly focuses on prescribing policies

such as: type of encryption to be used, mechanism for key distribution, key lifetime, etc., which

may also be a determining factors on whether an entity should be allowed into a group.

Recent publications by IETF address the above issues of authentication and access control. In

[99], use of asymmetric cryptography for signing multicast traffic at the level of IPSec is

suggested. Security architecture framework described in [100], addresses decentralised

multicast groups. It introduces the additional entity called �policy server�, as the highest entity

in multicast group hierarchy. Policy servers (of which there can be several) maintain multicast

security policy and communicate it to group controllers. This information is used by group

controllers to make a decision on allowing an entity to enter the group, which may also take

some form of authorisation. However, [100] points out the difficulty on agreeing the policy

rules if group members reside in different administration domains, and is less specific in this

regard.

3.3 Peer-to-Peer Networks
The initial development of the Internet was based on the peer-to-peer principle. Nodes

connected to ARPANET 27 were mainly academic institutions with equal rights, and which did

not need protection from each other. The widespread increase in network connectivity in 1990s

26 Eligibility of participating in a group is determined based on the IP subnet addresses, which is included in the authentication

token.
27 Acronym for Advanced Research Projects Agency Network (ARPANET), developed by the US Department of Defense.

 50

has seen the introduction of a client-server model in order to accommodate a large number of

users with slow network connections and low processing power of personal computers.

Typically, in a Client-Server system a dominant computer (server) offers services to a number

of other computers with less control (clients). Clients can communicate with other clients only

through the Server 28. The Peer-to-Peer (P2P) approach is essentially different from this model.

The re-emergence of P2P networks (initially with Napster [101] in 1999) has resulted in a

number of approaches being developed to support some of the features recognised as a peer-to-

peer [102]. For that reason, the definition of P2P is still not uniform. Peer-to-peer can be defined

as a distributed network architecture where participants share part of their own hardware

resources, in order to jointly provide the services and the content offered by the network. The

participants have a direct access to each other, without passing other nodes. Each peer (node) in

the network is at the same time a resource provider, as well as resource requestor � therefore the

term servent is often used to describe the nodes in P2P network (i.e. each node is both server

and client at the same time) [103],[104].

However, it is very difficult to make an architecture that fulfils all of the above requirements

and that is practical at the same time. In general, two main types of P2P architectures can be

recognized among a range of different solutions:

• Pure peer-to-peer: all peers act like servents; removing of any arbitrarily chosen peer would

not cause any loss or disruption of network service.

• Hybrid peer-to-peer: a central entity is necessary to provide part of the network service

(normally routing information, i.e. directory services).

Since most of the P2P networks are developed targeting a specific service, their architectures

differ, and sometimes is difficult to distinguish to which type they belong. Most commonly, the

nodes require special software in order to engage in the network.

Napster [101], developed for sharing of mp3 files, is a hybrid P2P architecture: clients request

the name of the file from the server (see Figure 6a). The server (which maintains the directory

of registered clients and the files they share) replies to the client the matching results, which

includes the IP address and name of the corresponding host, file size, bit rate, etc. The next step

is the actual file transfer between the clients, which occurs directly without server�s

intervention. Seti@Home [105] is another example of hybrid P2P architecture. It is a project at

University of California at Berkeley, to support processing of signals from space captured with

28 Virtual Private Networks and current Business-to-Consumer e-Commerce solutions are examples of such a model. On the other

hand, the SNMP protocol uses client-server architecture in the opposite way, with one client and a number of servers in a normal
operational mode; since clients act as �administrators�, there may by a functionality to support direct client-client communicate
with each other. However, direct interactions between servers are not possible.

 51

the radio telescope 29. The approach taken is to distribute parts of the captured signal to the

home/office computers for the analysis. The architecture is similar to that of Napster, with the

difference that clients do not interact directly � it is recognised as a P2P network since the

clients share part of their own resources.

server

client client

client

servent

servent

servent

servent

servent

servent

servent

servent

serventservent

servent

servent

a) Napster b) Gnutella

c) Freenet

SuperNode

SuperNode

SuperNode
node

- signalling
- data
- requestor
- resource holder

node

node

node

node

node

node

node

node

d) FastTrack
SuperNode

Figure 6: Basic Peer-to-Peer Architectures

Gnutella [106] is an example of pure P2P architecture, developed to overcome legal obstacles

that caused Napster�s termination (see Figure 6b). The file search is initiated by a peer�s

broadcast request to its neighbours, which forward it further until the file is found or the packet

expires (based on pre-defined time-to-live and maximum number of hops). The information

about the peer hosting the file travels the same way, whereas the actual data transfer occurs

directly through creation of a new session. Freenet [107], another pure P2P architecture, takes

somewhat different approach. It uses point-to-point protocol for propagation of the initial

request, until the file is found or the request expires. The file is downloaded through the same

path, being also duplicated and stored at the each of intermediate nodes (see Figure 6c). Each

peer keeps the list with names of the files and the corresponding peers from which it came.

Also, for the most popular files (i.e. most frequently requested), the actual data (file content) is

29 SETI stands for Search for ExtraTerrestrial Intelligence. As a curiosity, the processing time of Seti@Home accumulated since
1999 corresponds to nearly 2 million CPU years.

 52

kept as well. In brief, files are searched according to the unique identifier they are described

with (created by applying a hash to the content or name of the file). If a peer cannot answer the

request, the request is forwarded to the peer from its list that has the closest identifier to the

requested one. It has been demonstrated that this approach operates in a small-world fashion,

with less than 10 hops [104]. The main motivation for the development of Freenet is to provide

the anonymity: since requests are forwarded only to the neighbours, a requestor can only

intuitively guess the distance from the original source of file (according to the number of hops),

but a direct contact is never made.

One of the significant observations made from the analysis of Gnutella and Freenet is clustering

in a small portion of nodes with high Internet connection that share a large number of files, and

the majority of the nodes which (effectively behaving like clients in a client-server model), only

request and download the data [108]. FastTrack [109] takes this to its advantage, and defines

two types of servents in its network: SuperNodes and Nodes, which is decided by the software

based on the host�s Internet connection. Typically, each Node in the network is assigned one

SuperNode, which it sends the requests to. SuperNodes exchange requests among themselves

according to the Gnutella protocol. Once the file is located, the requestor establishes direct

connection for the download (see Figure 6d). The approach in having two layers of peers

assures more scaleable and reliable routing than in Gnutella; therefore, this P2P model can be

considered as �mixed� between pure and hybrid P2P. Jabber [110] operates similarly to

FastTrack, only the distinction between the servers and clients is clearly made. However, clients

are able (and encouraged) to communicate directly if they have any prior knowledge of each

other. Jabber is primarily created to provide a flexible instant messaging system.

Flexibility and straightforward use of the P2P approach is one of the main reasons for its

growing popularity among the users. However, most of the systems surveyed above were

developed in an ad-hoc way, with a lot of software bugs, and to a large extent neglecting issues

of security and scalability. A great deal of work in the P2P area is dedicated to more scalable

and reliable methods for routing through the network (e.g. Kademlia [111], Tapestry [112]). On

the other hand, most P2P architectures carry considerable security concerns, such as the ability

to penetrate firewalls, or the potential to be misused and expose the host machine to

uncontrolled sharing of the stored data. Although there is no common uniform security solution

(since there is no common P2P architecture and operation), there is significant ongoing research

in the field. Some of the current solutions are being improved to include mechanisms for

consistency-checking of shared files in order to prevent the spread of corrupted data (e.g. an

updated version of Freenet), or for blockage of non-cooperative peers which do not share but

only download the material, so-called �free-riders� (as for example in Kazaa, the application that

runs over FastTrack network).

 53

A significant number of P2P architectures are concerned with a collaborative group-oriented

working [113]. Some of the architectures are being revised or developed in order to incorporate

mechanisms for data encryption, peer authentication, and access control, that are essential in this

context. This is normally achieved through a hybrid P2P, where a dedicated member (or

centralised node) performs group management. Groove is a real-time collaborative editing

application that enables the decentralised ad-hoc formation of groups [114]. Its architecture is

very similar to Rhubarb [115]. User can join a group if invited by an existing member �

chair/coordinator (it is not specified whether this requires a consensus of the group). This

includes mutual authentication through some form of certificate. After the initial authentication,

new member is given (by an inviter) a group key, used for encrypting all group communication.

Whenever a member leaves a group, a new key is created and securely broadcasted by the group

coordinator to all the members. Rhubarb proposes an election mechanism of a new coordinator

if the existing one leaves or goes offline. For that purpose, all nodes in the group must maintain

the �state of the group� � a list of members and their corresponding certificates. With Groove all

of a group's documents, messages and applications (in addition to a list of members and their

corresponding certificates) are stored and replicated across user machines so that all of a group's

members can access the materials online or offline. Somewhat different, [116] proposes one or

more dedicated authorities to maintain a single group, in order to address scalability and

reliability issues. Only the authority can introduce a new member into a group, through mutual

authentication. In order to support this with multiple group authorities, the scheme allows all the

authorities to share the same public/private key pair (used for signing the authentication

message); this is a possible pitfall of the system, since the possibility of a private key being

compromised increases. Members� communication is preceded with the authentication (based

on the �group membership� received from the authority); the protocol explicitly supports only

unicast connections, although it might be possible to extend this in order to support multicast

sessions among the group members. More of the concern is that there is no procedure specified

for a member leaving a group.

All of the above schemes emphasise firewall transparency as one of the key functionalities,

which may be good for their users, but not necessarily for the security of a particular intranet.

Although they distinguish the peers with different functionalities (by introducing some form of

privileged member), they are not concerned with multiple degrees of authorisation. In [117], the

issue of members with a different degree of privileges within a group has been addressed. The

approach allows a number of group members to have the ability to store and delegate the

appropriate privileges to the rest of the group. For most of the intended actions, a peer must

apply for the authorisation rights, which are granted by the higher-level peers by means of

short-lived certificates. If a member is removed from the group, higher-level peers are informed

 54

and any subsequent member�s certificate-related requests are denied. The mechanism assumes

pre-existence of the group, so it does not comment on how certificate-granting entities are

chosen and how policy is initially delivered. In general, it is not clear whether the motivation for

having several certificate-granting entities is redundancy for reliability or splitting of authorities

for security.

As a response to the current status of P2P, there is an effort of large companies to provide a

suitable methodology for more structured development of P2P applications. Perhaps the most

ambitious is JXTA Project, a Sun Microsystems� initiative (http://www.jxta.org) 30. JXTA aims

to develop a common network-programming platform for enabling P2P networking. It has

several main objectives: interoperability (across different P2P systems and communities),

platform independence (it does not built upon specific programming language or network

protocol), and ubiquity (available for any device with a �digital heartbeat�) [118]. It comprises

multi-layered software architecture and a number of communication protocols, aimed at

addressing generic requirements of distributed systems/applications. For example, it defines a

peer as an entity that supports some of (but not necessarily all) JXTA protocols; as such, a peer

can be a �processor, process, machine, or a user�. From a security perspective, the framework

aims to develop an architecture that provides: authentication, access control, audit, encryption,

and non-repudiation. It does not aim to provide recommendations for a specific security policy

approach or encryption mechanism. However, TLS protocol (Transport Level Security) for

secure communication (independent of JXTA protocols), and X.509 v3 certification framework

for authentication and authorisation are their choices for a generic framework [119]. Also, in the

spirit of peer-to-peer networking, JXTA considers mechanisms for bypassing firewalls.

However, [118] points that firewall penetration is not an ideal solution, and that this is an area

of active research.

3.3.1 Current Status in Peer-to-Peer Security
Current state-of-the-art in P2P systems suggests that the issue of security has still not been fully

addressed, which is one of the main obstacles for their more formal use. The main concerns

pointed in the recent publication [120] are listed here:

• Firewall penetration. When a machine hosting a resource resides behind a firewall, HTTP

traffic (used for many P2P applications) may be blocked at the firewall for incoming traffic,

but it is normally not for outgoing connections. Instead of direct downloading, a requestor

can send a message to the host behind the firewall instructing it to make an outbound

connection and upload the file.

• Spreading of malicious software. Since a file is mainly searched according to its name,

users can download and execute a virus, worm, etc. disguised with the name of a searched

30 JXTA stands for �Juxtapose, as in side by side�.

 55

document. In the case of a Trojan Horse, once downloaded by a client, it can use a P2P

connection for receiving remote commands or sending information [121].

• Most P2P applications can turn a computer into a server. There are several concerns here:

an unskilled user can unintentionally share confidential data. Software bugs (exploited by an

attacker) can result in a system disclosing sensitive information. Also, the intentional

malicious use from the authorised insider can do the same, with a much higher impact.

• There is no uniform approach to communication encryption. Most of P2P systems do not

include encryption, leaving the communication open to eavesdropping (which makes them

unsuitable for corporate use). On the other hand, those that apply encryption, use it in a way

that prevents firewall checking of the content going in and out of the organisation (end-to-

end encryption).

• External attacks. Combination of P2P software bugs and malicious code can be used to

compromise a company intranet by a remote user. For example, if a home user is using a

VPN to connect to a corporate LAN, while running P2P application at the same time, �there

are ways to manipulate that situation to gain the access to a corporate network through a

VPN tunnel� [121].

The great potential of P2P architectures has been widely recognised. Applications such as

distributed computing, collaborative work and content sharing are potentially very attractive for

any organisational infrastructure. Still, the lack of appropriate level of security features is one of

the main obstacles for wider usage of P2P within a corporate environment. As pointed in [113],

[120] authentication, authorisation, and integrity and confidentiality of the data are the main

requirements, not only for the corporate, but also for any informal use of P2P networks. In such

a dynamic and distributed environment as P2P is, security becomes even more of a concern; and

although sometimes it can put the constraints on some of the features of the system, it needs to

be built-in with all the other functionalities, at the design level.

3.4 Grid Framework and Web Services
The concept of the Grid has emerged as a new approach to high-performance distributed

computing infrastructure. Based on the Internet, the Grid seeks to extend the scope of

distributed computing to encompass large-scale resource sharing including massive data-stores

and high-performance networking, and shared use of computational resources, be they

supercomputers or large networks of workstations. The Grid concept has been generalised to

cover any Virtual Organisation, defined as any dynamic collection of individuals and

institutions which are required to share resources to achieve certain goals [122]. Following this,

hybrid Grid Computing and Peer-to-Peer solutions are now being put forward for applications in

commerce and industry, including - but not restricted to - supporting distributed collaborative

design and engineering, or distributed supply chains. In these contexts, the emerging Web

 56

Services technologies are already playing a key role [123] and there has been a significant

worldwide effort to consolidate Web Services and Grid Computing concepts [124]. Rapid

advances are now being made in agreeing protocols and machine-processible

message/document formats in order to enable open application-application communication and

lead to ad hoc integration of systems across organisational boundaries into collaborations that

may last for a single transaction or evolve dynamically over many years. Existing approaches to

security within distributed systems are stretched by the extreme conditions imposed by the Grid,

and significant effort is being undertaken in order to provide suitable security model. The most

representative examples are the Grid Security Infrastructure (GSI) [125] developed as part of

the Globus project [126], and Virtual Organisation Membership Service (VOMS) [127]

developed by the EU projects DataGrid [128] and DataTAG [129]. The main objective of these

security architectures (functionally very similar) is to provide a mechanism for controlling the

user authorisation at the access points to the resources. In order to address this, both approaches

make a clear distinction between the users, members of a Virtual Organisation (who claim

access to the resources) and the resources (which are generally not part of a VO, but possessed

by a service provider).

The Globus approach makes use of a trusted third party called Community Authorisation

Service (CAS) [130], whose role is to issue authorisation certificates to the users. Each user is

initially introduced in the VO by obtaining a X.509 public-key certificate from a certification

authority. The service provider establishes the relationship with various VOs via the CAS. The

CAS contains the access policy set by the provider with respect to each VO, as well as any

policy constraints set by the VO for each of its users. The CAS is responsible for managing the

security policies that govern access to the resources. Such a setup implicitly assumes a longer-

term relationship between a VO and a service provider. When a user requires access to the

resources, the CAS provides an intermediate layer in order to remove the need for a direct trust

relationship between specific users and services. Instead, both clients and services establish trust

with the CAS server as an intermediary. The CAS is responsible for managing the security

policies that govern access to a community�s resource. It allows resource owners to grant access

to blocks of resources to a community as a whole, and lets the community itself manage fine-

grained control (by setting internal policy for the community members). In order to gain access

to a CAS-managed community resource, a user must first acquire a capability, defined by a

CAS-maintained community policy database, from the CAS Server. A user approaches the CAS

with two certificates: a certificate signed by the CA, and a self-signed public-key certificate

(called �proxy certificate�). The properties of proxy certificate are: it is short-lived, it contains a

key from new key pair generated by user, and it is signed with user�s primary private key. At

the CAS, proxy certificate is combined with capabilities defined for the user. The purpose of

this process is to relate user�s identity with its capabilities, and to bind user�s identity to the

 57

access permissions. In addition, usage of the proxy certificates enables delegation of

authorisation. For example, if a user applies for a job to a resource, the accomplishment of that

task may require more resources. In order to avoid repeated user authentications (with the same

or different CAS), the proxy certificate and capabilities presented by a resource perform that

instead. Effectively, this forms a type of �chain� that may extend until all required resources are

gathered. Obviously, this delegation can be used in a malicious way by a hostile entity

(therefore the proxy certificate is short lived, as defined by user). Once the capability is

obtained, it is used to allow the user to access the resource, by checking it against the local

policy information.

The approach used by VOMS (Virtual Organisation Membership Service) [131] to manage

authorisation for users and resources in VOs closely follows the one of the CAS, with the main

distinction of how policy is managed which impacts the way proxy certificates are used. VOMS

issues authorisation proxy certificates in the following way: the user and VOMS authenticate

each other and user submits the request and its credentials. After checking the credentials,

VOMS generates an authorisation proxy certificate, signed by VOMS� private key. The user can

repeat this process for several VOMS entities, e.g. if access to a number of resources (controlled

by different VOMS) is needed. Finally, a user creates its own credential proxy certificate that

contains authorisation proxy certificate(s) as its extensions. This certificate is signed by user�s

private key from the long-lasting key pair certified by a CA. This is the �proxy� certificate used

for job submission and credential delegation: The credential proxy certificate is used to apply

for a job at the Resource Provider which is able to interpret the presented credentials (in the

context of its local policy) and decides whether or not to grant access. For long running jobs, the

credential proxy certificate is kept at a server, which can use the certificate to apply for further

tasks if they are needed.

The main difference between the two approaches is that the CAS issues proxy certificates that

contain the permissions on what actions a user is allowed to perform (based on both VO policy

and resource provider policy). On the other hand, the VOMS-issued proxy certificates contain

the user�s credentials (based on a VO policy), and the resource providers (are able to) interpret

these credentials (based on their local policy). This distinction has (potential) implications.

According to [130], the CAS approach (of completely centralised policy) can achieve �better

consistency� in the environment where policies are changing dynamically. According to [131],

the VOMS approach (by separating VO policy and resource provider policy) allows the ultimate

access control decision to be made locally, by a resource provider that hosts the resource(s).

The framework and objectives of Web Services are quite similar to those of Grid. It aims to

provide a language-neutral, platform-independent way of linking applications within

 58

organisations, across enterprises, and across the Internet. The security framework for web

services does not address the specific setup or architecture [132]. Instead, it aims to define a set

of protocols with suitable XML-based 31 message format that should provide a basis for

authentication, authorisation, confidentiality, and data integrity 32. Another important

requirement is that communication maintaining these properties should be processible by

firewalls (rather than providing a mechanism for firewall penetration). Recently, initial steps

towards merging the Grid framework and Web Services have been made [124].

3.5 Summary
This chapter has described the main approaches for supporting security in distributed

communication systems.

Virtual Private Networks are being standardised for a commercial applications and offer

consistent security model but, in order to maintain the level of security, impose a lot of

restrictions in the flexibility of the communication.

Secure multicasting provides a scaleable means for maintaining group security and membership

through key management mechanisms, but issues of sender authentication and fine-grained

access control within a group are still active areas of research.

Peer-to-peer architectures demonstrate the power of direct interactions among users, introducing

scalable and flexible means for communication. However, security has only recently stepped on

to the list of priorities in the P2P research community; these efforts are moving from the pure

peer-to-peer architectures, and are going towards the hybrid solutions.

The recent emergence of Grid computing and Web Services paradigms aim to develop a virtual

organisations framework (and supporting security infrastructure), which should provide

resource sharing and distributed collaborations among any number of individuals and

institutions.

Currently, one of the main research challenges in the field of distributed collaborative

environments is to provide a suitable security architecture that can offer scalable, flexible and

secure means for maintaining dynamic and distributed collaboration perimeters across the

administrative domains. The following chapter introduces an architecture developed to meet

these requirements.

31 XML stands for eXtensible Markup Language.
32 With that respect, Web Services are being compared with JXTA Project to a large extent.

 59

Chapter 4 Framework for Distributed and Secure Group

Communication

The convergence of service and telecommunications technology is enabling new and more

dynamic forms of collaborative environment where networked entities, be them (human) agents,

applications, or service instances, share information and resources in order to achieve a common

objective. Several architectural paradigms to support such virtual collaboration are emerging,

mainly in the Peer-to-Peer, Web Services and Grid domains. Such collaborations are usually

dynamic, often short in duration, and enacted by potentially large groups of collaborating peers

which may join or leave the group as needed. They cut across organisational boundaries,

therefore taking place on open networks (such as the Web or the Internet) and they may involve

complex policies constraining possible interactions.

This chapter introduces a novel architecture of Closed User Groups (CUG), initially proposed in

[DJO1], for supporting the dynamic formation and self-management of distributed

collaboration networks. CUGs can be understood as coordinated groups of peers who reside in

different organisational domains, managed by an administrator. The issues described are

signalling protocol and usage of certificates for group management, and functionalities for

protecting dynamic CUG perimeters comprising data encryption and (distributed) end-entity

security policy enforcement mechanism.

4.1 Motivating Example: Inter-Organisational Collaboration
Motivations for this research are introduced via the representative example in Figure 7. A team

of engineers at a University is working on recommendations for a new aircraft wing. As a part

of the work, researcher Alice needs to perform material analysis from the data obtained.

This is conducted on line by using specialised services provided by different Service Providers

(SP1 and SP2), which have a long-term contractual agreement with the University. The services

include analysis tools (hosted at SP1) and additional computational power outsourced to a

supercomputing centre acting as SP2. Although Alice is qualified to use the tool, she prefers to

do it with support of Bob, an engineer from a Research Institute who designed the prototype of

the tool.

Alice belongs to team of researchers administered by the local administrator at the University,

and not all of them may be familiar with the tool and the analysis process. The main activities of

the material analysis are executed by end services hosted by SP1 and SP2. At some point into

the analysis, the computation becomes more intense, and so more resources are called upon to

 60

assure that the analysis proceeds satisfactorily. As the analysis progresses, Alice shares the

results with her team at the university.

Each administrator wants to protect its local �private� resources from the general �public�

which may include hostile agents. At the same time seamless interaction between Alice and the

end-to-end services, as well as the computer Comp1 and its allocated resources, is highly

desirable in order to facilitate collaboration objectives, i.e. a material analysis. The goal is, as

the analysis proceeds, to create overlaying security perimeters to protect different collaboration

teams that may exist over time (as a firewall would do in a fixed topology) while ensuring the

security of each member as defined by their administrator(s).

University
Admin

Institute
AdminSP1 SP2

AliceBob

local
groups

Distributed Collaborative Group

analysis
tool computation

resources

SP –Service Provider

Comp1

Figure 7: Motivating Example: Distributed Collaborative Project

This scenario highlights several issues related to secure collaboration in dynamic virtual

organisations, as pointed in [DJO3]:

• Collaboration of entities that are controlled by different institutions. Each institution will

have their own policies on access control and conditions of use.

• There is no single centralised administrative point. Security has to be achieved via a

devolved policy management scheme combined with distributed enforcement at a peer

level.

• The same entity may interact in different collaborations. A separation between those

interactions has to be achieved.

 61

• Collaborating entities may play different roles in their organisation and various

collaborations, and different security policies may apply.

• Entities may be called upon to participate in the task without previous knowledge of the

other participants. Trust between the entities needs to be established in a real time on a peer-

to-peer basis.

• Entities need to be protected from their collaborators and the whole collaboration team has

to be protected from outsiders, including other entities residing with the participating

institutions.

A suitable architecture needs to be able to provide a security infrastructure that meets these

requirements. The rest of this chapter will introduce such an architecture and gradually address

the above requirements.

4.2 Closed User Groups (CUG) Architecture Overview
The logical structure of the architecture distinguishes several types of entities that participate in

the formation of CUG environment: clients, administrators and (optional) trust authorities.

• Clients are networked entities and can be (human) agents, applications, or service instances.

Software for supporting CUG and firewall functionality is localised to each host, be it a

personal computer or mobile communications device. In order for client to involve in CUG

communication, Administrator (which is normally entity of the same organisation) has to

provide initial setup (registration). Every client is allocated a dedicated administrator node,

which remains responsible for managing its clients� security policy.

• Administrators are responsible for a population of clients, and they can maintain many

CUGs simultaneously. At a client�s initial setup, an administrator defines client�s security

policy through means of certificates and firewall rules, and controls it as long as client

remains registered. During that period, clients can request to create a new CUG or to join to

a number of existing CUGs that are managed by their own or any other administrator. This

is carried out by the administrator who is in charge of the CUG, through creation of CUG-

specific certificate and its delivery to the appropriate client.

Administrator nodes may also be in touch with various Trust Authorities (third parties) who

may assist them with authenticating the claims of their potential collaborators (e.g. for financial

transactions or claims regarding professional expertise), or for initial authentication of the

clients at setup process.

The architecture is illustrated in Figure 8. The circles representing different businesses do not

have any topological implication, but only refer to the logical structure of the organisation.

Members of different groups are distinguished by colour. Departments in the organisation

 62

would naturally group their staff in different CUGs. However, clients can be members of several

groups � such as the example of finance/sales person from the diagram. The firewall

functionality is localised to each host, which (through login process) controls personalised user

access through the firewall at the given host based on the certificates in its possession for each

identified user(s). This enables different working environments for clients sharing the same

terminal. The firewall enforces organisational policy (set by administrator at client�s initial

setup) and regulates client�s interactions within CUGs (on the basis of group-specific

certificate). All hosts then become part of a large distributed firewall, also providing all the

features offered by a traditional firewall choke point.

TA2
automated

administrator
node

TA1

Finance SalesResearch

Business A Business B Solitary
User

Administrators

Hosts

Clients

Trust
Authorities

CUG
Environment

Figure 8: CUG framework: hybrid architecture and entities involved 33

From the viewpoint of group-work, the CUG model distinguishes two main classes of roles:

group members and group manager.

• Group members are peers (clients) who are informed of each others identity and location

and interact with each other on a peer-to-peer basis by using a form of group certificate

embedded in the messages they interchange. Messages with certificate information that does

not match the required group certificate are either deleted or ignored without further

processing.

• Group manager (Administrator) is responsible for managing group membership and

issuing or updating group certificates (in terms of group membership and policy). The group

33 Please note that a client does not necessarily refer only to human agents, but may also include applications, service instances, or

any type of resources.

 63

managers of one level in the organisational hierarchy may themselves be viewed as

members of a CUG at a level above the level of the teams they manage.

This structure resembles line management in structured organisations. The managers maintain

many simultaneous groups (distinguished and constrained by the group certificate issued by a

manager) in terms of group memberships and security policies, and remain responsible from

group creation until its termination.

For a particular CUG, the administrator and group manager can be the same entity, only

performing a different role in each context. As an administrator of the organisation (which will

be referred to as local administrator � LA), its main responsibility is managing basic company

policies in terms of introducing (setting-up) new clients and assigning privileges to them. As a

group manager, it is responsible for managing assigned CUGs from the group creation until its

termination. By joining a group, clients become group members within the scope of that

particular CUG. However, clients are free to become group members of the CUG(s) managed

by entity other than their local administrator, which involves inter-administrator

communication.

4.2.1 Basic Interactions in the System – Hybrid Architecture
Initial setup with a dedicated administrator is the prerequisite for all the clients in order to apply

for CUG membership. Based on policy restrictions, a client may be free to decide to participate

in CUGs of interest. Also, participation could be compulsory, (e.g., within an organisation,

different resources and/or employees could be allocated to a specific project or work task that

forms a basis for CUG creation). Once allocated, responsibility of CUG management and

maintenance remains with the manager until CUG termination. All existing CUG members are

informed of the arrival or departure of a client member and the CUG exists until the last

member leaves. The role of the manager is to provide updated information on CUG membership

and to maintain level of CUG security by defining authorisation privileges and assigning them

to CUG members through certificates. Types of certificates and their usage are further

elaborated in the next Section 4.3 Security Policy and CUG Management.

Once the client is admitted to a group, it interacts directly with other CUG members, without

the manager�s involvement. Occasionally, interactions between administrators may take place as

appropriate, in order to support management of inter-organisational CUGs. Figure 9 illustrates

three main types of interactions in the CUG environment:

• me2me (member-to-member): direct peer-to-peer communication between the members of

the CUG, such as file transfers, chat, white boarding, process invocation, etc. This is

 64

supported with a certificate unique to each group, which is issued by a manager responsible

for the group creation and maintenance.

• me2ma (member-to-manager): regarding the interactions related to CUG management, e.g.

manager�s updates of group policy. This is supported through mutual manager-member

authentication by means of certificates. Here is important to stress that client�s participation

in a CUG is not a prerequisite for this type of interaction (e.g. one of the typical examples of

such a interaction is client�s negotiation with the administrator for creating/joining a new

group).

• ma2ma (manager-to-manager): direct peer-to-peer communication between members of the

�group of managers�. A typical example of this type of interaction would be supporting the

formation of extranets, when clients from different organisations (or organisational units)

engage in collaboration that spans organisational and geographic boundaries.

As shown in Figure 9, communication within CUG environment is supported on two distinct

peer levels (one among administrators and another among CUG members), as well as through

hierarchical interactions between clients and their administrators. Manager(s) of different

organisations maintain different groups (distinguished by the different colour of the clients), and

some clients are members of several groups.

A1

A2
A3

Groups:

- Local

- Remote

Interactions:

ma2ma

me2ma

me2me

Administrator
peers layer

Client
peers
layer

Rem1

Loc2Loc1

CaneBobAlice

ma2ma

me2ma

me2me

Figure 9: Types of interactions and groups within CUG environment

If a CUG manager is also the administrator of all the clients involved in the group (such as

example of groups Loc1 and Loc2), that type of group is referred to as a local group. The

 65

relationship between the administrator and clients exists even before they become CUG

members, and management of that group is straightforward � through direct communication

between CUG manager and its members.

However, if CUG members reside in different organisational domains, they are initially

affiliated to their own administrator(s), but there can be only one CUG manager per group.

Normally, this will be one of the administrators whose clients want to participate in the group,

and this type of CUG is called a remote group. An example of such a scenario is the group

Rem1 and Cane from Figure 9. This type of interaction is an important feature of the proposed

architecture since it contributes the scalability and flexibility of group-work.

4.2.1.1 Interactions for Supporting Inter-Domain Groups
The assumption is that Cane wants to join an already existing group Rem1 for purpose of inter-

organisational collaboration. Until that point, Rem1 is just a local group where A1 is both the

administrator and the CUG manager of Alice and Bob who are simply local CUG members. For

either of those two clients, joining Rem1 was a straightforward process involving direct request

to A1 and a positive response.

However, Cane belongs to a different organisational domain, and therefore has a different

administrator (A2) responsible for maintaining his security policy and firewall set-up. Since A1

is the manager of remote group Rem1, communication between Cane and A1 needs to be

provided. Normally, a client is prevented from contacting a remote administrator node directly,

due to policy restrictions imposed by its local administrator.

For Cane to be able to initiate joining the remote group Rem1, prior endorsement of its

administrator A2 is required. Typically, Cane will contact its administrator A2 with a request to

join a remote group (me2ma interaction). If A2 approves this, then A2 forwards client�s request

to A1 (ma2ma interaction). A1, being manager of the group, can endorse or reject client�s

joining request. If the request is accepted, A1 will create a certificate defining Cane�s privileges

within group Rem1, and send it to A2. Administrator A2 acts as a proxy, sending requests and

receiving responses on behalf of its client Cane. If the group policy defined by A1 (for the

purpose of Rem1) does not conflict with the policy that applies to Cane�s role in the

organisation (which is managed by A2), the response will be forwarded to the client. The

certificate provided by A1 will enable Cane to establish direct me2me communication with

Alice and Bob within the group Rem1. However, Cane will still not be able to contact group�s

manager A1 directly, and for any further requests will again have to go via his administrator A2.

 66

Clients from local group Loc2 would normally have to follow similar procedure in order to join

remote group Rem1. However, depending on the policy at particular clients� firewall, they may

be able to contact remote group managers directly, in order to join CUGs administered by them.

In such a scenario a client can choose to join any of the remote groups (an example for this

would be a senior manager role in a large organisation with a number of branches worldwide).

This approach introduces additional flexibility for the creation of inter-organisational

collaboration CUGs. Normally, there is no limit on the number of administrative domains which

clients can form the same CUG. Clients belonging to a number of administrators can participate

in the same group, as long as common policy agreement can be achieved among administrators.

The group manager, who is chosen via self-initiative or voting, remains in the same role during

the group�s lifetime. A group manager can simultaneously maintain many groups, and is at the

same time an administrator of the clients that originally belong to its organisation.

4.3 Security Policy and CUG Management
The management of the security policy is a complex process involving policy definition, policy

distribution and policy enforcement. In order to deliver a robust and secure infrastructure for

managing of dynamic groups, the following issues need to be addressed:

• A scalable means for management and updating of the organisational and group policy.

• Protection of the communication (data exchange) between the entities involved in the group.

• A suitable way for the policy enforcement that offers protection to dynamic CUG

perimeters, as well as to the individual members (both from other group participants and

from malicious outsiders).

Group management within the CUG environment is supported through the use of public key

certificates (for authentication), attribute certificates (for authorisation) and (optional) use of

symmetric keys (for data confidentiality) [6]. Policy deployment model of the CUG architecture

combines default security settings with a role-based access control approach. The proposal,

summarized in [DJO4], exploits a variation of the distributed firewall concept [68]. Policy is

defined at the administrator / group manager level based on the anticipated role of the client in

the organisation / group. It is then distributed to the end-entities (client hosts) by the means of

the certificates and firewall rules, where it is enforced by each individual entity that participates

in a distributed firewall. The security perimeter can be easily extended to safely include remote

hosts and networks (e.g., telecommuters, extranets), therefore eliminating any topological

obstacles to the proposed paradigm of CUGs. There are two essentially different classes of

policies:

 67

• Local Policies, which are owned and maintained by the administrator and apply to the

clients associated with its organisational structure. Those policies are defined at the creation

of the organisational structure, and are accordingly modified 34.

• CUG Policies, which are defined at the CUG creation and are maintained by the CUG

manager. In the case of a remote CUG, the definition of these policies is not solely the

responsibility of the CUG manager � they can be (and normally are) negotiated with the

clients� dedicated administrator(s), who can impose constraints on the CUG policy in order

to avoid the possible conflicts with the organisational (local) policy.

Local policy is distributed to the client at the initial setup (registration). It comprises of: default

firewall rules for the client host (for securing the lower level of the communication protocol

stack), an authentication certificate (that establishes the identity of a client within the

architecture) and the access privileges (based on a defined role of a client within the

organisation).

CUG policy is shorter-term than local policy, being more dynamic and addresses smaller

population. It is defined based on the client�s role in the group, and delivered at the time of

joining by means of the attribute certificate. It provides a more sophisticated method in terms of

access control, authorising the members (only) to perform certain actions during the group

communication.

4.3.1 Authentication
Authentication of the entities within the CUG environment is supported through the use of PKI

(Public Key Infrastructure) certificates - PKC. The paradigm of public key certificates typically

assumes that every subject creates its public-private key pair. The public key is then transferred

to a certification authority (CA) in an authenticated way (by some off-line means), which then

signs it with its private key. Certificates accompany the messages exchanged, verifying the

authenticity of the sender and (indirectly) the integrity of the message. Currently, the most

widely exploited technology for the use of PKI certificates is X.509, proposed as an Internet

standard by Network Working Group of IETF [32].

The certificate structure of each organisation participating in the CUG environment can be seen

as a single-level autonomous PKI, where the administrator is the CA and clients are subjects. A

client becomes a member of the overall CUG environment by sending an initial register request

message to the administrator, where each client presents its identity through a public-key

certificate issued by some of the commercial CAs belonging to any PKI, as long as the PKI is

34 In the �real world�, this would be normally drawn from the recommendations of the high-level managers in the organization.

 68

recognised by the administrator. (VeriSign [39] is an example of a widely recognized

certification authority). In a similar way, the administrator authenticates itself to a client.

This enables the administrator and a client to exchange public keys with confidence, after which

the administrator creates a local public-key certificate, to be used by a client for all the

authentication-related purposes within the CUG environment. Through use of a �local� PKC the

administrator keeps control of who is registered with the organisation and for how long (through

assigning the validity period of the certificate). There are a number of fields contained in the

PKC certificate. Figure 10 reviews those relevant to the CUG architecture:

• Certificate Serial Number is unique per CA (which is the administrator).

• Validity Period is expiration date (the reference time needs to be agreed or specified within

the certificate).

• Subject Public Key Value is client�s public key, generated by the client and securely

transferred to the administrator at the initial setup.

• Subject Unique ID is the unique identifier issued by the administrator, and it needs to be

unique per administrator 35.

• Issuer Unique ID is the unique identifier of the administrator.

• Digital Signature Algorithm is a reference to a specific algorithm used by the administrator

to sign the certificate with its private key.

• Issuer Digital Signature is the product of the applying of the administrator�s private key to

the remainder of the certificate, using the referenced algorithm.

Further on, this �local� authentication certificate will be referred to as PKC (PKI certificate) �

the usage of the authentication certificate issued by a commercial CA will be additionally

pointed out and its use justified. Normally, these are always the certificates belonging to the

administration nodes and exceptionally to the client (at initial setup).

The PKC does not grant any authorisation privileges to the �subject� � its primary use is to

authenticate the subject (carrier of the public key) to other entities and to establish the unique

identity of the client in case of inter-domain interactions. Its use is limited to the CUG

environment � it has to be recognized and validated in all CUG interactions, but it may not be

recognized outside of the CUG architecture. However, it is reasonable to expect that the

management of the organisation would try to assure that the certificates issued by its

administrators are widely accepted; i.e. by having a reputable commercial CA to issue the

certificates to the administrator(s).

35 One of the aspects where PKI paradigm proves impractical is that it fails to satisify a requirement of the unique identifiers on the

global scale. However, this is not a problem in a �small-scale� CUG environment since the IDs are issued by the security
administrator to a finite population of clients, and the combination of the issuer�s ID and the subject�s ID is unique.

 69

The example of the usage of the local PKC is client�s negotiation with the administrator for

creation or joining a group. Optionally, the client can authenticate the administrator against

administrator�s original certificate, issued by a commercial CA. Another example would be a

mutual authentication of the CUG members prior to the establishment of peer-to-peer session

within the group. Members may reside in different administration domains and therefore may

not be able to contact the CUG manager directly for the purpose of group management (as

demonstrated earlier). However, if a CUG manager is also the administrator of one of the

members, it has (by the definition of CA) to accept the request of another client and verify the

certificate presented, acting as certification authority.

A �commercial� PKCs are used within the CUG environment for the authentication of the

administrator nodes, and as a �root� certificate upon which the trust and legitimacy of the local

certificates is built on. For that reason, the uniqueness of the administrators� IDs built in the

certificates has to be agreed on prior to the establishment of inter-domain collaboration. Also, if

these certificates are issued by different certification authorities, all the CAs need to be

recognized by all the parties involved.

Certificate serial

number

Validity period

Subject public

key value

Subject unique ID

Issuer unique ID

Issuer digital

signature

Digital signature

algorithm

Certificate serial

number

Validity period

Holder unique ID

Issuer unique ID

Issuer digital

signature

Digital signature

algorithm

Attributes

.
….

Signed with a public key
certified by CA

Administrator_ID

CUG Manager_ID

AC - Attribute Certificate
(authorization)

PKC - PKI Certificate
(authentication)

Client_ID, defined by
local Administrator

Example of
compulsory

attribute

Group unique ID

Binding to PKC

Figure 10: Relevant Fields of PKI and AC Certificates

 70

4.3.2 Authorisation
Another type of certificate used within the CUG architecture is authorisation certificate, used

primarily to regulate group management and member�s privileges within the group. There are a

number of approaches for allocating authorisation rights to the entities in the system, sometimes

depending on the approach taken in the policy definition. In addition to PKI certificates, the

specification of X.509 certificate format provides attribute certificates (AC) where the issuing

authority can specify a set of credentials authorising the holder of the certificate to claim certain

privileges [48].

Within the context of the CUG architecture, the AC issuer is a CUG manager, which defines the

group policy (based on the roles and privileges they carry), and expresses it as credentials

granted to the group members via attribute certificates. Credentials are the abstraction of the

privileges, and each group member is granted the credentials that relates to its anticipated role in

the group. In addition to this, each group member is given at joining time a set of rules

(comprising a CUG policy). Once in place, it enables mapping of the certificate credentials into

authorisation permissions during peer-to-peer communication between group members. There

are a number of fields contained in the AC certificate, as specified by [48]. Figure 10 reviews

those relevant to the CUG architecture:

• Certificate Serial Number is unique per CUG manager.

• Validity Period is the expiration date (the reference time needs to be agreed or specified

within the certificate).

• Attributes field carries the information about the holder, i.e. about the actions it is entitled to

undertake within the CUG, as defined by the certificate issuer (CUG manager).

• Holder Unique ID is the unique identifier, the same as the Subject Unique ID in the PKC

issued by the administrator. Such an approach facilitates the correlation between the group

member�s identity and its credentials, if this data needs to be verified.

• Issuer Unique ID is the unique identifier of the CUG manager.

• Digital Signature Algorithm is a reference to a specific algorithm used by the CUG manager

to sing the certificate with its private key.

• Issuer Digital Signature is the product of the applying of the CUG manager�s private key to

the remainder of the certificate, using the referenced algorithm.

Normally, an attribute certificate does not contain the holder�s public key, but it may contain the

reference to the public key certificate and / or CA which can verify the holder�s PKC. In such a

way, the PKC and AC (which are presented separately) can be easily correlated for verification

purposes. This also allows flexibility in the policy definition, since the PKC (and client�s

duration in the environment) will normally last for a longer time than the AC (and the

membership to a group). This information can be referenced as an attribute. The attribute field

 71

contains the sequence of attributes. Some of them are compulsory for every CUG and every

member, and those are: ID of the group, ID of the member�s local administrator and serial

number of public key certificate. The rest of the attributes carry the client�s credentials, as

defined by the CUG manager.

The attribute certificate is created and delivered to a member at the time of its joining a group. If

a new member resides in a domain of the administrator other than the CUG manager, then inter-

administrator communication is required to support the certificate delivery. Before the joining

negotiation commences, this activity would be typically preceded by communication with a

common trust authority to validate the authenticity of both administration parties. Depending

upon the nature of the communication, or the administrators� preferences, different trust

authorities may be consulted. Assuming that both parties agree to negotiate then the CUG

manager will generate and hand over the certificate to the local administrator of the client host

wishing to join the CUG. Normally, the administrator acts as an intermediary and forwards this

message to the client, enabling it to become the group member.

However, while in the possession of the certificate, the administrator can examine it against the

client�s privileges in the organisation, set by the local administrator at the time of client�s

registration. If the privileges given by the group-specific certificate exceed those initially

granted to the client, the administrator may refuse to accept it and can contact the CUG manager

requesting the modification of the client�s role and adjustment of the credentials to an

acceptable level. If the certificate is accepted, the administrator endorses it by co-signing it

before forwarding it to its client.

4.3.2.1 Roles and Privileges
Roles are logical abstractions used to express the group policy and relationships in a structured

way. They consist of a set of policy statements defining what type of interactions a particular

member can perform or accept during CUG communication.

From a CUG perspective, the CUG manager, whose location is immaterial, correlates a role to

the set of credentials and assigns it to a member via an attribute certificate. The actual group

policy is transferred to a member in the form of a role-matrix that expresses mapping from the

credentials (contained in the certificate) onto the role. This enables a CUG member to obtain a

particular role only if appropriate credentials are presented, which allows it to access and

enforce the associated privileges. This approach addresses scalability in several ways:

• First, roles are more generic than member IDs and reduce the overhead of managing and

enforcing security policies.

 72

• If the privileges associated with any role are modified by the CUG manager, the update to

the role-matrix is delivered to the members without issuing new and revoking old attribute

certificates (AC) for the whole CUG.

• If a role of the specific member is changed during its membership in the CUG, it will be

issued new AC by the CUG manager. The old certificate will be revoked and the rest of the

CUG will be informed, but no changes need to be made in the CUG policy.

• Finally, each endpoint implementing a firewall does not need to maintain information about

the enforcement of the complete set of policies that may apply to a large network. Instead it

is only concerned with the policies that are relevant to the CUGs it participates in, and from

those only the subset of rules that needs to be retrieved and enforced during the CUG

communication, depending on the roles of the entities participating in the current session.

In a similar way, the local administrator defines the organisational policy and delivers it to a

client at the initial setup (local policy, as defined before). The privileges specified here do not

express the possible relationships within the organisation (since all peer-to-peer communication

is carried out via CUGs); rather, they can be used by an administrator to put a constraint on the

CUG policy that applies to a client, and prohibit certain actions. This can be also done by the

administrator during the endorsement of a client�s membership to a CUG (as elaborated earlier).

Credentials Roles Privileges

Lab
Policy

Department
Policy

HoD

Employee

Secretary

Funds Building
access

Admin
meeting

Primary
researcher

Associate

Visitor

External
resources

Internal
reports Internet Software

Figure 11: Example of Logical CUG Policy Expressed as Role-Matrix

An example of the CUG policy expressed as a role-matrix is given in Figure 11. The department

can be seen as an organisational structure (e.g. part of an University), where different employee

roles are defined. Also, within a department, there are a number of research laboratories,

 73

organised as CUGs. The policy of each of the CUGs defines the privileges associated with a

specific role; the model given can be easily elaborated in more detail where, for example, it is

explicitly specified which software is accessible for the researchers of each separate lab. In the

context of organisational policy, both the �primary researcher� and �associate� would have the

same privileges if their role were defined as �employee�. Therefore, if they were trying to access

internal report that is classified as �admin�, the attempt would fail. However, if a primary

researcher gets promoted to a Head of department (and the appropriate part of his/her local

policy is updated accordingly), the same document will become available to him/her.

4.3.3 Confidentiality
Confidentiality of the communication between the entities (through data encryption) is an

important factor in enhancing overall security of the scheme. On the other hand, performance of

the secure protocols (in general) mainly suffer due to time-consuming encryption operations.

Therefore, this can be regarded as an optional feature for the applications requiring

confidentiality.

Encryption in the CUG architecture is supported through the combined use of symmetric and

asymmetric encryption, targeting the following:

• Protecting of peer-to-peer communication between group members (data transfer).

• Protecting the transfer of the security policy.

Symmetric keys are used for the interactions where large amount of data are transferred

(introducing less processing overhead) or where the number of entities sharing them is not very

large. Since it is easier to break symmetric encryption, these keys need to be updated more

frequently (or distributed per-session). This can introduce a significant performance overhead.

They are used for data transfer between CUG members, for transfer of security policy at initial

client�s setup and for inter-administrator interactions to support group management of remote

CUGs.

For the interactions where large number of entities would need to share a symmetric key (such

as interactions between the CUG manager and its members) this approach is avoided since it

may decrease the level of security of the system. For example, if a single symmetric key was

used for interactions between the CUG manager and its members, it would need to be updated

every time a member leaves the CUG. This would have to be done in a very consuming manner

(either with Diffie-Hellman or RSA key exchange mechanism [6]) and then followed by

�useful� data encrypted with a symmetric key. This can be justifiable only if the amount of data

to be transferred is significant. The usage of encryption will be addressed in detail in Section 4.4

Description of Security Protocol, both from the scalability and security viewpoint. The

encryption keys used within the CUG architecture are summarized in the Table 1.

 74

Table 1: Summary of encryption keys and its usage in CUG architecture

Type of key Key holder(s) Description of usage
Symmetric
Key 1

CUG Managers/
Administrators

To secure communication between local administrator and CUG
manager while client is in remote CUG

Symmetric
Key 2

CUG members Between users in the same CUG during the single session. Created
by one of the members and distributed using public/private key pair
2

Symmetric
Key 3

Administrator/
client

Used at the initial setup for transfer of security policy and client�s
public key

Public/
private pair

CUG Managers/
Administrators

Signed by CA and used for administrators� authentication within and
out of CUG architecture

Public/private
pair 1

Clients Signed by CA and used for client�s authentication at initial setup
request and out of CUG architecture

Public/private
pair 2

Clients Signed by local manager, used for the client�s authentication within
the CUG environment and for secure delivery of AC certificates

In addition, although it is not focus of this research, it is important to note that all the keys (as

well as the security policies) should be securely stored while on the disc (e.g. password

protected and / or encrypted). Also, a history of the interactions that a client has performed as a

member of different groups should be maintained and kept secure. This data can be used by an

independent Trusted Third Party (TTP) in order to resolve the dispute that may have arisen as a

result of CUG policy non-compliance. Mechanisms for this are examined, as one of the possible

avenues to extend the architecture beyond the scope of this thesis, which is discussed in Section

7.3 Further Work.

4.3.4 Centralised Policy Management: Administrator
The definition of the policy requirements and management of group membership is supported

through the functionalities at the administrator node, which effectively acts as a Security Service

Provider (SSP) to the end entities. This information is used to regulate the specific actions a

client is permitted to undertake and to ensure a sufficient level of both host and CUG security

from the outsiders (through policy enforcement). Consistent with the distinction of the local and

CUG policy, the general structure of the administrator node distinguishes three main logical

components:

• Administrator module for supporting the local policy.

• CUG Manager module for supporting the CUG policy.

• Protection infrastructure module for providing the security for previous two units.

This research considers only the first two modules. Distinct from the client node, where local

and CUG policy recommendations are essential for enforcing the security of distributed group,

the administrator node (which can be seen as a �server�) is a high-value node. It is a common

practice in any form of organisation for this type of entity to be protected with the additional

commercial products, including even the physical security (i.e. stored in a room with restricted

 75

physical access). The methods and systems to provide a suitable security are well documented

in literature, and may include multiple firewalls, intrusion detection systems, internal and

external gateways for total separation of the system (via de-militarised zone), etc [9],[59]. In

addition, a continuous back-up process, as well as redundancy of the system for increased

reliability is a preferable approach. Standard implementation of the GSM PLMN (Public Land

Mobile Network) adopts the similar approach when deploying servers for keeping user-data and

billing information [133],[134].

The general structure of the administrator node is given in Figure 12. The separation of

administrator and CUG manager functionalities is consistent with the logical notion of local and

CUG policy, allowing increased deployment flexibility. For large systems, it is possible to

implement them as separate nodes, even for the same organisational domain. Since inter-

administrator communication is provided, this leaves an option of total separation (as two

different entities that maintain their own PKI certificates and identities), or as two logically

distinct part of the same unit that deploy the common policy (in a different context).

Client_ID
PKC

access rights

CUG
ID

Manager ID
(PKC, key)

per CUG
that client is
member of

per registered
client

Certificate
Revocation
List

Separate security & reliability system:
• Corporate Firewall, IDS,DMZ

• Redundancy, back-ups

Administrator:
organisation-level management

& local security policy

CUG_ID
role-matrix

CRL

member_ID AC

Administrator_ID
+ (PKC, sym_key)

CUG Manager:
CUG management & security policy

per
CUG

member

for
‘remote’
members

role-matrix of
local policy

own PKC

reference to
CAs & TTPs

low-layer client
security policy

(default firewall rules)

per
managed

CUG

Figure 12: Functionalities of Administrator Node

The administrator module provides management of the client population and security policy

deployment at the organisational level. At a client�s setup it allocates a locally unique ID and,

based on the client-generated public/private key pair, generates the PKC for a given ID, which

allows the administrator to set a validity period of the client�s registration. Also, based on a pre-

 76

defined client�s role in the organisation, the administrator defines access privileges (from the

role-matrix) for that particular client. In addition, the administrator maintains the set of rules

comprising the low-level generic security policy (that applies to all the registered clients), such

as connection restrictions, permitted ports, URIs and/or protocols.

For every registered client, the administrator keeps the information about which CUGs a client

is member of, as well as the IDs of the CUG managers, their public key certificates (PKC) and

the shared symmetric key to support inter-administrator communication (in the case of remote

groups). There is no need to store the actual CUG policy or even the part of that policy that

applies to the client, since that has been endorsed and agreed upon in the process preceding the

client�s inclusion in the CUG. Also, the administrator maintains the list of the clients� revoked

certificates (i.e. of the clients deregistered before the validity period ends). Upon the expiration

of the client�s PKC certificate, an administrator may renew it, as well as to update the client�s

access privileges if client�s role in the organisation changes at any point in time.

An administrator additionally has to accept any request regarding validation of its clients�

certificates, regardless of whether the request originates from within or outside of the

organisation. This is by definition the responsibility of the Certification Authority (the

certificate issuing entity). The administrator may also maintain the list of the available/preferred

CUGs and advertise it at the client�s setup or at the policy update interactions.

The CUG manager is responsible for maintaining and managing a number of groups in terms of

security policy and group management. For every newly created group it allocates a locally

unique identifier and defines the role-matrix. At the time of the client�s inclusion in the group,

the CUG manager creates the member�s attribute certificate (AC), based on the member�s

anticipated role and validity period in the group (as described previously). The role-matrix and

members� role may be negotiated among (or suggested by) the administrators which clients will

become the group members. The AC, the role-matrix, and the list of current CUG members are

then delivered to a client via its administrator. For every given group, the CUG manager

maintains the list of its members and their certificates, as well as the list of revoked certificates

(CRL). ACs are expected to be of much shorter lifetime than PKCs, due to their nature. Also,

the accurate definition of the validity period (e.g. based on the purpose of the client�s

membership) may save from maintaining large CRLs; for example, one of the approaches

suggested in [48] is issuing of single session ACs that can be re-negotiated. Similar to the

administrator functionality, CUG manager keeps the details of the administrators� IDs, their

 77

public key certificates (PKC) and the shared symmetric key, for each of the �remote�

members36.

In case that administrator and CUG manager constitute different functionalities of the same

entity, they may share the same PKC (granted by a commercial CA) which uniquely

authenticates the administration node. Together with the list of recognized commercial

Certification Authorities and Trust Third Parties, this would be the only information shared

between the administrator and CUG manager functionalities.

The actual policy deployment is always performed by the administrator. Once delivered to a

client, the policy is enforced by the enforcement agents on the client�s host. Enforcement agents

are controlled and (re)configured by the corresponding administrator using a master/slave

interaction model. Neither the client nor the CUG manager can access and reconfigure these

enforcement agents. Notably, such a distribution of responsibilities and decoupling of policy

specification from deployment is consistent with the CUG interaction model: A (remote) CUG

manager can interact with a member only via that member�s administrator. CUG policies and

policy updates are communicated by the CUG manager to the corresponding administrators who

have the responsibility for their deployment among their clients that participate in that CUG.

Deployment is initiated by compiling the CUG policy statements and distributing to the

corresponding members the rules that apply to them. Prior the deployment, an administrator

performs a check of a policy suggested by the CUG manager. In case there is a conflict between

the local policy (imposed by the administrator) and the CUG policy (suggested by the CUG

manager in relation to the particular CUG), in the current approach, the local policy will always

override the CUG policy.

4.3.4.1 Names and Identities
In order for the proposed architecture to function properly, it is necessary that each entity be

uniquely distinguished by means of an identifier. For convenience, two types of identifiers are

proposed: names and identities, as follows.

Identity (ID) is a true unique identifier. The architecture contains the identities of the clients and

the identities of the groups. The former are defined by the administrator at the time of client�s

setup, and are embedded in the PKC (public key certificate) carrying client�s public key and

used for the authentication of the client. Those identities are adopted by the CUG manager at the

time of the client�s inclusion in the CUG and are related to the client�s AC (attribute certificate)

that contains credentials for mapping a role and retrieving the privileges of a client during CUG

36 If there is a number of CUG members originating from the same administrator, the full information will need to be stored only

once, with the cross-reference to the appropriate member.

 78

interactions. The latter (group identities) are defined by the CUG manager at the time of the

CUG creation, and are also embedded in the ACs granted to the group members. Both client and

group identities retain the value as long as corresponding entity is present in the CUG

environment. For the sake of scalability and ease of the operation, it is not required for the IDs

to be unique across the whole CUG environment, as long as they are unique per entity which is

creating them. For example, uniqueness can be achieved if the IDs of the entities are formed as

a concatenation of the ID generated at the time of the certificate issuance, and the ID of the

issuing entity (effectively, this would correspond to the uniqueness �per domain�, as proposed

for X.509 certificate format [135]). However, the uniqueness of the IDs of issuing authorities

needs to be confirmed prior to the formation of the CUG environment. Also, the certificate

issuing authority must continue issuing unique IDs as long as it remains a CA. At the client

host, relevant IDs (of the CUGs and group members) are stored by the administrator at the

distributed firewall instance, and as such are not accessible or modifiable by the client itself.

Names are an optional description of the entities that are reachable by a client. For a human

user, this would normally be a descriptive string that carries a meaning, related to the entity

functionality, personal relationship, etc. As such, the names do not have to be unique on a larger

scale. The default names (given by the administrator / CUG manager) can be modified by a

client, or simply adopted (e.g. the administrator can advertise the available groups under the

suitable thematic names). Once allocated, the names are stored at the client host and are the only

part of the application accessible by a client. For example, if Alice chooses to contact Bob under

the group �research project�, the application will take those user-defined identifiers and translate

them into unique IDs that have the operational meaning for the firewall instance.

4.3.5 Distributed Policy Enforcement: The Client
Once distributed by the administrator, the relevant policy is stored at the clients� distributed

firewall instances, accessible for enforcement purposes during the interactions (right and left

part of the Figure 13, respectively).

Upon the successful agreement of the registration, the client receives relevant local policy by its

administrator. It consists of the client�s PKC (signed by the administrator), access rights, and

default security rules for the network-level firewall operation. In addition, the client stores the

administrator�s details (ID and PKC), to be used for every subsequent communication regarding

client�s requests, group management and policy updates. The default security rules effectively

comprise the client�s distributed firewall configuration for the packet filtering, according to the

previously defined organisational policy. In addition, communication passing at this level is

subject to a traffic monitoring via a host-based intrusion detection system (IDS), integrated with

 79

the packet filtering mechanism37. However, the focus of this research is not to develop a new

intrusion detection system. One of the suitable schemes that can be adopted is a network-level

monitoring using packets as the data source. Such an approach is described in [64], based on the

modelling of normal states and state transitions of the TCP/IP protocol. The data of the default

security rules is occasionally updated (triggered by the administrator), in order to modify the

filtering rules or to update the signatures and patterns governing the traffic monitoring, based on

the newly discovered vulnerabilities.

CUG policy is received upon the client�s inclusion in the group. For every CUG that it

participates in, the client maintains an appropriate database, consisting of a personal attribute

certificate, the current list of the CUG members, a role-matrix for retrieving the privileges

associated and the list of the revoked certificates. CUG policy applies only within the domain of

a particular group, whereas the local policy set initially applies to all the client�s interaction, in

different contexts and across the all CUGs it is member of.

Non-Secure Network

CUG policy
enforcement

Network Layer Security Policy

message
en/decrypt

access
control &

monitoring
of process
execution

local policy enforcement

traffic
monitoring
and packet

filtering
per CUGper active session

own PKC

access rights
of client’s role

CUG APPLICATION:
user access

Administrator
ID & PKCauthenticate,

en/decrypt

signallingdata

Enforcement Stored information

default security rules

per user, if a host
machine is shared

CUG_ID own AC

role-matrix
CRL

CUG membersmember_ID
PKC AC

session key

IP routing

Figure 13: Functionalities of Client Node and Security Policy Enforcement

The firewall functionality itself is localised to each client host, be it a personal computer or a

mobile communications device. This controls personalised client access through the firewall at

the given host based on the certificates in its possession for each identified client(s). All hosts

37 In a simplified form, this has been successfully tried (although not in a distributed environment); e.g. [71] describes a simple

implementation of integrated firewall / intrusion detection mechanism in the kernel of Linux operating system.

 80

then become part of a large distributed firewall providing protection to the dynamic CUG

perimeters. Typically, the member(s) at each host terminal are individually assigned privileges

that permit their host firewall to send and receive all forms of information between themselves

and other members of the same group as defined by the certificate(s) they have in common. In

addition to this, several users can share the same machine. The default security rules are

common for the machine, but the separate security profiles are provided for each of the users

(based on the organisational role and the CUG membership), though they share the same

(physical) firewall instance.

Figure 13 indicates the layered order of the actions performed for security policy enforcement

[DJO5]. Default security rules, operating on a network layer are consulted for every interaction.

Communication between the client and its administrator is additionally secured by checking the

local policy:

• For every outgoing communication, the client�s intended action is compared against the

privileges of the client�s role (access rights). If the check is successfully passed, the data is

(optionally) encrypted with the administrator�s public key. The whole message is then

digitally signed with the client�s private key and as such passed onto a network layer and

sent to the recipient via open network.

• Incoming communication, which normally arrives encrypted with the client�s public key and

signed with the administrator�s private key, is authenticated and decrypted. Subsequently, if

the compliance with the local policy is confirmed, the data is delivered to the application.

However, a large portion of the client-administrator communication is to do with group

management, carrying the information that is not intended for the user itself. This is denoted

with a split arrow in the Figure 13, where the appropriate data is used to update the security

policy and/or group management-related information, and the notification on the success of

the operation goes to the user.

Since there is an implicit client�s trust in the administrator, the previous relationship between

the two and the plain hierarchy limiting the scope of the communication, security enforcement

is not as strict as in the case of peer-to-peer interactions within the CUG.

In order to initiate a particular peer-to-peer session, one member presents to the intended

recipient a message containing the attribute certificate (AC) and its intended action. At the

recipient�s firewall instance, the credentials from the AC are used for obtaining the privileges

associated, via role-matrix. Additionally, this initial negotiation is accompanied with the clients�

public key certificates (PKC) issued by the administrator(s), allowing the communicating

entities to authenticate each other. If the intended action is authorised, a recipient replies with

the message containing its own AC for that group, augmented with the session key (encrypted

 81

with the public key of the sender). If the first entity verifies recipient�s certificates, a peer-to-

peer session can commence. If the data is certified with the AC for the group that the recipient

does not have clearance then the local host firewall will reject it.

The privileges retrieved from the role-matrix are cached for the session duration. Effectively,

the local policy is augmented with the subset of CUG�s authorisation privileges related to the

appropriate client, therefore acting as a �temporary� application level firewall. Subsequently,

when the host receives message from the CUG peers, the decryption key is applied to the data

and intended action compared against the cached privileges. Providing that the authorisation is

confirmed, and that the intended action does not collide with the local policy, access is granted

and the data is passed to the intended user�s application layer unhindered. In the case of several

concurrent sessions, corresponding authorisation data is retrieved as the separate �temporary�

firewall databases, and the appropriate database is consulted based on the referenced CUG_ID

and member_ID. The encryption gives the additional assurance, since the incorrect mapping (of

group/members� identities) will result in applying the wrong session key and producing

meaningless plaintext.

For every interaction, per-message security checks are performed at a distributed firewall

instance:

• For an outgoing message from the CUG member, the intended action is checked against the

set of member�s privileges, both within the CUG and local policy. If compliance is

confirmed, the message is encrypted, accompanied with the reference to the CUG and

sender�s ID, and digitally signed with the sender�s private key. It is then transmitted via the

firewall and non-secure network to the recipient.

• For an incoming message, after packet stream is examined, the message is decrypted with

the appropriate session key. Optionally, the sender�s public key can be applied in order to

check the digital signature38. After this, the sender�s intended action is compared against the

cached �temporary� firewall database, and if acceptable the data is passed onto the

application layer accessible to the user.

If at any point non-compliance with the security policy is detected, the communication is

blocked, resulting in logging the event at both parties. This information is then passed to the

appropriate administrators. Since the administrators to certain extent account for the actions of

their clients, this could initiate negotiation process among them, with the CUG manager or

Trusted Third Party (TTP) acting as an arbiter, aiming to resolve the conflict. This aspect of the

architecture functionality goes beyond the scope of this thesis, and may form a direction for

future work, which will be outlined in Section 7.3 Further Work.

38 In some of the current applications, this is performed on a random basis.

 82

4.3.6 Policy Updating
The updating of the security policy within a CUG environment is a continuous process that is

happening on several planes:

• Updating of access rights related to the local and CUG policies, addressing the structural

changes within the organisational / group policy.

• Updating of group membership and related lists of revoked certificates (both PKC and AC)

in order to accommodate dynamic changes of the CUG security perimeters.

• Updating of default security rules that are enforced at each terminal, in order to counter

discovered vulnerabilities or new attacks by modifying the filtering rules and / or updating

the signatures and patterns governing the traffic monitoring.

Users can ask to have the policy updated but the decision is made by the administrator, which

retains the responsibility for setting the local policy and approving the CUG policy, and for the

programming of the client firewall rules. As with the initial policy deployment, the

corresponding administrator / CUG manager keeps all the updates, whereas the client receives

only the subset that applies to it.

The updates of local policy which are triggered by the organisational changes can be several. If

the organisational policy is changed in the sense of restructuring of the role-matrix (i.e.

modifying the set of privileges associated with a certain role) or as change of the security level

(e.g. update of the restricted ports) this will require a major action by the administrator which

then needs to communicate the updates to all of its registered clients, similar to the process of

initial setup. If a client�s public key certificate has expired, the administrator can re-use the

client�s public key and re-issue the PKC with new expiration date, notifying only the client

concerned. If a client�s role in the organisation (and related access rights) has changed, this

update will affect only that client. However, the administrator may wish to contact CUG

managers of the groups that client is currently member of, to re-assign the client�s privileges in

the CUG.

The updates of CUG policies are simpler, and affected by the changes in the role-matrix. If a

role of a CUG member changes, it is re-issued a new attribute certificate (AC), while the old AC

is revoked and all the CUG members are informed of that. They keep the certificate number in

their CRLs (Certificate Revocation Lists) until it has expired. However, this does not affect the

actual role-matrix distributed to the members at the time of their joining to a CUG. On the other

hand, if the role-matrix itself is modified (i.e. the privileges associated with the certain roles),

the CUG members need to be updated via their administrators. In this case, however, ACs of the

members do not have to be changed.

 83

The second group of updates addresses the changes in the group structure. Normally, it is

expected this type to be the most frequently performed of all. Whenever members leave the

group, its structure is changed and there is a number of privileges and attribute certificates that

need to be revoked. In this case timely updates are essential, in order to minimize the chance for

the expelled members to use their privileges within the CUG afterwards. This can be achieved

either through triggered or periodical CUG manager�s updates sent to the group, which will be

discussed in more detail in the section 4.4 Description of Security Protocol, describing the

signalling protocol. In a similar way, if a client is deregistered (or its public/private key pair has

been compromised), it is the responsibility of the administrator to initiate the update, where this

information will be passed to all the CUGs that client is/was a member of. This consuming

operation can be minimized with the appropriate management, where the CUG membership will

be limited to the period ending before the expiration of client�s registration (i.e. validity of the

PKC). However, both of these actions need to be taken only if the membership is revoked

before the actual expiration time of the certificates. Therefore, if the member is excluded from

the group in accordance with the CUG policy (i.e. based on the previously defined duration), the

rest of the group will not need to be notified since the expired certificates cannot be used

anyway. For the process of member�s joining a group, such an update is not necessary � if a

new member initiates the session exercising its legitimate rights, the other party can always seek

the authentication at client�s administrator.

During the runtime of the system, different types of network activity will be seen and the

distributed firewalls may experience various non-legitimate interaction. Detection of the

intrusions and malicious activity does not necessarily mean that they have been prevented.

Report logs of these actions are submitted to the administrator for auditing. The information

extracted may be used for the updating the default security rules, to protect other hosts from

attacks that the client�s firewall has seen, but they have not. Optionally, this type of information

could be communicated among different administrator nodes, subject to an agreement (this may

be more realistically confined between administrators of the same organisation).

Different types of policy updates are summarized in Table 2 and Table 3.

Table 2: Policy Updates Affecting a Single Client

Condition Update of Performed by
PKC expired PKC Administrator
Change of client�s privileges Access rights Administrator
AC expired AC CUG Manager
Change of member�s role AC CUG Manager

 84

Table 3: Policy Updates Affecting a Number of Clients / CUGs

Condition Update of Performed by Applying to
PKC revoked PKC and PKC-CRL Administrator All the relevant CUGs
Change of local policy Local role-matrix Administrator Organisation
Change of security level Default security rules Administrator Organisation
AC revoked AC and AC-CRL CUG Manager CUG
Change of CUG policy CUG role-matrix CUG Manager CUG

4.4 Description of Security Protocol
This section describes details of signalling protocol that supports the CUG architecture and

illustrates protocol functionalities through examples of more complex interactions. Group

operations are described through sequence diagrams of message exchange, where security

aspects of authentication, authorisation and (optionally) message encryption are taken into

consideration. Table 4 lists the acronyms and notation used within this chapter.

Table 4: Acronyms and Notation Used for Protocol Description

Ad Administrator
Man CUG manager (same entity as administrator, but performing different role)
Cl Client
Mem CUG member (same entity as client, but within group)
CA Certification Authority (Trusted Third Party)

M = {} Message
enc(k; m) Encryption of message m with secret key k
Px/Sx Public and private key pair in a public-key encryption system
sig(Sx; m) Digital signature on a message m using a private key Sx
h() One-way hash function
PCXY PKI authentication certificate PC of node Y, issued by authorised (and trusted) entity X

(this can be either CA or administrator Ad)
ACXY Attribute certificate AC for CUG authorisation of node Y, issued by authorised (and

trusted) entity X (normally that would be CUG manager Man)
SX,Y,ZK Symmetric session key for interactions among X, Y, Z�, normally created by either of

the parties involved
rand Large random number: when included in the reply message it confirms to the sender that

the original message has been received

4.4.1 Administrator – Client Messages (hierarchical)
All of the operations described in this section, apart of client�s setup and deregistration, belong

to the class of CUG operations. This means that they are directly related to supporting the

communication and management of a particular group. On the other hand, operations of setup

and deregistration are used to regulate a client�s status in the organisational context and to

provide basic support for the client�s inclusion in the overall CUG environment.

 85

4.4.1.1 Initial Setup of Client (Registration)
Setup of client�s host is performed by the administrator and represents initial introduction of a

client into the CUG environment. At setup, the administrator defines security policy of a client.

The policy, that is compiled off-line and then delivered to the client, consists of:

• Authentication PKI certificate which identifies that a client belongs to the particular

organisation. This certificate, being issued locally (by the administrator) enables the

administrator to directly control client�s presence in the system by defining expiration time

(after which client will have to either re-apply or will be issued automatically with a new

certificate). Normally, the validity period must not exceed the expiration time of

administrator�s certificate issued by CA (PCCAAd).

• Attribute certificate defining client�s role and privileges within the company and (potential)

interactions regarding CUG creation and joining.

• Firewall rules and patterns for traffic monitoring used in IDS. These are provided in a file

that can be installed on top of existing software at client�s host.

Ideally, this process should be performed manually � it corresponds to the opening of an

account for a new employee of the company (in the case of human client), the installation of a

new or an update of an existing service (at Application Service Provider), or similar. However,

in nomadic environments this operation may have to be carried out remotely.

New Client Administrator

M1 – client’s authentication & setup request

Certification
Authority

M2/3 – Certificate Validation

M5/6 – Certificate Validation

M4 – administrator’s authentication & ACK (secret key)

M8+ – security policy setup

M7 – authentication ACK & public key delivery

Figure 14: Initial setup of remote client

Initially, the client requests setup by contacting the allocated (or chosen) administrator:

 86

M1 = {Src = Cl, Des = Ad, PCCACl, req, rand1, Sig(SCl; m1)},

Where m1 is hash function of the message used for non-repudiation and also to verify that the

message has not been modified during transmission:

m1 = h(PCCACl, req, rand1)

The client presents its PKI certificate issued by trusted party (Certification Authority - CA) in

order to confirm its identity. Upon receipt, administrator examines the certificate and the

client�s request. Optionally, the administrator can contact the CA (issuer of the certificate) who

verifies the certificate�s validity:

M2 = {Src = Ad, Des = CA, val_req, PCCACl, Sig(SAd; m2)},

M3 = {Src = CA, Des = Ad, val_ack, Sig(SCA; m3)},

Similar to before, the hash of the corresponding message is digitally signed with sender�s public

key; for message M2, that is 39:

m2 = h(val_req, PCCACl)

After the client�s identity is confirmed and the request accepted, the administrator authenticates

itself to the client:

M4 = {Src = Ad, Des = Cl, PCCAAd, ack, rand1, rand2, enc (PCl; SAd,ClK), Sig(SAd; m4)},

A random value created by the client (rand1) is re-sent and accompanied by rand2 (created by

the administrator). This provides the additional confidence that the response message directly

relates to the request and that no message has been lost. In addition, the administrator generates

a symmetric session key SAd,ClK to be used for secret transfer of security policy. The key is

encrypted with the client�s public key PCl, and can be decrypted only with client�s private key

SCl, known only to the client.

Upon receipt, the client can contact CA to verify administrator�s identity. This corresponds to

the message pair M5-M6 from the Figure 14, and the process and message content is analogous

to the message pair M2-M3. If the client accepts administrator�s authentication, it creates

public/private key pair PCl�/SCl�, which will form the basis for issuing of client�s �local�

authentication PKI certificate (PCAdCl). As already explained, this certificate is created by

client�s dedicated administrator, allowing the administrator to control the client�s presence in

the system by defining the validity period of the certificate. Using the previously received

symmetric key SAd,ClK, the client encrypts its public key PCl� and replies to the administrator,

including rand2 and newly generated rand3:

M7 = {Src = Cl, Des = Ad, ack, rand2, rand3, enc (SAd,ClK; PCl�), Sig(SCl; m7)}

Upon receipt, the administrator derives the client�s PKI certificate (PCAdCl) and delivers it

together with the security policy to the client. This data is encrypted with the previously agreed

symmetric key:

39 The same notation is used throughout this chapter. Unless otherwise stated, the signature is always applied to the hash of the

whole message. Therefore, display of the hash will normally be avoided for the reasons of clarity.

 87

M8 = {Src = Ad, Des = Cl, rand3, data, Sig(SAd; m8)},

Where data denotes the policy consisting of authentication certificate, security policy rules

(access rights and firewall/IDS rules):

data = PCAdCl, enc (SAd,ClK; rules#, Seq)

Seq is used to protect from replay-attack: it confirms that all the messages are received and in

order. A malicious entity could try to capture and re-send some of the messages, therefore trying

to modify the corresponding policy. However, Seq is encrypted with a key known only to the

administrator and the client. Therefore, bogus messages will be detected as replayed since a

malicious entity is not able to modify the encrypted part. The symmetric key SAd,ClK is never re-

used but is destroyed after the transfer of the policy is completed.

A procedure similar to setup takes place when the certificate and/or policy rules of an existing

client are to be updated. Again, this should ideally be performed manually, but in the case of a

remote client the process as above is executed. The only distinction with the initial setup is that

the old certificate is being revoked and replaced by the new one, and the policy rules maybe

updated.

4.4.1.2 Deregistering a Client
Deregistration of a client can be either performed at the client�s request or decided by the

administrator (e.g. if a human client is no longer an employee of the organisation or if

computation resources are being replaced by new ones).

Client Administrator

M1 – client’s authentication & deregister request

M2 – administrator’s authentication & ACK

ClientAdministrator

M1 – administrator’s authentication & deregister notification

M2 – update on all CUGs status

a)

b)

M3 – update on all CUGs status

Figure 15: Deregistration of client: a) requested; b) forced

 88

Figure 15 illustrates these two operations. An example of a client requesting deregistration

would be if a client wants to change commercial service provider due to not being satisfied with

the existing service delivery. In such a case, the client sends a deregister request to the

administrator, authenticating itself with the PKI certificate granted by the administrator at setup:

M1 = {Src = Cl, Des = Ad, PCAdCl, req, rand1, Sig(SCl, m1)}

If the administrator approves this, it sends an acknowledge message, notifying the client that its

request has been accepted:

M2 = {Src = Ad, Des = Cl, PCCAAd, notify, rand1, rand2, Sig(SAd, m2)}

This is an important action, since the time spent with the provider could be used as a criterion

for billing purposes, or the client can decline any liability for the actions being accounted for

after this time.

Finally, the administrator has to update the status of all the groups the client was member of by

notifying current CUGs members that the client has left. This is a complex operation, especially

if inter-administrator communication is needed. This thesis considers several alternatives,

described separately, in Section 4.4.4.2 Group Membership Revocation.

Figure 15b illustrates the deregistration process if initiated by the administrator. It consists

simply of the administrator�s notification to the client:

M1 = {Src = Ad, Des = Cl, PCCAAd, ack, Sig(SAd, m1)}

Subsequently, the administrator has to update the group status. The process is analogous to the

one described in Figure 15a, only differing in that the initial client�s request is avoided.

4.4.1.3 CUG Creation
Normally, the creation of the group is performed at the client�s initiative. The client sends a

request to its administrator:

M1 = {Src = Cl, Des = Man, PCAdCl, req, rand1, Sig(SCl, m1)}

The message includes the client�s authentication certificate, and req indicates the client�s

requirements to assist the administrator in determining whether to approve the request and what

type of the group to choose. If the request is accepted, the administrator replies to the client:

M2 = {Src = Man, Des = Cl, PCCAMan, ack, rand1, rand2, enc (PCl; ACManCl, rules#),

Sig(SMan, m2)}

Where the notation is as follows:

• ACManCl is the group-specific certificate with the embedded group identity, the client�s

identity and attributes defining the client�s role in the group.

• rules# comprises the full policy of the group; once put in the place, it enables the mapping

of attributes into authorisation permissions during peer-to-peer communication between

group members.

 89

Also, note that the CUG manager and administrator may be actually the same entity. The

notation used in the messages above differs from the previous section in order to make a

distinction between the two roles. Therefore: PCCAMan = PCCAAd and PAd/SAd = PMan/SMan.

Client
(CUG Creator)

CUG Manager
(Administrator)

M1 – client’s authentication & create request

M2 – manager’s authentication & ACK (CUG data)

Figure 16: Creation of a CUG

It is important here to note that the authentication certificate can be transmitted in plaintext,

whereas the attribute certificate may need to be encrypted. The motivation for this is as follows:

the authentication certificate carries the public key of an entity which by definition should be

publicly accessible to anyone who may need it. However, the attribute certificate carries

information that reflects the privileges of the specific member. As such, it can be used by a

malicious entity in two straightforward ways:

• If communication of the particular member is tampered with over the whole set of groups it

is member of, this information taken together can form member�s �profile� (privacy

violation) [41].

• If communication of the particular CUG manager with various members is tampered with,

the information extracted could be compiled together to roughly reflect the CUG policy

(industrial espionage)40.

In such a way, by encrypting only the attribute certificate and security rules, the amount of data

that needs to be encrypted is minimized, whilst security is not compromised.

4.4.1.4 Joining CUG
The process of joining a group is effectively similar to group creation. The client sends a joining

request to the CUG manager:

M1 = {Src = Cl, Des = Man, PCAdCl, req, rand1, Sig(SCl, m1)}

40 Exactly the same applies for the CUG manager and particular group.

 90

If the request is approved, the CUG manager replies with the appropriate group certificate and

the policy for the group:

M2 = {Src = Man, Des = Cl, PCCAMan, ack, rand1, rand2, enc (PCl; ACManCl, rules#, list),

Sig(SMan, m2)}

When a new client joins the group, the notification is not sent to the current members. This

action is avoided due to scalability of the protocol. However, the list of current group members

is sent to the new member (denoted as list within the encrypted part of the message), together

with the group certificate and policy. This enables the new member to contact anyone in the

group. The legitimacy of the new member is confirmed at the establishment of a peer-to-peer

session through the group certificate that is signed by the CUG manager. Consequently, the

recipient will update its list of group members.

New Member
CUG Manager

(Administrator)

M1 – client’s authentication & join request

M2 – manager’s authentication & ACK (CUG data)

New Member
CUG Manager

(Administrator)

M1 – manager’s authentication & authentication request

M2 – client’s authentication

a)

M3 – join request (CUG data)

b)

Figure 17: Client joining CUG: a) requested; b) appointed

Optionally the client can be appointed by its administrator to join a group. This process is

illustrated in Figure 17b. The appropriate policy is delivered to the client only upon successful

mutual authentication. The corresponding messages are listed below:

M1 = {Src = Man, Des = Cl, PCCAMan, req, rand1, Sig(SMan, m1)}

M2 = {Src = Cl, Des = Man, PCAdCl, ack, rand1, rand2, Sig(SCl, m2)}

M3 = {Src = Man, Des = Cl, ack2, rand1, rand2, enc (PCl; ACManCl, rules#, list), Sig(SMan,

m3)}

 91

4.4.1.5 Leaving CUG
Depending on the scope of the group, members are free to leave at any point in time or upon

completing their appointed task. This is normally performed through the exchange of a

member�s request and manager�s acknowledge reply message:

M1 = {Src = Mem, Des = Man, PCAdCl, req, rand1, Sig(SCl, m1)}

M2 = {Src = Man, Des = Mem, PCCAMan, ack, rand1, rand2, Sig(SMan, m2)}

Similar to the operation of the client�s deregistration, it is the manager�s responsibility to update

the group status. The difference is that in this case the update needs to be performed only within

the specific group that member has left. This operation will be addressed in detail in Section

4.4.4.2 Group Membership Revocation.

CUG
Member

CUG Manager
(Administrator)

M1 – member’s authentication & leave request

M2 – manager’s authentication & ACK

CUG
Member

CUG Manager
(Administrator)

M1 – manager’s authentication & leave notification

M2 – update on CUG status

a)

b)

M3 – update on CUG status

Figure 18: Client leaving CUG: a) requested; b) expulsion

In addition to this, the CUG manager reserves the right to expel a member from the group at any

point in time. This action will normally be taken if the member breaches group policy. It

consists of the manager�s notification to the member concerned (and the group status update):

M1 = {Src = Man, Des = Mem, PCCAMan, notify, Sig(SMan, m1)}

4.4.1.6 CUG Removal
Once created, a group exists as long as there is at least one member present. When the last

member leaves the group (or is expelled) the group is naturally removed by the CUG manager.

Therefore, the message exchange for this operation corresponds to the process of a member

leaving the group, as described in Section 4.4.1.5 Leaving CUG. The only distinction is that the

 92

CUG manager does not perform the update on the group status (the last message in Figure 18a

and b) since there is no one left to notify.

4.4.1.7 CUG Broadcast (Administrator’s Update Info)
This operation is a single message broadcasted by the CUG manager to the valid CUG

members. Depending on the particular requirements, the CUG broadcast can be used by the

CUG manager to notify CUG members of a new client joining or a member leaving the group,

or other information relevant to the particular CUG. In addition, this message would be used for

advertising administrator services or groups of interest that it is managing, broadcasting general

information, such as company news, etc, in which case it originates from the dedicated

administrator and is sent to the local clients only.

The most critical application of this operation is providing a mechanism for revocation of

certificates and updating of CUG status after a member has left or has been expelled from a

group. This is also applied after the client�s deregistration, assuming that it has been involved in

a CUG(s) at the time. This operation is discussed in more detail in Section 4.4.4.2 Group

Membership Revocation, which also describes additional methods for the certificate revocation

involving CUG members.

4.4.2 Client – Client Messages (peer-to-peer)
Operations described in this section belong to the class of CUG operations, providing peer-to-

peer interactions of the clients in order to support data exchange and CUG management.

4.4.2.1 Authentication of CUG Peers (Session Establishment)
Once admitted to a group, a client can engage in peer-to-peer communication with other CUG

members. Point-to-point is the simplest form of group interaction, presented in Figure 19a. The

initiator (Alice) sends a request message authenticating itself:

M1 = {Src = Alice, Des = Bob, PCAdA, req, rand1, Sig(SA, m1)}

If the session is accepted, Bob generates a symmetric session key SA,BK (to be used for the

transfer of data) and delivers it securely to Alice 41. In addition, Bob presents his authentication

certificate PCAdB that can be used by Alice to check Bob�s signature:

M2 = {Src = Bob, Des = Alice, PCAdB, ack, rand1, rand2, enc(PA; SA,BK), Sig(SB, m2)}

The protocol is also able to support more complex multicast interactions, such as given in

Figure 19b. Although there are a number of algorithms for multicast key management, the

approach here takes the modification of �N root/leaf pairwise keys� for key distribution [91].

41 Authentication certificate PCAdA carries the public key of Alice, which Bob uses for encrypting the session key, and which can be

decrypted only by Alice�s private key PA, known only to Alice.

 93

The initiator of the session (Mem1) is referred to as a root. It generates a list of the participants

(leaves) and sends it with the requests to each of them (an example is for the recipient MemN):

M1 = {Src = Mem1, Des = MemN, PCAdMem1, M_list, req, rand1, Sig(SMem1, m1)}

Where the list of participants is: M_list = mem2,�.,memN.

The leaves respond with an acceptance/rejection message. An acceptance by member MemN

takes the form:

M2 = {Src = MemN, Des = Mem1, PCAdMemN, ack, rand1, rand(N), Sig(SMemi, m2)}

In such a way, the root creates the record of the public keys of the members who accepted the

session, and exchanges the encryption key only with them. This approach contributes to

scalability since the most time consuming operation, public-key encryption, is minimized. In the

meantime, the root generates a symmetric session key S1,..,NK and the updated list of participants

M_list*, and encrypts it with the appropriate public key and sends it to the corresponding

member(s):

M3 = {Src = Mem1, Des = MemN, ack, rand(N), rand1�, enc(PMemN; S1,�NK, M_list*),

Sig(SMem1, m3)}

The messages are accompanied with the appropriate random value previously received

(rand(N)), and since the list of participants is encrypted its contents can only be understood by

those involved in the session.

Mem1

M2 – mem2…N/i authentication

MemNMemi

M3 – secure distribution of session key

M4+ – data transfer

b)

Alice

M1 – Alice’s authentication & p2p session request

M2 – Bob’s authentication & ACK (session key)

M3 – data transfer

Bob

a)

Mem2

M1 – mem1 authentication &
authentication requests

Figure 19: CUG session establishment and data transfer: a) unicast; b) multicast

The �N root/leaf pairwise keys� algorithm is particularly suitable for the CUG architecture since

it is non-hierarchical, so any CUG member can initiate the session. The distinction between this

 94

one and the original key distribution scheme is that the approach described in [91] involves an

additional step prior to the distribution of the session key. It consists of point-to-point

interaction between the root and each of the leaves when keys for the encryption of the session

key are exchanged 42. This effectively corresponds to the formation of a structure similar to a

group, where the root has a role that is similar to that of an administrator. Within the CUG

environment this is not needed since the formation of the group is provided through other means

(i.e. certificates issued by the CUG manager).

4.4.2.2 Data Transfer
Once the session key is in place, the actual data transfer is straightforward, and involves

message encryption and presenting the attribute (group) certificate to enact the appropriate

privileges at the recipient. This operation is the same for unicast or multicast sessions, and is

elaborated via message M3 from Figure 19a, sent from Alice to Bob upon the session key

exchange:

M3 = {Src = Alice, Des =Bob, rand2, rand3, enc(SA,BK; ACManA, data, Seq), Sig(SA, m3)}

The recipient (Bob) decrypts the data using the session key SA,BK and retrieves the set of Alice�s

privileges based on the attributes embedded in the group certificate of Alice (ACManA). The

message content is compared against the Alice�s privileges (Is she allowed to send it?) and

against Bob�s privileges for that particular CUG. (Is he allowed to receive and process this type

of information?)

The same mechanism is happening at Alice�s host with the message M3� sent by Bob.

M3 = {Src = Bob, Des =Alice, rand3, rand4, enc(SA,BK; ACManB, data, Seq), Sig(SB, m3�)}

It needs to be noted here that the session establishment protocol described in the previous

section does not authorise the entities to any action, but only authenticates their identities

allowing subsequent authorisation certificates to be verified. If Alice would present an

authorisation certificate for the wrong group, the access would not be allowed. This also means

that initial communication is possible even if clients are not in the same group, and the group

membership is confirmed only subsequently. This was a design choice in order to enable

encrypted transmission of authorisation certificates.

4.4.2.3 Optional Client’s Functionalities
This operation employs a single message broadcasted by the appointed CUG member to the rest

of the CUG. As part of the member�s role in the group, the CUG manager can allow certain

clients to act as �appointed members�. This class of member has privileges (and responsibility)

to replicate specific type of message received by the CUG manager and to deliver them onwards

to the CUG members.

42 Therefore, for N participants there will be N-1 so called KEKs (key encryption keys).

 95

This operation is an optional functionality of the CUG-supporting protocol. The motivation for

introducing it is to decrease the burden on the CUG manager in the case when manager is

responsible for large number of groups with a considerable population each43. By delegating

broadcast responsibility to the appointed group member, the CUG manager effectively compiles

and sends a single message only. It is then the appointed member who multiplies and re-sends

this message to the whole CUG. However, a single client is allowed to take the �appointed� role

only in one of the groups it participates in, which is decided by the dedicated administrator.

Also, since this delegation of responsibility can decrease the security of the group, each CUG is

limited to one �appointed member� only. The entity that this role is delegated to is determined

by the administrator, and the criteria (depending on the nature and requirements of the CUG)

can be based upon the administrator�s trust in the client, the type of the network connection, the

CUG creator, etc.

Similar to administrator�s broadcast, the most critical application of this operation is providing a

mechanism for revocation of certificates and updating of CUG status after a member has left or

has been expelled from the group. It is addressed in more detail in Section 4.4.4.2 Group

Membership Revocation.

4.4.3 Administrator - Administrator Messages (peer-to-peer)
The operations described in this section belong to the class of CUG operations, providing peer-

to-peer interactions between the CUG manager and administrator in order to support

management of remote CUGs.

Normally, a client is prevented from engaging in a remote group directly, by not being

permitted to contact the CUG manager. This communication has to be endorsed by the client�s

administrator who acts as an intermediary, intercepting and approving messages between its

client and the remote CUG manager.

4.4.3.1 Establishment of Initial Relationship for Remote CUG Management
The inter-administrator communication is triggered by client�s request to join remote group:

M1 = {Src = Cl, Des = Ad, PCAdCl, req, rand1�, Sig(SCl, m1)}

The field req carries information about the group the client wants to join. The administrator

examines the request, and if it is approved the client�s message needs to be forwarded to the

remote CUG manager. However, the administrator and the CUG manager may not have prior

knowledge of each other. For that reason, an initial relationship has to be established. The

43 This functinality is envisaged as the enhancement of the basic version of protocol, after protocol performance evaluation.

 96

process is presented in Figure 20a. It involves mutual authentication, using public key

certificates issued by certification authority (CA) trusted by both parties:

M2 = {Src = Ad, Des = Man, PCCAAd, req, rand1, Sig(SAd, m2)}

In response, the CUG manager authenticates itself with PCCAMan and generates a secret key

that will be used for transfer of group details (including group certificate) and for all future

updates concerning the group status:

M3 = {Src = Man, Des = Ad, PCCAMan, ack, rand1, rand2, enc(PAd; SAd,ManK), Sig(SMan,

m3)}

The key SAd,ManK is known only to the administrator and the CUG manager and remains valid

for the duration of client�s participation in the remote CUG. Either the CUG manager or

administrator reserve the right to change the key (periodically or on as-needed basis) in order to

maintain security. This is performed in a manner similar to the initial key agreement. In

addition, the same key is used for other administrator-manager interactions; for example, if

another administrator�s client wants to join the same or any other group hosted by the CUG

manager, or vice versa: for example, when a group is hosted by the administrator, and the client

wishing to join originally resides with the CUG manager entity 44.

Administrator

M2 – administrator’s authentication

M3 – manager’s authentication & ACK (session key)

CUG Manager

M1 - client’s request

Administrator

M2 – administrator’s authentication & forward client’s request

M3 – manager’s authentication & ACK (CUG data)

CUG
Manager

M1 - client’s
request

a)

b)
M4 - forward
ACK to client

Figure 20: Peer-to-peer interactions of administration nodes: a) initial authentication; b)
message interception

44 Of course, the latter case assumes that the roles of administrator and manager nodes are now swapped. The change of terminology

is omitted only to avoid confusion.

 97

4.4.3.2 Message Interception
Once authentication of the administration nodes and key exchange have been performed, the

client�s request is forwarded to the CUG manager. This is presented in Figure 20b, which is a

continuation of the upper part of the figure (the authentication process is omitted for

presentation purposes). Upon the receipt of the client�s request:

M1 = {Src = Cl, Des = Ad, PCAdCl, req, rand1�, Sig(SCl, m1)}

(and mutual authentication), the administrator examines the client�s request and (if approved)

forwards it to the CUG manager:

M2 = {Src = Ad, Des = Man, req�, rand2, Sig(SAd, m2)}

Where req’ contains the original request req and reference to the client�s ID. If the request is

accepted, the CUG manager replies to the administrator:

M3 = {Src = Man, Des = Ad, ack, rand2, rand3, enc(SAd,ManK; ACManCl, rules#, list),

Sig(SMan, m3)}

ACManCl is a group-specific certificate, rules# comprises the full policy of the group and list is

the list of current group members. Then, the administrator decrypts the message (AC) and

reviews client�s privileges in order to resolve any conflicts that may occur between local policy

and CUG policy. Assuming that ACManCl is acceptable, the administrator encrypts AC with the

client�s public key PCl and delivers it to client:

M4 = {Src = Ad, Des = Cl, PCCAAd, ack, rand1�, enc (PCl; ACManCl, rules#, list), Sig(SAd,

m4)}

The administrator authenticates itself with PCCAAd, and includes rand1 in the reply message,

therefore giving confidence to the client that its request was processed by the appropriate entity.

As before (Section 4.4.1.4 Joining CUG) the information received is sufficient for the client to

engage into peer-to-peer CUG communication (as described in Section 4.4.2 Client � Client

Messages (peer-to-peer)).

4.4.4 Examples of Protocol Functionalities
This section illustrates protocol functionalities through examples of more complex interactions.

The most frequent operations within the CUG framework are members� joining and leaving a

group. The CUG architecture is developed to support a dynamic environment where it is

expected that a large portion of these interactions will be performed across organisational

boundaries. The joining of clients to a remote group, as well as clients� leaving a group (and the

related process of certificate revocation and group updates) consist of a number of basic steps

explained previously. In addition, a scenario describing the discovery of a hostile member is

illustrated through the set of actions normally taken.

 98

4.4.4.1 Remote CUG Joining and P2P Session Establishment
The basic process of client�s joining a CUG has been demonstrated in Section 4.4.1.4 Joining

CUG for the case of a local group. The process of joining a remote group is effectively similar,

though it incorporates inter-administrator communication (described in Section 4.4.3

Administrator - Administrator Messages (peer-to-peer)), in addition. The example elaborated

here brings the two aspects of the protocol together, following the message exchange from the

client�s joining request until the successful establishment of a peer-to-peer CUG session, under

the following assumptions:

• The client joining a group is already registered with its local administrator.

• A previous relationship between the administrator and CUG manager does not exist,

therefore they need to establish trust (through mutual authentication).

• The root certification authority CA is the same for both organisations that the administrator

and the CUG manager belong to. However, if the organisations are established with

different CAs, cross-validation of the administrators� certificates needs to be performed.

Prior to this, trust in the Certification Authorities needs to be established and their public

keys obtained by the administrators through some secure and authenticated off-line means

of communication.

• The peer-to-peer CUG session is illustrated via the unicast session example. However, the

process of multicast session, described in Section 4.4.2 Client � Client Messages (peer-to-

peer), can be applied in a straightforward way, and is not influenced by the joining

operation.

• Referring to the notation from Figure 21, the Administrator and CUG manager are

respectively local security administrators of the Client and the CUG member.

Figure 21 depicts the whole process, initiated by the client through the join request message:

M1 = {Src = Cl, Des = Ad, PCAdCl, req, rand1�, Sig(SCl, m1)}

The client authenticates itself at the administrator via the PCAdCl certificate, granted by the

same entity at registration. The request field can either refer to the specific CUG, or to a type of

service that the client wants to obtain (in which case the administrator can identify and allocate

the most appropriate CUG). If the authentication and the request are approved, the administrator

contacts CUG manager for mutual authentication and to establish the initial relationship:

M2 = {Src = Ad, Des = Man, PCCAAd, req, rand1, Sig(SAd, m2)}

Upon receipt, the CUG manager (optionally) contacts the Certification Authority in order to

verify the administrator�s certificate PCCAAd:

M3 = {Src = Man, Des = CA, PCCAMan, req_PCCAAd, Sig(SMan, m3)}

Which is acknowledged by the CA:

M4 = {Src = CA, Des = Man, ack_PCCAAd, Sig(SCA, m4)}

 99

If this has been performed satisfactorily, the CUG manager creates a symmetric key SAd,ManK

and delivers it to the administrator, encrypted with the administrator�s public key PAd:

M5 = {Src = Man, Des = Ad, PCCAMan, ack, rand1, rand2, enc(PAd; SAd,ManK), Sig(SMan,

m5)}

The message contains the public key certificate of the CUG manager, enabling the administrator

to authenticate the manager at the CA (the messages pair M6/M7 in Figure 21 is effectively the

same as M3/M4, only the originator is different). This ends this phase of the authentication:

public keys are temporarily stored to check the signature until the joining process is completed,

and the encryption key SAd,ManK is kept by both of the parties as long as client remains a

member of the CUG45.

Client CUG ManagerAdministrator CUG MemberCA

M1 –join request

M2 – authentication

M3/4 – validate PKI

M5 – authentication, secret key

M6/7 – validate PKI

M8 – forward join request

M9 – join response (ACK)

M10 – forward ACK

M11 – authentication and p2p session request

M12/13 – validate local PKI

M15/16 – validate local PKI

M14 – authentication and ACK, session key

M17/18 – data transfer

Figure 21: Joining and P2P Session in Remote CUG

Next, the administrator forwards the client�s request to the CUG manager:

M8 = {Src = Ad, Des = Man, req�, rand2, rand3, enc(SAd,ManK; data1), Sig(SAd, m8)}

45 As already mentioned in section 4.4.3 Administrator - Administrator Messages (peer-to-peer), this key is periodically updated.

 100

Where the original request is augmented with the clientID (req’). If the CUG manager accepts

the request, it defines the privileges of the new CUG member (via attributes within the group

certificate ACManCl), and compiles the CUG policy rules (rules#) and the list of current CUG

members (list). This data is encrypted with the inter-administrator key and delivered in the

acknowledgement message to the administrator:

M9 = {Src = Man, Des = Ad, ack, rand3, rand4, enc(SAd,ManK; ACManCl, rules#, list),

Sig(SMan, m9)}

Upon receipt, the administrator decrypts and examines the CUG-related data, and if the terms

are accepted it forwards it to its client (this time encrypted with the client�s public key)46:

M10 = {Src = Ad, Des = Cl, PCCAAd, ack, rand1�, enc (PCl; ACManCl, rules#, list), Sig(SAd,

m10)}

This concludes the process of the client�s joining which, now that it is a member of the CUG,

can start peer-to-peer communication with the rest of the group. As described in Section 4.4.2

Client � Client Messages (peer-to-peer), the authentication of the peers is performed before a

session can commence. One of the members (named the �client� in Figure 21) sends the session

request, authenticating itself via a public-key certificate:

M11 = {Src = Cl, Des = Mem, PCAdCl, req, rand1��, Sig(SCl, m11)}

Optionally, the recipient may wish to verify the certificate, for which purpose the issuing

authority needs to be contacted. In the example from Figure 21 and the related message M11, the

issuing authority is the administrator. Therefore, the CUG member contacts the administrator

node requesting certificate validation:

M12 = {Src = Mem, Des = Ad, PCManMem, val_PCAdCl, Sig(SMem, m12)}

Which is acknowledged:

M13 = {Src = Ad, Des = Mem, ack_PCAdCl, Sig(SAd, m13)}

Next, the CUG member creates the session key and delivers it securely to the client encrypted

with client�s public key.

M14 = {Src = Mem, Des = Cl, PCManMem, ack, rand1��, rand2��, enc(PCl; SCl,MemK),

Sig(SMem, m14)}

In addition, it presents its public key certificate, which can be validated by the interaction

between the client and CUG manager (note that, regarding this particular interaction, the CUG

manager acts in the role of the local administrator):

M15 = {Src = Cl, Des = Man, PCAdCl, val_PCManMem, Sig(SCl, m15)}

M16 = {Src = Man, Des = Cl, ack_PCManMem, Sig(SMan, m16)}

This may seem to oppose to the previous statement that the client is not allowed to contact a

manager of a remote CUG directly. However, regarding certificate validation, the CUG

manager acts as the certification authority (CA), and not as the entity managing the group.

46 However, if the policy is not accepted, this would either trigger re-negotiation process between the administrator and the CUG

manager, where revised certificate will be presented by the CUG manager.

 101

Normally, the issuer of the certificate verifies it, which is the local administrator in the CUG

architecture.

Finally, the session can be established � the messages exchanged carry the attribute certificate

and the useful data in its encrypted part. In addition, the presence of the random numbers and

the sequence identifier protect the message session from the replay attacks and assure the proper

order of the messages received:

M17 = {Src = Cl, Des = Mem, rand2��, rand3��, enc(SCl,MemK; ACManCl, data, Seq), Sig(SCl,

m17)}

M18 = {Src = Mem, Des = Cl, rand3��, rand4��, enc(SCl,MemK; ACManMem, data, Seq),

Sig(SMem, m18)}

4.4.4.2 Group Membership Revocation

ex-
member

CUG
Manager

local CUG
members Administrator(s)

remote CUG
members

a)
M4 – leave ACK

M1 - local broadcast

M3 - local broadcast(s)

M2 –update via
administrator(s)

new / ex
members

CUG
Manager

local CUG
members Administrator(s)

remote CUG
members

ex-
member

CUG
Manager

appointed
CUG member rest of CUG

M2 - broadcast to CUGM3 – leave ACK

M1 – update to appointed
member

M1 - local broadcast

M3 - local broadcast(s)

M2 –update via
administrator(s)

M1’ (t+T)

M3‘ (t+T)
M2‘ (t+T)

joining /
leaving

CUG

b)

c)

Figure 22: Membership revocation mechanisms: a) instant administrator's update; b) periodic
administrator's update; c) update via appointed member

 102

One of the aspects of enforcing security perimeters of the groups is through updating the list of

revoked certificates and the group membership list when a member leaves the group voluntarily

or through expulsion. In a dynamic CUG environment, timely updates of lists and its delivery to

the valid group members is essential. Depending on the dynamics of the system and the security

needed, this is always a trade-off between the system performance and security. This research

considers three schemes for the revocation of clients� privileges within dynamic collaborative

groups. Although different in nature, the schemes are directly supported by the protocol

functionalities described in the previous sections.

[a] Instant manager’s update

Directly upon a member�s removal, the group manager updates the lists of valid group

certificates and group members, and delivers it directly to the rest of the group. For the remote

group members (i.e. associated with a local administrator different from the group manager),

this information has to be passed via their local administrator(s). From a security viewpoint, this

approach is advantageous, since the new information is (instantly) delivered to all valid group

members directly by the group manager (who is implicitly trusted by its members). However,

depending on the dynamics of the group membership, this could represent a significant

performance problem since the whole burden is on the group manager.

Simultaneously, the group manager compiles and distributes three types of messages, targeting

different parts of the CUG population: local members, remote members and the �ex-member�.

Message M1 is broadcasted to the local CUG members, informing them about the member that

has left / been expelled from the group:

M1 = {Src = Man, Des = LMBroadcast, PCCAMan, info, Sig(SMan, m1)}

The CUG manager retrieves the data associated with the particular group, and creates the list of

the local members LMBroadcast. Also, it compiles the useful information - info, containing the

identity and the certificate number (unique identifier) of the ex-member (XmemID and

ACManCl_No, respectively), referencing the identity of the group concerned (groupID):

info = XMemID, groupID, ACManCl_No

The authentication certificate of the group manager is added, and the message is digitally

signed. It is important to note here that the �useful� part of the message (including manager�s

certificate) is the same for all the CUG members that should receive it. The message references

data that is not valid anymore, and proper authentication is sufficient to assure the members to

accept and process it. Therefore, separate encryption targeting every of the recipients is not

necessary. This enables the manager to create and digitally sign a single message in an �off-line�

manner, and to reuse it during the broadcast, targeting each and every entity from the previously

compiled LMBroadcast list.

 103

However, dealing with the updates of the remote members is somewhat more complex. As

addressed earlier, the CUG manager cannot contact the remote members directly due to

restrictions at client�s incoming firewall enforcer, imposed by the client�s administrator (i.e.,

every message originating from the entity other than local manager or valid group member will

be destroyed without further processing). However, the CUG manager maintains the list of the

remote members and the appropriate local administrators, as a part of the CUG database. An

initial relationship between CUG manager and local administrator(s) is established at clients�

joining in the CUG, and remains the mode of non-direct communication between the CUG

manager and its remote members. For every administrator node (that the CUG manager contacts

for the purpose of non-direct group management), the CUG manager compiles the list of the

associated clients who are current group members (RML � remote members list). Based upon

this, the manager sends a single �revocation� message to each of the identified administrators:

M2 = {Src = Man, Des = Ad, ref = RML, PCCAMan, info, Sig(SMan, m2)}

The info field has the same structure as sent to the local members (see above). Obviously, since

the RML list will be different for every administrator, the messages will have to be separately

compiled and signed. It is then the responsibility of the administrator to forward it to the

appropriate client upon receipt 47. Each of the administrators that receive the message compares

the RML for the given groupID against the data they possess, and examines the content of the

message. For every matching clientID (normally, the whole list should match), and provided the

message is validated, it is broadcast in the similar manner as to the �CUG manager � local

members� process, only this time it is authenticated and signed by the administrator:

M3 = {Src = Ad, Des = RMLBroadcast, PCCAAd, info, Sig(SAd, m3)}

Parallel with this process, the CUG manager contacts the �ex-member�, informing it that its

CUG membership has been revoked:

M4 = {Src = Man, Des = XMem, PCCAMan, leave, Sig(SMan, m4)}

As given on Figure 22a, the �ex-member� is presented as a local client of the CUG manager.

However, if membership is being revoked to a remote member, the above message M4 would

accordingly consist of two separate messages:

CUG manager � local administrator:

M4� = {Src = Man, Des = Ad, ref = Xmem, PCCAMan, leave, Sig(SMan, m4�)}

Local administrator � �ex-member�:

M4�� = {Src = Ad, Des = XMem, PCCAAd, leave, Sig(SAd, m4��)}

47 This also decreases the burden of the CUG manager�s communication and shifts it to the administrators who are now performing

the message multiplication and broadcast.

 104

[b] Periodic manager’s update

In this scenario, the group manager periodically updates the group certificate and membership

lists and delivers it directly to the rest of the group (see Figure 22b). Again, inter-administrator

communication takes place where appropriate, if the group contains remote members. Periodic

updating of the certificate revocation lists is a standard solution adopted in ITU X.509 [136],

and represents a compromise between performance and security, through variation of the update

period T.

The process of the message exchange is the same as in case a), only that it is triggered

periodically, and not by the event of members leaving the group. Therefore, the message

contents will not be elaborated. The operation can be observed comparing the actions within

Figure 22a and Figure 22b.

[c] Appointed member’s update

With this approach, for every group it maintains, the manager appoints a so-called �special

member�, who is responsible for replicating the messages received by the CUG manager, and

distributes them to the rest of the group in a peer-to-peer manner, using the new membership

list. Obviously, from the performance point of view, the group manager benefits from this

delegation of authority. Furthermore, there is also a performance benefit for the administrators

of remote group members, since this inter-administrator communication is avoided. The

communication burden is shifted to the CUG member peer-to-peer plane, which can be

significant for the large groups.

The CUG manager initiates the process by sending the single message to the special member:

M1 = {Src = Man, Des = SpMem, PCCAMan, ref = SpMem_fwd, info, Sig(SMan, m1)}

As before, the information field contains identity of the ex-member and group concerned, as

well as certificate number (unique identifier): info = XMem, groupID, ACManCl_No. The

reference in the message body indicates that the message needs to be forwarded to the whole

CUG - exclusive of the ex-member, as well as specifying the forwarding entity. Upon receipt,

the special member takes the action of multiplying and distributing the message to the rest of

the group:

M2 = {Src = SpMem, Des = CUGBroadcast, M1, PCManSpMem, Sig(SSpMem, m2)}

The message is sent in the plaintext, enabling the recipients from the CUGBroadcast domain to read

it in a straightforward manner. The recipients can also be assured that the message initially

originated from the CUG manager, since the message M2 contains the original message M1,

signed by the manager. Non-repudiation is additionally assured through the presence of special

member�s authentication key PCManSpMem and its digital signature Sig(SSpMem, m2) applied to

the hash of the new message � by comparing the sender�s identity from the certificate with the

 105

one referenced in the body of the original message M1, the recipients can confirm the

authenticity and legitimacy of the information provided.

Finally (as in the previous two schemes), the CUG manager informs the �ex-member� that its

CUG membership has been revoked:

M3 = {Src = Man, Des = XMem, PCCAMan, leave, Sig(SMan, m3)}

From a scalability point of view, this scheme is the most beneficial to the CUG manager.

However, it potentially carries serious security concerns, due to the fact that the administrator

must delegate a certain amount of trust to the special member. If the special user was to become

compromised, it could operate maliciously ant try to misuse the information received. However,

the special member cannot modify the original data (as demonstrated above), and the worst-case

scenario is that it may refuse to forward the message. Also, the problem arises if the special user

is the one to leave the group. In such a case, the CUG manager could intervene directly and

perform the group update through the one of the two mechanisms previously described - i.e.

scheme a) or scheme b).

However, this scheme may be useful for relatively non-critical applications, such as advertising

administrator services or other groups of interest and broadcasting general information, such as

company news, etc.

4.5 Motivating Example Revisited: CUG-Enabled Cross-Organisation

Collaboration
Referring back to the example from Section 4.1, we can now consider it from the perspective of

the CUG architecture.

In order to perform the desired analysis, Alice uses its administrator who negotiates on her

behalf with different service providers (SP) that offer different services. Based on the requested

service, the SPs allocate resources for performing a particular task. In addition, Alice�s

administrator contacts the administrator of Bob�s institute in order to agree on Bob�s privileges,

and Bob is given a certificate. It is assumed that Alice and Bob have previously agreed that they

wish to pursue the analysis, for example via phone or at a coffee break. As the resources

provided by the entity Comp1 of SP2 may not be sufficient, additional computational resources

are identified and brought together, forming a new CUG created for that purpose (illustrated as a

local group of SP2 in Figure 7).

Some of the interactions between different resources and that of Alice and Bob with some of the

resources are mandatory. Obviously, it would be highly inefficient if all the analysis-related

 106

communication would have to go through the administrators and SPs, following the same path

as for the resource reservation. Following the architecture described in the above sections,

administrators and SPs communicate appropriate certificates to the entities involved in the

analysis, in order to support creation of Distributed Collaborative Group. It is the most probable

(but not necessary) that the university will act as a group manager, since its member has

initiated the collaboration. Also, since Bob�s institute does not have any prior agreement with

the supercomputer centre SP2, Bob�s privileges in the group may include direct access to the

analysis tool, but not to the computation resources.

It is possible to include all the resources required for Alice�s analysis work into one CUG with a

lifetime corresponding to the duration of the analysis. However, different issues could be raised

here. For example, it is possible that the computation services required from the local group if

SP2 are needed only as an intermediate result, and therefore there is no need to consume those

resources throughout the duration of the analysis. Also, SP2 may wish to restrict the availability

of the computing power (other than Comp1) to internal access.

In addition, perhaps not all the researchers from Alice�s local group are qualified to use the tool,

and SP1 wants to prevent non-qualified access. If that changes - i.e. another member of Alice�s

research team obtains the qualification (normally by the means of digital authorisation

certificate), it may apply to join the collaboration. On the other hand, if Alice�s qualification

becomes outdated, she will be prevented from the group access (e.g. either her certificate will be

revoked, or a new one will not be issued).

Such an approach facilitates direct interaction of the researchers with the services needed,

therefore enabling the analysis to be conducted in an efficient way.

4.6 Architecture Summary
The architecture proposed in this chapter provides mechanisms where secure Closed User

Groups can be dynamically altered in terms of membership and policy constraints. The

hierarchical structure of the architecture provides the flexibility of both peer-to-peer (P2P)

interaction and centralised community management. It supports on-demand creation and

management of dynamic distributed collaborations in the form of secure groups of peers (users,

services, resources, etc.) that cut across geographical and enterprise boundaries. The

architecture has been developed with two main goals in mind:

• Enabling communication within dynamically created collaboration groups, that is: secure,

scalable, robust and independent of network topology.

• Enforcing security perimeters that adapt to the dynamic evolution of a collaboration group

(in terms of membership and security policy).

 107

These goals are addressed through the following means:

• A hybrid architecture for establishment and management of dynamic distributed groups,

consisting of a set of security protocols:

o A hierarchical protocol between client(s) and administrator(s), for the introduction of

clients and security policy distribution.

o A peer-to-peer protocol among administrators, for supporting creation and management

of inter-organisational collaborative environments.

o A peer-to-peer protocol for securing communication among group members, which

provides authentication, authorisation, non-repudiation and confidentiality.

• Certificates to manage CUG membership and privileges.

• Role based security policies describing relationships within CUGs.

• A mechanism for the distributed enforcement of local and CUG security policies, to protect

individual members within a CUG and the CUG environment as a whole.

The following chapter describes the simulation model developed to validate and evaluate the

message-exchange protocol of the architecture.

 108

Chapter 5 Simulation Modelling

5.1 Introduction
In the previous chapter the architecture for secure and dynamic group working was presented

and the specification of the group management protocol was described. Architecture design was

an iterative process of refinements in order to meet security and performance requirements. The

whole process was subject to a thorough security evaluation, in part by applying the author�s

previous experience in the field of security risk analysis [DJO2]. While the architectural

discussion is largely qualitative, some estimates of the system performance are useful. The

remainder of the thesis is concerned with investigating the performance of proposed message-

exchange protocol under various conditions.

Having proposed the group management protocol, its performance characteristics can be

evaluated through mathematical analysis or through a simulation model. However, the nature of

the networks is such that the performance estimation becomes too complex for mathematical

analysis, without unwarranted simplifying assumptions being made. Due to statistical variations

of the sources (client and administrator nodes in this work) it is not possible to analytically

determine the exact number of generated messages or the reaction upon receipt of them. In

addition, changes in the behaviour of the stochastic system over time are very difficult to

represent through analysis, whilst this data is naturally provided as a simulation output.

Therefore a simulation model was used for the performance analysis.

A distributed network system can be modelled with an event driven simulator. The model can

be built using a simulator developed specially for this purpose or by using a commercial

simulator. Purpose-built simulators may be faster in terms of execution time, but the

development time can be prohibitive. Commercial simulators are typically not as fast because

their code is �fully featured�, but on the other hand, the existence of library models allows faster

construction of more detailed models. In addition, the benefits of documentation and debugging

facilities improve the quality of the resulting model. Finally, the ability to plug in existing

models can be beneficial, for comparisons or for further work.

The commercial simulator used for this research was OPNETTM, a general telecommunications

network simulation tool [137]. OPNET is a discrete event simulator: the discrete events in the

models described in this chapter relate to signalling messages and the event scheduling

mechanism. OPNET uses graphical interface where simulation models are defined according to

five levels. The first level is the project level, where the high-level components of a network are

identified. At this level network models are created and edited, the simulations are run and the

results are analysed. The second level is the network level, where the topology of the simulated

 109

network model and interconnections of the nodes are defined. At the third level (the node level)

the elements that make up the network nods and their interconnections are defined; these

elements include queues, processes, sources, receivers and transmitters. After this, the

functionality of each process or queue element is defined in terms of a finite state diagram and

the transitions between states; this is the fourth level. The fifth and final level is where the

processing in each of the states in the finite state machine is defined in C code.

5.2 Network Model
A typical network model used for the simulations consists of several administrator nodes and

several thousands of client nodes. In addition, every configuration contains a �statistics node�,

which does not participate in any communication. It is developed only for setting the initial

conditions and data shared by all nodes, and collecting the global statistics at periodic intervals.

In general, the number of the administrator and client nodes varies in different simulation

scenarios, in order to examine the protocol scalability. The actual distance between nodes is

omitted; the delivery of the messages is modelled as a single-hop, independent of the underlying

infrastructure. However, the message encounters a certain transmission delay, as explained in

Section 5.5 Traffic Modelling. The simulation scenarios were performed for a duration of

several weeks of simulated time, allowing the network to exhibit all the features of described

protocol for a number of times. The typical client population ranged from between 1000 and

5000 nodes, whereas the number of the administrators was varied between 1 and 5, depending

on the experiment.

The following sections describe physical and functional properties of the node and process

models used. OPNET offers a range of modules that model different aspects of the network.

However, most of the modules used in this research are purpose-built, only using OPNET

functions for packet and memory management and event scheduling. This has enabled the

research to focus on the aspects relevant to the proposed architecture, without dissipation effort

on the low-level protocol stack and packet transmission mechanisms.

5.3 Node Models
The general model of the client and administrator nodes is presented in Figure 23. All the nodes

comprise of single ingress and egress sub-queue buffer, and a purpose-built state machine. The

�client� and �administrator� state machines are built according to the requirements described in

the previous chapter, simulating: the features of message creation and delivery, certificate

creation and assigning, database management, group management and negotiation, and

corresponding processing and transmission delays encountered.

 110

finite state
machine

(process model)
10 Mb/sec64 kb

Number of bits
capable of serving
each second

Ingress
queue

Egress
queue

Buffer Size
(bits)

Buffer
Stream

Figure 23: Generic Simulation Model of a Node (both for Client and/or Administrator)

5.3.1 Unique Node Identifiers
These are identities that serve for unique identification of the entities in the simulation model

and are inherited from the built-in OPNET�s feature to allocate different Object_id to every

object placed in the network model. In such a way, different object_ids are allocated to a node,

as well as to the queues and process model within a node. Object_ids are integer values, starting

from 1 (for the network itself) and incrementing subsequently. Generally, nodes are allocated

with the Object_id in no particular order, however the identifier does not change until the

runtime termination (e.g. client process model maintains the same Object_id regardless of how

many register/deregister events the node experiences).

The consistent use of the OPNET�s Object_ids greatly facilitates the management of data

structures, as well as modelling of node interactions. Within the scope of this research, these are

used for message routing, as a part of certificates, and as a reference in the maintained

databases.

5.3.2 Administrator
The administrator node maintains databases of the registered clients and of the CUGs it is

responsible for. At initialisation of the simulation, the administrator obtains a large random

number, which subsequently forms the part of the certificate that is issued to the clients. In order

to maintain the uniqueness of this number, it is created by the statistics node for every

administrator present. Its purpose is to model administrator�s public key and digital signature,

which by definition has to be unique in order for PKI system to operate correctly.

The administrator maintains several data structures, depicted in Figure 24. Whenever the

client�s registration is approved, it is added to the Clients list, which denotes the administrator�s

database within the scope of �local policy�. Subsequently, when client creates/joins a group, that

group_ID is added to the particular client. This is done only for the �local groups�, maintained

by that administrator, in order to facilitate orthogonal searches when actions related to the CUG

management are performed.

 111

A typical example of when this is useful would be a client�s deregistration. If a client requests to

deregister, the administrator needs to update the group member lists of all the relevant CUGs

(that the client was a member of � in a typical simulation scenario client is not member of more

than 20 groups). Instead of searching through all the possible CUGs (which can be as many as

1000) in the CUGs list, administrator �finds� the client in the Clients list and, based on the

retrieved information, accesses only the relevant groups. Therefore, this can be seen as a

reference link between the client and the CUGs it is member of.

Client_ID

Group_ID
Group_ID
gr_Certif_tag
group_upd_time
group_type

Member_ID
creator_of
join_time
remote_mem
own_Admin_ID
role_attributes[]

Client_ID

Session_ID
delivery_time
Msg_content

Administrator dBase

Clients list CUGs list Responses list

Figure 24: Data Structures Maintained at Administrator

For the purposes of group management, the administrator (now in the role of CUG manager)

maintains a separate list of the valid groups that it has created at some point in time. Each of the

elements in the CUGs list is a true �CUG policy�, maintaining all the data needed to support

appropriate functioning and management of the CUGs. Creation of a group is initiated by a

client�s request. At creation, the CUG manager defines several parameters:

• Group_ID - a unique identifier of the group.

• gr_Certif_tag � a common part of the group certificate, that models the manager�s signature

over the attribute certificate issued to a member. The �update of the certificate� over the

group population would correspond to the change of this value. Subsequently, in any peer-

to-peer or manager-member CUG communication, after the Group_ID from the message is

matched with the one from the database, legitimacy of the message is confirmed only if the

gr_Certif_tag(s) are the same. In order to keep �per-group� uniqueness of the tag, the value

 112

is chosen to be the group creation time (or subsequently the group �update� time). The

prospect of having several groups created at the same time is avoided due to single sub-

queue model, enabling that only one packet at the time can be passed to the administrator

module for processing.

• group_upd_time � the simulation time of the �next group update�, for the periodical

broadcast of group update messages. At each group update, it is incremented by a constant

value. The next update is scheduled via self-interrupt at the defined time, when the group to

be updated is identified by comparing the current time with the value of this parameter.

• group_type � a parameter randomly chosen by the manager. Its purpose is to influence the

generation of peer-to-peer traffic that characterizes different types of groups, such as

business, social, etc.

In addition to this, every group contains the list of current members. The following information

is associated with every member:

• Member_ID � inherited from OPNET�s Object_id.

• creator_of � field distinguishing the group creator, which has importance only in some of

the scenarios preformed to investigate revocation mechanisms.

• join_time � simulation time of clients� joining a group.

• remote_mem � field marking if a member is originally associated with another

administrator.

• own_Admin_ID � the Object_id of the original administrator (used only for the remote

group members).

• role_attributes[] � an array of 3 integers modelling the privilege-related attributes, as the

model allows different types of communication to be enacted among the CUG members

(e.g. email, file transfer, print job submission, etc).

Responses list is a part of the ARQ mechanism used to prevent deadlocks in the system: as

every client�s request is accompanied by the unique incremental number (Session_ID), every

response message is stored (Msg_content), referenced via this number. The field delivery_time

denotes the simulation time when message is replied to a client, enabling messages to be deleted

if the request has not been repeated after the time-out period 48.

The finite state machine model of the administrator module is given in Figure 25. Once

initialisation of the module is completed at the beginning of the simulation, the module goes

into an idle state. The largest portion of the module�s activity is governed by the incoming

messages. For every message received, its type is examined in the idle state. The messages

48 For reliability, the CUG communication protocol makes use of its own ARQ mechanism.

 113

received can be generally divided into two groups: local and remote. The appropriate states deal

with different types of the messages received and generated, upon which the message is sent and

the processing time during which the module is �frozen� is estimated.

re-
schedule,

release
Q

IdleInit

Join
CUG

Leave
CUG

Create
CUG

remote

Register
Client

Deregister
Client

delay,
block Q

send
update

Figure 25: Finite State Machine of the Administrator Module

Local messages refer to the clients� requests related to the inclusion in the CUG environment,

and these can be: register with administrator, deregister, create a new CUG, join existing CUG,

leave a CUG. The corresponding flag in the message format distinguishes these messages, and

determines the transition from the idle state 49. The message is then dealt with in the appropriate

state and the acknowledge response message is generated and sent back to the client. The

acknowledgement can be either positive or negative (i.e. client�s request has been

accepted/rejected). In the case of a negative response, the acknowledgement value zero is sent.

In the case of the positive response, the related information is included in the message. Table 5

gives the message content for each message type generated at the administrator module.

Remote messages refer to the creation of inter-domain CUGs, and have significance only in the

simulation scenarios performed with the several administrators. For the purpose of inter-domain

CUGs, clients� requests are limited to joining one of the existing CUGs and leaving a CUG. In

addition, these messages may refer to inter-administrator communication, related to the

forwarding of clients� requests as explained earlier. The remote type of message is distinguished

by a suitable flag in the message format, which determines the transition to the �remote� state. If

49 The message format is explained in detail in Section 5.4.

 114

the received message is the original client�s request, it is forwarded to the referenced �remote�

administrator node. If the received message is a forwarded request, the type of message

determines the transition to the join/leave state, where the request is served, and the message is

sent back to the client via its local administrator.

Table 5: Content of the Messages Generated at the Administrator Module. (In addition, all the
messages are accompanied with the model of the administrator’s PKI certificate)

Message type Meaning Message content
Register
response

Registration to the CUG environment
permitted

Local PKI certificate for the client,
ACK = 1

Deregister
response

Deregistration from the CUG environment
permitted

ACK = 1

Create response Creation of new CUG accepted CUG ID, AC certificate for the client,
ACK = 1

Join response Joining to the existing CUG accepted CUG ID, AC certificate for the client,
list of current members, ACK = 1

Leave response Leaving a CUG of client�s choice accepted ACK = 1
CUG update Administrator�s update of the CUG status,

broadcasted to the current CUG members
CUG ID, list of current members

Forwarding of
request/response

Local Administrator�s forwarding to the
remote Administrator or back to the client

Unchanged content, update
source/destination

ARQ response Resending of the message taken from the
ARQ database, following the Session_ID

Unchanged message content,
ARQ_flag = 1

In addition, automatic repeat requests from the clients (ARQ) are identified in the idle state

through the resend flag, and in the case of such a request the response with the corresponding

Session_ID is taken from the ARQ database and replied to. The rest of the states are omitted

and the transition leads directly to �blockQ� state (denoted with the two-way arrow in Figure

25). While in the �blockQ� state, the calculated processing time is communicated to the ingress

queue module through inter-process communication, and during this time the ingress queue is

disabled from serving and sending any further packets. This mechanism is described in more

detail in Section 5.3.4 Queues. The simulation time when the ARQ message has been resent is

updated, as the mechanism allows stored messages to be deleted after the set timeout period

expires.

Also, the administrator module generates the �CUG update� messages, targeting all the current

members of the particular group. This is implemented as the administrator module schedules the

event in the future, triggered either instantly after the member has left, or periodically (based on

the pre-defined update period).

Finally, all the actions performed during the single process invocation add up to the total

processing delay that occurs in the module for that particular invocation. The state �delay, block

Q� executes an immediate event at the ingress queue of the node model that causes queue

process module to block and stop further message delivery until it is unblocked, and schedules

 115

an event in the future that will set transition to the �reschedule, release Q� state. In the

�reschedule, release Q� state, the timers related to the processing delay are reset, and the instant

event at the ingress queue is executed, causing the queue to unblock. The principle behind this

process and the way the delay is calculated is further elaborated in Sections 5.3.4 and 5.5.1.

Generally, the processing delay takes into account data structure manipulation and the actions

related to the encryption and certificate generation. Following the approach adopted in the group

management protocol (as described in Section 4.4 Description of Security Protocol), Table 6

summarizes relevant encryption and authentication -related delays for each of the messages

processed.

Table 6: Security Procedures at Administrator Performed for Different Types of Messages

Message type Processing delay
Register response PKI certificate generation, asymmetric encryption, digital signature
Deregister response Digital signature
Create response AC certificate generation, asymmetric encryption, digital signature
Join response AC certificate generation, asymmetric encryption, digital signature
Leave response Digital signature
CUG update Digital signature
Forwarding request to the remote
Administrator

Symmetric encryption, digital signature

Forwarding response to the client Asymmetric encryption, digital signature
ARQ response None � message is already compiled, stored in ARQ database

5.3.3 Client
Clients are able to sequentially register as many times as they like, by randomly choosing one of

the available administrators. For the period of registration all management-related

communication goes via that administrator, and at every deregistration all the previous data is

destroyed. Client modules maintain the data structures as shown in Figure 26.

For every group it participates in, the client module maintains the following data (given by the

CUG manager at the joining time or via update interactions):

• Group_ID - a unique identifier of the group.

• gr_Certif_tag � a common part of the group certificate, that models the manager�s signature

over the attribute certificate issued to a member.

• own_role_attributes[] � an array of 3 integers defined by the CUG manager at the joining

time, that models the privilege-related attributes of the client.

• group_type � to distinguish between types of groups, such as social, business, etc.

• group_remote � field marking if that particular CUG is remote (associated with the CUG

manager other than client�s administrator).

• CUG_manager_ID � the Object_id of the CUG manager (used only for the remote groups).

 116

Group_ID
gr_Certif_tag
own_role_attributes[]
group_type
group_remote
CUG_manager_ID

Member_ID

Session_ID
delivery_time
Msg_content

Client dBase

CUGs list Requests list

Figure 26: Data Structures Maintained at Client

Similar to the administrator module, the Responses list is a part of the ARQ mechanism: for

every sent request, a unique incremental number (Session_ID), message (Msg_content), and the

simulation time when it has been sent (delivery_time) is stored. If the response (carrying the

same Session_ID) is not received within the time-out period, the message is re-sent and the

delivery_time is updated.

The finite state machine model of the administrator module is given in Figure 27. Once

initialisation of the module is completed at the beginning of the simulation, the module goes

into the idle state. During initialisation, one of the available administrator nodes is chosen and

the registration event is scheduled to happen at some time in the future.

The request messages related to the CUG management are generated in �initiate request� state

and delivered to the chosen administrator node. Every message is stored in the �resend� database

(ARQ list) and the event is scheduled after timeout period (following the transition to the ARQ

state) to resend the message if the acknowledge reply has not been received. For replies received

within the timeout period, the message with the corresponding Session_ID is deleted from the

ARQ list. Every reply message from the administrator is examined in idle state for the message

type, which is used to select the appropriate next state. The model allows the client to choose

the CUG it wants to leave (and this information is included in the request message), whereas for

create and join requests the client is allocated a CUG by the administrator. Separate states are

used to simulate peer-to-peer communication among the group members.

 117

re-
schedule,

release
Q

IdleInit

Join
CUG
ACK Leave

CUG
ACK

Create
CUG
ACK

initiate
request

Register
ACK

Deregister
ACK

delay,
block Q

receive
update

ARQ

Request
p2p

Reply
p2p

Figure 27: Finite State Machine of the Client Module

Dynamics and patterns of message exchange are modelled according to the case studies reported

in the literature, which is further explained in Section 5.5.2. In general, upon receipt of a reply

message, a number of choices for scheduling further message-generation events are available in

the corresponding states. This depends on the nature of the received message (namely: request

accepted/rejected) and the type of the message, which is summarized in Table 7.

Table 7: Scheduling of Events for Generation of Request Messages at Client Process Module

Event scheduled based on ACK value Message received
Accepted Rejected

Register response Deregister, create, join, ARQ Register, ARQ
Deregister response Register, ARQ Deregister, ARQ
Create response ARQ ARQ
Join response Leave, P2P, ARQ ARQ
Leave response ARQ ARQ

Most of the signalling traffic is implemented in a way that a client node cannot initiate a new

request unless the response (either positive or negative) from the previous request of the same

type has been received. However, the �initiate requests� state always schedules the additional

future event for create/join at the time of the generation of the corresponding request messages.

This gives the possibility of the multiple requests being sent before a response has been

received, and also models the generation of a subsequent request if the previous one has been

rejected. Such a mechanism has not been implemented for leave messages (in order to avoid

 118

client�s leave request when it is not member of any groups), and neither for register/deregister

(since client can be registered or deregistered only once at the time). In addition, the initial

registration request is scheduled at the time of initialisation (for triggering the simulation), and a

resend event after a timeout period is scheduled at every invocation of ARQ state.

Similar to the administrator module, all the actions performed during the single process

invocation add up to the total processing delay, causing blocking and unblocking of the ingress

queue at the client node. Table 8 summarizes relevant encryption and authentication -related

delays for each of the messages processed.

Table 8: Security Procedures at Client Performed for Different Types of Messages

Message type Processing delay
Register request Key pair generation, asymmetric encryption, digital signature
Deregister request Asymmetric encryption, digital signature
Create request Asymmetric encryption, digital signature
Join request Asymmetric encryption, digital signature
Leave request Asymmetric encryption, digital signature
Peer-to-peer Symmetric encryption, digital signature
ARQ request None � message is already compiled, stored in ARQ database

5.3.4 Queues
OPNET provides a number of different queueing disciplines [138], which cover many common

situations. The queue model used for the purpose of this research is acb_fifo (Figure 28). Its

characteristics are:

• Active: autonomously dequeue and forward packets based on service rate, (vs. passive that

instantly forwards packet when requested).

• Concentrating: all incoming packets are buffered into a predefined number of subqueues

and forwarded to the same output stream (vs. flow through, where a dedicated subqueue

exists for each pair of input/output streams).

• Bit-oriented: service delay is computed based on the bit-size of each packet (vs. packet-

oriented which uses the same constant service rate for all packets).

• FIFO (first-in-first-out): packets exit the queue in the same order they arrive (vs. LIFO: last-

in-first-out).

The majority of the experiments described in this thesis are performed to test the signalling

group-management protocol, and the chosen queue is the single subqueue (therefore treating all

the signalling messages with the same priority). The acb_fifo model takes into account different

packet sizes, and enables modelling of the network throughput (by setting the service rate).

However, the original queue model does not take into account the processing delay for specific

encryption and authentication procedures, modelled in the administrator/client process modules.

 119

In order to enable this functionality, the OPNET model has been modified as shown in Figure

28.

Packet
ArrivalInit Service

Compl
Service

Start

Unblock
Q

Idle

standard acb_fifo

determines completion of the
service on the node level

Figure 28: Finite State Machine of the Modified acb_fifo OPNET Queue Module

Initially, the packet service time is estimated (based on its bit-size) and the end of the service is

scheduled in �Service Start� state. An end of service event triggers the transition to the �Service

Compl� state, where the packet is sent and the next one taken for servicing from the head of the

subqueue. In the modified model, the Qblock constant is set such as to block further servicing at

the time of packet delivery, by disabling all transitions to �Service Start� state. This constant can

be reset only from the process module that receives packet, and only after the calculated

processing delay expires (as explained in Sections 5.3.2 and 5.3.3). Such a mechanism increases

the average queueing delay to the sum of the service times (based on the packet bit-size and the

network connection speed), and the processing time (needed to perform specific group-

management related actions). Also, for the packets generated in the process model, the remotely

scheduled event at the ingress queue will trigger the transition to �Unblock Q� state, which will

then either block or unblock queue, depending on the type of events scheduled. This enables a

processing delay to be taken into account even for those packets that are not received on the

ingress queue, but are manipulated within the node. This principle, and the placement of

modules within the network model, is further depicted in Figure 29.

 120

administrator
/ client
state
machine

ingress Q

egress Q

block inQ
when msg
sent

send
instantly

calculate processing
time based on action
performed and data
structure accessed

block inQ when message
generated
unblock inQ when timer
expires

receive

message
stream

logical
association

send

service time based on
msg_size + proc_delay

service time based
on msg_size

Figure 29: Placement of Queue Modules within Network Nodes and Inter-Module
Communication

Regarding the buffer size at the ingress and egress queues, the decision was based on the values

found in literature. For example, [145] reports that the default maximum buffer size of UNIX

OS is 256kB, and the one of Linux OS is 64kB. Any value in this range seemed reasonable, so

the buffer size of 128kB was adopted in the experiments. The service rate of the queue modules,

set to 10Mbits / sec, is that of an Ethernet connection. The egress queue delivers packets with

100ms delay, which models propagation and transmission delays across a WAN (Wide Area

Network).

5.4 Format of Messages
The message format used in the simulations is created with the OPNET �Packet Format� editor,

and is given in Figure 30. Signalling messages are modelled as a single packet of size 500 bytes.

Peer-to-peer communication is modelled as a stream of packets, where only the first one carries

�useful� information (regarding attribute certificates) and the packet sizes available are 60, 500

and 1400 bytes. Common fields for both the signalling and peer-to-peer messages are the

source, destination addresses and the appropriate certificate. For group management messages,

relevant fields are:

• Session_ID � unique message identifier to support the ARQ protocol.

• Group_ID � references the group the client is joining or leaving (not used for

register/deregister messages).

• mess_type � to distinguish the type of the signalling message.

 121

• ACK � used in administrator�s response to denote if request has been accepted (value 0/1).

• ARQ � used in client�s request to denote resent message (value 0/1).

• rem_tag � to distinguish client�s �local� and �remote� request (possible values are: 0 � local

request; 1 � remote request; 2 � administrator�s forwarding of request; 3 � remote response;

4 - administrator�s forwarding of response).

• referenced_ID � used for remote request/response messages to denote the ultimate

destination / source of the message.

If client�s request to create/join a group has been accepted, or at the CUG update, the

administrator includes the following data in the message:

• Member_ID_alloc � ID of the member that has left the group (if the CUG update is

performed instantly after a member leaves the group).

• Group_ID_alloc � relevant group (either the one that the update refers to, or the new

allocated group).

• gr_data � list of current CUG members (for the CUG update �performed either periodically

or when group member leaves a group).

• Certificate_alloc � newly allocated group certificate (at client�s joining / CUG creation) or

authentication certificate (at client�s registration).

• gr_type � referring to a social/business type of group

Source_ID Destinat_ID Session_ID

mess_type
Certificate

ACK ARQ
rem_tag referenced_ID
Member_ID_alloc
Group_ID_alloc
Certificate_alloc

gr_data
gr_type

signalling

optional
parameters

Group_ID

Source_ID Destinat_ID

mess_type
Certificate

ACK

Admin_ID Certif
action

gr_type
signalling
& traffic

Group_ID

TTL
gr_data

bulk data

Signalling
message:

P2P
message:

optional
parameters

Figure 30: Message Format Used in Simulation Model

For the client level peer-to-peer message, the relevant fields are:

 122

• Group_ID - references the group that the P2P session (and the corresponding certificate)

refers to.

• mess_type � to distinguish a P2P message from a signalling one.

• ACK � used in response message to denote whether the request for a P2P session is

accepted.

• gr_type - used to distinguish between different types of group (and therefore influence the

way P2P traffic is generated).

• action � refers to the action requested by a client, in a peer-to-peer group communication.

This is compared with the role attributes (from the group certificate) upon receipt, in order

to determine whether the requester is allowed to make such a request.

• TTL � time-to-live, determines the number of hops that the message can be forwarded.

• bulk data � used to model payload of different sizes.

As already described in Section 4.4.4.2, some of the scenarios support the CUG updates being

performed by a chosen �special� group member. In such a case, the appointed member

broadcasts to the group the message containing the following information:

• gr_data � data related to the group (i.e. current group members).

• Admin_ID � the idenitity of the entity that the information originates from.

• Certif � part of the certificate that models digital signature of the entity (i.e. administrator).

5.4.1 Certificates
The format of public-key certificates and attribute certificates is defined by [32],[47]. The same

source gives some recommendations on the typical size of the certificate, which is comparable

to several hundred bytes. In this research, certificates are modelled in two respects:

• As a means of authenticating source/destination, and defining set of the entities�

permissions (based on the relevant certificate fields as identified in Section 4.3)

• Time delays introduced by the operations needed for certificate generation, distribution and

manipulation.

Figure 31 depicts the way certificates are modelled. The Holder_ID and Issuer_ID are integer

values inherited as Opnet Object_IDs. Group_ID is an integer value, incremented by the

administrator every time a new group is created. Attrib1-3 are integer values defined at the time

of a client�s joining a group; they are used to determine what type of peer-to-peer traffic the

client can generate based on a pre-defined hard-coded table that models privileges associated

with a given role. The unique identifier is a real (floating point) value that models the certificate

issuer�s signature and the certificate serial number. For public-key certificates, its value is

defined by the �statistical node� at the simulation initialisation, and is different for each of

present administrators. For attribute certificates, its value corresponds to the current simulation

 123

time of the group creation. This ensures that one administrator does not have the same

�certificate� value for two groups it is managing (since the block/unblock mechanism of the

ingress queue prevents processing of two messages at the same time). Per-member uniqueness

of the attribute certificate (for the same group) is achieved by presenting the Holder_ID

(effectively, sender).

Public-key
Certificate

Attribute
Certificate

Holder_ID Issuer_ID Unique Identifier

Holder_ID Issuer_ID Unique Identifier
Group_ID Attrib1 Attrib2 Attrib3

unique OPNET
Object_IDs

Models:
• Issuer’s digital signature
• Certificate serial number

(Based on current
simulation time)

Set of attributes to
retrieve privileges

at recipient

Figure 31: Modelling of Certificates for Simulation

As the main purpose of the simulation was to test the group management protocol, the main

emphasis is on the interaction between clients and administrators. For messages originating

from the administrator, a client checks �Holder_ID� against the administrator�s ID stored in the

database at the registration. For messages originating from the client, the administrator

compares the �Holder_ID� against the client�s ID, by searching through the database of

registered clients. In addition to this, a check of the �unique identifier� is performed in order to

ensure that the administrator and a client belong to the same registration domain (this is

particularly important in the simulation scenarios with several administrators). The �Issuer_ID�

would be needed in the case of the certificate validation, when the certificate issuer needs to be

consulted. However, this aspect has not been included in the simulation experiments.

The approach in modelling time delays for certificate management is described in Section 5.5.1

Processing Delays.

 124

5.5 Traffic Modelling
There is no distinct traffic source in the network. The traffic sources are client nodes

themselves, which generate the appropriate signalling / data messages. Also, the administrator

nodes generate the additional traffic, depending on particular interactions. The motivation was

to test the capabilities of the nodes, and performance of the management protocol itself. The

assumption is that the underlying infrastructure is capable of providing sufficiently realistic data

flows, and for that reason additional background traffic has not been modelled.

5.5.1 Processing Delays
The processing delay is calculated taking into account magnitude of the data structure

manipulation and modelling of cryptographic algorithms performed.

Although data structures are implemented as double-linked lists, the time needed for accessing

the appropriate data is estimated based on balanced binary tree database organisation. For every

list of size N, the number of average search iterations (units) performed is estimated as the

maximum complexity of the binary search:

units = log2(N)

As an illustration, consider the example of a client who requests to leave a specific group. Let�s

assume that the number of clients registered with the administrator is 1000, and that

administrator currently maintains 500 groups where size of each of them is 100 members. Upon

receiving a request, the administrator checks if client is registered. In addition to comparing the

certificate, this is performed by searching through the list of registered clients (size of 1000):

units = log2(1000)

If this is confirmed, the administrator needs to find the appropriate group (referenced in the

client�s request) and within group�s list to match the corresponding client�s ID. Therefore, the

full number of operations is:

Units = log2(1000) + log2(500) + log2(100) = 26

The total time needed for data structure manipulation is calculated as the number of estimated

units multiplied by the base_time. This value is taken from the speed rating for an Intel

Pentium4, 2GHz CPU. Benchmarks both from Intel [140] and independent test [139] reported

values over 1000 MIPS (million instructions per second). Having in mind that a basic operation

such as an access/read/write to disc consists of dozens instruction, values in range of several

micro seconds were used. Referring back to the above example, the total time needed for the

data manipulation (e.g. for a base_time = 1 micro sec) is calculated as:

data_time = units*base_time = 26 micro sec

 125

The author is aware that modelling of different database types would impact on the performance

results. However, the decision on the database organisation to be used is to large extent based

on the choice of optimal implementation [141], which goes beyond of the scope of this research.

Also, if compared to the average values used for the modelling of cryptographic algorithms

(further down), it is obvious that this delay is nearly negligible.

Another aspect of the system delay that was modelled was that of the cryptographic algorithms.

It is well known that applying security procedures cause significant delays in processing, which

has been widely documented in the literature, both through analytical and experimental means

[3],[6],[142].

In terms of this research, detailed security requirements have been identified, which have been

elaborated through the protocol description. In terms of the simulation model, it is important to

say that no actual cryptographic algorithms were implemented. These were modelled as a time

delay (needed for performing certain operations), based on benchmark values obtained through

measurements and reported in [143],[144]. The operations performed for different types of

received / sent messages are given in Table 6 and Table 8, and the approach in modelling the

delay is described in Section 5.3.4 Queues. Table 9 lists the values used in the experiments for

modelling processing time of security procedures applied at signalling messages.

Table 9: Values used for Modelling of Security Procedures in the Simulations, taken from
[143],[144]

Operation Algorithm modelled Time (msec)
Key pair generation DH 1024 Key-pair generation 1100
Asymmetric encryption/ verification RSA 1024 public key operation 0.6
Asymmetric decryption/ signature RSA 1024 private key operation 43
Symmetric encryption/ decryption DES encryption/ decryption 0.0215
PKI/AC Certificate generation RSA 1024 private key operation 43

5.5.2 Signalling Messages
The principle of message generation at the administrator and client nodes is explained in

Sections 5.3.2 and 5.3.3. In order to properly model the organisation structure, parameters for

frequency of different events need to be identified, in addition to the appropriate model.

Currently, there is a number of researches focusing on measurements and characterization of

traffic in the Internet, and recently an increasing number of these are focusing on examining

various peer-to-peer applications and protocols. When adjusting parameters for the experiments

performed within this research, the following assumptions and reported results were considered:

• The duration of the clients� registration lasts for a relatively long time. In current e-

commerce and peer-to-peer systems client population �builds up� over very long period of

 126

time (e.g. registration of users at Amazon, bank services, etc.) with only occasional

deregistrations.

• According to [108] and [148], peer-to-peer systems exhibit no more than 15-20%

population change during a 24-hour period. In the context of this research, this is interpreted

as the group life-time could be expected to last for days.

• A recent detailed survey of the Jabber peer-to-peer platform, performed by Jabber Software

Foundation [150], reports that 78% of Jabber servers have less than 100 users, and 89% less

than 500.

• According to results reported in [108], collected during 8 days of observation of Gnutella

P2P network, the overall number of captured hosts was between 8000-10000.

• Also, the same source [108] reports that over 50% of Napster�s users and 60% of Gnutella�s

users are with broadband connections, with the majority concentrated around 1-3.5 Mbps. In

this sense, the simulator developed for the purpose of this study, modelling network

connections as 10Mbps Ethernet links would appear appropriate 50.

In consequence, different events in the simulation model are parameterised as follows (all the

values are defined as simulation time):

• Register: At the program initialisation, clients register randomly in time, over the period of-

4 weeks51. If registration is not approved, a client will try to register again within period of

12 hours. If successfully deregistered, client will attempt to register again within 1-2 days.

• Deregister: Once registered, client will schedule its deregistration request to occur within

not less than 3 weeks, but not more than 4 weeks from successful registration acknowledge.

If the deregistration request fails, another deregistration request is set to happen within 2-3

days.

• Create and Join: If a client�s registration is approved, it will attempt either to create a new

group or to join some existing ones within 24 hours. The probability of choice between a

creation and joining is set as 90% vs. 10%, in favour of a join request. In addition, if the

request for create/join is sent, another (corresponding) request is scheduled to happen within

2-3 days, or 12-24 hours, respectively.

• Leave: Once client receives the acknowledgement of successful creation or joining a group,

it will schedule a request to leave a group. As suggested in [108] and [148], there is no more

than 15-20% of population change in 24-hour period. Therefore, clients will request to leave

the group within 12-24 hours after joining with the 10% probability. Otherwise, the request

to leave the group is scheduled randomly within 1-8 days after the joining. If the original

request was rejected, client will try again to leave a group, approximately within 24 hours.

50 This also opens a potential issue of modelling several classes of users, partly based on bandwidth. However, this opportunity is

not considered further though it could form a topic for further investigation.
51 The choice of this value will be explained further down.

 127

• CUG Update (revocation): Various revocation mechanisms (as described in Section

4.4.4.2) have been tested. The approach used in the most of the experiments is that of

periodically scheduled updates. In most of the experiments the period is set to 24 hours,

although different update times were also tested and compared (see Section 6.2.2.4).

Other important parameters in the system are the actual number of groups maintained by the

administrators, as well as the group size, and also the maximum number of groups that a client

can be concurrently a member of. According to [150], most of the Jabber peer-to-peer groups

have populations of less than 100 members. On the other hand, it is reasonable to assume that

clients will rarely be members of more than ~10 groups: in a real life, an employee of a

company could be involved in several projects, but very rarely more than 5. If we include on the

top of that additional domains for the company and department, several news groups and open

communities for information sharing, the assumption is that an average user will not be member

of more than 10-15 separate CUGs. In addition, the empirical results on host connectivity from

[149] report that �about 48% of the individual IPs communicate with at most one IP, and 89%

with at most 10 other IP addresses� (at the time), supporting this assumption. From the

perspective of this research, the interpretation of these measurements is that clients will be

members of 10 different groups at most, with the majority of the groups having population of

less than 100 members52. Therefore, if a client is already involved in the maximum allowed

number of groups at the time when create/join request is scheduled to happen, it will give up the

request. In a similar way, if the administrator maintains the maximum number of groups, it will

refuse any further requests for group creation. Typical figures used in the experiments are

summarized below:

• Maximum number of groups per client: 10 groups.

• Maximum number of groups per administrator: 200 groups.

• Maximum size of each group: 100 members.

5.6 Simulation Modelling Summary
In this chapter the simulation model, developed with the commercial simulator OPNETTM, was

presented. The structure and functionalities of client and administrator nodes, as well as of

modified OPNET queue module were described. The traffic model and the processing delays

were implemented according to the findings of measurements and benchmark testing, reported

from academia and industry.

The next chapter discusses validation and verification of the simulation model. In addition,

simulation scenarios are described, and performance results obtained and analysed.

52 It is important to note here that those assumptions do not introduce any constraints on testing or functionalities of the protocol.

Those are only the figures abstracted from the real network measurements in order to set-up realistic parameters in the system.

 128

Chapter 6 Simulation Results and Analysis

6.1 Verification and Validation of the Simulation Model
In order to determine if the developed simulation model accurately represents the functional

behaviour of the system described in Chapter 4, it needs to be verified and validated.

Verification determines whether the simulation model performs as intended and the validation

determines whether the conceptual simulation model is a true and accurate representation of the

system under study. If the verification and validation of the model is satisfactory, and therefore

the model is credible, it can be used as an aid in making conclusions and decisions [153].

6.1.1 Verification
Verification of the simulation model needs to be carried out at two levels, first on a fine scale by

looking at the individual objects that make up the network and then at the whole network. In

addition to purpose-built node processes to model the administrator and client functionality, the

simulation model uses a library queue model supplied with OPNET. The library model has been

verified and tested using purpose built test models.

The simulation architecture was verified at the network layer using screen printouts, file reports,

and, in particular, OPNET ODB (debugging) tool, allowing for several kinds of traces and

breakpoints to be applied during the execution of the simulation. The overall simulation results

and the intermediate results obtained in traces and breakpoints were checked for consistency

and coherency. In particular, packet tracing was applied to confirm the path of the packets in the

system, and the content of the individual packets, as well as to reveal potential live-locks in the

system. Various simple simulation scenarios were performed, where different types of messages

were stimulated on purpose, and the path from the source to the (appropriate) destination was

traced. This was particularly important in two cases:

• When functionality for supporting inter-Administrator communication was introduced, the

correctness of the functionality for message forwarding was monitored, with respect to the

types of message.

• When ARQ functionality was added, the content of the re-transmitted messages and

�flushing� of ARQ data structures (based on the time-out period defined) was traced.

The OPNET ODB package was particularly useful for checking the implemented mechanism

for processing delay, since this functionality required inter-process communication. The

functionality was quite straightforward to implement, since OPNET allows several types of

inter-process communication, including forced invocation of remote events and specific types of

statistics that could be both read by the system and written to an output file. However, the

timing of these interrupts and the duration of the blockage period needed to be confirmed and

 129

compared against the parameters set for the system. This is where the ODB package proved

very helpful.

Test versions of the model were run for various durations and with different values of various

parameters, in order to assess the stability of the simulator in terms of memory usage,

oscillatory behaviour and potential deadlocks in the system. As an example, the diagram in

Figure 32 gives the measured number of packets in the simulation model over the time. Once

the stable state is established, the number of packets remains relatively constant, confirming that

there are no unexpected occurrences or memory leakage during the model�s runtime. Although

the actual number of packets may seem large, the number shown also includes packets

temporarily stored in the ARQ database. In addition, the simulation being performed is for a

population of thousands of clients.

0

5

10

25

15

20

number of
packets (x1000)

0 10 20 30 40 50 60

time
(weeks)

Figure 32: Number of Packets over Time

The results from pilot runs confirmed stable operation over a long period, enabling data to be

collected during the steady state. The issue of deadlocks in the system is considered in Figure

33. The number of messages going in and out of client node was collected during time windows

corresponding to 100 hours of simulation time (represented with a pair of columns in the figure)

for the run period of 20 weeks of simulated time. As the average period when client is �active�

(registered) corresponds to 3-4 weeks, this enabled tracking behaviour of client�s node over

time, interrupted with several deregistrations, which effectively corresponds to a �sleep� period.

A single pair of columns represents the messages collected within one time window, and

 130

distinguishes client�s requests and administrator�s response messages. Due to randomness of

message generations, different periods of activity are not identical, but the graph demonstrates

some aspects of the model�s successful operation.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20

time
(weeks)

message No
per 100 hours

request

response
client
registered

Figure 33: Example of Messages Generated at a Single Client Node over time

Additional verification of the model was performed through a simple experiment, where the

number of administrators and client nodes was varied, but in such a way that ratio of number of

client nodes per administrator remained constant. For example, experiments were performed for

scenarios with 1 administrator and 1000 clients, 2 administrators and 2000 clients, and so on.

During all the experiments, inter-administrator communication and remote operation was

disabled. The aim was to create isolated partitions in the scenarios with several administrator

nodes, and to keep approximately the same number of clients per administrator. This scenario

enabled to examine and verify that the client population is equally distributed among the

administration nodes. In such a setup, assuming the programming functions operate

appropriately, one would expect that parameters for each of the administrator nodes in each

partition remain the same. The values of average egress queue size measured at the

administrator nodes are given in Figure 34.

The graph shows that the spread of the values increases with the number of administrator nodes,

while the average remains relatively unchanged for different scenarios. However this is not easy

to observe from the Figure 34 alone. For this reason, a plot of the queue size with increasing

 131

number of client nodes per administrator is given in Figure 35, showing significant growth of

the queue size.

9600

9800

10000

10200

1 2 3 4 5

1A/1000cl 2A/2000cl 3A/3000cl

4A/4000cl 5A/5000cl average
average

Queue size
(bit)

Admin
Node

Number

Spread of Administrators’ Queue size, remote operation = 0%

a1

a2

a1

a2

a1

a3

a1

a4

a2

a3

a1

a5

a2
a3
a4

Figure 34: Queue Size with Remote Operation Disabled, with 1000 Client nodes per One
Administrator node

5

10

15

20

25

30

1000 2000 3000 4000

Queue size
(Kbit)

Client No

5000

1 Admin 2 Admin(s) 3 Admin(s)

4 Admin(s) 5 Admin(s)

Remote operation: 0%

Figure 35: Increase of Administrators' Queue Size as a Function of the number of Client Nodes

The dashed line in Figure 35 connects the average points given in Figure 34. As this analysis

was performed for the validation purposes only, further experiments with 5000 client nodes and

 132

different number of the administrators were not performed. However, similar results are

discussed in Section 6.2.1.2.

6.1.2 Validation
The simulation model has been validated in terms of accuracy of the collected simulation

results, which were also compared against results obtained from the mathematic analysis of the

model. In addition, the ARQ (Automatic Repeated reQuest) protocol, developed as the part of

the model, was validated for its performance and reliability, which is addressed towards the end

of this section.

In order to analyse the behaviour of the model, a simple mathematical calculation was

performed to estimate the message generation in the system. The author is aware that the

approach (to be described) is an approximation of the processes in the simulation model, but at

the same time strongly believes that it gives an insight in the behaviour of the model and

contributes to a fair prediction of the model�s activities. The example that follows looks at the

number of generated register requests over a period of time, depending on the number of client

nodes in the model.

Registration request messages are easy to analyse since their frequency depends only on the

average duration of the registration period, and on the average frequency of deregister request

messages. Parameters for these two types of messages are defined prior to run-time. The

register-deregister pair form a periodic loop which defines basic state of the client node, and its

frequency is independent from other events in the model. In addition, these types of requests

cannot be rejected by the administrator node, and the model does not support multiple per-client

requests of these types. At initialisation, each client node randomly determines the time of its

first register request, according to the equation:

Init = R1 + random(r1) (1)

Where R1 is constant value in seconds (of simulated time) and r1 is integer used as a parameter

for the invocation of OPNET procedure �uniform distribution� that generates real number in

range [0, r1].

Once registered (i.e. after receiving an administrator�s response), the client node schedules a

deregister request for some time in the future, according to:

Dereg = D1 + random(d1) (2)

Where parameters D1 and d1 have similar meaning as above.

In a similar way, when a client node receives deregister notification, it schedules an event for

register request:

 133

Reg = R2 + random(r2) (3)

And the process of (2) and (3) is repeated until the termination of the simulation.

Since the function random() gives a uniform distribution based on a specified parameter, the

time after which all the client nodes will register for the first time can be approximated to (from

(1)):

t_init = R1 + r1/2 (4)

The average duration of registered and de-registered time can be approximated in a similar way.

Given this, the time between two subsequent registration requests (for each client node) can be

estimated to the sum of registered and de-registered time (from (2) and (3)):

t_ccl = D1 + R2 + ½*(d1 + r2) (5)

Now, if total simulation time is T, it can be expressed as a function of registration time(s):

T = t_init + k*t_ccl (6)

Where k is a number of periodic repetitions of register/deregister cycle, i.e. a measure of how

many times each client node registers in the system. By substituting (4) and (5) in (6), the value

for k can be obtained as:

2

2
21

21

1
1

rdRD

rRT
k

+++

−−
= (7)

The value k is an estimation of how many cycles of register/deregister are performed by each

client node during the runtime T. During one cycle, each client will send one register request

message. Also, this cyclic behaviour starts only after expiration of initial period t_init, during

which every client sends another (the first one) register request message. Therefore, total

number of register request messages for each client could be estimated as (k+1). For the total of

N client nodes in the simulation scenario run for the time period T, the estimated number of

generated registration requests regNo is:

regNo = N*(k + 1) (8)

where k is given by the equation (7).

Table 10 gives the values used in the simulation runs for the purpose of this validation. Table 11

gives the value of k and number of registration requests calculated according to (8), for different

number of client nodes.

 134

Table 10: Parameters from Simulation Scenarios, used for Estimating Number of Requests

Parameter R1 r1 D1 d1 R2 r2 T
Value (sec) 59200 200000 1814400 604800 86400 86400 9072000

Table 11: Theoretical Values for Number of Requests, Calculated from Equation (8)

k 3.9679458641260796011040869023239
Number of client nodes 1000 2000 3000 4000 5000
Number of register requests 4967.946 9935.892 14903.84 19871.78 24839.73

For each scenario with different numbers of client nodes, a set of 10 independent experiments

was performed, using a different seed for the initialisation of random number generator in

OPNET. The number of administrator nodes was kept at 3, and all the experiments were run for

a 15-week period of simulated time. The number of register requests, collected for the whole

network is shown in Table 12. 53

Table 12: Simulation values for the number register requests, run for different seeds

Number of request messages Number of
clients seed_27 seed_666 seed_9 seed_15 seed_34
1000 4391 4426 4445 4411 4417
2000 8806 8879 8823 8837 8844
3000 13258 13268 13276 13288 13251
4000 17732 17687 17720 17716 17750
5000 22117 22073 22117 22123 22079

Number of request messages Number of
clients seed_53 seed_81 seed_117 seed_236 seed_312
1000 4442 4409 4423 4399 4402
2000 8868 8833 8841 8879 8861
3000 13219 13264 13255 13275 13243
4000 17672 17639 17711 17721 17689
5000 22099 22160 22083 22145 22064

For the values obtained, a 95% confidence interval was calculated [152], which is illustrated in

the example for 1000 client nodes. The estimation of mean value is calculated over the n

samples (n = 10) as:

5.4416)(1 ==
∑

=

n

X
nX

n

i
i

 (9)

The estimation of variance is calculated from:

()
5.316

1

)(
)(

2

2 =
−

−
=
∑

n

nXX
n

n

i
i

σ (10)

53 The following example describes the typical way the data is collected and evaluated for all the results presented in this thesis.

 135

Finally, an approximate of (1- α)100% confidence interval for estimated mean is given by:











±

−− n
ntnX

n

)()(
2

2
1,1

σ
α (11)

The value between the brackets is called half-length of confidence interval (for small samples of

an approximately normally distributed population). The parameter tn-1,1-α/2 has a T distribution

with n-1 degrees of freedom. For the sample size n<30, the exact T distribution needs to be

considered, rather than a standard normal distribution [152]. For validation of the results from

10 experiments considering 95% confidence interval, t9, 0.975 is needed, and its value is 2.262

(Table A.4 of the Appendix in [152]). Therefore, (11) becomes:

72563.125.4416

10
5.316262.25.4416

10
)10()10(

2

975.0,9

±=

±=









± σtX

 (12)

The mean and confidence interval results for other values of client population are given in Table

13.

Table 13: 95% confidence intervals, obtained with data from Table 12

Number of
clients

Number of requests
(calculated)

Number of requests
(simulation)

Estimation of relative error
(%)

1000 4967.946 4416.5 ± 12.72563 0.288138
2000 9935.892 8847.1 ± 17.33036 0.195887
3000 14903.84 13259.7 ± 13.95226 0.105223
4000 19871.78 17703.7 ± 23.11733 0.130579
5000 24839.73 22106.0 ± 22.78029 0.10305

Confidence interval is a quantitative measure, giving the absolute value of intervals where (1-

α)*100% of the experiments produced the value of the measure of interest within the intervals54.

In order to assess the accuracy of the results obtained, relative deviation of the intervals (with

respect to the estimated mean) can be calculated and expressed as a percentage. According to

[153], such expression is called estimation of relative error:

%100*
)(

)(2

2
1,1

nX
n

nt
n

σ
α−−

 (13)

Following the example with 1000 client nodes, the value obtained is:

54 In this context, an �experiment� is a set of simulation runs, and the �measure of interest� is the estimated mean.

 136

%2881384.0%100*
5.4416

72563.12 = (14)

This effectively means that the full-length of the 95% confidence intervals (the above value

multiplied by 2) corresponds to less than 1% of the average value obtained in the experiments.

The confidence interval results for other values of client population are given in the far right

column of Table 13. The confidence intervals for corresponding values from Table 13 are given

in Figure 36. 55

0

5

10

15

20

25

1000 2000 3000 4000 5000

No of messages
(x1000)

No of client
nodes

simulation

CI-

CI+

Figure 36: 95% Confidence Intervals for Simulation Results of Number of Register Request
Messages

A graph showing the results of the mean of the simulation runs against the values analytically

approximated (from Table 11) is given in Figure 37. The simulation results map closely to the

calculated values, confirming that messages are generated as expected.

Values for generated number of messages obtained through the simulations are lower due to

delays that occur in various parts of the system (processing time, transmission, queuing delay),

which has not been taken into account in the analytical model.

55 The confidence intervals for all the simulation runs were very small so they are ommited for clarity on the subsequent graphs,

unless the 95% confidence intervals exceeded 5% of the average value obtained.

 137

0

5

10

15

20

25

1000 2000 3000 4000 5000

calculated

simulation

No of messages
(x1000)

No of
client
nodes

Figure 37: Number of Register Request Messages in Function of Number of Clients: Calculated
vs. Simulated values

Both experiments and the above calculation (equations 1 to 8) were performed for various

values of parameters from Table 10, and the comparison gave comparable results to those

shown in Figure 37.

Due to a stochastic nature of the system, similar calculations would be very difficult to perform

for estimating the expected total number of messages in the model. Requests such as create, join

and leave are not independent events, and are also influenced by the limits set for the number

and size of groups. Also, events such as update messages introduce additional

interdependencies, making the calculation even more complex. Nevertheless, the previous

discussion increases the confidence in valid functioning of the simulation model.

6.1.2.1 ARQ Protocol
The Automatic Repeated reQuest (ARQ) mechanism is not an essential part of the proposed

architecture. However, it has been implemented in order to prevent deadlocks in the system, and

for the testing the robustness of the architecture in the presence of packet loss. The approach

was based on an Internet standard recommended by IETF [146]. This section presents the

validation of the ARQ protocol against two main criterions that such a mechanism should meet:

to be (reasonably) reliable, while not introducing a significant degradation of the performance at

the same time [146].

 138

The ARQ mechanism is implemented to support re-transmission of signalling messages only. A

number of choices in employing ARQ have been standardised, and [146] gives a comprehensive

and detailed guidelines for implementing different types of ARQ protocol, including choosing

its persistency and retransmission time-out period.

Based on the recommendations given in [146], the type of ARQ used in this research is Sliding-

Window, High-Persistence (highly reliable) ARQ Protocol, with 10 retransmission attempts 56

and time-out period of 1000 seconds. In [146], it is suggested that a �single IP packet should not

be delayed by the network for more than 120 seconds�, but it also points out that it is in practice

difficult to bound maximum path delay on the Internet, and suggests that estimation of the time-

out period could be based on the calculation of packet round trip path delay as recommended in

[147]. However, in this research ARQ time-out period is set to be constant at 1000 seconds,

which is much higher than the observed round trip path delay, and still much lower than the

average frequency of the message creation events in the system. In this way, the relative order

of the delivered messages in the system can be preserved, even for the retransmitted messages.

Regarding the maximum number of retransmission attempts, the value 10 is chosen arbitrarily.

For validation, the average number of retransmissions is measured for various values of loss

percentage in the system.

0

0.005

0.015

0.025

0 2 4 6 8 10

Packet
loss (%)

non-delivered
messages (%)

a)

b)

1

1.05

1.1

1.15

1.2

1.25

0 2 4 6 8 10

ARQ transmission
rate

Packet
loss (%)

Figure 38: ARQ protocol in the presence of loss: a) Average number of request retransmissions
(a value of 1 means that the original request was successful); b) Percentage of non-delivered

messages after 10 retransmission attempts

56 According to [146], Low-Persistence ARQ Protocols normally have 2-5 retransmission attempts.

 139

Figure 38a gives the results from the experiments with 3 administrators and 3000 client nodes.

The X-axis represents the value of the packet loss (in percent), and the Y-axis gives the number

of transmission attempts for the same request message initiated by the clients. For the same

simulation setup, Figure 38b gives the percentage of messages (out of the full number of

messages) that have not been delivered even after 10 attempts, depending on the packet loss

rate. The results are averaged over the full client population, for the simulation duration of 15

weeks of simulated time. Every point of the graph represents the averaged value from 8

independent experiments.

The actual values from the Figure 38a show that for a 10% packet loss, the retransmission rate

is around 1.24, and the number of non-delivered messages is around 150. Such low values give

confidence that ARQ protocol operates sufficiently good as implemented, even for very high

loss in the system.

6.1.3 Credibility of the Results
A recent publication [151], surveying of a large number of scientific publications, questions the

credibility of the reported simulation results due to a lack of detail about the simulator used and

the results presented. In order to avoid similar criticism in this research, this section addresses

the main issues pointed out in [151], namely the pseudo-random number generator and the

description of how output data was collected and analysed.

6.1.3.1 Random Number Generator (RNG)
The purpose of random number generation is to produce a sequence of numbers, drawn from a

uniform distribution over the range 0 to 1, which appears to be independent. A good random

number generator (RNG) should appear to be uniformly distributed on [0,1] and should not

exhibit any correlation between generated numbers. It must be fast and avoid the need for much

storage. A random number sequence must be reproducible; this aids debugging.

Once a simulation model has been constructed, it is typically exercised under a number of

different conditions in order to characterise the system it represents. While the model itself

remains the same, aspects of its environment, or parameters that it uses are varied in order to

establish patterns of behaviour or relationships between certain inputs of the system and

selected outputs. Stochastically modelled elements depend on a random number source on

which to base their behaviour. By �drawing� from the source, these elements can incorporate

variability into appropriate actions or decisions taken. By its very nature, it is impossible for a

computer program to exhibit genuinely unpredictable behaviour. If a simulation program

remains the same for multiple simulation runs, then any change in its behaviour must come

from a change in its operating environment (i.e. its input). In particular, even the random

 140

number stream used to implement stochastic behaviour, must be forced into a different mode in

order to give different results from simulation to simulation [153],[154].

The mechanism used to select new random number sequence relies on starting the RNG in a

different state. This initial state is known as the random number seed because it determines all

future output of the RNG. For a simulation that incorporates stochastic elements each distinct

random number seed value will produce different behaviour and give new results. Each

particular simulation can be thought of as representing one possible scenario of events for the

modelled system, but no single simulation can be used as an accurate measure of �typical�

system behaviour, since even atypical behaviours (provided they are possible) may be achieved

for some random seed. Therefore, a technique that is frequently used is to run the simulation

model multiple times while varying the random number sequence. The results obtained from the

separate simulations can be combined (usually simply by averaging) to estimate typical

behaviour.

Table 14: Comparison of the in-built Visual Studio 6.0 RNG and the Mersenne-Twister RNG

OPNET RNG Mersenne-Twister RNG
Seed Admin 1 Admin 2 (A1+A2)/2 Seed Admin 1 Admin 2 (A1+A2)/2
27 9975.628 9859.171 9917.399 412797393 9968.137 9700.289 9834.213
666 9705.497 10040.82 9873.156 1545957324 9868.764 9878.284 9873.524
9 9837.766 10085.23 9961.496 476360241 9815.663 10012.56 9914.113
15 9933.347 9848.071 9890.709 1924914039 9840.494 9909.734 9875.114
34 10090.77 9670.59 9880.682 1349489104 9912.223 10004.82 9958.52
53 9880.806 9664.294 9772.55 1736967135 9649.142 9934.74 9791.941
81 9910.221 9904.364 9907.292 82415254 10123.76 10119.83 10121.8
117 10074.11 9825.598 9949.856 253934125 9787.522 9978.003 9882.762
236 10183.09 9840.248 10011.67 49466569 10117.04 9766.055 9941.549
312 9876.834 10049.41 9963.12 519204873 9896.756 10030.9 9963.828
506 10010.64 9936.289 9973.465 515554563 9848.214 9972.722 9910.468
808 9904.225 9768.957 9836.591 110984788 9780.356 9747.069 9763.713
4 9725.446 10123.03 9924.236 987635772 10043.43 10061.29 10052.36
714 9971.887 10132.45 10052.17 1217781258 9650.646 9901.2 9775.923
715 9946.39 9557.581 9751.985 1168126118 10056.41 9842.67 9949.538
716 9809.375 9948.064 9878.719 1956146634 9862.976 9808.178 9835.577
717 9840.14 9888.31 9864.225 1328467294 9870.091 9807.607 9838.849
718 10004.32 9735.475 9869.897 1403673633 9774.806 9782.49 9778.648
719 9818.46 9748.388 9783.424 431468653 9788.96 10095.29 9942.127
720 9814.832 10110.97 9962.898 1508202608 9969.936 9950.445 9960.191
mean 9915.69 9886.864 9901.277 mean 9881.266 9915.209 9898.238
st. dev 120.983 167.2071 78.04261 st. dev 134.0737 121.3118 92.88871
95%CI 56.62115 78.25444 36.52464 95%CI 62.7477 56.77502 43.47276
rel. err 0.571026 0.791499 0.368888 rel. err 0.635017 0.572605 0.439197
CI- 9859.068 9808.61 9864.752 CI- 9818.519 9858.434 9854.765
CI+ 9972.311 9965.119 9937.802 CI+ 9944.014 9971.984 9941.711

In OPNET all of the random numbers draw from a single random number sequence initialised

with the value of the seed environment attribute. The random number generator used to create

 141

this sequence is provided by the host computer�s operating system and may vary on certain

platforms.

In this research, the OPNET random number generation source came from the Visual Studio 6.0

C++ compiler initially. However, in order to validate the random number generator, example

simulation results were compared with the results obtained when the experiments were run with

the Mersenne-Twister RNG [156]. The choice of applying Mersenne-Twister is since it is

widely studied, as well as being a recommended RNG [151]. The results given in Table 14

represent the queue size values for the scenario with two administrator and 2000 client nodes,

obtained in 20 independent runs 57. A comparative plot of 95% confidence intervals in Figure 39

demonstrates that OPNET RNG performs satisfactorily in the context of the examined

simulation model.

9800

9900

10000 OPNET RNG Mersenne-Twister

A1 A2 aver A1 A2 aver

95% confidence intervals for 20 experiments (t = 2.093)

Queue size
(bit)

Aver

CI-

CI+

Figure 39: Plot of 95% Confidence Intervals from Table 14

Based on this validation, the results obtained with OPNET RNG are considered reasonable.

However, during the examination, experiments using Mersenne-Twister proved to run as

equally fast as those with the OPNET RNG. From that point onwards only the Mersenne-

Twister RNG was used. Results presented in the rest of this chapter are from both of the

experimental phases, but which RNG has been used in particular simulation runs is not

indicated as both RNGs were considered to be satisfactory.

57 This extends the examination explored towards the end of Section 6.1.1 Verification.

 142

6.1.3.2 Output Data Analysis
One of the main parameters used for assessing the performance of the simulation model was

queue size of the administrator nodes. Depending on the setup of the experiment, queue build-

out was more significant either on ingress or egress queue module. The technique used for

analysing the stability of the performance results was the confidence-interval approach based on

independent data for steady-state parameters. The simulation model was considered to be in the

steady state after 8 weeks of simulation time (Figure 40a supports this assumption). The queue

size measurements were sampled from an 8 to 15 week period, following initial-deletion

technique [153]. In order to obtain time-plot in Figure 40, 10-hour time-windows were used for

initial averaging, therefore giving over 250 points of observation. Each of the values was

averaged over the data obtained from 10 independent experiments, forming the estimated mean

values shown in Figure 40 58.

In order to assess the choice of steady state, estimation of relative error was calculated for every

time-point from the different experiments. The graph in Figure 40b shows that the estimation of

relative error for the calculated average (from Figure 40a) decreases below 1% beyond the

chosen steady state of 8 weeks.

3

4

5

time
(weeks)

3 6 9 120

queue size
(Kbits)

15

0

1

2

3

time
(weeks)

3 6 9 120 15

95%CI / mean
ratio (%)

a)

b)

Figure 40: Estimation of Steady State: a) Queue Size in time; b) Accuracy of Experiments

On the graphs presented in the next section (i.e. Section 6.2 Performance Simulation Results),

the estimation of steady-state mean for the queue size was performed using the replication/

58 Figure contains over 250 time-sampling points which are ommited for clarity.

 143

deletion technique [153],[155]. In this approach, the observations used for the estimates are

taken beyond the warm-up period l (here, 8 weeks). According to [155], a number of n≥5

independent replications of the simulation need to be performed, each of length m observations,

where m needs to be a large number. In this work, ten replications of the simulation were

performed for each experiment, using a different seed for the random number generator. The

queue size was sampled at every packet arrival, making the number of observations suitably

large (m >> 100,000 over the 8-15 week period).

The previous paragraphs have described the approach taken in choosing the steady state of the

model. In some of the experiments transition state lasted for different period of time, which was

evaluated using the previous method. However, the number of observations in the steady state

remained very large.

6.1.3.3 Choice of Simulation Parameters for Initial Registration
As already stated, most of the parameters used in the simulation model are based on the

measurements data of analogous processes, as reported in the literature. Since the aim was to

assess the performance of the proposed architecture while the system is in steady state,

transition processes at the initialisation were not of the particular interest. However, since each

run of the simulator starts from an empty network state, followed by the initial registration of a

large number of client nodes, its potential implications were examined.

The behaviour of the system described in this section was examined during the building and

validating phase of the simulation model. One of the phenomena observed is that the choice of

parameter determining the timescale of initial clients� registration strongly impacts subsequent

activities and patterns of behaviour in the system, as well as the output results. Initial

registration is time period at the end of which all the client nodes have sent the register request

message (at least once). In two sets of experiments this value was chosen to be either very small

or very large, respectively. The output results were very different: in the first case, significant

oscillatory behaviour in the system was observed, whereas in the latter case the steady state was

reached much faster. Based on this observation, a more suitable parameter was chosen for the

performance evaluation experiments. The rest of this section describes the problem, analysis

conducted, and the conclusions obtained.

The graphs in Figure 41 show results from the experiments with 1000 clients and three

administrator nodes. Once registered, clients stay in that state for approximately 3-4 weeks, and

re-register after a very short period of non-activity (i.e. clients remain deregistered for

approximately 1-2 days). In those two scenarios, all the parameters are kept the same, apart of

the period of initial registration, during which all client nodes become registered.

 144

0 10 20 30 40 50 7060

0 10 20 30 40 50 7060

0 10 20 30 40 50 7060
0

200

400

600

800

1000

active Clients
in time

time
(weeks)

72 hours
4 weeks

initial registration:

0

10

20

30

time
(weeks)

72 hours
4 weeks

initial registration:

number of
packets (x1000)

0

0.1

0.2

0.3

time
(weeks)

72 hours
4 weeks

initial registration:

active packets vs.
total generated (%)

a)

b)

c)

Figure 41: Impact of Initial Registration Period on Processes in the Model: a) number of
registered Clients; b) active packets; c) percentage of active packets

The first value (72 hours), being very short, influences that all the client nodes perform

register/deregister request in very short time period, causing oscillations both in the number of

 145

currently registered clients and number of packets generated within the 10 hour time-window

(used for collecting the data). Due to certain randomness in the duration of

registered/deregistered period 59, the oscillations decline over the time, as the randomness in the

model increases. However, it causes flat curve of a steady state to be reached after very long

time.

The second value for initial registration period (4 weeks) is for purpose chosen to correspond to

the estimated value of cyclic behaviour (i.e. from one to the next client�s registration). In this

way, randomness is achieved from the beginning of the simulation runtime, causing much flatter

characteristics of the graphs.

0.5

1

1.5

Normalised number of packets

Normalised number of Clientsnormalised
value

time (weeks)9 14 19

Figure 42: Oscillations in the System: Traffic Volume vs. Number of Clients

The period of the oscillations in Figure 41 corresponds to the duration of the average cyclic

period between two subsequent registrations. The amplitude is proportional to the initial

registration period, and the lessening of the oscillations in time depends on the level of

randomness in the duration of registered/deregistered period (i.e. parameters d1 and r2 from

equations (2) and (3), respectively, in Section 6.1.2 Validation). Another point to note is that the

peaks for the maximum number of active packets in the system coincide with the maximum rate

of the clients� deregistration (the steepest part of the curve of active clients, at its decline). This

can be explained: at this point there is still a large number of groups and registered clients, and

the number of packets due to the clients� activity and the administrators� updates are augmented

59 This has been explained through analytical example in Section 6.1.2 Validation.

 146

with the additional deregistration requests. As this may not be very easy to observe by

comparing Figure 41a and Figure 41b (due to a figure resolution), please refer to Figure 42. The

values are normalised with the corresponding average values. The time axis indicates which part

of Figure 41a and Figure 41b the snapshot represents, with the respect to the overall simulation

time.

The results with different client population show the same general shape, only with different

absolute values and the magnitude of oscillations. Based on this examination, 4-week period of

the initial clients� registration is chosen for other experiments.

6.2 Performance Simulation Results
The simulation model was essentially designed from scratch, based on the architecture

developed during the research phase. The architecture design was an iterative process of

refinements in order to meet security requirements of the model, whilst achieving satisfactory

performance. In this sense, validation of the model represented a particular challenge, as there

was no appropriate benchmark of a comparable system found in the literature. In order to ensure

that the model is a true and accurate representation of a potential real system, most of the

parameters in the simulation model are based on the measurements data and experience reported

about systems that this architecture aims to resemble, facilitate and improve upon. To the large

extent, the motivation and approach to this has been dealt with in the previous chapter (see

Section 5.5 Traffic Modelling). This chapter comments on the various simulation results

performed under the range of conditions. The main parameters used for the assessment, and the

way they were collected, are:

• Size of ingress/egress administrator queues: at each packet arrival, the queue size is

recorded. At the end of the simulation, the accumulated value is divided by the number of

observations in order to obtain the average value.

• Delay at ingress/egress administrator queues: collected in the same way as the queue size.

• Packet round trip time: simulation time when packet is sent was subtracted from the

simulation time when the response was received. The accumulated value over all packets

transferred during the runtime was divided by the number of observations in order to obtain

the average value.

• Processing delay: delay caused by each event is accumulated over the runtime for each

node. From this, the average value is derived when the accumulated value is normalised by

the total simulation time; in general, the results are presented as processing time per 1

minute of runtime.

 147

6.2.1 General Evaluation of the Architecture

6.2.1.1 Functionalities of Signalling Protocol
Some of the basic functionalities of the architecture are demonstrated through analysis of

different types of messages generated during the runtime. In general, all types of signalling

messages can be divided in two categories (Figure 43):

Hierarchical messages, transmitted between

clients and their administrators. These include all

the requests initiated by the clients, and

responses sent back by the administrators. These

also include all the update messages imitated by

the administrators for the members of different

groups.

Peer-to-peer messages, communicated between

different administrators (group managers) for

purpose of the management of remote clients.

These include requests for remote join/leave, and

corresponding responses. Also, part of the group

update messages (sent to remote clients via their

administrators) fall into this category.

Local
Administrator

Remote
Administrator

(CUG
Manager)

Client Client Client

peer-to-peer

hierarchical hierarchical

Figure 43: Overview of Signalling
Messages in the System

All of the above are illustrated in the subsequent diagrams. The simulation setup comprised

three administrator nodes, and the probability of remote join/leave operations was set to 5%.

The number of client nodes was varied between 1000-5000, and changes in the number of

messages exchanged were observed. The other relevant operational parameters are described

with each of the figures separately.

Figure 44 shows different types of signalling messages in the system. Message statistics are

recorded at the client nodes, and summed over the whole population. For all types other than

updates, only the client�s request are shown; however, the number of the generated requests was

exactly the same as the number of the responses received, since experiments were performed

with packet loss set to zero (the effects of the packet loss are discussed in Section 6.2.2.5

Robustness). The number of update messages shown represent the number recorded as received

by client nodes (this has been compared with the number generated by the administrators, and it

was exactly the same).

 148

The general observation is that number of messages increases linearly with the growth in the

client population.

1

10

100

1000

10,000

1000 5000

clients (log)

messageNo (x1000)
(log)

register

deregister

create

join

leave

update

Different types of exchanged messages

Figure 44: Types of Signalling Messages

Number of update messages greatly exceeds the number of any other message type. This is

because the period of updates was set to 24 hours (of simulated time), which directly impacts

how frequently update reports are being generated by the administrator(s). This is examined in

more details in Section 6.2.2.4 Frequency of Periodic Updates.

The number of generated register requests slightly exceeds the number of deregister requests,

and similar results can be observed for join/leave pair. For register/deregister pair this is

expected � although every registration triggers deregistration, at the moment of the runtime

termination there is more register requests generated since those started first. However, if

simulations were run indefinitely, these two numbers would mach. The same stands for

join/leave pair: upon successful joining, exactly one leave message is scheduled to happen.

An interesting observation is that the number of create group requests contributes the least in

terms of traffic volume. As already explained in Section 5.5.2 Signalling Messages, both create

and join requests are constrained with the number of groups a client is maximally admitted to be

a member of. Once that point is reached, previously scheduled requests are ignored, and the new

ones scheduled for some time in future. Therefore, these events will generate requests only if a

client has left a group in the meantime. Since the frequency of join requests is much higher than

 149

of those for create group, client join requests are predominant compared to the number of create

request messages generated.

In Figure 45, the relationship between hierarchical and peer-to-peer signalling messages is

shown. For clarification, message types described as �client->LA� and �LA->client� do not

represent all the messages exchanged between clients and their local administrators, but only

those that are forwarded to the remote group managers.

10

100

1000

10,000

1000

clients (log)

messageNo (x1000)
(log)

5000

Hierarchical and peer-to-peer signalling communication

10% remote join/leave

total messages

local messages

client->LA

LA->RM

RM->LA

LA->client

hierarchical:

P2P:

Figure 45: Hierarchical and Peer-to-Peer Signalling Messages

The number of remote requests generated at client nodes matches the number forwarded by their

local administrators (LA) to the targeted group managers. Similar to this, the number of

responses generated at the �remote� group managers (RM) corresponds to the number of

responses forwarded by administrators to their local clients. However, the values for the number

of generated response messages are higher than those for the requests. This is due to a portion of

group update messages (generated by a CUG manager for remote group members), which

follow the message flow in the direction of response messages. The direction from client to

remote group manager includes only client�s join/leave requests; in contrast, the direction from

remote group manager to the client includes corresponding responses, as well as periodic

updates for every group the remote client is a member of. The previous elaboration also explains

inter-dependencies between the peer-to-peer messages at the administration level and certain

types of hierarchical messages (i.e. the remote ones). In addition, similar to the diagram in

 150

Figure 44, logarithmic growth of the traffic volume with the increasing number of clients can be

observed.

10

100

1000

10.000

1000

clients (log)

5000

messageNo (x1000)
(log)

remote J/L request

total update

total J/L request

remote update

Local and remote communication for 10% remote join/leave

Figure 46: Local vs. Remote Communication in Multi-Administrator Environment

Finally, the total number of the messages (comprising all the different types: local/remote

requests, responses and updates) is given for a benchmark comparison. It can be observed that

the remote communication contributes approximately 10% of the overall traffic volume. This

result is consistent with the simulation model, as the probability of remote operation was set to

exactly 10 % for this set of experiments. This is presented in more detail in Figure 46. The

values that should be compared are total vs. remote update (red and blue lines), and total vs.

remote join/leave request (yellow and navy lines). The latter represent the sum of join and leave

requests (i.e. �total J/L request� is also shown in Figure 44, but separated into two different

values for join and leave).

6.2.1.2 Performance of Signalling Protocol
Results in this section look at the performance of the signalling protocol for the same simulation

setup as in the previous section. The aim is to assess the general behaviour of the architecture.

The processing delay of nodes was limited to only those introduced by data structure

manipulation. Time needed for encryption and authentication mechanisms was not included;

that examination is dealt with in Section 6.2.2 Evaluation of Architecture with Encryption and

Authentication, onwards.

 151

0

10

20

30

40

1000 2000 3000 4000 5000

egress Queue
size (Kbit)

Client No

1 Administrator
2 Administrators
3 Administrators
4 Administrators
5 Administrators

Figure 47: Egress Queue Size at Administrator vs. Number of Clients, for Low Processing Delay

The graph in Figure 47 gives the egress queue size of the administrator node. The queue size

grows proportionally with the number of client nodes. This is caused by the increased number

of generated response and update messages. However, when more administrators are

introduced, the queue size drops as the client population served is equally shared among the

administrator nodes.

Figure 48 shows the ingress queue size at the administrator node. It shows the opposite result of

the previous observation, when more administrators are introduced. In fact, the queue size for

experiments with one administrator node is flat, whereas the increase occurs only in multi-

administrators scenarios. This suggest that the growth of the ingress queue does not occur due to

the number of clients served and messages generated, but due to some other phenomenon.

Detailed analysis of the model gives the following explanation:

In general, the number of messages received at the administrator node does not create enough

traffic to cause build-up of the ingress queue (such as the basic scenario with 1 administrator).

Multi-administrator scenarios suffer from the additional traffic caused by inter-administrator

signalling communication, and this is the reason for queue build-outs. However, it is not the

amount of traffic, but the traffic patterns that causes this. As given in Figure 45, the update

messages sent to remote group members cause the most of inter-administrator communication.

The significant property of update messages is that they are broadcast instantly to the whole

group, separated in time only by the processing delay needed to perform certain operations.

 152

Therefore, the administrator nodes in multi-administrator scenarios periodically receive a large

number of messages with very small inter-arrival time, which causes growth at the ingress

queue. This does not happen in the scenario with one administrator, since the only messages

received are clients� requests, which are much less frequent 60. This observation is very

important since it becomes more pronounced once delays for security functions are introduced

(this is addressed in Section 6.2.2.1 Scalability).

3995

4005

4015

4025

4035

1000 2000 3000 4000 5000

Client
No

ingress Queue
size (Kbit)

1 Administrator
2 Administrators
3 Administrators
4 Administrators
5 Administrators

Figure 48: Ingress Queue Size at Administrator vs. Number of Clients, for Low Processing
Delay

In addition, as observed in Figure 48, the ingress queue size for the scenario with two

administrator nodes is slightly lower compared to the values with three or more administrators.

This also contradicts the conclusion made for the egress queue, that the queue size should drop

when more administrators are introduced. Again, the explanation is due to inter-administrator

communication: for two-administrators, inter-administrator communication at the administrator

node can be received only from one source (the other administrator). For other scenarios, this

peer-to-peer traffic can be received by more than one source, potentially causing several �update

streams� to be received at the same time. Figure 48 also shows that this does not create

significant difference if number of administrators is higher than two.

60 This is also the main reason for growth of egress queues, as observed in Figure 47.

 153

0

0.1

0.2

0.3

0.4

0.5

0.6

1000 2000 3000 4000 5000

processing
time

(msec)

Client No

1 Administrator
2 Administrators
3 Administrators
4 Administrators
5 Administrators

Processing delay per
(1 min) time unit

Figure 49: Processing Time at Administrator vs. Number of Clients, for Low Processing Delay

It is also important to note here the significance of processing delay. In general, the model is

developed in a way that processing delay (calculated for each action performed) blocks the

ingress queue, therefore shifting the burden (even for the broadcast messages) from egress to

ingress queue. However, the experiments discussed here do not suffer a lot from this

phenomenon: The processing delays are calculated only for data structure manipulation, and are

very small compared to the ones for security procedures (e.g. compare values in Figure 49 with

those in Figure 53). Effectively, the ingress queue is not blocked for long enough to cause

significant queue build-out. Also, the update messages, being separated for insignificant time

values, arrive at the egress queue with very small inter-arrival times, causing the main burden at

the egress queue size. A more detailed examination that takes into account encryption/

authentication delays gives somewhat different results, which are discussed from Section 6.2.2

onwards.

The processing delay shown in Figure 49 demonstrates more intensive communication in the

scenarios with fewer administrator nodes. This is as expected since the delays depend on the

search through the list of groups and registered clients.

In addition, Figure 50 shows how the packet round trip time changes with the number of

administrator nodes. It is constant in any scenario for 2-5 administrator nodes, since the

communication path never exceeds two hops (in each way). The basic transmission and

propagation delay (which is set to 100msec each way), is augmented with the delays occurring

 154

at queues and the processing delays. There is practically no difference when the client

population changes, since the processing delay is in general negligible compared to the message

transmission time. Round trip time increases in multi-administrator scenarios, due to a portion

of messages forwarded as remote requests. Compared to the one-administrator scenario, the

growth is not significant (bearing in mind that transmission is modelled as taking 100ms), since

not all the messages travel two hops, but only 5% of join/leave requests.

0.2

0.202

0.204

0.206

0.208

0.21

1 2 3 4 5

packet round
trip time (sec)

Administrator No

1000 Clients
2000 Clients
3000 Clients
4000 Clients
5000 Clients

Figure 50: Packet Round Trip Time in Function of Number of Hops

6.2.1.3 Choice of Revocation Mechanism
One of the early experiments was performed to evaluate various proposed mechanisms for

updating of group status and revoking group certificates. As described in Section 4.4.4.2 Group

Membership Revocation, three different mechanisms were proposed:

• Administrator update � whenever a member leaves a group, the administrator in charge

broadcasts the message informing the group.

• Periodic update � at defined intervals (different for each group managed), the administrator

broadcasts update message to the group.

• Appointed member update � for each existing group, a member is chosen to perform this

function on behalf of the administrator. Whenever a member leaves the group, the

administrator compiles the list of current members and sends that message to the appointed

member, who then broadcasts it to the whole group. If the appointed member is the one to

leave, the administrator chooses another participant in the group.

 155

As the simulation parameters used in this experiment somewhat differ from those in the

previous section, it was not possible to cross-compare the results. However, all three schemes

are tested and the results for egress queue size at the administrator node for different scenarios

are presented in Figure 51.

0

10

20

30

40

50

60

1000 2000 3000 4000 5000

Administrator’s
egress Queue size

(Kbit)

Client No

‘periodic update’ scenario

‘administrator update’ scenario

‘appointed member update’ scenario

Figure 51: Performance of Administrator Node in Different Revocation Scenarios

The average user group joining/leaving period was 12 hours (simulated time), and the

probability of joining a remote group was set to 10%. The maximum size of the group was set to

100 users. Each administrator was limited to managing of 500 simultaneous groups, and each

user was allowed to be a concurrent member of 20 groups at most. For the results presented, the

experiments were performed with three administrator nodes, a varying user population from

1000 to 5000, and observing the size of egress queue of the different entities.

Figure 51 shows a linear increase of the queue size relative to the client population for the

scenarios with instant and periodic administrator updates. For a given update period (set to 100

hours of simulated time), the administrator�s queue size is significantly lower when compared

with the instant response approach. For the scenario with appointed member, the administrator�s

queue does not suffer from the growing client population, as expected. However, the burden has

now been shifted to the corresponding appointed members, as can be seen in Figure 52. For the

purpose of the experiments presented here, the scope of the appointed member role has been

limited to a single group that it participates in; i.e. no client is allowed to be the appointed

member in two or more groups. Figure 52 also shows the queue size of the ordinary group

 156

member, which remains unchanged. Exactly the same results are obtained in all the other

results; i.e. clients� queue sizes do not grow in any of the experiments where clients only

generate requests and receive the responses.

4

5

6

7

1000 2000 3000 4000 5000

egress Queue size
(Kbit)

Client No

ordinary group member

appointed group member

administrator

Figure 52: Comparison of Administrator's and Members' Queue Performance in 'Appointed
Member Update' Revocation Scenario

From a scalability point of view, the scheme with the appointed member shows the best

performance. At the same time, it is the least secure, due to the fact that administrator must

delegate a certain amount of trust to this user. If the appointed member was to become

compromised, it could operate maliciously until the administrator directly intervenes and issues

a new group membership list and updates the list of revoked certificates. However, this scheme

may be useful for relatively non-critical applications, such as advertising of administrator�s

services or other groups of interest, broadcasting general information, such as company news,

etc. Further discussion on the security of various schemes is dealt with in Section 4.4.4.2, as

well as in Chapter 7 Error! Reference source not found..

Finally, the results for periodic update scenario presented in Figure 51, show the administrator�s

performance for only one chosen value for the periodic update frequency. It is very likely that

the value chosen will impact the performance, as it directly determines the number of generated

messages in time. This effect has been explored further and the results are given in Section

6.2.2.4 Frequency of Periodic Updates.

 157

6.2.2 Evaluation of Architecture with Encryption and Authentication
This section discusses the performance of the architecture whilst incorporating values for

performing security functions, as described in Section 5.5.1 Processing Delays. As a result,

much higher processing delays are observed, which influences other output data.

6.2.2.1 Scalability
The setup for these experiments consist of a number of scenarios where either the number of

client nodes or the number of administrators were varied. For the purpose of multi-administrator

experiments, the probability of remote join/leave operations was set to 5%. In all the

experiments, the frequency period of the group update messages was set to 1 week of simulated

time (the experiments with different values of update frequency are examined in Section 6.2.2.4

Frequency of Periodic Updates).

0

0.1

0.2

0.3

0.4

0.5

0.6

1000 2000 3000 4000 5000

1 Administrator
2 Administrators
3 Administrators
4 Administrators
5 Administrators

Client
No

delay
(sec)

Processing delay per time unit
(1 min simulated time)

Figure 53: Processing Delay at Administrator vs. Number of Clients

Figure 53 gives the values for processing delays at administrator node, for simulation set-ups

with different number of client and administrator nodes. Compared to Figure 49, the values are

much higher. This is the expected result � values for modelled security functions are

comparable to tens of milliseconds (per function), whereas those for data structure manipulation

are comparable to microseconds. The processing delay does not depend anymore on only the

number of messages processed, but also on the message type. For example, the most �costly�

 158

operations are register, create/join a group, since these require a creation of the certificate 61, in

addition to other authentication and encryption functions. On the other hand, messages

forwarded by an administrator as a part of remote communication are modelled with symmetric

encryption (instead of asymmetric), and therefore require much less processing time (this is

examined in detail in Section 6.2.2.2 Impact of Remote Join / Leave).

The results in Figure 53 show that the processing delay grows with the client population (as

more messages and encryptions performed), but it drops when more administrators are

introduced (since the client population is equally shared).

The effect of processing delay is to some extent contradictory: higher values indicate that more

messages are processed within (and sent from) the node, which should result in the growth of

the egress queue. At the same time, higher values mean that the ingress queue is �blocked� for

longer time, meaning that the growth should appear at the ingress queue, allowing time for the

�flushing� of the egress queue.

Diagrams of administrator�s queue sizes are given in Figure 54 and Figure 55. The above effect

of processing delay, combined with the effect of decreased message inter-arrival times in multi-

administrator scenarios, represent a particular challenge to obtaining a meaningful interpretation

of the data gathered.

Figure 54 shows the ingress queue size at the administrator node. Similar to Figure 48, the

queue size for a single administrator does not grow. Even though the processing time for a

single administrator is very high, messages arrive at the ingress queue with high inter-arrival

times, which allows any message in the queue to be served before the next one arrives. As

already explained, this is not the case in the multi-administrator scenarios due to update

messages sent to remote group members, as a part of inter-administrator communication.

However, unlike Figure 48, the queue size is directly proportional to the number of

administrator nodes. The stream of update messages to remote group members, which causes

build-out of ingress queue, is additionally delayed at the queue due to the significant processing

time at the administrator node. This time depends on the number of client nodes served by the

administrator, which is higher if a client population is shared between fewer administrator

nodes, as shown in Figure 53. Also, the total number of messages processed per administrator is

shown in Figure 56a.

61 Certificate creation is modelled as the additional digital signature (i.e. very costly private-key operation). This effectively

corresponds to the signing of the certificate, while �filling in� the certificate fields is assumed to be included in the database
search.

 159

4

4.1

4.2

4.3

1000 2000 3000 4000 5000

ingress Queue size
(Kbit)

Client
No

1 Administrator
2 Administrators
3 Administrators
4 Administrators
5 Administrators

Figure 54: Ingress Queue Size at Administrator vs. Number of Clients

4

4.1

4.2

4.3

4.4

1000 2000 3000 4000 5000

egress Queue size
(Kbit)

Client
No

1 Administrator
2 Administrators
3 Administrators
4 Administrators
5 Administrators

Figure 55: Egress Queue Size at Administrator vs. Number of Clients

The effect of inter-administrator communication can also be observed from the egress queue

size, shown in Figure 55. As already explained, the processing delay allows the egress queue to

be served more efficiently, and the values in Figure 55 are in general much smaller than those in

Figure 47, where the processing delay is very low. Therefore, the size of egress queue in this

 160

scenario is not a true representation of the actual activity and number of messages manipulated

at the administrator node. However, this graph can be used to demonstrate the significance of

inter-administrator communication on the system performance.

400

800

1200

1600

2000

1 2 3 4 5

local messages
per Admin

total messages
in network

total messages
per Admin

message No
(x1000)

1

10

100

1000

1 2 3 4 5

Admin
No

Admin No

update msg per Admin

User->LA

LA->RM

RM->LA

LA->user

remote
msg
per

Admin

Average number of messages per Administrator Node

message No
(x1000)

- log scale -

a) b)

Figure 56: Change of Traffic Structure with Increase of a Number of Administrator Nodes: a)
total messages; b) forwarded & update messages

This is shown in Figure 56, as the number of different message types recorded for different

scenarios. The message number shown is scaled per-administrator, giving an indication of the

average amount of traffic observed by each administrator node in multi-administrator scenarios.

Figure 56a shows the overall number of messages per administrator, which reflects the

processing delays observed in the nodes. The difference between �total messages per Admin�

and �local messages per Admin� corresponds to the build-out of the queues. This is shown in

more detail in Figure 56b, by observing of a number of different types of inter-administrator

communication. Due to the logarithmic scale, the point for a single administrator is not shown,

but it crosses Y-axis at the zero point. For a setup with one administrator node, inter-

administrator communication is not possible; therefore, the only type of update messages

occurring in this case are broadcast messages for local groups. The figure also shows the full

number of update messages per administrator node, giving an indication which portion of

messages in the model contributes to the queue build-outs in the simulation setup with a high

processing delay. Please note in Figure 56b that the other four types of messages (for scenarios

with two and more administrators) all refer to the communication related to remote groups.

 161

In addition, Figure 56a gives the total number of messages during the simulation runtime. The

growth in the number of messages with increasing number of administrator nodes occurs due to

the remote communication, and directly corresponds to the sum of values for �remote messages

per Admin�, shown in Figure 56b.

6.2.2.2 Impact of Remote Join / Leave
The results presented so far have demonstrated the essential impact of the remote join/leave

operations on the system performance. In order to examine this further, experiments with

different probability of the remote operations were performed.

The simulation setup consisted of 3000 client nodes, with the number of administrator nodes

changing in different scenarios between 2 and 5, and the periodic update being performed at 1

week intervals. For each of the scenarios, a set of experiments was run for the following values

of remote operation probability (%): 0, 1, 5, 10, and 20.

The results in Figure 57 and Figure 58 show approximately linear growth of the administrator�s

queues, which is influenced both by the increased number of packets exchanged in inter-

administrator communication, and the more frequent �blocking� of ingress queue for processing

these packets.

4

4.5

5

5.5

0 5 10 15 20

egress Queue size
(Kbit)

remote join/
leave (%)

2 Administrators

3 Administrators

4 Administrators

5 Administrators

Figure 57: Egress Queue Size at Administrator vs. Remote Operation Probability

 162

0 5 10 15 20

4

4.5

5

5.5

ingress Queue size
(Kbit)

remote join/
leave (%)

2 Administrators

3 Administrators

4 Administrators

5 Administrators

Figure 58: Ingress Queue Size at Administrator vs. Remote Operation Probability

It is also worth noting that for the 0% of remote operation probability, both egress and ingress

queues remain unchanged across the range of experiments. This is consistent with the

conclusions from the previous section: for 0%, each administrator and its clients act as �isolated�

islands, effectively acting as in the experiments with only one administrator node.

0.3

0.31

0.32

0.33

0.34

0 5 10 15 20

packet round
trip time (sec)

remote join/
leave (%)

2 Administrators

3 Administrators

4 Administrators

5 Administrators

Figure 59: Packet Round Trip Time in function of Remote Operation Probability

 163

The graph in Figure 59 shows the change of the packet round trip time with increasing remote

operations. The increase is as expected, since there are more two-hop messages (between the

clients and corresponding �remote group managers�), as the probability of the remote join/leave

operation increases. The packet round trip time is higher for scenarios with fewer administrator

nodes, which is influenced by the higher processing delay (see Figure 60 and Figure 62).

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20

delay
(sec)

Processing delay per time unit
(of 1 min of simulated time) 2 Administrators

3 Administrators

4 Administrators

5 Administrators

remote join/ leave (%)

Figure 60: Processing Delay per Time Unit

1

10

100

1000

10000

0 5 10 15 20

messages
generated

(x1000)
- log scale -

total messages

local messages

client->LA LA->RM

RM->LALA->client

remote join/
leave (%)

Figure 61: Change of Traffic Structure with Increase of Remote Operation Probability

 164

The processing delay in Figure 60 demonstrates two aspects of the architecture. Firstly, the

delay is higher for the scenarios with fewer administrator nodes, which occurs when a larger

client population is served. Secondly, the delay increases as the remote operation probability

grows, due to an increasing number of forwarded messages (Figure 61 compares two-hop

messages with the overall number of messages in the simulation).

Figure 60 shows the growth of the average administrator�s node activity. Remote operations

effectively create the effect of an increased number of messages in the system, as more and

more messages are being involved in two-hop communication, introducing certain processing

effort at each node they pass. This growth in the number of messages may be difficult to

observe by looking at the �total messages� in Figure 61, due to the logarithmic scale. However,

the increase in peer-to-peer inter-administrator communication (i.e. messages �LA->RM� and

�RM->LA�) directly relates to this. For the scenario where remote operations are set to 0%,

there is no inter-administrator communication (i.e. the number of �total messages� is equal to the

number of �local messages�). Due to the logarithmic scale, points for remote messages for this

scenario are not shown in Figure 61, but they cross Y-axis at the zero point.

0 5 10 15 20

0.095

0.1

0.105

0.11

delay
(sec)

Processing delay per process invoked

2 Administrators

3 Administrators

4 Administrators

5 Administrators

remote join/ leave (%)

Figure 62: Processing Delay per Executed Event

Another property, directly related to this, can be observed in Figure 62. It shows the average

processing delay per each process executed. This was calculated as the total processing delay

(the accumulated value over the runtime for each node) was divided with the total number of

processes invoked at that node during the runtime.

 165

This delay drops with an increase of remote join/leave operations, since the forwarded messages

are less costly. Namely, the client-administrator communication is typically followed by

asymmetric encryption and signing (when sent), and the corresponding decryption and signature

validation (upon receipt). In contrast, in the administrator-administrator communication the

corresponding encrypt/decrypt process employs as symmetric encryption, which is faster to

perform. This may appear to be a benefit. However, since more events are being executed,

increased remote operations add to the processing overhead as given in Figure 60. (The same

can be approximately observed by correlating corresponding values in Figure 61 and Figure 62.)

6.2.2.3 Scalability of Grouping
The results described throughout this chapter are performed with the basic simulation setup,

where each administrator is restricted to maintaining no more than 200 simultaneous groups,

each of which can grow to a maximum size of 100 members. At the same time, each client is

allowed to be member of 10 different groups at most. As already pointed out, the periodic

update messages delivered to each group in equal intervals has a significant effect. Both the

number of groups, and the size of each of them, directly determine the number of messages that

will be sent. In order to explore this aspect of the architecture further, additional experiments

with different numbers of groups / group sizes were performed. The details of the experimental

setup and analysis of the results is given below.

The scenario is performed using a similar setup to the experiments in the previous section. The

setup comprised 3 administrators and 3000 client nodes, with 5% of remote join/leave requests.

The processing delay for authentication and encryption were taken from benchmark values, as

well as the additional delay for data structure manipulation. Updating group members was

performed in equal periodic intervals of 24 hours (of simulated time).

The purpose of the experiment was to examine the impact of the number of groups maintained

by the administrator. The approach taken was to consider the situation when each of the

participating clients is allowed to be simultaneously member of 10 groups at most. In the

scenario with 3 administrator and 3000 client nodes, each administrator would register 1000

clients on average. For each administrator in order to be able to provide membership to 10

groups for each client, it needs to allow a total of 10,000 group-member spaces, and this value

was kept constant:

Group_Size * Group_No = 10,000

However, this can be achieved through a range of options, where administrator can maintain a

large number of small groups or a few very large groups. The performance of administrator(s)

 166

was tested for several different scenarios, with extremes ranging from 10 groups of 1000

members each, all the way up to 1000 groups - each with 10 members only.

Although the actual number of generated messages remained unchanged through all the

experiments, the number of messages sent at the same time (due to a �group update�

mechanism) was expected to create differences in the behaviour of the system. The number of

update messages sent over a given time is the same for 10 groups of 1000 members, and for

1000 groups of 10 members. However, update messages for each group are broadcast to all the

members at the time determined by the time of the group creation. For a small number of groups

this does not happen as frequently as when the number of groups is large, but the number of

messages sent �in one go� is much larger, leading to more bursty traffic from (and between) the

administrator node(s).

0

5

10

15

20

10 100 1000

egress Q

ingress Q

number of Groups
(log)

Queue size
(Kbit)

GroupSize * GroupNo = const = 10.000

3 Administrators
3000 Clients
5% remote operation

Figure 63: Performance of Administrator Queue for Different Group Sizes

This effect does not cause a burden at the administrator�s egress queue (Figure 63) since the

delivery of each message is delayed by the estimated time needed for message encryption.

However, this mechanism causes longer blockages of the ingress queue (proportional to the

number of messages sent) when updates take place. In addition, a large number of messages

transmitted at once between administrators decreases the average packet inter-arrival time at the

administrator ingress queue (on average, 5% of update messages are sent by the group manager

to �remote� members). All this causes a significant burden at the administrator�s ingress queue

for larger groups.

 167

Figure 64 gives the values of average processing time (per process invoked). Regardless of the

number of groups, the client processing time remains constant since the activity of a client

remains unchanged. For the administrator node, processing delay per time unit remains

relatively unchanged, due to a constant value of GroupSize*GroupNo. However, for larger

groups periodic updates cause more messages to be generated �at once�, whereas for a larger

number of small groups this is more spread in time. This effect cannot be observed by looking

at the processing time (since it is averaged over the simulation runtime), but is visible from the

values for queue delay shown in Figure 65. The slight decrease in the administrator�s processing

time �per event� comes from the part of the processing delay introduced by data structure

manipulation, which is directly proportional to the size of the data structure accessed. This part

is higher in a scenario with a few large groups: in this case, searches need to be performed

through a long list of groups at the same time; if the administrator searches for a particular

client, the list of the group members for each group is smaller. These two effects have opposite

effects. However, the list of groups is searched more often for a particular group (join, leave,

update), than a list of group members (only required if a client is leaving or deregistering). In

fact, searches through the list of groups need to be performed when looking for a particular

group member. However, as already noted, the data structure manipulation time is much smaller

than the processing time corresponding to the encryption/authentication mechanisms and

therefore does not have a significant impact.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 100 1000

No of
Groups

GroupSize*GroupNo = const

3 Administrators
3000 Clients
5% remote operationtime

(sec)

per event, Administrator

per time unit, Administrator

per event, Client

Processing Delay:

Figure 64: Processing Delays for Different Group Sizes

 168

Finally, the number and size of groups influence the packet round trip times in a straightforward

manner: transmission times between nodes are kept the same in all the experiments, and

changes in packet round trip time are influenced by (and roughly correspond to) the queue delay

observed at the administrator nodes (Figure 65). Again, (consistent with the queue size observed

- see Figure 63) this is much more significant at the administrator�s ingress queue. (The

characteristic for egress queue delay follows the general shape as the ingress� one, but with

much smaller values that are difficult to observe on the graph in Figure 65.)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 100 1000

No of
Groups

(log)

time (sec)

GroupSize*GroupNo = const 3 Administrators
3000 Clients
5% remote operation

packet round trip time

egress Q delay

ingress Q delay

Figure 65: Delays in the System for Different Group Sizes

6.2.2.4 Frequency of Periodic Updates
This section examines periodic update mechanism in more detail. In general, the frequency of

periodic updates is a direct trade-off between security and scalability of the system [32]. In

order to explore this, experiments were performed with a typical setup of 3000 client nodes, 3

administrators and 5% of remote join/leave operation. Different scenarios were performed for

the following values of periodic updates (in hours of simulated time): 5, 10, 24, 50, 100, and

168 (1 week) 62.

The values in Figure 66 show a significant increase in the queue sizes for more frequent

periodic updates. Particularly significant is the exponential growth of the ingress queue. Both

the broadcast messages created at the administrator node, and those forwarded to the remote

group members influence the queue size. For the egress queue, the effect is due to the actual

62 As suggested in [32], typical value for the revocation period can be anything between 1 day and 1 month.

 169

number of messages served. For the ingress queue, the effect is both due to increasing number

of messages, as well as more frequent �blocking� of the queue due to the processing delay.

4

4.5

5

5.5

0 30 60 90 120 150 180

update
period
(hours)

Queue size
(Kbit)

egress Queue size
ingress Queue size

Figure 66: Administrator Queue Size for Different Periodic Update Values

0.1

0.15

0.2

0.25

0.3

0 30 60 90 120 150 180

delay
(sec)

update
period
(hours)

processing delay at
Administrator per
time unit (1min)

Figure 67: Processing Delay for Different Values of Periodic Updates

Figure 67 shows the increase in processing delay, which is significant for more frequent

message updates, as expected. Also, a comparison of the processing delay with the ingress

 170

queue size in Figure 66 demonstrates that they are closely related. Namely, for more frequent

updates more messages are generated and need to be processed, resulting in a higher processing

times being observed. In addition, due to a mechanism of queue blocking whenever �processing�

of a message takes place, the ingress queue is blocked for longer (on average). At the same time,

for more frequent updates, more messages are received at the ingress queue due to inter-

administrator communication (this is supported by the characteristics of egress queue size in

Figure 66; i.e. more messages are actually being sent for smaller update periods). Both of these

cause faster build-out of the ingress queue when more frequent update periods are employed.

6.2.2.5 Robustness
Further experiments were performed to test the robustness of the architecture in the presence of

packet loss in the system.

In general, packet loss can occur either since packets are being discarded at ingress/egress

queues (due to the overloading of the system), or due to unreliability of underlying transport

infrastructure and/or link failure. The first one is an embedded property of the system, directly

influenced by the protocol design. It reflects the scalability of the system, and is something that

cannot be removed by upgrading the underlying infrastructure. This aspect of the evaluation has

been covered in the previous sections, through a range of scenarios with different operational

parameters. The ARQ protocol was in place in order to prevent any deadlocks and deliver

retransmissions on as-needed basis. However, benchmark values for packet generation vs. queue

sizes and system throughput were set to fully support traffic activity in the system, and no

packet loss or retransmissions due to time-outs were recorded.

The second reason for packet loss, i.e. unreliability of underlying transport infrastructure and/or

link failure, is not influenced by the architecture design. It depends on the properties and quality

of services provided by the underlying transport mechanism [146]. This aspect of a distributed

communication system has not been modelled in detail. Therefore, in order to simulate

unreliable packet delivery, loss was artificially introduced. This has been done by arbitrarily

choosing a packet to be destroyed instead of delivered, at the outgoing stream of the node (i.e.

egress queue). At the initialisation of the simulation run, the percentage packet loss parameter

was set to a predefined value and kept constant during the simulation run. In addition, at every

invocation of the packet delivery procedure, a random [0,100) value was calculated. By

comparing the percentage packet loss with a random value obtained, a decision on whether the

packet is destroyed or delivered is made. A series of experiments were performed for the

following values of the percentage packet loss parameter: 0.00; 0.15; 0.20; 0.25; 0.5; 0.8; 1.0;

2.0; 5.0; 10.0. The choice of the values has been motivated by a recent measurements of Internet

Service Provider backbone traffic [157], which reports an average packet loss in the range of 0.0

 171

- 0.14%, obtained at different ISP backbones. For this reason, the experiments were performed

more densely for the small values. However, the architecture was tested for several of large

values in order to capture the behaviour of the system in the extreme conditions. In order to

make the extreme conditions more pronounced, client nodes were configured to self-initiate

registration only at the initial stage of the simulation runtime, and subsequently to act upon the

scheduled events. Therefore, if any request/response message is �lost�, a client would either: re-

initiate the request (through ARQ mechanism), or remain idle (if the ARQ mechanism is

disabled).

The experiments, as described above, were performed both with and without the ARQ

mechanism. The motivation behind this was two-folded:

• To observe changes in the availability of the nodes.

• To measure communication overhead introduced with the ARQ mechanism.

A typical scenario of 3000 client nodes and 3 administrator nodes, with 5% of remote operation

was chosen. Normally, clients would register with an administrator by sending a register request

message. If packet loss is present in the system, some of these messages will be destroyed

instead of being delivered to the administrator. Furthermore, the same can happen with the

administrator�s response message, needed to acknowledge the client�s registration. If either of

these messages is �lost�, the client initiates a repeated request after time-out period. This

mechanism increases communication activity, but greatly improves the chance that the

request/response messages will eventually be delivered. In the absence of ARQ mechanism,

client only waits for the response, and remains in a �sleep mode� until the simulation terminates.

The simulation results are presented in Figure 68 and Figure 69.

Figure 68 shows the average number of registered clients during steady state conditions. Results

with and without ARQ mechanism are compared. As the packet loss increases, the ARQ

mechanism provides retransmission, and supports very well the robustness of the system, even

for very high values of packet loss. (The actual number of retransmitted messages and the

performance of ARQ is discussed in Section 6.1.2.1 ARQ Protocol.) Conversely, if the

communication reliability is not supported with an ARQ mechanism, the system performance

degrades severely, and nearly half the nodes are removed from the network.

Examining Figure 69, looking at the cost of implemented ARQ mechanism, gives results as

expected. Without ARQ support, the queue size at the administrator node falls with increasing

packet loss, due to a decreased overall number of packets in the system. With ARQ in place, the

queue size linearly increases, proportional with the packet loss in the system. This happens for

two reasons: the overall number of packet grows due to ARQ retransmissions. Also, the

 172

frequency of retransmissions is much higher than the average frequency of client requests,

which causes the average packet inter-arrival time to drop, adding to the increase in queue size.

1500

1800

2100

2400

2700

3000

0 2 4 6 8 10

Number of
active Clients

with ARQ

without ARQ

loss (%)

3 Administrators
3000 Clients
5% remote operation

Figure 68: Architecture Robustness Achieved through ARQ Protocol

4

4.2

4.4

4.6

4.8

5

0 2 4 6 8 10

loss (%)

with ARQ

without ARQ

Queue size
(Kbit)

3 Administrators
3000 Clients
5% remote operation

Figure 69: Performance Overhead due to ARQ Mechanism

 173

A more detailed observation for relative low packet loss (0 � 0.5 %) further supports the need

for ARQ mechanism. It shows that the availability of the network is maintained nearly as

without loss, with negligible communication overhead due to the ARQ mechanism. Comparing

it with the number of available nodes in the same range of packet loss but without ARQ (in

Figure 68), the benefit is apparent. As already stated, this probability of packet loss is in line

with (and even exceeds) the values of loss normally exhibited in the Internet [157].

6.3 Analysis of Simulation Results
This chapter has examined the performance of the simulation model (described in Chapter 5) of

the architecture proposed in Chapter 4. Part of the validation process was used to determine

suitable values for some of the simulation parameters (i.e. initial registration period) in addition

to those identified from the reported network measurements.

The most important conclusion drawn is that the introduction of the processing delays for

security procedures strongly impacts on the performance of the system. Another important

observation is that inter-administrator communication introduces a significant performance

overhead; however, under steady-state conditions, the introduction of more administrators

contributes to the scalability of the scheme.

A detailed discussion of the results is presented in Chapter 7.

 174

Chapter 7 Conclusion and Further Works

7.1 Discussion
There is increasing interest in using the Internet for business-related interactions. New

technologies and applications are facilitating inter-organisational communication, forming

virtual organisational units and dynamic communities that are overcoming geographical

boundaries traditionally imposed by a hierarchical structure of a local network. However, lack

of common standards and flexible security solutions for such a dynamic and pervasive e-

business environment is still one of the main obstacles for wider and more confident business-

to-business use of the Internet infrastructure. For example, some of the requirements and

challenges for next generation collaborative working environments are identified in [4] as:

middleware integration of P2P design with centrally-managed services, management support for

inter-organisational processes, support for authentication and authorisation infrastructures

within the middleware, self-organising mechanisms to support security and management of

collaborative groups.

The main objective of this research was to develop a framework that can provide a new

distributed, secure working environment, allowing for dynamic collaboration groups without

topological constraints. In achieving this, the author has developed a hybrid architecture, which

provides a new approach for flexible inter-organisational collaborative environments, through

hierarchical security management and peer-to-peer security enforcement.

The confidentiality of the communication is achieved through combined use of symmetric and

asymmetric encryption, and the authentication is achieved through public-key certificates within

the scope of local Public Key Infrastructure (PKI), managed by an administrator node. The

authorisation rights for different clients are defined at the administration level, both within the

scope of the organisation and within the scope of a group, and distributed to the corresponding

clients by means of attribute certificates, using local Privilege Management Infrastructure (PMI)
63. As discussed in Sections 2.2 and 2.3 of Chapter 2, encryption functions and certificate

infrastructures provide a means for establishing and maintaining secure and authenticated

communication, with the hierarchical certificate infrastructures being more suitable for the

deployment of a consistent policy model preferred by corporate environments. The aspects of

policy definition and policy negotiation between different administration nodes (including, for

example, electronic contracts that may need to be agreed between different parties participating

in a group) is outside the scope of this thesis.

63 The structure of PMI cloesly resembless that of PKI, with the distniction that the latter one manages public-key certificates and

the first one attribute certificates which do not contain a public key.

 175

The enforcement mechanism, contained at the end-entity participating in a group, maintains

only relevant (but complete) policy for a particular client, based on its privileges in an

organisation and in the participating groups. Also, a client�s attribute certificates contain the

credentials of a client corresponding to its role within various groups. The enforcement takes

place for incoming messages (by comparing the certificate credentials with the request), and for

outgoing messages (by comparing client�s policy with respect to the intended action). This

research does not cover the actual means for implementing enforcement mechanisms. The

distributed firewall mechanism, initially proposed in [68], which various approaches are

described in Section 2.4.1, considers enforcing security policy rules at the access control point,

but is less concerned with the mechanisms for the delivery of these rules within a dynamic

environment. On the other hand, trust management systems, summarised in Section 2.3.3,

provide a framework for the management of authorised access through usage of attribute

certificates and access control mechanisms, but normally require that part of privilege

certificates and policy rules be independently collected from public directories upon specific

requests.

The CUG architecture suggests that the protection of administrator nodes should be ideally

supported with separate security features, such as hardware firewalls and a dedicated intrusion

detection system. This is the preferred option, since the administrators are high-value assets, and

their protection and availability need to be assured by means independent of the mechanisms

they manage. However, the architecture does not restrict the setup where administrator nodes

are protected by a distributed firewall instance, running on the node and enforcing

administrator-level privileges.

In general, the operations of the CUG architecture are supported through a set of protocols.

Delivery of relevant policy and management of groups is done through hierarchical client-server

interactions, as well as through peer-to-peer interactions on the administrator level, for

supporting inter-organisational groups. These interactions are similar to those in extranet Virtual

Private Networks (VPN). VPNs, being refined through the years of commercial use, offer a

consistent security model suitable for policy management typical of corporate (and cross-

domain) environments, but do not provide scalability and flexibility needed to support

increasing numbers of nomadic users. The main advantage of the CUG architecture over VPNs

comes from the flexibility introduced by the additional peer-to-peer protocol at the client level,

which supports direct interactions among the group members, both in a unicast and multicast

manner. The security of a group is achieved through protected communication and the

distributed enforcement at the distributed firewall instance at the each entity participating in a

group. Various peer-to-peer architectures have been proposed by a number of researchers,

addressing the issues of flexibility and scalability of the communication. In order to support the

 176

security of the system, they are moving to hybrid models (that resemble hierarchical structures),

but still do not provide a consistent model for inter-organisational collaborations. In general,

these proposals do not include mechanisms for security enforcement (such as, for example,

distributed firewall mechanisms), but mainly concentrate on protection of the communication

through data encryption and authentication (in some cases through digital certificates).

The CUG architecture proposed in this thesis brings together aspects of peer-to-peer and client-

server communication model, with digital certificates for distribution of security policies and

distributed firewalls for policy enforcement. The architecture itself offers a unified approach for

supporting communication and security within cross-domain dynamic distributed collaborative

groups, through: flexible and scalable way of the communication, robustness and dynamics of

the group management, and security of the overall environment (both in terms of the users and

of actual communication). In this thesis, the emphasis has been on the general framework and

evaluation of the signalling protocol, although a multi-layered mechanism for distributed

security enforcement has been proposed. The thesis does not cover aspects of security policy

definition, meaning the language for specifying the policy or the actual structure of the

certificates in order to accommodate a particular policy deployment model.

One of the important considerations is the choice of a group update mechanism, essential for

maintaining security and propagating information concerning current group members. From the

security perspective, the purpose of the group update mechanism is not only to inform the

members on the current scope of the group, but also to enable the alteration of current members�

privileges by re-issuing the certificates they posses and modifying the enforcement rules at the

distributed firewalls. In this sense, the advantage of a periodic update mechanism is that it gives

certain flexibility to the administrator to perform off-line compilation of new rules and

certificates, and to deliver these at pre-determined times. This approach may also be beneficial

for clients who would know in advance when to expect the update, if the absolute time is agreed

at the level of a CUG. This feature would not be straightforward to implement with �instant

administrator update� scenario. Since the timing of updates will not be known in advance, an

administrator may be forced to perform group updates and policy updates separately, which

would introduce additional overhead. This approach, commonly adopted for multicast and ad-

hoc networks, on the other hand provides a higher level of security by minimising the time

period when the scope of the group is uncertain. As demonstrated, the �appointed member

update� scenario offers the best scalability, and is one of the simpler enhancements often used in

group multicast protocols. However, this means that the administrator must delegate a

significant amount of trust to this member which is not the preferred option, particularly in

cross-domain groups where it may be difficult to choose a suitable client node. Also, within the

 177

CUG architecture, this functionality may be adapted to cover broadcast of the messages carrying

a list of current members, but not the updating of the policy.

Another important consideration from the security viewpoint is the amount of information

contained in the attribute certificates. As described in Chapter 4, every client in the CUG

architecture makes use of one attribute certificate per group it participates in. However, as

pointed out in Section 2.3.3, there are access control mechanisms that support attribute based on

the credentials presented in the certificate, where the full role of an entity (within a group) may

be described by a number of certificates. Although the CUG architecture supports this (see the

description of the structure of the certificates in Section 4.3.2), this issue has not been

considered further. However, one of the obvious choices would be to have a basic attribute

certificate that binds the client�s identity to a group, and (at least) another certificate that carries

set of credentials. In this way, the basic certificate can be presented at the initial session

establishment to increase confidence at the authentication process. Since it does not carry a lot

of information about the group policy (i.e. sometimes, group names can be public as well), the

basic certificate is not security-critical. Once the authentication is performed and the

membership to a group confirmed, all the subsequent attribute certificates can be transferred

encrypted in order to obtain access rights.

The simulation model used to evaluate the proposed Closed User Groups architecture has been

described in Chapter 5. It has been primarily developed to evaluate the performance of security

protocols for group and certificate management, whereas the distributed enforcement

mechanism has been left to the design-level description as proposed in Chapter 4. All of the

protocol functionalities described in Section 4.4 have been implemented and validated, and the

performance results were analysed in Section 6.2. The remaining part of this section further

discusses the results obtained.

The most significant conclusion drawn is that the introduction of the processing delays for

security procedures strongly impacts on the performance of the system. In general, when

compared to the scenario without high processing delays, the observation is that the egress

queue size drops whereas ingress queue size increases. This happens due to the built-in

mechanism for blocking the ingress queue, which prevents further messages from being

serviced for the estimated time needed to process request/response message64. Since the

64 Taken out of the context of this research, this effect could be applied to regulate the traffic through the node, by automatically

shifting the burden between ingress and egress queue. For example, if thresholds for the ingress and egress queue sizes are
defined, ingress queue can be blocked when the threshold of the egress queue is exceeded, and unblocked when its own threshold
is reached. Thresholds could be defined statically, dynamically, by employing hysteresis, or blockage can be activated only for
certain message/packet types. Since all building blocks involved in this process reside within a single node it is possible to
establish this type of control, as demonstrated through the simulation results. Obviously, such an approach is not practical if the
build-out of the ingress queue is generally higher, but it may be beneficial in the systems such as the model described in this
thesis, where one incoming message initiates the broadcasting of a number of messages.

 178

mechanism developed allows ingress queues to be directly controlled by the estimated

processing effort, these results are also valuable in evaluating the processing cost at the

administrator under the range of conditions, in addition to the assessment of the message

passing � related to scalability of the system. Effectively, this information (together with the

measured values for the processing time) gives an insight into the cost of actions that need to be

performed on the CPU in order to perform security functions.

On the other hand, the experiments performed with low processing delay nearly completely

remove the interdependencies between the number of messages served and their content. As

such, the results obtained from these experiments may be valuable in estimating the

performance of the system if the administrator nodes were developed with separate dedicated

resources both for maintaining the queues, and processing the information.

Another important observation is that inter-administrator communication introduces a

significant performance overhead. This is caused by two phenomena:

• The administrator, acting as an intermediate node in the path between clients and

corresponding remote group manager, forwards every request and subsequent response

message. This effectively increases a number of messages going through the intermediate

node, compared to the situation where inter-administrator communication is avoided.

• All of the forwarded messages, but in particular the periodic updates to remote group

members, contribute to decreased inter-arrival times at the ingress queue of the intermediate

node. The round trip of forwarded client requests and subsequently received responses, as

well as forwarding of remote updates messages, have much higher frequency than the

average request messages received by the administrator in a single-administrator scenario.

Therefore, the expected benefit in the performance when more administrator nodes are

introduced is only partial, and can be observed only in the scenarios without significant

processing delay. This demonstrates that the burden at the administrator node decreases when

more management nodes are introduced. This observation may be valuable under circumstances

when inter-administrator communication is rare, and if more management nodes are introduced

only to accommodate larger client population. In these conditions, as demonstrated,

administrators and their clients behave as �isolated� parts of the simulation model, exhibiting the

same properties as a single administrator would do in a correspondingly smaller environment.

However, this situation is of no particular interest in this research, since the inter-administrator

protocol is one of the fundamental concepts of the proposed CUG architecture, developed to

facilitate management of cross-domain groups.

 179

Also, the general benefit of the multi-administrator approach can be evaluated by comparing the

processing delays recorded. These values are consistently higher for scenarios with fewer

administrators in the experiments performed both with low and high processing delays.

In order to simulate the inter-organisational environment, more detailed experiments were

performed with multi-administrator scenarios, stimulating inter-administrator communication

under the range of conditions. The general observation is that in multi-administrator

environment, the model scales better with more administrator nodes due to the decomposition of

the client population. Experiments with non-equal client populations per administrator have not

been performed (which may be a common occurrence in the real system), but the performance

of administrator nodes in such a setup can be estimated through interpolation. This is reasonable

to assume: the main performance overhead comes from message forwarding and inter-

administrator communication. As the administrator can act only on the behalf of its local clients,

those serving smaller client population will perform better.

There is a major benefit from maintaining a large number of small groups, compared to a few

large groups. Scalability of the model improves due to a fact that the update messages are more

distributed in time, as less messages are broadcast (to the small group) at each periodic update.

Therefore, it is better for an administrator, under the same conditions, to manage a lot of small

separate communities, rather than a large one (or a few). This is very valuable result, consistent

with one of the main hypothesis of this research: grouping of clients into the communities of

common interest facilitates their management, since the security rules need to be distributed

only to the part of population that is (potentially) engaged in the communication determined by

their membership.

The main performance overhead of the peer-to-peer interactions at the administrator level are

due to decreased inter-arrival times of the incoming messages. The essential cause of this is due

to the mechanism used for the group update, and by the clients� ability to generate requests for

remote groups. The amount of remote requests generated directly determines the number of

responses, as well as the number of update messages sent to remote group members. In the

simulation model used in this work, the frequency of remote requests (and clients� actions in

general) is modelled as averaged values of actions in time, the same for all the clients. These

values are extracted from the various traffic measurements reported in the literature. Results in

all of the sources consulted give an indication on how �majority� of the population behaves, but

also demonstrate that there may be large spread in the activity of individual clients. This is in

particular true for various peer-to-peer architectures observed, where the amount of traffic

generated by different nodes can have significant variations. This has not been captured through

the simulation model, since all the client nodes in the model behave the same (with a certain

 180

degree of randomness). However, this is unlikely to affect the administrators� performance, but

only performance of various clients in the model, and it was not the focus of the investigation.

Several mechanisms for group update broadcasting have been proposed, and compared for

performance and security. Experiments have demonstrated the scalability of the �appointed

member update� mechanism. However, the results obtained are performed for a set-up with

signalling communication only. Normally, the �appointed member� would be also involved in

the data communication within the CUG, in which case data traffic will impact the performance

of client node, and potentially compromise reliability of the signalling. However, the signalling

messages do not occur very frequently, and would indeed contribute to the overall group traffic

much less than the data traffic would be expected to. By implementing a priority queueing

mechanism for the signalling messages, higher reliability and robustness of the scheme can be

achieved even for the applications of high volume traffic. In such a case, delivery of signalling

messages is independent on the amount of data traffic exchanged. Although prioritising

signalling messages could cause the additional loss of data, this is less critical; also a number of

mechanisms (including ARQ) exist in current communication networks to offer support for

message reliability and delivery, across different layers of protocol stack.

The �instant� and �periodic� administrator update are two other mechanisms for group update

broadcasting that have been proposed. These update mechanisms are comparable, both in the

performance and security (if the appropriate frequency is chosen), with the latter one giving

certain flexibility to the administrator in scheduling the time for updates. In addition, the

security implications of each scheme have been discussed above. A detailed examination of the

periodic update scheme demonstrates that the update frequency directly impacts the

performance of the administrator. As already noted, this is a direct trade-off between the

scalability and security of the model: more frequent updates assure more timely delivery of the

information about group members and revoked group certificates, but introduce additional

overhead at the same time. This may need to be taken into account, depending on the type and

scope of the group and security needed for the individual groups. Experiments where the update

period is not the same for all groups have not been performed. In addition, since the group

update is the only message type where one incoming message initiates a number of outgoing

messages and broadcast to a group, it may be possible to implement priority queueing at the

administrator, with respect to the type of signalling message received or being sent. This may

help in achieving higher robustness of the system. However, the system (of the examined size of

the population) has demonstrated successful operation even without this improvement, as the

messages loss was observed only when loss was artificially introduced at egress queues.

 181

The robustness of the architecture has been achieved by using an ARQ (Automatic Repeated

reQuest) protocol. The experiments conducted even under extreme conditions demonstrate a

tolerable level of performance despite the overhead introduced by the ARQ mechanism. More

detailed examination, performed for values of packet loss that commonly occur in the Internet,

shows that the overhead is insignificant compared to the benefit.

The simulation model developed during this research served to assess the basic functionalities

and performance, and to investigate the potential concerns of the new architecture. A number of

issues and points of further interest have been outlined and addressed through the discussion

above. Various simulation scenarios can be developed to further explore the model.

However, the existing simulation model is not suitable for evaluation of other aspects of the

architecture, such as enforcement mechanisms and policy management model. In order to assess

these features, and demonstrate the practical value of the CUG architecture (particularly in

terms of security), a real implementation may be more suitable. Also, the architecture presents a

basic framework for secure and dynamic group working. In order to bring it closer to the real

examples of emerging e-business models, further advancements are needed. All of these are

discussed towards the end of this chapter.

7.2 Conclusions
The emerging paradigm of Virtual Organisations, aiming to provide dynamic and secure

environment for distributed collaborations, is imposing new requirements on current

communication and security models. Significant research efforts, developing certificate

infrastructures and distributed firewall mechanisms on one side, and Grid and peer-to-peer

architectures on the other, are trying to address some of the important issues raised.

The objective of this research was to develop a suitable architecture that can provide secure and

flexible means for the management of dynamic collaborative environments. The main outcome

of the work is the new hybrid architecture of Closed User Groups. The CUG architecture

combines aspects of peer-to-peer and client-server communication models, enabling flexible

and scaleable formation and management of cross-domain groups. In addition, a mechanism for

distributed enforcement of security policies is proposed, based on distributed firewall paradigm

and a hierarchical model of public-key and attribute certificate infrastructures.

A performance evaluation through simulation has demonstrated the prospective benefits of per-

group security policy distribution, but has also pointed out some potential issues of inter-

administrator communication. Although a more detailed simulation model could examine these

 182

issues further, a prototype implementation would be more beneficial, by including aspects of

real policy deployment and actual enforcement mechanisms.

Nevertheless, the satisfactory operation of the CUG architecture has been demonstrated. In

embryonic form it offers a framework that facilitates management of dynamic security

perimeters, suitable to support interactions across the organisational domains.

7.3 Further Work
There are several directions where the work presented in this thesis could be developed further.

One of the plans is to develop a test-bed implementation of the proposed architecture, and initial

steps in this direction have already been made. Recently, the author has been approached by the

members of EU Project GRASP (Grid-Based Application Service Provision) [158], which aims

to design and implement (using GRID technologies) a layered architecture for one-to-many and

many-to-many service provisioning business models. The initiative concerning this research is

to adopt the described CUG architecture for providing security mechanisms within the business

model architectures proposed in GRASP. The initial evaluation of the applicability of the CUG

architecture has already been done, and it has been concluded that the hybrid message-exchange

protocol and the framework for certificate-based grouping are generic enough in order to be

applied as a security layer within the GRASP models. The architecture would be implemented

as a middleware using Microsoft.NET platform. A hybrid protocol would be developed by

means of the SOAP (Simple Object Access Protocol) message format, and the certificates and

privilege allocation mechanism would be implemented through a combination of local public-

key infrastructure and security tokens directly provided by the SOAP specification [159]. The

plans for distributed security enforcement are less concrete as they (at this stage) may depend on

the platform and the specific business model, although the multi-layered approach (as proposed

in this thesis) will be considered.

The CUG architecture proposed in this thesis provides a framework for secure and trusted

operations of dynamic groups. In order to enable inter-organisational collaborations in a

business context, a further requirement is to support these interactions in a similar way to

traditional organisations, to ensure the compliance with their existing business agreements. To

this end the CUG architecture can make use of services provided by the specialised systems for

management of electronic contracts. These services, for example, facilitate recording of newly

created terms of agreement, monitoring their performance, and arbitration and enforcement in

the case of contract non-compliance. An approach to this has already been proposed in [DIM],

as a joint effort.

 183

Finally, another possible direction for future work is to extend the proposed CUG architecture in

order to include mobility of the users. It may be possible to extend the proposed architecture to

accommodate the Mobile IP framework [160]. This could be achieved by moving part of the

security enforcement functions from the end-entity to the access routers (such an approach has

already been proposed in [161], as means for optimising CPU usage on, normally less powerful,

mobile nodes). In order to achieve this, the current protocol would need to be extended to

include the transfer of the corresponding security rules in order to accommodate node mobility

and roaming services.

 184

References

[1] 2002 Australian Computer Crime and Security Survey, www.auscert.org.au/

[2] Computer Security Institute (CSI): CSI/FBI Computer Crime and Security Survey, Reports for

2001-2003, available from: http://www.gocsi.com/

[3] Stallings W.: Cryptography and Network Security. Prentice Hall, 1999. ISBN 0138690170

[4] Expert Group on Collaboration@Work: Next Generation Collaborative Working Environments

2005-2010. Report of European Commission / European Space Agency Expert Group (Kick-Off

Meeting), Brussels, Belgium, 4th May 2004

[5] Wang G.W.: Inter-Networking Security. Proc of IEEE International Conference on Communication

Systems (ICCS), November 1994, Singapore

[6] Menezes A., Oorschot P.van, Vanstone S.: Handbook of Applied Cryptography. CRC Press, 1996.

ISBN: 0-8493-8523-7, www.cacr.math.uwaterloo.ca/hac/

[7] Coras: General Definitions and Terminology, www.nr.no/coras

[8] Graham R.: Hacking Lexicon. http://www.robertgraham.com/pubs/hacking-dict.html

[9] Chirilo J.: Hack Attacks Revealed: A Complete Reference with Custom Security Hacking Toolkit.

John Wiley & Sons, 2001, ISBN 0-471-41624-X, pp. 944.

[10] IBM Report: Safe Surfing: How to Build a Secure World Wide Web Connection. IBM Redbooks

SG24-4564-00, April 1996, http://www.redbooks.ibm.com

[11] Shirey R.: Internet Security Glossary. RFC 2828, Category: Informational, IETF, May 2000.

[12] Adan M., Elmgren E., Fosdike D., Granum D., Mendoza D., Spangberg L.O., Tang R., Zeier E.:

AS/400 Internet Security Scenarios: A Practical Approach. IBM Redbooks SG24-5954-00, July

2000, www.redbooks.ibm.com

[13] Group of Authors: Hack Proofing Your Network: Internet Tradecraft, Syngress Publishing Inc.,

2000.

[14] Computer Viruses FAQ: http://www.faqs.org/faqs/computer-virus/

[15] Daemen J., Rijmen V.: AES Proposal: Rijndeal, September 1999.

[16] Diffie W., Hellman M.E.: New directions in cryptography. IEEE Transactions on Information

Theory, 22/6, June 1976, pp 644-654.

[17] Rivest R.L., Shamir A., Adleman L.M.: A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems. Communications of the ACM 21/2, February 1978, pp 120-126.

[18] Neuman C., Yu T., Hartman S., Raeburn K.: The Kerberos Network Authentication Service (V5).

Internet Draft, IETF, 15th February 2004 (expires 15th August 2004). http://www.ietf.org/internet-

drafts/draft-ietf-krb-wg-kerberos-clarifications-05.txt

[19] Tung B., Neuman C., Hur M., Medvinsky A., Medvinsky S., Wray J., Trostle J.: Public Key

Cryptography for Initial Authentication in Kerberos. Internet Draft, IETF, 20th February 2004

(expires 20th August 2004). http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-init-18.txt

[20] ITU Recommendation X.509, The Directory: Authentication Framework (also ISO/IEC 9594-8,

1995). International Telecommunications Union, June 1997.

[21] Kent S.: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key

Management. RFC 1422, IETF, February 1993.

 185

[22] Kohnfelder L.M.: Towards a Practical Public-key Cryptosystem. Bachelor Thesis, Massachusetts

Institute of Technology, May 1978.

[23] Wiener M.J.: Performance Comparison of Public-Key Cryptosystems. RSA Laboratories�

CryptoBytes, Vol. 4, No 1, Summer 1998, pp 1-5; http://www.rsasecurity.com/rsalabs/cryptobytes/

[24] Branchaud M.: A Survey of Public-Key Infrastructures. MSc Thesis. Department of Computer

Science, McGill University, Montreal, March 1997.

[25] PGP Corporation, http://www.pgp.com

[26] Atkins D., Stallings W., Zimmermann P.: PGP Message Exchange Formats. RFC 1991, Category:

Informational, IETF, August 1996.

[27] PGP Corporation: Introduction to Cryptography. May 2003; www.pgp.com/products/whitepapers

[28] Gerck E.: Overview of Certification Systems: X.509, PKIX, CA, PGP & SKIP. Proc of Black Hat

Conference, Las Vegas, USA, July 1999. http://www.blackhat.com/html/bh-usa-99/bh3-index.html

[29] IETF�s Public Key Infrastructure X.509 (PKIX) Charter, http://www.ietf.org/html.charters/pkix-

charter.html

[30] Adams C., Farrel S.: Internet X.509 Public Key Infrastructure: Certificate Management Protocol.

RFC 2510, Category: Standards Track, IETF, March 1999.

[31] Chokhani S., Ford W., Sabett R., Merrill C., Wu S.: Internet X.509 Public Key Infrastructure:

Certificate Policy and Certification Practises Framework. RFC 3647, Category: Informational,

IETF, November 2003.

[32] Housley R., Polk W., Ford W., Solo D.: Internet X.509 Public Key Infrastructure: Certificate and

Certificate Revocation List (CRL) Profile. RFC 3280, Category: Standards Track, IETF, April

2002.

[33] Myers M., Ankney R., Malpani A., Galperin S., Adams C.: X.509 Internet Public Key

Infrastructure: Online Certificate Status Protocol (OCSP). RFC 2560, Category: Standards Track,

IETF, June 1999.

[34] Boneh D., Ding X., Tsudik G., Wong C.M.: A Method for Fast Revocation of Public Key

Certificates and Security Capabilities. Proc of 10th Usenix Security Symposium, Washington DC,

USA, August 2001; http://www.usenix.org/events/sec01/boneh.html

[35] Boneh D., Franklin M.: Identity Based Encryption from the Weil Pairing. SIAM Journal of

Computing, Vol. 32, No. 3, pp. 586-615, 2003; http://epubs.siam.org/sam-bin/dbq/article/39852

[36] Identity-Based Encryption E-mail: http://crypto.stanford.edu/ibe/

[37] Callas J.: Identity Based Encryption, CTO Featured Topic, PGP Corporation; November 2003;

http://www.pgp.com/company/ctocorner/index.html

[38] The PKI Page; http://www.pki-page.org/

[39] Verisign Home; http://www.verisign.com/

[40] Verisign Certification Authority Practice Statement; https://digitalid.verisign.com/test_ca_cps.html

[41] Ellison C.: SPKI Requirements. RFC 2692, Category: Experimental, IETF September 1999.

[42] Ellison C., Frantz B., Lampson B., Rivest R., Thomas B., Ylonen T.: SPKI Certificate Theory. RFC

2693, Category: Experimental, IETF September 1999.

[43] Wang Y.: Simple Public Key Infrastructure (SPKI). Seminar on Network Security, Authorization

and Access Control in Open Network Environment, Proceedings of the Helsinki University of

Technology, December 1998; http://www.hut.fi/~yuwang/publications/SPKI/SPKI.html

 186

[44] Rivest R.L., Lampson B.: SDSI- A Simple Distributed Security Infrastructure. (version 1.0),

September 1996; http://theory.lcs.mit.edu/~rivest/sdsi10.html

[45] Clarke D., Elien J.-E., Ellison C., Fredette M., Morcos A., Rivest R.L.: Certificate Chain Discovery

in SPKI/SDSI. Journal of Computer Security, Vol. 9, Issue 4, 2001, pp. 285-322

[46] IETF�s Simple Public Key Infrastructure (SPKI) Charter; http://www.ietf.org/html.charters/spki-

charter.html

[47] Park J.S., Sandhu R.: Smart Certificates: Extending X.509 for Secure Attribute Services on the

Web. Proc of 22nd National Information Systems Security Conference, Crystal City, Virginia, USA,

October 1999.

[48] Farrel S., Housley R.: An Internet Attribute Certificate Profile for Authorization. RFC 3281,

Category: Standard Tracks, IETF, April 2002.

[49] Sandhu R.S., Samarati P.: Access Control: Principles and Practice. IEEE Communications

Magazine, Vol. 32, No 9, September 1994.

[50] Sandhu R.S.: Future Directions in Role-Based Access Control Models (Keynote Lecture). Proc of

International Workshop on Mathematical Methods, Models and Architectures for Computer

Networks Security (MMM-ACNS 2001), May 2001, St. Petersburg, Russia

[51] Dulay N., Lupu E., Sloman M., Damianou N.: A Policy Deployment Model for the Ponder

Language. Proc of 7th IEEE/IFIP International Symposium on Integrated Network Management,

Seattle, USA, May 2001.

[52] Linn J.: Attribute Certificates: An Enabling Technology for Delegation and Role-Based Controls in

Distributed Environments. Proc of 4th ACM Workshop on Role-Based Access Control, Fairfax,

Virginia, USA, October 1999.

[53] Herzberg A., Mass Y., Michaeli J., Ravid Y., Naor D.: Access Control Meets Public Key

Infrastructure, Or: Assigning Roles to Strangers. IEEE Symposium on Security and Privacy (S&P

2000), Berkeley, California, USA, May 2000.

[54] Al-Kahtani M.A., Sandhu R.: A Model for Attribute-Based User-Role Assignment. 18th Annual

Computer Security Applications Conference, Las Vegas, Nevada, USA, December 2002.

[55] Blaze M., Feigenbaum J., Ioannidis J., Keromytis A.: The KeyNote Trust-Management System

Version 2. RFC 2704, Category: Informational, IETF, September 1999.

[56] Chadwick D.W., Otenko A., Ball E.: Role-Based Access Control with X.509 Attribute Certificates.

IEEE Internet Computing, Vol. 7, Issue 2, March/April 2003, pp. 62-69

[57] Thompson M.R., Essiari A., Mudumbai S.: Certificate-Based Authorization Policy in a PKI

Environment. ACM Transactions on Information and System Security (TISSC), Vol. 6, Issue 4,

November 2003, pp. 566-588

[58] Chadwick D.W., Otenko A.: A Comparison of the Akenti and PERMIS Authorisation

Infrastructures (invited paper). Proc of ITI/IEEE 1st International Conference on Information and

Communications Technology (ICICT 2003), Cairo, Egypt, December 2003, pp. 5-26

[59] Cheswick W.R., Bellovin S.M.: Firewalls and Internet Security: Repelling the Wily Hacker, 1st

Edition. Addison Wesley Professional, April 30th, 1994, ISBN 0201633574, pp. 320; also available

at http://www.wilyhacker.com/1e/

[60] Snyder J.: Pushing firewall performance. Network World Fusion Newsletter, 12th March 2001;

http://www.nwfusion.com/reviews/2001/0312rev.html

 187

[61] Pfleeger C.P., Pfleeger S.L.: Security in Computing, 3rd Edition, Prentice Hall PTR, February 2003,

ISBN 0130355488

[62] Blakley B.: Three Myths of Firewalls. http://web.mit.edu/kerberos/www/firewalls.html

[63] Computer Security Institute (CSI): 2003 CSI/FBI Computer Crime and Security Survey, 8th

Annual. Computer Security Issues & Trends, Spring 2003; http://www.gocsi.com/

[64] Das K.: Protocol Anomaly Detection for Network-based Intrusion Detection, SANS (SysAdmin,

Audit, Network, Security) Institute InfoSec Reading Room, January 2002; http://www.sans.org/rr/

[65] Snapp S.R., Brentano J., Dias G.V., Heberlein L.T., Ho C., Levitt K.N., Mukherjee B.: DIDS

(Distributed Intrusion Detection System)- Motivation, Architecture, and an Early Prototype. Proc

of 14th National Computer Security Conference, October 1991, pp. 167-176.

[66] Janakiraman R., Waldvogel M., Zhang Q.: Indra: A Peer-to-Peer Approach to Network Intrusion

Detection and Prevention. Proc of 12th IEEE International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE�03), June 2003. Linz, Austria. pp. 226-231.

[67] Gamez D., Bigham J., Cuthbert L.: An Architecture for Anomaly Detection and Repair in Large

Complex Critical Infrastructures. Proc of 10th International Conference on Telecommunication

Systems, Modelling and Analysis, Monterey, California, USA, 2002.

[68] Bellovin S.M.: �Distributed Firewalls�. ;login:, The Magazine of USENIX Association, November

1999, pp.37-39. http://www.usenix.org/publications/login/1999-11/features/firewalls.html

[69] Ioannidis S., Keromytis A.D., Bellovin S.M., Smith J.M.: Implementing a distributed firewall.

Proceedings of the 7th ACM Conference on Computer and Communications Security (CCS 2000),

Athens, Greece, November 2000, pp. 190-199

[70] Keromytis A.D., Ioannidis S., Greenwald M.B., Smith J.M.: The STRONGMAN Architecture.

Proc of 3rd DARPA Information Survivability Conference and Exposition (DISCEX III),

Washington, DC, USA, April 2003, pp. 178-188.

[71] Jin H., Xian F., Han Z., Li S.: A Distributed Dynamic micro-Firewall Architecture with Mobile

Agents and KeyNote Trust Management System. Proc of 4th International Conference on

Information and Communications Security, Singapore, December 2002, LNCS 2513, pp. 13-24

[72] Gangadharan M., Hwang K.: Intranet Security with Micro-Firewalls and Mobile Agents for

Proactive Intrusion Response. Proc of International Conference on Computer Networks and Mobile

Computing, (ICCNMC'01), Beijing, China, October. 2001, pp. 325 � 332

[73] Meredith L.M.: A Summary of the Autonomic Distributed Firewalls (ADF) Project. Proc of 3rd

DARPA Information Survivability Conference and Exposition. Washington DC, USA, April 2003.

[74] Payne C., Markham T.: Architecture and Applications for a Distributed Embedded Firewall.

Annual Computer Security Applications Conference (ACSAC�01), New Orleans, Louisiana, USA,

December 2001.

[75] Munson J.C., Wimer S.: Watcher: The Missing Piece of Security Puzzle. Proc of 17th Annual

Computer Security Applications Conference (ACSAC�01), New Orleans, Louisiana, USA,

December, 2001.

[76] Provos N.: Improving Host Security with System Call Policies. Technical Report 02-3, Center for

Information Technology Integration, University of Michigan, November 2002;

http://www.citi.umich.edu/techreports/ (also, proc of 12th USENIX Security Symposium,

Washington, DC, USA, August 2003; pp. 257-272)

 188

[77] Ferguson P., Huston G.: What is a VPN? Revision 1, April 1998,

http://www.employees.org/~ferguson/vpn.pdf

[78] Venkateswaran, R.: Virtual private networks. Potentials, Journal of IEEE, Vol.20, Issue 1,

February/March 2001; pp.11-15

[79] Metz C.: The Latest in Virtual Private Networks: Part I. Journal of Internet Computing, IEEE,

Vol.7, Issue 1, January/February 2003; pp. 87-91.

[80] Smith B.R., Agrawala P., Badea M., Johnson J., Vernaillen T., Walsh A.: iSeries IP Networks:

Dynamic! IBM Redbooks, SG24-6718-01, September 2003, www.redbooks.ibm.com

[81] Rigney C., Livingston S.W., Merit A.R., Simpson W.: Remote Authentication Dial In User Service

(RADIUS). RFC: 2865, Category: Standards Track, IETF, June 2000.

[82] Ansper A., Buldas A., Freudenthal M., Willemson J.: Scalable and eficient PKI for inter-

organizational communication. Proc of 19th Annual Computer Security Applications Conference

(ACSAC 2003), December 2003 Las Vegas, Nevada, USA; pp.308-318.

[83] Kent S., Atkinson R.: Security Architecture for the Internet Protocol. RFC 2401, Category:

Standard Tracks, IETF, November 1998.

[84] Dierks T., Allen C.: The TLS Protocol - Version 1.0. RFC 2246, Category: Standard Tracks, IETF,

January 1999.

[85] De Clercq J., Paridaens O.: Scalability implications of virtual private networks. Communications

Magazine, IEEE, Vol.40, Issue 5, May 2002; pp.151-157.

[86] O�Guin S., Williams C.K., Selimis N.: Application of Virtual Private Networking Technology to

Standards-Based Management Protocols Across Heterogeneous Firewall-Protected Networks. Proc

of IEEE Military Communications Conference (MILCOM�99), Atlantic City, New Jersey, USA,

November 1999, Vol.2, pp.1251-1255.

[87] Boutaba R.: On Managing Virtual Private Networks. In IEEE Canadian Review, No 39, winter

2002, pp.19-22.

[88] Gleeson B., Lin A., Heinanen J., Armitage G., Malis A.: A Framework for IP Based Virtual Private

Networks. RFC 2764, Category: Informational, IETF, February 2000.

[89] Dondeti L.R., Mukherjee S., Samal A.: Survey and Comparison of Secure Group Communication

Protocols. Technical Report, University of Nebraska-Lincoln, June 1999;

http://citeseer.ist.psu.edu/dondeti99survey.html

[90] Rafaeli S., Hutchison D.: A survey of key management for secure group communication. ACM

Computing Surveys (CSUR), Vol.35, Issue 3, September 2003; pp. 309 � 329

[91] Wallner D., Harder E., Agee R.: Key Management for Multicast: Issues and Architectures. RFC

2627, Category: Informational, IETF, June 1999.

[92] Mittra S.: Iolus: A Framework for Scalable Secure Multicast. Proc of ACM SIGCOMM�97

Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication; Cannes, France, September 1997; pp. 277-288

[93] Canetti R., Pikas B.: A Taxonomy of Multicast Security Issues. Internet Draft, IETF, November

1998; http://www.wisdom.weizmann.ac.il/~bennyp/draft-canetti-secure-multicast-taxonomy-01.txt

[94] Ballardie T., Crowcroft J.: Multicast-Specific Security Threats and Counter-Measures. Proc of

Symposium on Network and Distributed System Security (SNDSS�95), San Diego, USA, February

1995

 189

[95] Agarwal D.A., Chevassut O., Thompson M.R., Tsudik G.: An Integrated Solution for Secure Group

Communication in Wide-Area Networks. Proc of 6th IEEE Symposium on Computers and

Communications, Hammamet, Tunisia, July 2001

[96] Ateniese G., Steiner M., Tsudik G.: New Multiparty Authentication Services and Key Agreement

Protocol. IEEE Journal on Selected Areas in Communications, Vol.18, No.4, April 2000; pp. 628-

639

[97] Balenson D.M., Dinsmore P.T., Heyman M., Kruss P.S., Scace C., Sherman A.T.: Dynamic

Cryptographic Context Management (DCCM). Final Report, NAI Report #0776, NAI Labs,

Security Research Division of Network Associates, Inc., Glenwood, USA, April 2000

[98] McDaniel P., Prakash A., Honeyman P.: Antigone: A Flexible Framework for Secure Group

Communication. Proc of 8th USENIX Security Symposium, Washington DC, USA, August 1999;

http://www.usenix.org/publications/library/proceedings/sec99/mcdaniel.html

[99] Weis B.: The Use of RSA Signatures within ESP and AH. Internet Draft, IETF, December 2003

(expires: June 2004); http://www.ietf.org/internet-drafts/draft-ietf-msec-ipsec-signatures-00.txt

[100] Hardjono T., Weis B.: The Multicast Group Security Architecture. RFC 3740, Category:

Informational, IETF, March 2004

[101] Napster; http://www.napster.com

[102] O�Reilley P2P Directory Listings; http://www.openp2p.com/pub/q/p2p_category

[103] Schollmeier, R.: A definition of peer-to-peer networking for the classification of peer-to-peer

architectures and applications. Proc of 1st IEEE International Conference on Peer-to-Peer

Computing (P2P 2001), Linköping, Sweden, August 2001, pp. 101-102.

[104] Oram A. (editor): Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Published by

O�Reilly & Associates, Inc., March 2001, ISBN 059600110X

[105] Seti@Home, http://setiathome.ssl.berkeley.edu/

[106] Gnutella, http://gnutella.wego.com ; also, http://www.gnutella.com/

[107] Freenet, http://freenet.sourceforge.net

[108] Saroiu S., Gummadi P.K., Gribble S.D.: A Measurement Study of Peer-to-Peer File Sharing

Systems. Technical Report W-CSE-01-06-02, Department of Computer Science & Engineering,

University of Washington, Seattle, June 2002.

[109] FastTrack, http://developer.berlios.de/projects/gift-fasttrack/

[110] Peter S.A.: Jabber Technology Overview. 2001, http://docs.jabber.org/general/html/overview.html

[111] Maymounkov P., Mazieres D.: Kademlia: A Peer-to-peer Information System Based on the XOR

Metric. Proc of 1st International Workshop on Peer-to-Peer Systems (IPTPS '02), MIT Faculty

Club, Cambridge, MA, USA, March 2002; http://www.cs.rice.edu/Conferences/IPTPS02/

[112] Zhao B.Y., Huang L., Stribling J., Rhea S.C., Joseph A.D., Kubiatowicz J.D.: Tapestry: A Resilient

Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas in

Communications, Vol.22, No.1, January 2004; pp. 41-53.

[113] Barkai D.: Technologies for sharing and collaborating on the Net. Proc of 1st International

Conference on Peer-to-Peer Computing (P2P 2001), Linköping, Sweden, August 2001; pp.13-28.

[114] Groove; http://www.groove.net/

 190

[115] Wierzbicki A., Strzelecki R., Swierezewski D., Znojek M.: Rhubarb: a tool for developing scalable

and secure peer-to-peer applications. Proc of 2nd International Conference on Peer-to-Peer

Computing, 2002. (P2P 2002), Linköping, Sweden, September 2002; pp.144-151.

[116] Delco M.R., Ionescu M.D.: Secure Peer-to-Peer File Sharing within Dynamic Groups. Technical

Report, Computer Science Division, University of California, Berkeley, 2001; available at:

http://www.comp.nus.edu.sg/~zhanghan/paper/berkley-dg.pdf

[117] Fenkam P., Dustdar S., Kirda E., Reif G., Gall H.: Towards an access control system for mobile

peer-to-peer collaborative environments. Proc of 11th International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE 2002), Pittsburgh,

Pennsylvania, USA, June 2002; pp.95-100.

[118] Gong L.: JXTA: a network programming environment. Internet Computing, Journal of IEEE,

Vol.5, Issue 3, May-June 2001; pp.88-95.

[119] Yeager W., Williams J.: Secure peer-to-peer networking: the JXTA example. IT Professional,

Journal of IEEE, Vol.4, Issue 2, March-April 2002; pp.53-57.

[120] Lawton G.: Technology news - Is peer-to-peer secure enough for corporate use. Computer, Journal

of IEEE, Vol. 37, Issue 1, January 2004, pp.22 � 25.

[121] Chien E.: Malicious Threats of Peer-to-Peer Networking. Symantec Security Response Whitepaper,

December 2001; http://securityresponse.symantec.com/avcenter/reference/malicious.threats.pdf

[122] Foster I., Kesselman C., Tuecke S.: The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. Published in International Journal of Supercomputer Applications, 2001;

http://www.globus.org/research/papers/anatomy.pdf

[123] Castro-Leon E.: The Web Within the Web. Spectrum, Journal of IEEE, Vol.41, Issue 2, February

2004; pp.36-40.

[124] Tuecke S.: The Future of Grid and Web Services. Technical Tutorial, Imperial College, London,

UK, January 2004 (org. by National e-Science Centre UK); http://www.nesc.ac.uk/esi/events/385/

[125] Welch V., Siebenlist F., Foster I., Bresnahan J., Czajkowski K., Gawor J., Kesselman C., Meder,

S., Pearlman L., Tuecke S.: Security for Grid services. Proc of 12th IEEE International Symposium

on High Performance Distributed Computing, Seattle, Washington, USA, June 2003; pp.48-57.

[126] Globus Project home page, http://www.globus.org

[127] Frohner A. et al: DataGrid Security Design Report. EU Deliverable, March 2003;

http://edms.cern.ch/document/344562

[128] DataGrid Project homepage, http://www.edg.org

[129] DataTAG Project home page, http://www.datatag.org

[130] Pearlman L., Kesselman C., Welch V., Foster I., Tuecke S.: The Community Authorization

Service: Status and Future. Conference for Computing in High Energy and Nuclear Physics

(CHEP03), La Jolla, California, USA, March 2003.

[131] Alfieri R. et al: Managing Dynamic User Communities in a Grid Autonomous Resources. Proc of

Conference for Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, California,

USA, March 2003.

[132] IBM/Microsoft: Security in a Web Services World: A Proposed Architecture and Roadmap.

Version 1.0 (A joint security whitepaper from IBM Corporation and Microsoft Corporation), April

2002; http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

 191

[133] Ericsson Technical Manual: �AXE 10 Operation & Maintenance�, Ericsson Systems, 1998.

[134] Ericsson Review: �Understanding Telecommunications�, September 2003,

http://www.ericsson.com/support/telecom/

[135] Santesson S., Polk W., Barzin P., Nystrom M.: �Internet X.509 Public Key Infrastructure Qualified

Certificates Profile�, RFC 3039, Category: Standards Track, IETF, January 2001.

[136] Housley R., Ford W., Polk W., Solo D.: �Internet X.509 Public Key Infrastructure Certificate and

CRL Profile�, RFC 2459, Category: Standards Track, IETF January 1999.

[137] Mil3 Home Page, OPNET. http://www.mil3.com

[138] OPNET Online Documentation - General Models: Process Model/Queuing, OPNET Modeler 8.1,

MIL3, March 2002.

[139] Bennet K.: Testing of Pentium4 at 2GHz. http://www.hardocp.com/article.html?art=Nywx

[140] Intel Pentium 4 Processor, http://www.intel.com/products/desktop/processors/pentium4/index.htm

[141] Loosley C., Douglas F.: High-Performance Client/Server: A Guide for Building and Managing

Robust Distributed Systems. John Wiley & Sons, Inc. 1998. ISBN 0471162698

[142] Mijatovic V., Djordjevic I.: IPSec � The Analysis of Cryptographic Algorithms. Proc of 7th Annual

IEEE International Telecommunications Forum (TELFOR�99), Belgrade, Yugoslavia, November

1999. (not available in English)

[143] Dai W.: Speed Comparison of Popular Cryptographic Algorithms � Benchmark Testing;

http://www.eskimo.com/~weidai/benchmarks.html

[144] Wiener M.J.: Performance Comparison of Public-Key Cryptosystems. CryptoBytes, The technical

newsletter of RSA Laboratories, Vol4, No1, Summer 1998.

[145] Tierney B.L.: TCP Tuning Guide for Distributed Applications on Wide Area Networks. Usenix

;login:, February 2001. http://www-didc.lbl.gov/tcp-wan-perf.pdf

[146] Fairhurst G., Wood L.: Advice to link designers on link Automatic Repeat reQuest (ARQ). RFC

3366, Category: Best Current Practice, IETF, August 2002.

[147] Paxson V., Allman M.: Computing TCP's Retransmission Timer. RFC 2988, Category: Standards

Track, IETF, November 2000.

[148] Nogueira D., et al: A Methodology for Workload Characterization of File-Sharing Peer-to-Peer

Networks. 5th IEEE Workshop on Workload Characterization (WWC-5), Austin, Texas, USA,

2002. pp 118-126, also: http://www.dcc.ufmg.br/~diego/index_eng.html

[149] Sen S., Wang J.: Analysing Peer-to-Peer Traffic Across Large Networks. Proc of 2nd Internet

Measurement Workshop, Marseille, France, 6-8 November 2002. http://www.icir.org/vern/imw-

2002/ . Also, to appear in ACM/IEEE Transactions on Networking (ToN), 2004.

http://www.research.att.com/~jiawang/my_research.html#p2p

[150] Jabber Software Foundation: Jabber Peer-to-Peer System Survey, March 2003, available at:

www.jabber.org/jsf/surveys.php?PHPSESSID=a6686b59b234649b796a421cd685aded

[151] Pawlikowski K., Jeong H.D.J., Lee J.S.R.: On Credibility of Simulation Studies of

Telecommunication Networks. IEEE Communications Magazine, January 2002. pp 132-139

[152] Walpole R.E., Myers R.H., Myers S.L., Ye K.: Probability and Statistics for Engineers and

Scientists, 7th Edition. Prentice Hall 2002. ISBN 0-13-098469-8

[153] Law A.M., Kelton D.: Simulation Modelling and Analysis. 3rd Edition, McGraw-Hill Higher

Education, 1991. ISBN 0-07-059292-6

 192

[154] Holness F.M.: Congestion Control Mechanism within MPLS Networks. PhD Thesis, University of

London, September 2000

[155] Bodanese E.: A Distributed Channel Allocation Scheme for Cellular Networks using Intelligent

Software Agents. PhD Thesis, University of London, November 2000

[156] Mersenne-Twister Home Page. http://www.math.keio.ac.jp/~matumoto/emt.html

[157] Newman D.: Core Competency - ISP Backbone Test. Network World Fusion Newsletter, 16th

December 2002. http://www.nwfusion.com/research/2002/1216isptest.html

[158] GRASP Project Home Page; http://www.eu-grasp.net

[159] SOAP Specification version 1.2, W3C Recommendation, June 2003; http://www.w3.org/TR/soap/

[160] Johnson D., Perkins C.: Mobility Support in IPv6. Internet Draft, Mobile IP Working Group, IETF,

June 2003 (expires December 2003); draft-ietf-mobileip-ipv6-24.txt

[161] Lehtonen S., Ahola K., Koskinen T., Lyijynen M., Pesola J.: Roaming Active Filtering Firewall.

Proc of Smart Objects Conference (SOC�03), May 2003, Grenoble, France; http://www.grenoble-

soc.com

 193

Appendix: Author’s Publications

[DJO1] Djordjevic I., Phillips C.: Certificate-based Distributed Firewalls for Secure e-

Commerce Transactions. 40th Annual FITCE Congress, August 2001, Barcelona,

Spain; published in Journal of the Institution of British Telecommunication Engineers,

Vol. 2, part 3, pp. 14-19.

[DJO2] Djordjevic I., Scharf E., Raptis D., Gran B.A.: Suitability of Risk Analysis Methods

for Security Assessment of Large Scale Distributed Computer Systems. Proc of 6th

International Conference on Probabilistic Safety Assessment and Management (PSAM

6), San Juan, Puerto Rico, USA, June 2002; published by Elsevier Science Ltd, July

2002, ISBN 0-0804-4120-3

[DJO3] Djordjevic I., Dimitrakos T.: Towards Dynamic Security Perimeters for Virtual

Collaborative Networks. 2nd iTrust Workshop, Imperial College, University of

London, September 2003, London, UK, http://www-dse.doc.ic.ac.uk/Events/itrust/

[DIM] Dimitrakos T., Djordjevic I., Milosevic Z., Jøsang A., Phillips C.I.: Contract

Performance Assessment for Secure and Dynamic Virtual Collaborations. Proc of 7th

IEEE International Enterprise Distributed Object Computing Conference (EDOC'03),

September 2003, Brisbane, Australia

[DJO4] Djordjevic I., Phillips C.: Architecture for Secure Work of Dynamic Distributed

Groups. Proc of 1st IEEE Consumer Communication and Networking Conference

(CCNC'04), January 2004, Las Vegas, Nevada, USA

[DJO5] Djordjevic I., Phillips C., Dimitrakos T.: An Architecture for Dynamic Security

Perimeters of Virtual Collaborative Networks. Proc of 9th IEEE/IFIP Network

Operations and Management Symposium (NOMS 2004), April 2004, Seoul, Korea

[BIG] Bigham J., Jin X., Gamez D., Djordjevic I., Phillips C.: Dynamic Trust Management

of Semi-Automated Complex Systems. IIIS International Conference on Computing,

Communications and Control Technologies (CCCT'04), August 2004, Austin, Texas,

USA

