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Abstract— This paper examines the problem of Dynamic 
Routing and Wavelength Assignment (DRWA) in Wavelength 
Division Multiplexed (WDM) networks with the wavelength 
continuity constraint applied. Traditional search algorithms like 
Integer Linear Programming and Graph Colouring become 
inefficient for solving optimization problems like DRWA because 
of the complexity of the task. Particle Swarm Optimization 
(PSO) inspired by swarm intelligence is proposed here to solve 
DRWA. A novel fitness function is designed for members of the 
swarm population that takes into account the normalized path 
length of the chosen route and the normalized number of free 
wavelengths available over the whole path. This normalization 
enables the approach to be self-tuning. Simulation results 
obtained for NSFNET and EON show that the proposed PSO-
based scheme achieves a low blocking probability as compared 
to other swarm intelligence schemes like Genetic Algorithms 
(GA) for DRWA. 

Index Terms—Dynamic RWA, Swarm Intelligence, 
Wavelength Continuity, All-Optical WDM networks. 

I. INTRODUCTION 

Wavelength Division Multiplexed optical networks possess 
considerable bandwidth capacity [1] as separate optical 
channels can coexist on the same fibre link. Users 
communicate by optical channels called ‘lightpaths’ being 
setup between the provider-edge access points over a meshed 
network of links connected via Optical Cross Connect (OXC) 
devices. However, in order to route information along paths 
over these links generally requires a process call Optical-
Electrical-Optical (O-E-O) conversion inside the OXC 
devices so that the information can be interrogated and re-
modulated onto a different wavelength for each leg of its 
journey. In all-optical networks this process can be simplified 
allowing the information arriving at the OXC to remain 
encoded onto a particular wavelength that is simply redirected 
to the appropriate output, typically using Micro-Electro-
Mechanical Systems (MEMS). 

The establishment of lightpaths creates logical circuits on 
top of the physical topology of the WDM optical network. If 
the intermediate nodes along the chosen route for the 
lightpath to be setup are not equipped with wavelength-
conversion capability [2], then the same wavelength needs to 
be employed along its entire path. This restriction is known as 

the wavelength continuity constraint. Furthermore, two 
lightpaths sharing a common edge (i.e. link) of the network 
need to be assigned unique wavelengths as shown in Figure 1. 
In this case two lightpath share a common edge between node 
‘7’ and node ‘10’, therefore each needs to be assigned a 
unique wavelength. This is called the “wavelength clash 
constraint”. 
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Figure 1: 14 Node, Wavelength Routed WDM NSFNET with Example 

Lightpath Connections 
 
When a connection request is made to setup a new end-to-

end lightpath, a Routing and Wavelength Assignment (RWA) 
mechanism attempts to find an appropriate route and assigns a 
wavelength for it. The RWA approach can be categorized into 
two types: static and dynamic [3]. In Static RWA (SRWA), 
all the lightpath requests are known in advance, and the 
problem is to assign routes and wavelengths in a global 
manner, while minimizing the network resources [4]. In 
Dynamic RWA (DRWA), the lightpath requests arrive 
unexpectedly with random holding times. The objective of 
DRWA is then to find route and assign wavelength so that the 
blocking probability of the connection requests is reduced. 
SRWA is a well-known NP (Nondeterministic Polynomial-
time) - Hard problem [5]. DRWA is more challenging 
because the lightpath requests arrive randomly and stay in the 
network for random amount of time. Traditional mathematical 
search schemes like Integer Linear Programming (ILP) and 
Graph Colouring become ineffective at solving the DRWA 
problem because of the computational complexity. Therefore, 
different heuristic and stochastic schemes are used to solve 
DRWA in a reduced amount of time. Most of the heuristic 



schemes used for DRWA simplify the problem domain by 
decomposing it into two sub-problems: the routing sub-
problem and a wavelength assignment sub-problem [4].  

Three major routing schemes are: fixed routing, fixed-
alternative routing and adaptive routing. The simplest among 
these is fixed routing, where a single route is computed 
offline for each possible source-destination pair. Whenever a 
lightpath request arrives, that pre-computed route is always 
chosen for wavelength assignment. In fixed-alternative 
routing, a set of routes are pre-computed for each source-
destination pair and for a given lightpath request, one route is 
chosen from that set. In the case of adaptive routing, for a 
lightpath request, a route is computed on-the-fly 
(dynamically) based on the current network state. Fixed 
routing is simple to implement, but leads to a high blocking 
probability. Fixed-alternative routing shows better 
performance compared to fixed routing. Though 
computationally expensive as compared to the other two, 
adaptive routing obtains best performance in terms of 
blocking probability [3, 4].  

For wavelength assignment, a number of heuristic methods 
have been proposed like First-Fit, Least-Used, Most-Used, 
Min-Product, Max-Sum, Relative-Capacity-Loss (RCL) and 
so forth. A detailed review of routing of wavelength 
assignment can be found in [4]. 

In this paper, a novel particle swarm optimization (PSO) 
based scheme inspired by swarm intelligence is proposed to 
provide DRWA under the wavelength continuity constraint. 
The First-Fit (FF) algorithm is chosen for wavelength 
assignment, as it is simple to implement as compared to 
schemes like Max-Sum and RCL. Also the performance 
difference among various wavelength assignment schemes is 
not very large [6]. The rest of the paper is organized as 
follows: Section II introduces the concept of Particle Swarm 
Optimization (PSO) and the proposed PSO based scheme for 
DRWA. Section III presents the simulation results and 
analysis. Finally conclusion is presented in Section IV. 

II. PARTICLE SWARM OPTIMIZATION (PSO) 

A. General PSO Algorithm 
PSO is a population based optimization technique, 

developed by Kennedy and Eberhart [7, 8], inspired by social 
behaviour of bird flocking (and schools of fish). 

In PSO, a swarm is a collection of particles where each 
particle has both a position and velocity. The position of the 
particle represents a candidate solution to the problem space 
while the velocity is used to move the particle from one 
position to another. The “classical” PSO equation where the 
position and velocity represents physical attributes of the 
particles is represented by (1) and (2).  
Calculating a Single Particle's New Velocity: 
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(1)        
"Moving" a Single Particle in a Swarm 

ididid VXX +=             (2) 

Pid is the personal best position, a particle has reached; Pid
n 

is the global best position of all the particles. η1 (the self-
confidence factor) and η2 (the swarm-confidence factor) are 
positive constants called ‘acceleration constants’ to determine 
the influence of Pid and Pid

n; r1 and r2 are independent random 
numbers in the range [0,1]. N is the total number of particles 
in the swarm and D is the dimension of the problem search 
space.  

PSO starts by randomly initializing the position and 
velocities of all the particles in the swarm over the problem 
space. The position of ith particle is represented by the vector 
Xi = [Xi1, Xi2 … XiD] and velocity of ith particle is represented 
by the vector Vi = [Vi1, Vi2 … ViD], where D is the number of 
function parameters being optimized. For each iteration (until 
the convergence criteria is met), the fitness function is applied 
to the particles to quantize their respective positions over the 
problem search space. The particle with the best fitness value 
in the neighbourhood is marked as the global/local best 
particle. Each particle will also keep a record of its personal 
best position searched so far. Equation (1) is used to calculate 
new velocity for each particle in the swarm based on 
particle’s previous velocity, its current and personal best 
position, and the position of the particle with best fitness 
value in the neighbourhood. Equation (2) is then used to apply 
the velocity to the particle. As a result of this, the particle will 
move to a new position i.e. it will now represent a new 
candidate solution to the problem being studied. 

B. Related Work  
Evolutionary optimization schemes like genetic algorithms 

(GA) and PSO have successfully been used in the past to 
solve many NP-hard optimization problems [9]. GA and PSO 
are similar in the way that both techniques are population-
based search schemes that mimic the natural biological 
evolution and/or the social behaviour of species [9, 10]. Each 
member of the population represents a candidate solution to 
the problem addressed, and over time they evolve to represent 
some other candidate solution. One advantage of PSO over 
GA is that PSO is more computationally efficient [11]. Some 
performance comparison studies between GA and PSO have 
been reported in [9, 11, 12, 13]. 

In [6], a novel GA based scheme is proposed to solve 
dynamic RWA problem in wavelength routed optical 
networks. Genetic algorithms are swarm intelligence inspired 
search schemes based on the idea of natural selection and 
natural genetics. In [6], a member of the population (gene) 
represents a route from source to destination node i.e. a 
candidate solution to the routing sub-problem for DRWA. 
Genetic operators like crossover, mutation and then selection 
are applied to create a new population of genes. Ammar et al 
[14] have proposed a novel hybrid algorithm based on PSO 
and a noising meta-heuristic for computing shortest paths in 
the network. The hybrid PSO based scheme shows better 
performance as compared to GA-based search algorithms for 
optimal shortest path computation [14]. In [3] and [6], GA 
algorithms are proposed for solving DRWA in all-optical 
WDM networks. In our paper, the GA based schemes 
proposed in [3] and [6] are selected as the schemes for 



performance comparison purposes with our novel PSO-based 
algorithm. 

C. Proposed PSO Scheme 
This section describes the proposed PSO-based scheme for 

solving the DRWA problem for all-optical networks with the 
wavelength continuity constraint applied. 

Encoding and Decoding of Particles: 
A typical encoding scheme for path representation is the 

‘direct-representation’ scheme [14] where a path is 
represented as a sequence of node identification numbers 
from the source node to the destination node. Encoding 
schemes based on direct representation have been used to 
encode paths in [15]. Gen et al [16] proposed an indirect-
representation scheme (priority-based encoding) for solving 
the shortest path problem using GA. In the priority-based 
encoding scheme, a path (chromosome) is represented by 
encoding some guiding information about a node instead of 
the node-ID. An example of such guiding information can be 
the node priority. This guiding information is used to generate 
a path from an arbitrary chromosome. In [17] a ‘weighted 
encoding scheme’ is used for chromosome representation in 
GA, whereas in [14], a cost-priority based encoding scheme is 
used for representing a particle in PSO. 

In this paper, for simplicity, a priority based encoding 
scheme is used. The position of the particle is represented as a 
vector of node priorities. The path, which a particle represents, 
is decoded using a path growth procedure [16] by starting 
from the source node and then sequentially appending the 
intermediate nodes one-by-one, till the destination node is 
reached. During the path growth procedure, if more than one 
node is available, the node with the highest node priority is 
selected. Every time as node is selected during path 
construction, it is marked as unavailable for the rest of path 
growth procedure. Figure 2 illustrates an example of priority 
based encoding, where a path is being constructed for a 
lightpath request between source node ‘1’ and destination 
node ‘9’ in NSFNET (previously shown in Figure 1) by 
decoding the position of the particle using the ‘path growth’ 
procedure. 

 
Figure 2: Priority based encoding and Path growth procedure for decoding. k 
= iteration number. PP (k) is the ‘partial path vector’ at iteration ‘k’. NNC (k) 

is the ‘next node candidate’ vector. 

Neighbourhood topology: 
In PSO, the particle’s movement through the search space 

is influenced by the particle’s own experience and the 
experience of the most successful particle in its 
neighbourhood. A neighbourhood is a set of particles in the 
swarm whose positions will influence a particle’s own search 
due to their proximity to the particle. In this paper, a global 
neighbourhood is used where all the members in the swarm 
are particle’s neighbours. 

 
Swarm initialization: 
In the swarm, ‘p’ particles are created. Each particle’s 

position (node priorities) and the velocity are randomly 
initialized with real numbers in the range [-1.0, 1.0]. In order 
to avoid the velocity from becoming very large in the initial 
PSO iteration, and to avoid premature convergence to a local 
optimum as well as to restrict the influence of particle’s old 
velocity on the current velocity, a number of improvements 
are suggested in the literature [18, 19, 20, 21]. For example, 
Clerc [22] proposed the use of constriction factor χ in order to 
prevent large velocity values. 

Therefore, (3) is used in this paper to compute new velocity 
for a particle. 
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Fitness Function: 
In this paper, a novel fitness function is used which takes 

into account not only the normalized length of the route i.e. 
number of hops between the source and destination node. It 
also considers the normalized number of free wavelengths 
available over the whole route while satisfying wavelength 
continuity constraint. If no free wavelength is available for the 
route selected, then the fitness function will assign a large 
negative fitness value (-100.0) for that particle. 

Lmax is the maximum length of the route between any 
source – destination pair and Lsd is the length of the route 
between source ‘s’ and destination ‘d’. α [0, 1] is a design 
parameter, and WTotal is the total number of wavelengths 
supported by the optical network. Wsd then defines the number 
of free wavelengths available over the route between source 
‘s’ and destination ‘d’. The fitness function used in this paper 
is then represented by (5). 
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III. SIMULATION RESULTS AND ANALYSIS 

To evaluate the dynamic RWA performance of the 
proposed scheme (hereafter simply referred as the PSO 
algorithm) in terms of blocking probability, a simulator has 
been implemented in Opnet Modeler™ [23]. Experiments are 
conducted for NSFNET and EON networks shown in the 



Figure 1 and 3 respectively, where all WDM links are either 
assumed to have a capacity of 8 and 16 wavelengths, as 
indicated.  
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Figure 3: 20 Node, 39 Edges EON Network. 

 
To compare the performance of proposed PSO algorithm, 

the Genetic Algorithms proposed in [6] and [3] are employed 
(hereafter simply referred to as GA1 and GA2 algorithms 
respectively) as well as a shortest path algorithm with first-fit 
wavelength assignment (hereafter simply referred to as SP_FF 
algorithm).  

A dynamic traffic model is used where connection requests 
were generated at each node following a Poisson process with 
an arrival rate of λnodes. Destination nodes for the connections 
are randomly chosen according to a uniform distribution. 
Therefore, the total connection arrival rate (λtotal) in the whole 
network is the product of total number of nodes in the 
network and λnodes.  

If φ is the total number nodes in the network, then 

nodestotal λϕλ *=             (6) 
The connection holding time is exponentially distributed 

with mean ‘T’ seconds. Therefore, the normalized traffic load 
is given by (7). 

( )1−∗
∗= ϕϕ

λ TLoadTrafficNormalized total

         (7) 
For the experiments, the value of ‘T’ is kept constant at 50 

seconds and the value of λnodes is changed in order to vary the 
value of normalized traffic load. A distributed control system 
is used where each node in the network upon connection 
request arrival performs a dynamic routing and wavelength 
assignment computation (using out-of-band signalling). For 
the wavelength assignment, DIR (destination-initiated 
reservation) [24] along with a first-fit algorithm is used. This 
requires three control packets to be sent along the chosen 
route for connection establishment; one for checking 
wavelength availability, the second for wavelength 
reservation and the third for confirmation of the lightpath 
establishment. Each node is assumed to have wavelength 
usage information of the whole network. No alternative 
routing is used and no re-attempts are made for route re-
computation. So if the chosen route cannot find a free 
wavelength, the connection will be blocked. For different 
traffic loads, each experiment is carried out 10 times with 
different seeds for the random number generator and the mean 
values are plotted in the figure 4, 5, 6 and 7 along with the 
95% confidence intervals. 
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Figure 4: Blocking Probability Versus Normalized Traffic load between PSO, 
GA1, GA2 and SP_FF algorithms for NSFNET (Figure 1). Number of 
Wavelengths = 8, α = 0.9, Confidence Interval = 95%, Population size (for 
both GA and PSO algorithms) = 15, Iterations (PSO) = 20, Generations (GA) 
= 20. 
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Figure 5: Blocking Probability Versus Normalized Traffic load between PSO, 
GA1, GA2 and SP_FF algorithms for NSFNET (Figure 1). Number of 
Wavelengths = 16, α = 0.9, Confidence Interval = 95%, Population size (for 
both GA and PSO algorithms) = 15, Iterations (PSO) = 20, Generations (GA) 
= 20. 

 
Figure 4 and 5 show the relationship of blocking 

probability versus the traffic load for 8 and 16 wavelength 
variants of the NSFNET network respectively. As shown in 
Figure 4, when the wavelength capacity is 8 per link, all 
schemes show similar blocking probability performance at 
low traffic loads i.e. between the normalized traffic loads of 
0.05 and 0.1. When the traffic load is increased i.e. between 
0.1 and 0.35, the PSO scheme shows a significant 
performance improvement in terms of blocking probability. 
However, when the traffic loads is increased above 0.4, both 
GA and PSO tend to the same blocking performance. The 
reason is, at very high traffic loads, links become saturated 
and the availability of free wavelengths becomes very limited. 
In Figure 5, the number of wavelengths supported by each 
link is increased to 16. At low traffic loads i.e. between 0.05 
and 0.3, both GA and PSO schemes show similar blocking 
probability performance. The reason is, at low traffic loads, 
these schemes can always find free wavelengths to be 
assigned whatever route they choose. However, when the 
traffic load increases to normalized traffic load of between 0.3 
and 0.7, PSO performs significantly better than GA1, GA2 
and the SP_FF algorithms. Again, as the links saturate in 
terms of wavelength availability because of already deployed 
lightpaths over them (i.e. when the normalized traffic load is 
above 0.7), the PSO scheme shows comparable connection 
blocking probability performance to the others. 



Similar blocking probability performance behaviour can be 
observed in Figure 6 and 7, which show the blocking 
probability versus normalized traffic load for 8 and 16 
wavelength based variants of EON network respectively. At 
very low traffic loads, PSO performs similar to other schemes. 
Again the reason is that at very low traffic loads, most of the 
wavelengths are free for the wavelength assignment sub-
problem. However as the traffic load increases, PSO shows 
significantly better blocking probability performance as 
compared to the other dynamic RWA schemes. However, 
when the links reach saturation at very high traffic loads, all 
the schemes show similar blocking probability performance, 
because now most of the wavelengths are already being used 
in the network. 
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Figure 6: Blocking Probability Versus Normalized Traffic load between PSO, 
GA1, GA2 and SP_FF algorithms for EON (Figure 3). Number of 
Wavelengths = 8, α = 0.9, Confidence Interval = 95%, Population size (for 
both GA and PSO algorithms) = 15, Iterations (PSO) = 20, Generations (GA) 
= 20. 
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Figure 7: Blocking Probability Versus Normalized Traffic load between PSO, 
GA1, GA2 and SP_FF algorithms for EON (Figure 3). Number of 
Wavelengths = 16, α = 0.9, Confidence Interval = 95%, Population size (for 
both GA and PSO algorithms) = 15, Iterations (PSO) = 20, Generations (GA) 
= 20. 

In the fitness function, the value of ‘α’ is used to control the 
influence of the path length and the number of free 
wavelengths available. Generally, the number of free 
wavelengths and route length (number of hops) are correlated 
as routes having more free wavelengths tend to be shorter 
routes. Choosing a route with more free wavelengths gives 
better blocking probability performance. However, it is 
observed from the experiments that at very low traffic loads, 
choosing the shortest route instead of routes having large 
number of free wavelengths gives better performance. The 
reason is, when the network load is very low, since most of 
the wavelengths are free, there is a chance that a longer route 
has more free wavelengths available than the shorter ones. At 
the later stage this can led to an increase in the blocking 
probability. Therefore it would appear that there is a need to 

dynamically control the ‘α’ factor that can give more weight 
to shorter paths when the network load is low and give more 
weight to ‘number of free wavelengths’ at moderate and high 
traffic loads. 

However, in the proposed fitness function, both factors 
(route length and number of free available wavelengths) are 
normalized. The advantage of using such a fitness function is 
that it decreases the variation of mean blocking probability for 
different values of ‘α’. This effectively reduces the need to 
dynamically adjust the ‘α’ factor.  

The blocking probability performance of the proposed 
‘normalized fitness function’ given by (5), is carried out for 
different values of ‘α’ in Figure 8. Comparison is made with 
respect to SP_FF scheme.  
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Figure 8: Blocking Probability Versus Normalized Traffic load between 
different values of ‘α’ for PSO using proposed fitness function given by (5) 
with SP_FF algorithms for NSFNET (Figure 1). Number of Wavelengths = 8, 
Population size = 15, Iterations (PSO) = 20. 

 
In Figure 9, the same experiment is carried out using a non-

normalized fitness function, as given by (8). 
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Figure 9: Blocking Probability Versus Normalized Traffic load between 
different values of ‘α’ for PSO using non-normalized fitness function given 
by (8) with SP_FF algorithms for NSFNET (Figure 1). Number of 
Wavelengths = 8, Population size = 15, Iterations (PSO) = 20. 
 

Figure 8 and 9 clearly show that using the proposed 
normalized fitness function, reduces the need to dynamically 
adjust the algorithmic parameter ‘α’ as compared to the non-
normalized fitness function case where altering α is seen to 
have a notable impact on the blocking probability 
performance. 

Generally, the reason that PSO performs better than GA in 
terms of blocking probability is that, during GA’s 



reproduction stage, the selection operator eliminates those 
members of the population which have a poor fitness value 
from being included in the next generation. However in PSO, 
there is no member selection operator. So there is always a 
chance that a member of population that has a poor initial 
fitness value, might evolve over time through self-exploration 
of the search space and by ‘exploiting’ the exploration of the 
best member in the neighbourhood, to become the best 
member of the population. 

IV. CONCLUSIONS 

In this paper a new algorithm based on particle swarm 
optimization (PSO) is proposed, which effectively solves 
dynamic RWA problem for all-optical WDM networks under 
the wavelength continuity constraint. The proposed fitness 
function takes into account normalized path length and the 
normalized number of free wavelength available during route 
evaluation. The simulation results show that the PSO 
algorithm shows better performance in terms of blocking 
probability as compared to the Genetic Algorithms proposed 
in [3] and [6] and a Shortest Path – First Fit heuristic 
algorithm. The normalization of ‘path length’ and ‘number of 
free wavelengths’ effectively reduces the need to have 
dynamic controlling factor ‘α’. For these reasons, the 
proposed swarm intelligence inspired, PSO scheme is a 
suitable candidate for dynamic RWA in All-Optical WDM 
networks.  
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