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Abstract 
The growth in traffic across IP networks has been mirrored by a demand for higher 

quality service provision. As the generic IP best-effort paradigm is no longer suitable 

given the diversity of customer and application requirements, there is a need to 

provide Quality of Service (QoS) across multi-class networks. Such treatment must 

not only satisfy the requirements demanded of high-grade traffic but also ensure that 

best-effort traffic receives an appropriate level of service. 

 

This thesis investigates the applicability of agent technology in multi-class 

connectionless networks. An analysis of agents in telecommunication networks is 

undertaken, questioning whether all work that claims to employ agents is indeed 

doing so. Likewise the thesis explores whether a body of network research could be 

described as agent-based despite not declaring such entities. The ramifications of such 

inconsistencies are discussed to highlight whether indeed intelligent software agents 

are well placed to provide the sophistication necessary for QoS provision in a 

distributed and dynamic environment. Furthermore, in a tightly coupled environment 

the autonomy associated with agents is constrained. Connectionless networks rely on 

a set of related next hops to route traffic along least cost paths; employing agent 

intelligence at each node may lead to inconsistencies. This research argues that while 

deploying agent technology may be inappropriate at the IP level, nevertheless 

techniques associated with an agent approach provide important enhancements to 

routing. 

 

This thesis introduces a novel “sub-optimal” adaptation to the OSPF routing protocol, 

based on masqueraded cost metrics and allowing for proactive routing, in anticipation 

of congestion. Fuzzy reinforcement learning is then introduced to add further 

responsiveness to the system.  Finally this is located within the development of agents 

in networks. 
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1 Introduction 
 
This section outlines the initial stimulus and the objectives for this research.  
 

1.1 Motivation 
The motivation underlying this research derives from the changing profile of IPi 

network users and applications. Data and voice network convergence – IP networks 

with both the public switched telephone networks (PSTNs) and integrated services 

digital networks (ISDN), leading to the growth of IP telephonyii – is the new 

paradigm. This convergence, together with the growth in exacting applications, such a 

video conferencing and distance learning, and an increasingly demanding user profile 

has led to a focus on how to manage network resources more efficiently. At the same 

time, alongside these novel profiles, the traditional best-effort traffic associated with 

IP networks has grown, for example due both to increased use of web applications 

and I/O heavy scientific applications [1]. Solutions must be sought to service both 

those users and applications that require higher quality treatment while also 

preserving the needs of best-effort customers and applications. It is notable that much 

work addressing these network challenges neglects the performance of best-effort 

traffic [2] despite no evidence that such traffic will cease to form the dominant traffic 

in such networks for the near future.  

 

First it has to be established whether offering quality of service (QoS) is indeed a 

resource management issue. Although many papers refer to a dichotomy – those who 

advocate network dimensioning versus those who propose a managed QoS solution – 

little evaluation is provided to support the proponents of excess bandwidth. Since 

service differentiation – offering premium as well as best-effort and other traffic 

classes – results in higher overheads, an analysis must consider why this is considered 

an attractive or necessary option. Costs include increased network complexity, 

processing overhead, storage of reservation state; benefits include potentially 

increasing both network throughput and revenues.  

                                                 
i Networks that employ TCP/IP protocols. The role of the IP protocol is considered fundamental so 
TCP/IP networks/internets/internetworks are commonly called IP networks 
ii referred to hereafter as Voice over IP (VoIP) 
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Since QoS appears to be a resource management issue, then intelligent agents would 

seem to afford increased functionality. Although their applicability to resource 

management has been demonstrated in connection-oriented networks, IP networks are 

characterised as connectionless. Furthermore, due to concerns about network security, 

a challenge was to investigate the use of static rather than mobile agents. However, 

the growth in agent telecommunications research has somewhat stalled. A prevailing 

explanation is that agents are a ‘fad’ – that the concept not just the abstraction is 

overused. There is a need for a thorough review of agent literature, to examine 

whether there has been and still is a role for agent technology or whether it is simply a 

label for a design metaphor and could simply be replaced by a more specific label in 

the context of the application e.g. Web Service in the context of business to business 

communication. This in turn requires an examination of a conflict between the notion 

of the agent, as a software engineering abstraction, and the concept of agent as 

embodied in network protocol literature. 

 

1.2 Contribution 
Much has been promised about the benefits of agents in telecommunications 

networks. It is perhaps surprising in light of such claims that there is comparatively 

little ongoing research and deployment in this area. As far as the author is aware, 

although there have been a few overviews of agents, for example [3], there has been 

no systematic analysis of the role of agents in networks, especially IP networks. A 

major contribution of this thesis is a review of agents in networks, culminating in a 

proposition explaining why the development may have been hindered. Additionally 

this analysis attempts to glean a possible role for agents in connectionless networks. 

While more has been written about agents in connection-oriented networks, the role 

of agents – specifically those that do not display mobility – in a connectionless 

network is rarely investigated. This thesis presents a role for agent – or agent-like – 

behaviour in such systems. 

 

This thesis presents novel enhancements to the OSPF routing protocol that are 

sensitive both to the shifts in link costs as well as the trend in such costs. The initial 
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work presents a heuristic that spreads traffic away from optimal links. While 

appearing to contradict the goal of network optimisation, the proposal is that allowing 

low-class traffic to follow sub-optimal links increases network utilisation, thus 

increasing network optimisation. Agent intelligence is then employed to add further 

sensitivity. Recognising that adding intelligence to routers increases state, fuzzy logic 

is used as a means of inhibiting the dimensional growth associated with learning 

techniques. 

 

1.3 Thesis Outline 
Section 2 provides an overview of IP networks in order to establish why the provision 

of QoS across such networks is such an important research area. The subsequent 

section qualifies what is understood by QoS in networks. Having considered the 

varying definitions the two main ‘schools’ are addressed: section 3.1 examines the 

argument that no resource management is necessary – instead network over 

provisioning alone, by avoiding resource-contention, provides QoS; section 3.2 

introduces resource management solutions. 

 

Following this an introduction to the agent paradigm is presented, commencing with a 

presentation of the elusive nature of what constitutes an agent. From this section 4.3 

questions whether the lability of this term in regard to its deployment in network 

protocols has undermined wider usage of this abstraction. Examples of agent 

applications in networks are provided. Additionally, similar practice that is not 

explicitly labelled agent-based is reviewed. 

 

Section 5 presents an enhancement to IP routing, spreading non-premium traffic away 

from optimal paths. The purpose for this is to establish whether this is forms a 

beneficial strategy, before adding intelligence to the system. Section 6 introduces 

fuzzy reinforcement learning, providing an overview of both fuzzy control and 

reinforcement learning before delineating the novel application in IP networks. After 

evaluating results, the final sections establish the contribution to agent research.  

                                                 
vii In this thesis such computers are called routers, hosts or nodes 
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2 IP Networks 
 

The growth of IP networks has been driven by the advantage garnered by decoupling 

services from the underlying hardware. Interconnection is via simple, connectionless 

protocols. This results in increased robustness due to reduced dependency between 

requester and receiver. In IP networks host computers connected to form subnetsvii. 

Subnets in turn join other subnets to form the Internet. But, critically, compared to 

other networks QoS is explicitly omitted from network design. 

 

The service provided across IP networks is characterised as a connectionless and 

unreliable system that offers best-effort packet delivery. The notion ‘best-effort’ 

implies that: admission is not denied to any traffic entering the network; all traffic is 

treated equally; traffic will be transmitted in the best possible way given available 

resources at any given time – artificial delays are neither generated nor unnecessary 

losses caused. A consequence of this is that there is no assurance of in-sequence 

delivery or indeed of packet arrival. Conceptually the reference model (ie the TCP/IP 

model) has five layers, as shown in Figure 1: 

 

5: Application layer

4: Transport layerviii

3: Network layer 

2: Data Link layerix 

1: Physical layer 

Figure 1: TCP/IP reference model 

 

However, in practice the focus is placed on the three uppermost layers: the network 

layer responsible for connectionless packet routing and forwarding (defined by the 

Internet Protocol, IP); the transport layer responsible for effective transport service 

(either the reliable Transmission Control Protocol, TCP or the unreliable User 
                                                 
viii This is shortened from ‘Host-to-Host Transport’ layer 
ix Some interpretations of the TCP/IP protocol suite have four layers and merge the data link and 
physical layers into one ‘network interface/subnetwork/network access’ layer 
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Datagram Protocol, UDP); the application layer responsible for application services 

(such as TELNET, FTP, SNMP). The IP protocol defines the basic transfer unit 

(packet), the datagram, across IP networks. Additionally it is responsible for packet 

routing, discussed in section 2.2. 

 

 

2.1 The IP Datagram 
If a more reliable service than best-effort is to be offered to some customers or to 

certain application traffic the routers have to be capable of distinguishing between the 

datagrams they receive. Enhancements to network protocols are necessarily 

conservative. Thus the means of differentiating packets should ideally be found in the 

IP datagram header, shown in Figure 2. 

 

8 bits 8 bits 8 bits 8 bits 
VERSION H.LEN SERVICE TYPE TOTAL LENGTH 

IDENTIFICATION FLAGS FRAGMENT OFFSET 
TIME TO LIVE PROTOCOL HEADER CHECKSUM 

SOURCE IP ADDRESS 
DESTINATION IP ADDRESS 

IP OPTIONS (IF ANY) PADDING 
DATA 

… 

Figure 2: IPv4 Datagram 

  

The preferred choice of field is the eight-bit SERVICE TYPE field, redefined by the 

IETF to provide for the Differentiated Servicesx codepoint (DSCP) [4], shown in 

Figure 3:  

 
0 1 2 3 4 5  

CODEPOINT UNUSED 

Figure 3: Service TypeField showing DSCP 

 

                                                 
x see section 0 
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This could theoretically identify 64 different levels of service, although in practice 

fewer classes would be utilised. Additionally for backward compatibility with 

previous subfield definition, the first three bits of the field (previously the precedence 

subfield) provide for eight classes of service. An alternative choice could be to use the 

IP OPTION field. 

 

In the IPv6 protocol packet header there are two components that can support QoS via 

demarcating / differentiating service [5] [6]. The 8-bit TRAFFIC CLASS field 

corresponds to the differentiated services interpretation of the SERVICE TYPE in 

IPv4. Additionally the FLOW LABEL field was established for labelling packets 

belonging to certain traffic flows which require specific handling. Figure 4 shows the 

first line of the IPv6 datagram header: 

 
VERSION TRAFFIC CLASS FLOW LABEL 

Figure 4: First Line of IPv6 Header 

 

 

2.2 OSPF 
An Interior Gateway Protocol (IGP)xi is employed in IP networks to select the routers 

or paths through which traffic traverses. These routing protocols fall into two classes: 

those that employ a distance vector algorithm and those that employ a link state one. 

With the former neighbouring routers periodically share routing information; with the 

latter each router advertises to the network link state information (ie the state of each 

of its links) through a process called flooding (described below). This research uses 

OSPF, a well-tested, robust and widely deployed link state routing protocol [7], as the 

IGP. Other research work investigating QoS in the internet uses RIP – which employs 

the Bellman-Ford distance vector algorithm – as the IGP for example in order to use 

more than one QoS metric [8]. Another more formalised link state routing protocol, 

IS-IS [9], is also employed in some networks. However, OSPF is increasingly 

becoming the IGP of choice and, furthermore, it is the IETF recommended IGP. 

Enhancements that incorporate QoS into OSPF are discussed in section 3.2.4.  

                                                 
xi also known as intra-domain internet routing protocol 
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In each OSPF enabled router a topological database, known as the link state database, 

contains link details for the entire network or Autonomous System (AS). The 

topology is established through a neighbour discovery process at system setupxii. Each 

router runs the shortest path first (spf), also know as Dijkstra’s, algorithm to calculate 

the shortest path from that router to every known destination in the AS [10]. This 

produces a shortest path tree, with that router as tree root. A routing table is then 

constructed to state the next hop (ie next router) for all destinations. If all the link 

state databases are not identical / synchronised the routing tables will be inconsistent 

and looping may arise. This is shown in Figure 5, where packets for destination C will 

be trapped in a loop between A to D and D to A till timeout. 

 

 

Figure 5: Looping due to inconsistent link state databases 

 

OSPF specifies ‘Hello’ messages that are sent out regularly (the default setting of the 

HelloInterval is 10 seconds) between neighbours that act as keepalives. If a hello 

message is not received from a neighbour after a designated time, known as the 

RouterDeadIntervalxiii the router sends out a Link State Advertisement (LSA) 

containing information about that link, encapsulated in a Link State Update (LSU) 

                                                 
xii The protocol specifies Database Description and Link State Request OSPF packets for database / 
topology discovery 
xiii Cisco uses a default of 4 times the HelloInterval (ie 4x10 seconds) for the RouterDeadInterval 

LSD: A…

B C  cost 5

D C cost 2

A D cost 1

RT:

C next hop D

LSD: D…

B C  cost 1

D C cost 5

D A cost 1

A B cost 1

RT:

C next hop A
A

D B

C

LSD: A…

B C  cost 5

D C cost 2

A D cost 1

RT:

C next hop D

LSD: D…

B C  cost 1

D C cost 5

D A cost 1

A B cost 1

RT:

C next hop A
A

D B

C
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message. The neighbours, on receiving the LSU, extract the LSA, find the new link 

cost (in the ‘metric’ field), and update their link state database. The LSU is then 

retransmitted to all their neighbours. This forwarding process constitutes flooding. 

Routers discard LSAs/LSUs they have previously forwarded. This both limits the 

flooding mechanism and provides an implicit acknowledgement service (although 

OSPF also specifies an explicit Link State Acknowledgement). Once databases are 

updated, Dijkstra’s algorithm is run again and an updated routing table constructed. 

Periodically (by default every 30 minutes, although Cisco now implements an OSPF 

LSA group pacing feature to stagger the refreshing [11]) every router floods an LSU 

packet containing details of all their connecting links. This flushing mechanism (the 

link state refresh) guards against, for example, corrupted link state databases and also 

acts as a keepalive. If there are no topological changes, OSPF is a quiet protocol, apart 

from the Hello messages and periodic updates. 

 

Figure 6: Flooding LSUs encapsulating Router LSAs  

 

OSPF has been designed to swiftly respond to topology, rather than traffic, change, 

with the route cost largely based on traffic-insensitive metrics. Indeed the 

OSPF packet type 
= 4 (LSU) 
… 
No. LSAs=1 
LSA Type = 1 
Router ID 
No. Links  = 3 
Link 1 Description 
Link 2 Description 
Link 2 Description 

OSPF packet type 
= 4 (LSU) 
… 
No. LSAs=1 
LSA Type = 1 
Router ID 
No. Links  = 3 
Link 1 Description 
Link 2 Description 
Link 2 Description 

OSPF packet type 
= 4 (LSU) 
… 
No. LSAs=1 
LSA Type = 1 
Router ID 
No. Links  = 3 
Link 1 Description 
Link 2 Description 
Link 2 Description 

Link 1 Link 2

Link 3

LSAs 

LSU 
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implementation is optimised for a single metric, either the hop count or an 

administrative weightxiv. Examples of policies include Cisco (up to release 10.3) 

employing inversely proportional to link capacity [12]xv, later replaced by 108/BWxvi 

(line speed bps), ie reference bandwidth / configured bandwidth [13], while vendors 

such as Bay typically use the hop count configuration [8].  

 

Such a protocol is opportunistic, selecting exclusively the current shortest/least cost 

path (and other equal-cost paths) to a given destination, ie the optimal route. 

Alternative, ie feasible, paths that offer acceptable costs, ie second-least cost, third-

least cost, cannot be selected by the spf algorithm, even if the cost differential is 

negligible. Another consequence of this is, after new costs are flooded across the 

network, if a new cheaper cost path is found traffic will be rerouted across this. 

Although the original path may have been able to meet service requirements the 

opportunistic approach will automatically reroute. If a rapidly changing metric such as 

available bandwidth is selected this may result in frequent traffic oscillations. In turn 

users may experience variable delay and jitter, compromising their quality of service. 

Imbalance can also result in the network due to the shortest path calculations, with 

least cost paths potentially converging over the same links. This potentially leads to 

congestion over the optimal routes, with relative sparseness of traffic across other 

sections of the network, including other feasible routes to the given destinations.  

 

 

 

                                                 
xiv coded as a 16-bit integer 
xv This parameter is still employed by some researchers investigating QoS routing 
xvi This gives a cost of 1 for FDDI/fast Ethernet, 6 for token ring and 10 for Ethernet. The default 
reference bandwidth of 108 can be changed for media with higher bandwidths (such as Gigabit 
Ethernet) 
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3 Quality of Service 
 

Servicing the demands new applications or users presents a challenge to the best-

effort paradigm of IP networks. While the prevailing model in the telephony networks 

is characterised by offering QoS guarantees this is not intrinsic to the IP service 

model. To provide resource allocation across such networks thus requires 

investigating whether the current paradigm is sufficient – indeed that QoS can be 

achieved across an unmanaged best-effort network – or whether efficient management 

will be required.  

 

A related concern is that of traffic engineering (TE) – the aim to optimise both 

network resource utilisation and traffic performance [14]. The traffic oriented 

objectives of traffic engineering overlap with those discussed below when addressing 

the notion of QoS for traffic streams. It should be noted that in best-effort networks 

minimizing packet loss is the key objective; with multi-class networks characterized 

by demanding applications/users other objectives such as delay become more critical. 

The resource oriented performance objective of traffic engineering focuses on 

ensuring that some links in a network are not congested while others are lightly 

utilised. Congestion may occur due to insufficient network resources – this problem 

can be ameliorated by enhanced provisioning (see section 3.1) or congestion control 

techniques such as queue management. However, the focus in this research is where 

inefficient resource allocation results in over- and under-utilised links/areas in the 

network. Traffic engineering, notably load balancing, can obviate the congestion 

resulting in both improved traffic profiles and network optimisation. The research 

presented here presents a novel means of spreading traffic over less-utilised links, 

thus can be considered traffic engineering for a resource allocation problem.  

 

This chapter addresses the issue of QoS – what it is, whether it is indeed presents a 

challenge to IP networks and looking at research that addresses its provision. QoS, 

however, remains a loosely defined term: some characterise it by explicit measurable 

parameters; others focus on less precise notions of user perceptions. The International 

Telecommunications Union (ITU) definition of QoS emphasises “perceived QoS”, ie 
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reflecting the user’s experience of a particular service: “the collective effect of service 

performance which determines the degree of satisfaction of a user of the service” 

[15]. By contrast an IETF definition focuses on ‘intrinsic QoS’, ie technical 

parameters that can be measured and compared against promised service: “a set of 

service requirements to be met by the network while transporting a flow” [16]. 

Various network or technology level QoS parameters are listed in Table 1, from [17].  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Network QoS Characteristics 

 

Such guarantees, however, can vary in precision, as outlined in [18]. For example, 

quantitative (or hard QoS) specifies hard guarantees for the QoS parameter. In such 

cases a contract could guarantee, for example, that delay is less than 150 milliseconds. 

The statistical guarantee allows for some deviation from the quantitative measure, 

using a probabilistic measure such as 95% of the time delay to be less than 150 

milliseconds. The qualitative approach is more imprecise, allowing for more 

flexibility with implementation but more uncertainty over fulfilment. Finally the 

relative guarantee, probably the weakest of the categories, considers performance 

relative to another guarantee in the same system, for example better than a lower 

priority QoS class.  

 

Moreover the user demands can be mapped explicitly (to specific requested 

throughput, latency etc) or implicitly (ie corresponding to the requested service class). 

Category Parameters 

Timeliness Delay (latency) 

 Response Time 

 Jitter (variation in delay) 

Bandwidth Systems-level Data Rate 

 Application-level Data Rate 

 Transaction Rate 

Reliability Mean Time to Failure (MTTF) 

 Mean Time to Repair (MTTR) 

 Mean Time Between Failure (MTBF) 

 Percentage of Time Available 

 Packet Loss Rate 

 Bit Error Rate 
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Different services have different demands: VoIP is sensitive to packet delay and its 

variation (ie jitter) but less so to packet (ie information) loss; jukebox services are less 

demanding with respect to delay [19]; for telemedicine delivery accuracy is more 

important than either jitter or overall delay [20]. Additionally, QoS can also be 

defined in terms of transparency and accessibility [21], or high availability and 

provision of an even traffic load distribution [22].  provides a mapping of QoS delay 

requirements for various applications, based on a user-centric (ie ITU-T) model [23]. 

 
Error Tolerant Application Error Intolerant Application QoS specification 

conversational voice and video command/control  
(eg Telnet, interactive games) 

Interactive:  
delay << 1s 

voice/video messaging transactions  
(e-commerce, email, web browsing) 

Responsive:  
delay ~ 2s 

streaming audio and video messaging, downloading  
(FTP, still images) 

Timely:  
delay ~ 2s 

fax background  
(eg usenet) 

Noncritical:  
delay >>10s 

Table 2: ITU-T Model of User-Centric QoS 

 

More precise definitions set out in [24], specify classes of service, ranging from class 

0 (real-time highly interactive traffic that is sensitive to jitter) through class 3 

(interactive transaction data) to class 6 (for default IP applications, with unspecified 

upper bound for mean delay, loss ratio etc). 

 

In technologies such as Asynchronous Transfer Mode (ATM) QoS refers to set 

metrics, such as delay or jitter, that apply to a connection once it has been accepted 

[25]. Connections are only accepted when there are sufficient resources both to set up 

the call at the required QoS throughout the network and to maintain that of any 

existing calls. However, to integrate existing heterogeneous systems in order to 

provide for this is highly complex. By contrast the IP model considers network 

hardware as a transmission platform, with functionality residing in the software 

located in host servers or routers. It can be debated whether QoS can be achieved 

across such networks by allowing for an abundance of bandwidth, or whether it can 

only be achieved through a combination of management and novel technologies and 

protocols. This is addressed in the following sections. 
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A final point to note is that while the literature generally discusses ‘optimal’ routing, 

more accurately the selection of low-delay routes (the ‘optimal’ choice for each user) 

results in a Nash Equilibrium [26]. In general such equilibriums rarely coincide with 

social optimisation, and indeed total network latency is not-minimised. Thus routing 

along least-cost paths can be termed ‘selfish’ rather than optimal. Although this 

research concentrates on connection-oriented networks it is nevertheless valuable for 

indicating that optimal routing (from the perspective of the user) is inherently selfish, 

resulting a degraded network performance. 

 

 

3.1 QoS Unmanaged Solution: Over Provisioning 
Network congestion can be considered as symptomatic of insufficient network 

resources. A solution to this would be enhanced bandwidth provision rather than 

seeking to manage / control network traffic. In networks characterised by bandwidth 

abundance, bottlenecks would never arise, hence a best-effort service (whereby traffic 

is transmitted according to the best possible way given network resources) would be 

entirely sufficient. Consequently there is no need to differentiate between user flows, 

either on the basic of customer or application demands, and the network architecture 

can remain straightforward. With the advent of technologies such as wavelength 

division multiplexing (WDM) over provisioning of bandwidth has become feasible. 

Research has indicated that for links with capacity greater than 1 Gb/s, even at 

utilization levels around 80-90%, adding network management would decrease delay 

across the network by merely 4ms [27]. The QoS improvement to even stringent 

applications such as VoIP would be so marginal as to be unnoticeable. Confidence of 

a bandwidth glut has even led to concern over bandwidth outpacing processing [28]. 

Furthermore, an analysis of data networks claims that estimates based on the average 

size of data networks has greatly exaggerate the volume of data traffic and that IP 

networks are utilized at a low fraction of their capacity [29].  

 

Although the following section details a range of techniques designed to explicitly 

implement QoS in practice the penetration of such approaches has been limited [30]. 

Despite the existence and availability of alternative technologies, over provisioning is 
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often the chosen approach. Furthermore, although much research in QoS provision 

focuses on prioritizing classes of traffic (from premium to best-effort), there may be 

organisational impediments that again prevent this happening in practice. Thus, 

business as well as technical issues appear to support the over provisioning claim. 

 

However, it can be debated that over provisioning is not feasible beyond the network 

core [31]. The work in this thesis considers an access rather than such a carrier 

network. With an unpredictable demand model for data traffic [32] it is argued that 

improving network dimensioning in itself is unlikely to cope with future Internet 

usage, and may aggravate the problem [33]. Indeed, it has been demonstrated that 

techniques designed to reduce network load, such as proxy caching – where an 

intermediate server caches documents for a set of clients – are conversely responsible 

for an increase in bandwidth consumption [34]. Incomplete HTTP transfers, ie those 

aborted by user request, could consume 18% more bandwidth than in a system not 

operating with proxy serversxvii, due mainly to bandwidth mismatch. As a 

consequence, the authors of [35] suggest the importance of modelling user behaviour 

when considering network provisioning. The behaviour profile of impatient users – 

who interrupt a transfer when frustrated by poor network performance, eg delay, low 

throughput – should be included when analysing network capacity. Another 

impediment to caching is the increased use of cookies – ie personalisation of web 

browsing. It would appear that an approach that is designed to lower the traffic burden 

has been undermined by lags in network upgrade, advances in application provision 

and user behaviour. This suggests that over-provisioning alone may not be efficient or 

sophisticated enough to provide for future services. Furthermore, an analysis of 

network-wide traffic flow has revealed that a small proportion of demands is 

responsible for the bulk of traffic [36]. It is argued that should such sources alter their 

behaviour, large-scale network variability will result, thus traffic engineering is 

critical for controlling such demand. 

 

Finally, it may not be in the interest of the Internet service providers (ISPs) to treat all 

customers equally, ie to not differentiate. Without explicit resource management there 

                                                 
xvii If the proxy continues to download upon aborts 
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can be no varying tariff levels, thus the ISP misses out on potential profit margins 

[37]. In an arena characterised by commercial competition and high equipment costs, 

differentiating provides a means of increasing network revenue without equivalent 

investment in network infrastructure. 

 

 

3.2 QoS: Resource Management 
Having rejected the unmanaged approach, this section briefly outlines various 

solutions to the perceived need to manage service across networks. The approaches 

include enhancements to the IP protocol suite, technology shifts as well as 

augmentations to established routing protocols. It has been argued that many of the 

proposed schemes ignore the interaction between TCP and the lower layers [38]. Such 

an analysis is beyond the scope of this research. QoS solutions can be broadly 

subdivided into three blocks, or planes: management, control and data. The 

management plane is responsible for issues such as network policy, provision of 

service level agreements (SLAs), ie contracts, and metering. The control plane covers 

admission control, QoS routing and resource reservation, ie mechanisms for affecting 

the traffic paths. Techniques in the data plane include queuing and scheduling, packet 

marking and traffic classification, policing and shaping, ie those directly involved 

with the data traffic. The focus of this thesis is on the control plane, specifically QoS 

routing, although this necessitates employing an appropriate scheduling policy.  

 

 

 

3.2.1 Integrated Services (IntServ) 
The aim of the Integrated Services model (IntServ) was to offer precise per-flow 

service provisioning in the Internet [39]. The IntServ architecture offered two new 

service classes – guaranteed service (GS) and controlled load service (CL) – in 

addition to the traditional IP best-effort service. GS resembles the ITU 

Telecommunications Standardization Sector (ITU-T) dedicated bandwidth (DBW) 

transfer capability, and was developed for real-time applications. CL service 

resembles the ITU-T statistical bandwidth (SBW) capacity and was planned for 
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elastic applications with an expected QoS level. The Resource ReSerVation Protocol 

(RSVP) was used as the end-to-end signalling protocol [40]. This protocol is 

responsible for carrying reservation requests – the traffic specifications, network 

resource availability etc – through the network As RSVP uses a soft-state mechanism, 

a refresh of a path used by a session is necessary after a regular interval (typically 30 

seconds). 

 

Scalability limitations have served to hamper the commercial implementation of the 

IntServ/RSVP architecture. The precise granularity offered by IntServ, specifically 

the per microflow service guarantees which demand ever router maintains per-flow 

state, undermines its operability in large-scale networks [41], although deployment in 

smaller networks may be manageable. In response to these concerns the IETF 

developed the Differentiated Services model. 

 

3.2.2 Differentiated Services (DiffServ) 
Faced with the scalability concerns evident in IntServ, a model that provides for 

coarser granularity was proposed [42]. The Differentiated Services model (DiffServ) 

addresses the scalability concerns inherent in the stateful approach of IntServ by 

providing coarser granularity. This ‘stateless’ approach, by contrast, keeps complexity 

to the network edge, as traffic enters the network, whereas the network core remains 

simple. At the edge routers packets are aggregated into service classes, which are 

given differentiated treatment inside the network. All the classification, marking and 

policing takes place at the edge of the DiffServ domain. Packets belonging to a 

particular flow, or Behaviour Aggregate (BA) are marked with the DSCP in the 

SERVICE TYPE field of the IP header (see section 2.1) based on agreed policy at the 

domain boundary. Subsequent core routers apply specified queuing or scheduling 

behaviour – per hop behaviour (PHB) – based on the DSCP. All packets with the 

same DSCP are treated equally. Expedited Forwarding (EF) and Assured Forwarding 

(AF) form the known PHBs. The premium service, EF PHB, has been designed to 

support applications that demand low jitter, loss and delay. This service seeks to 

emulate a virtual leased line, providing a guaranteed peak bandwidth service with 

negligible queuing delay. The AF PHB offer similar delay characteristics as 
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(undropped) best-effort packets. The strength of its guarantee is dependent on how 

each link is currently provisioned for bursts of assured packets.  

 

While DiffServ is more scalable its critics point both to lower flexibility and coarser 

assurance level compared to per flow mechanisms. Solutions such as dynamic core 

provisioning [43] have, however, provided means of providing fairer provisioning 

within traffic aggregates, although the centralised nature of the algorithm may raise 

scalability concerns. While a standard DiffServ guarantee may be, for example that 

premium traffic receives better handling than low-priority traffic, enhancements such 

as proportional difference [44] further refine the class differentiation. Also 

highlighted is the problem of scalable and robust admission control. Additionally, 

solutions such as DiffServ that keep per-flow state only at edge-routers are potentially 

less robust – one mis-configured edge router can affect the entire domain [45]. Indeed 

another major concern raised about DiffServ is the complex management required: 

routers must be precisely configured (using a complex configuration command script, 

with reconfiguration only possible through rebooting) and the QoS promised by the 

system must be closely monitored [46]. Another issue, raised in [47], is the limitations 

of the DiffServ “boundary-centric operational model”. Signalling both from the 

network core to the DiffServ boundary, and from the boundary to the client/end 

application needs to be defined. Despite these qualifications, DiffServ is being 

adopted both within the MPLS world and by many investigating QoS routing. Section 

4.5.2 presents policy-based management approaches that have been designed to 

ameliorate the management of DiffServ networks. 

 

3.2.2.1 SCORE / DPS 
The requirement for routers to maintain per-flow state in the IntServ model limited its 

scalability, and hence deployment. Another approach that seeks to preserve the per-

flow granularity without burdening the routers is Dynamic Packet State (DPS), also 

known as the SCORE (stateless core) architecture [48]xviii. Instead of locating the 

information necessary for providing the precision of IntServ service gurantees inside 

the routers, the per-flow rate information is now stored in the IP packets themselves. 

                                                 
xviii also referred to as Core-Stateless Fair Queuing (CSFQ) 
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As in DiffServ, edge-routers differentiate between end-to-end flows, ie provide per-

flow management. This enables the support of per-flow DiffServ delay guarantees. 

Unlike IntServ the core routers no longer perform this task, turning a stateful network 

into a stateless one, ie the ‘stateless core’. 

 

As packets arrive at the edge routers the flow state is computed and inserted into the 

IP header. A major, if not the critical, problem with this approach is this use of the 

header. As discussed in section 2.1 there are a limited number of bits in the header for 

QoS differentiation. Additionally migrating adaptations / enhancements may in 

practice be problematic. Solutions suggested for DPS include the link layer and 

network layer headers, as an IP option or somewhere (ie finding some spare room) in 

the IP header. The second option may be the most feasible, though in practice this 

could still be challenging. The other two suggestions, however, are unlikely to be 

taken up as they require a major adaptation to the IP packet format. This radical 

alteration to pre-existing packet format undermines the chances of deployment of this 

approach [49].  

 

3.2.3 Multiprotocol Label Switching (MPLS) 
Multiprotocol Label Switching (MPLS) [50] provides a flexible means of establishing 

reserved paths across networks, thus guaranteeing the appropriate level of service 

requested. By aggregating traffic into simultaneous flows, known as forward 

equivalence classes (FEC), the aim is to enable scalability as well as reliability. 

Complexity is confined to the edge of the network, leaving the core simple, again to 

ensure scalability. Edge Label Switched Routers (LSRs) apply labels to packets 

entering an MPLS area. Other LSRs then use this label to forward the packet until it 

reaches its egress edge LSR, which removes the label. The path through the network 

is termed a Label Switched Path (LSP). At each hop along the LSP the MPLS label is 

used to ascertain the next hop in that LSP. The Label Distribution Protocol (LDP) sets 

the procedures by which the LSRs establish an LSP through the network, ie the means 

by which MPLS can support QoS. No single protocol is established in the MPLS 

architecture; protocols such as Constraint-Based LSP Set-up using LDP (CR-LDP) 

[51] or RSVP-TE (RSVP with traffic engineering extensions) [52] can be employed. 
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Additionally, to further support QoS, DiffServ BAs can be mapped onto MPLS, as set 

out in [53]. Aggregate flow can be mapped onto the LSPs that most closely offer the 

required DiffServ objectives. This necessitates fitting DSCP settings in the 3-bit 

experimental (EXP) field in the MPLS header. 

 

An advantage of the connection-oriented path scheme of MPLS is that traffic can be 

shared between two paths, even when link costs are unequal. Using the shortest path 

paradigm, traffic can be split only over equal (lowest) cost paths. Thus, as shown in 

the small network in Figure 7, traffic from router R1 to router R4 will be sent via R3 

if routing with Dijkstra’s algorithm. The links from R1 to R4 via R2 will be 

underutilised. As congestion builds up over links R1-R3 and R3-R4 the costs may 

increase, making the route via R2 cheaper. This results in route flapping. Using 

MPLS, however, signalling protocols set up paths for each flow, reserving resources 

along these paths. This may result in fewer network oscillations. 

 

Figure 7: Unequal Cost Paths 

 

MPLS is effectively a shim-layer between level 2 and level 3 (in the TCP/IP protocol 

model), ie between the data link layer and the network (IP) layer and is not as such a 

protocol. When used in IP networks it can be considered as a means to provide 

connection-oriented service in a connectionless network. As such a thorough analysis 
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of QoS and MPLS is beyond the scope of this research, which investigates 

connectionless (“cloud”) rather than connection-oriented (“string-oriented”) networks 

[54]. Despite some doubts – both technical (eg scalability) and economic – being 

raised about the widespread deployment of MPLS [30], initiatives such as BT 21C 

[55] suggest such predictions may be unduly pessimistic. 

 

3.2.4 QoS Routing 
Under QoS routingxix packets are forwarded based not only on the resource 

availability in the network but also according to the requirements of the traffic flows, 

for example guarantees offered by service providers. As outlined in section 2.2, 

routing using native OSPF is optimised for hop count or an administrative weight. 

The main objectives of QoS-based routing, as stated in [16], are considered to be 

dynamically determining feasible paths and optimising resource usage. In OSPF non-

optimal costs cannot be used to route traffic, even if network resource optimisation 

would be improved by doing so. Although resource consumption can be limited by 

minimising hop count (where this is the prevailing metric), so aiding network 

resource efficiency, these hops may be heavily loaded. Network resource efficiency 

may also be optimised by spreading network load, ie seeking to utilise least loaded 

paths. This optimisation trade-off cannot be effectively addressed with the standard 

OSPF implementation. This section investigates the body of research that has 

investigated QoS enhancements to the OSPF routing protocol, sometimes termed 

QOSPF. An overview of routing strategies is presented in [56]. The performance of 

these enhancements is often comparable to that obtainable through technology shifts 

such as MPLS. This is considered advantageous as deployment across networks 

would be more straightforward. While conceding that optimisation my not be an 

attainable goal, manipulating the OSPF cost metric can prove an impressive resource 

allocation strategy. 

 

An additional concern is that even when apparently indicating network availability, 

the routing tables generated in OSPF are based on imprecise state routing information 

[57] due to network dynamics, approximate calculations, routing aggregation and 

                                                 
xix Also known as constraint-based routing 
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hidden information (eg for security reasons). Indeed [58] argues that 99% of routing 

information was inaccurate at that time in the Internet. Approaches that attempt to 

infer resource availability probability information, sometimes termed ‘probability 

based routing’, have been introduced to compensate for the shortcomings of 

availability based QoS routing.  

 

QOSPF [59] presents a refined version of OSPF that incorporates both link bandwidth 

and propagation delay. A “widest-shortest” (ie minimum hop with maximum 

bandwidth) path is pre-computed. See also [60, 61]. Source routingxx, ie where a path 

to the destination rather than the next hop is computed, is employed in some models 

[62], contrasting to the exclusively hop-by-hop approach presented in this work. 

Similarly, the Cost-based QoS Routing techniques employed in [63] and the QoS 

system in [64] are explicitly designed solely for MPLS networks, not connectionless 

ones. Although the work in [65] also runs over an MPLS network, its employment of 

sub optimal paths is pertinent to the research presented here. 

 

Another point to note is that much of the cited research primarily focuses on the 

traffic of one service class in the network, rather than addressing sharing resources 

between traffic requiring differential handling. Conversely, the work in [66] examined 

the ramifications of QoS routing on best-effort traffic in both lightly and heavily 

loaded networks. Selecting shortest-widest paths, for example, even in lightly loaded 

networks were shown to adversely affect the throughput of the best-effort traffic; QoS 

routing has, perhaps surprisingly, been demonstrated as desirable even when networks 

are lightly loaded [1]. That work furthermore determines that relying on data plane 

techniques alone by statically partitioning link resources [67] is inadequate to the 

challenge of multi-class routing.  

 

The research outlined in [68] examines how routing protocols, including OSPF, can 

emulate “optimal routing”, ie following an ideal set of paths and loads identified from 

using information about traffic entering and leaving networks. An optimal distribution 

of traffic is impossible due to the inherent constraints of shortest path routing (with 

                                                 
xx either loose or full source-routing 
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destination based forwarding) and splitting traffic solely over equal cost shortest 

paths. Furthermore the OSPF weight setting problem has been demonstrated to be 

NP-hard [69]. However near optimal results were obtained by approximating optimal 

link loads and applying novel traffic splitting heuristics. Performance levels from 

these experiments were comparable with those obtained using MPLS. These results 

are significant as they indicate that it is not necessary to anchor investigations into 

Internet QoS to novel technologies. This work reinforces the finding of earlier 

research that investigated optimising OSPF weights in order to enhance traffic 

engineering [70]. That earlier research had demonstrated that with appropriate weight 

settings 50-100% more demand could be supported than using Cisco’s defaultxxi and 

approach within a few percent of the best possible routing including MPLS. Later 

work by the same authors developed their local search heuristic to accommodate link 

failures by focussing on critical links [71]. 

 

A consequence of QOSPF is a raised level of LSA flooding, due to shifts in link costs 

[59]. Experimental results [72] have demonstrated that flooding small packets such as 

LSAs consumes a small percentage of bandwidth, so should not represent a burden on 

an already congested network. Additionally the overhead caused by updating the link 

state databases and generating routing tables should not be problematic for modern 

router CPUs. Additionally research on reducing routing table computation overhead, 

such as the “divide-and-conquer” scheme [73] or router clustering [74], mitigates the 

router load.  

 

However, the convergence issue is of greater concern. The work in [75] investigates 

routing around link failure by allowing weight changes. It may take a few seconds for 

all routers in the network to return to a steady state – ie for each router to update its 

link state database and recalculate the corresponding routing tablexxii. During this time 

routers will have inconsistent link state databases. This may lead to looping (see 

earlier) if, for example node “A” routes all packets for destination “G” to next hop 

“B” and this node “B” routes all packets for destination “G” to next hop “A”. Packets 

                                                 
xxi albeit, the research used the outdated Cisco inverse-capacity-weight metric 
xxii Although beyond the scope of this research, convergence time takes even longer in a connection-
oriented network as traffic engineered paths have to be rerouted – old paths torn down and new ones 
set up – after network perturbations. 
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will bounce between “A” and “B” until time out or till convergence, resulting in 

network inefficiency. Suggestions that address the accuracy versus overhead trade-off 

have examined when to trigger link state updates [72], thus lessening the rate of 

convergence. Choosing a higher threshold, so generating a LSA only after a sufficient 

rise in cost metric can be an acceptable compromise. The loss of accuracy in the link 

state databases often does not greatly reduce network performance. An alternative 

approach includes the time to detect failure in the convergence time. Modifying the 

Hello interval so that they are in the sub second range has been demonstrated to 

significantly reduce convergence time [76], provided that the interval be sensitively 

set. The research found that reducing the Hello interval further – to the millisecond 

range – resulted, however, in route flapping due to increased Hello timeouts. Despite 

this, millisecond convergence is considered necessary for high-availability and forms 

an area of active research [77]. Since strictly following the OSPF protocol results in a 

relative high granularity of failure – minimum 2 second detection – another approach 

is to employ the bi-directional forwarding detection protocol (BFD) to track 

connectivity [78]. Another approach has been to reduce the interval between the 

periodic update floods: the default interval of 30 minutes is reduced to 2 seconds in 

[79]. This is unlikely to be feasible, as it would result in continuous database 

updating. 

 

A criticism that can be levelled at much of the work in QoS routing is that it fails to 

address the performance of best-effort traffic. A ‘best-effort-friendly’ (‘BE-friendly’) 

method, presented in [80], selects QoS paths that minimize best-effort delay. 

However, the network under consideration implements MPLS: all QoS traffic follows 

LSPs; best-effort traffic is destination, hop-by-hop routed.  

 

3.2.4.1 Opaque/Traffic Engineering LSA 
This section looks at an example of QoS routing – OSPF-TE – in greater depth. The 

discussion of OSPF in section 2.2 considered the deployment of Router LSAs (OSPF 

LSA type 1). Enhancements to OSPF, notably OSPF-TE utilise the novel opaque 
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LSAxxiii (type 10, flooded within an area), defined in [81]. This allows supplementary 

information about link states to be inserted into an LSA. 

 
8 bits 8 bits 8 bits 8 bits 

LS AGE OPTIONS TYPE = 10  

OPAQUE TYPE=1 OPAQUE ID / INSTANCE 

ADVERTISING ROUTER 

SEQUENCE NUMBER 

LS CHECKSUM LENGTH 

TLV TYPE TLV LENGTH 

TLV VALUE 

 

Figure 8: OSPF Opaque LSA 

 

The link state ID – 32 bits in the router LSA – is now decomposed into the 8-bit 

opaque type field and the 24-bit opaque ID. The Traffic Engineering (TE) LSA [82] 

uses type 1 of the former field, and refers to the latter field, which has no topological 

significance, as the ‘instance’. The purpose of this field is to allow the maintenance of 

multiple traffic engineering LSAs. The Type/Length/Value (TLV) type specifies the 

type of information carried; the length field specifies the length of the value field in 

bytes or octets; the value field contains the actual value. In the (TE) opaque LSA the 

TLV triplet, termed a link TLV, encodes link-specific information including 

maximum link bandwidth (ie true link capacity), maximum reservable bandwidth and 

unreserved bandwidth. 

 

The novel LSA is flooded in the same manner as router LSAs, and the Link State 

Database now incorporates the extra traffic engineering data. Using this extended 

datastructure, now termed the TE database (TED), routers are able to compute end-to-

end MPLS paths offering QoS guarantees. Unlike the native OSPF Link State 

Database, the TED can be revised by the node as the status of each of its links alters. 

If approaches are employed to reduce LSA flooding, router databases will no longer 

be synchronised and looping may result. This could be alleviated by more frequent 

flooding. However, contrary to the findings reported in [72], protocol overhead is 

                                                 
xxiii Opaque LSAs can only be flooded to opaque-capable neighbours, ie those who set the O-bit in the 
Options field as part of the neighbourhood discovery process 
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substantial. Unlike native and other enhanced versions of OSPF, where LSAs are sent 

with information regarding the router, with OSPF-TE advertisements are sent for each 

link. Where nodal degree is high, for example in a dense mesh network, protocol 

traffic can increase considerably [83]. This work demonstrates the alteration to the 

basic trade off – between the accuracy of routing information and the overhead due to 

flooding protocol traffic – by manipulating the OSPF MinLSInterval and 

MinLSAArrival settings, responsible for controlling the rate of LSAs. This suggests 

that careful selection of network triggers may enhance the viability of OSPF-TE, 

albeit in connection-oriented networks. As such this is beyond the scope of this 

research, but is included to demonstrate both that incorporating extra information into 

LSAs and adding to protocol traffic are viable management strategies. 

 

3.2.4.2 Alternative Routing 
The shift here is from local optimisation, ie the least-cost path, to acknowledging that 

network-wide optimisation may be obtained through more efficient resource 

utilization. However, although the ability to select acceptable paths may be desirable, 

uncontrolled alternate routing [84] is rejected due to adverse performance impact in 

times of network stress [16]. The attractions of this approach are founded on both 

feasibility (ie that traffic can follow an alternative rather than being dropped) and 

fairness (ie sharing resources). Alternate routing is derived from telephony, to support 

flows that could not follow their primary paths, so reducing network blocking. As 

network load increases, to avoid being blocked, some traffic is routed to the alternate 

path. However, this utilises more resources than if all traffic is routed along its 

primary path. As load increases further the primary traffic on the alternate paths may 

suffer and in turn become rerouted to a corresponding alternate path. The net result in 

times of heavy load is inefficient resource utilisation. To ameliorate the impact of 

rerouting away from the optimal path mechanisms such as using state protection to 

prioritise primary over alternative traffic can be employed. Under this scheme 

alternate routing is blocked once utilisation on that path is above a certain threshold. 

 

The obvious objection to the above approach is that OSPF selects purely the shortest 

cost (or equal shortest cost) paths. To allow for selection of alternate paths would 
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require an overhaul of the protocol, or use of connection-oriented techniques beyond 

the scope of this research. However, it is included here as background towards the 

enhancements developed later in this thesis.  
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4 Agents 
 

An agent is a software engineering abstraction that has proved elusive to precise 

definition. The major characteristic that probably all definitions agree on is autonomy, 

such that the designer delegates to rather than instructs the agent. An elementary agent 

definition considers it as an entity that perceives its environment through sensors and 

acts upon that environment through effectors / actuators [85]. More developed, 

although still simplistic, definitions describe a software entity responsible for 

automating tasks [86]. Various alternative definitions adapt this to incorporate the 

properties that are considered essential to distinguish an agent from a program or 

object or other software-engineering abstraction – some stress goal-directedness, 

others mobility, others learning, others communication skills or sociability and others 

focus on response in a timely fashion, or location in some ‘real world’. More 

specifically the authors of [87] identify the following dimensions that characterise 

agents: autonomy, reactivity, proactivity, responsibility, continuity, interactivity, 

adaptability, rationality, cooperation and robustness.  

 

 

4.1 Parent Disciplines 

While not aiming to provide an in-depth analysis of the history of intelligent agents, 

an overview of the parent disciplines provides clues to why there is some confusion 

about what constitutes an agent. Agents can be seen to have emerged from concurrent 

actors (themselves a product of Distributed Artificial Intelligence, DAI), where an 

actor: “is a computation agent which has a mail address and a behaviour. Actors 

communicate by message-passing and carry out their actions concurrently”. 

However, more recent understandings would expect behaviour beyond simple 

message passing and concurrent action. 

 

The approach delineated in [85] stresses the artificial intelligence (AI) origins of 

agents. According to this analysis, software agents fall under the ‘acting rationally’ 
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quadrant of AIxxiv. This is in contrast to thinking humanly (the cognitive science 

approach), acting humanly (as investigated in Turing’s imitation game [88]) and 

thinking rationally (the ‘Laws of Though’, ie a purely logic-based approach). By 

contrast Műller in [89] promotes the importance of cognitive psychology alongside 

classical AI planning systems to the development of the agent paradigm. To these he 

adds control theory, with a footnote acknowledging object-oriented (OO) 

programming and distributed systems (this latter is further stressed in [90]). 

 

In common with the above texts the analysis here bypasses the cognitive science / 

psychology links. While most work on agents in telecommunications has stressed the 

AI nature of agents, control theory will be reconsidered later in this section. This may 

prove fruitful for examining why ‘agents’ have not been as widely deployed as 

predicted. Significantly, if agents initially grew out of control theory and AI planning, 

but then diverged from the former, one would not expect to see the term agents 

deployed in control theory research. This implies that structural, or institutional, 

issues have hampered agent progress. Or, to be more precise, that agents may have 

developed outside ‘agent’-friendly departments and as a result not been ascribed as 

suchxxv. Thus if the limitations identified by Műller that inhibit the agent side of 

control theory have been lifted, then it can be argued that intelligent control theory is 

another element of agent development. Indeed, the description of the reinforcement 

learning problem in [91] states: 

 “We use the terms agent, environment, and action instead of the 
engineers’ terms controller, controlled system (or plant) and control 
signal because they are meaningful to a wider audience”. 

In section 4.5.1 aspects of intelligent control will be proposed as agent-based, 

according to most acceptable definitions of ‘agent’. This will be contrasted to some 

work that has come from agent-friendly departments that fails to adequately 

demonstrate the application of agents, despite their claims.  

 

                                                 
xxiv Rational action is considered to be where an agent selects the most appropriate action to achieve its 
goals given what it senses and what it may have been informed about the environment. 
xxv The control theory parallel development is also noted in [91] 
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4.1.1 Why Agents in Networks 
As stated earlier, networks are increasingly characterised by complexity: an expansion 

in technologies; the convergence of voice and data networks and infrastructures, 

enhanced by market deregulation. This can also be viewed as increased network depth 

– set of services – as well as breadth – the number of users [92]. Due to this growth 

both in network complexity and traffic volumes there is an increased need for systems 

/ networks / services that are reactive (ie responsive and adaptive in a timely fashion), 

proactive and decentralised [93]. Distributed, dynamic and open systems demand 

some autonomy; delegation is necessary in order to manage more effectively 

compared to human-centred management [94]. Distributed management, instead of a 

monolithic / centralised structure, would appear to offer advantages such as 

scalability, flexibility and robustness. However, it is acknowledged that careful 

consideration should be given to the granularity of agent architecture to avoid 

unnecessary complication and communication overhead.  

 

An advantage of the agent approach is its capacity to incorporate legacy software. 

‘Agentification’ essentially encapsulates such software inside an agent shell, thus 

enabling non-agent enabled systems or nodes to work alongside agent-based ones. 

However, this in turn raises the prospect of the hollow agent – one that appears like an 

agent but lacks any agent-properties other than those provided by the agent wrapper.  

 

 

4.2 Agent Properties 

Since this field has proved so contentious it is advantageous to attempt to identify 

more thoroughly the composition of an agent. Furthermore, it is useful to delineate 

some boundaries that establish how an agent could usefully operate in network 

environments. There is a considerable focus in the literature on mobile agents, see for 

example the survey in [95]. However, network managers may prove reluctant to 

surrender control to unpredictable entities that can be difficult to control. The research 

developed here exclusively focuses on static agents, ie those confined to a node. The 

overview of agents in networks, in section 4.4.4, will nevertheless provide an 

illustration of some mobile agents, notably ants, but the purpose of this is to indicate 
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the breadth of agent-network research and to illustrate the use of reinforcement 

learning techniques.  

 

The first ‘simple’ agent definition provided earlier would enable a simple control 

system, such as a thermostat, or software daemons to be considered as agents. Such a 

classification is usually refined to incorporate intelligence. A prominent definition of 

such agents interprets intelligent behaviour as flexible behaviour, ie characterised by 

reactivity, proactiveness and social ability [96]. Indeed, the stress placed by the 

authors, Wooldridge and Jennings, is on agent sociability, ie communication and 

cooperation/negotiation skills. 

 

However, ascribing intelligence to agents is in itself difficult as some architectures 

afford little behaviour to an individual agent that could be considered intelligent from 

an AI perspective, as proposed by the cognitive or deliberative school (represented in 

the DAI domain). Brooks explicitly rejected decision-making based on manipulation 

of symbolic representations of knowledge (as displayed for example by deductive-

reasoning agents, see [97]) and argued that intelligence is not disembodied but is a 

product of the interaction that an agent maintains with its environment [98]. 

Intelligent behaviour could be seen to emerge under his ‘subsumption’ architecture 

from the interaction of various simpler behaviours. Although critics of his work point 

to the limited applicability of the architecture, emergent intelligence, as championed 

by the ‘reactive’ school, has also been displayed in multi-agent systems modelled on 

(social) insect behaviour. In the multi-agent world ants, for example, [see section 

4.4.4] are intentionally created as simple, disposable agents – intelligence emerges 

from the behaviour of the colony rather than through individual deliberation or 

deduction. Thus the notion of a smart or intelligent agent is not in itself simple: the 

agent could be Wooldridge / Jennings intelligent (ie collaborative), it could be 

intelligent from an AI perspective (eg able to learn or to manipulate a knowledge 

base) or the intelligence could emerge either through interaction with the environment 

and/or other agents. 

 

As objects become more sophisticated it may be useful to distinguish them from 

agents. Although agents share many characteristics, objects are structurally simpler 
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and inherently more passive [99]. For example, an object has to be activated (or 

invoked) by sending a message. Objects can access all publicly accessible methods of 

other objects (ie objects have no control over their behaviour); agents can only request 

other agents to perform actions. Active objects, encompassing their own thread of 

control, reach closer to the notion of an agent. However, it can be argued that their 

patterns of interaction are still rigid and pre-designed, and that they lack the fluidity of 

agent organisational structures.  

 

 

4.3 ‘Agents’ in Network Protocols 

It has been acknowledged that the agent paradigm is challenging. This is not merely 

due to the above difficulties in agreeing on a consistent working definition of what 

makes an agent but also due to the pragmatics of engineering such systems, as 

outlined in [100][101]. There is no doubt to those authors that agents, as they argue, 

have been oversold – the benefits from such an abstraction tool may also in some 

situations be achieved using non-agent techniques. This will be further investigated in 

section 4.5. Their analysis concentrates on novel applications that often fallaciously 

(or optimistically) claim to employ agents. Additionally, the term ‘agent’ is embedded 

in the architectures of various network schemes. This section introduces the 

proposition that the history of ‘agents’ in networks has operated orthogonally to the 

development of the agent paradigm (derived from AI, control theory and cognitive 

science). This argument is more extensive than the statement that ‘agents’ in network 

literature / architectures differ from ‘software agents’ or ‘intelligent agents’. The 

proposition here is that the limited capabilities that constitute ‘agents’ in some 

network protocols have dampened the expectations for agent technology. In turn this 

permits enhanced ‘agents’ to be developed without the sophistication or flexibility 

promised for either ‘true’ software agents or their framework. The following forms an 

introduction to a thorough, and much needed, analysis of the deployment of ‘agents’ 

in IP networks, examining how these are deployed in, for example, mobile IP, Simple 

Network Management Protocol (SNMP) and DiffServ. 
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Mobile IP is designed to enable transparent routing of IP datagrams to mobile devices 

(such as laptop computers) in the Internet [102]. In mobile IP each mobile device 

(termed ‘node’) has a home address that corresponds to its home network. When the 

node roams outside its home network any packets addressed to this home address 

have to be forwarded. The router or node responsible for both tunnelling datagrams to 

be delivered to the mobile node and for maintaining the location information 

regarding this node is termed the ‘home agent’ (HA). For delivery to be successful the 

mobile node must register with another entity, also termed ‘agent’ on the new, or 

‘foreign’, network. This foreign agent (FA) allocates a new IP address, termed the 

care of address (COA), to the mobile node. This COA is then registered by the mobile 

node with its HA through the exchange of a Registration Request and Registration 

Reply message. The HA encapsulates any packets destined for the mobile node and 

tunnels it to this registered address. The FA in turn de-encapsulates the packet and 

forwards it to the mobile node. Without these delivery agents, as a node changed its 

point of attachment it would lose its ability to communicate. 

 

Yet it is arguable whether these agents are indeed agents, in a form distinguishable 

from a ‘router’ or an ‘entity’ or just a program. While they ‘communicate’ with 

messages, such as Agent Advertisements, this lacks the sophistication of a speech 

action protocol, as outlined for example by FIPA [103]. Although this would fail the 

Wooldridge / Jennings agent definition, it should be conceded that communication 

skills are not stressed in all agent definitions or practice. However, the agents 

presented fail to accord with either maximal (eg Wooldridge / Jennings) or minimal 

(eg ‘simple’) definitions of agents: decentralised management and elementary 

communication is not sufficient.  

 

In SNMP [104], the TCP/IP standard for network management, ‘agents’ are again 

employed: there is a manager-entity (“traditionally called an agent”xxvi) relationship, 

as originally devised for OSI systems management [105]. ‘Agents’ in each device – 

such as a bridge, router, hub and switch – are responsible for data collection regarding 

the managed object. This information is stored inside a Management Information 

                                                 
xxvi Case et al, section 2.1, p.2 



 44

Base (MIB). The agents are polled by the SNMP management station with requests 

for information on that device’s operational status. The management station then 

displays the retrieved information for analysis by a network manager.  

 

The RFC for SNMP acknowledges that calling the SNMP entity in each node an agent 

is a consequence of the established naming (ie established in the earlier RFCs); the 

terminology is not due to inherent agent-like properties. A sample glossary [106] 

provides the following definition of agent: “In network management an agent is the 

server software that runs on a host or router being managed”, which again fails to 

accord with even a generous definition of an agent.  

 

Furthermore, the transformation of agent as simple component into agent as complex 

software engineering abstraction (the agent paradigm) is a point of confusion in more 

generalxxvii agent literature. In [107] the concept of agent-manager via SNMP is 

introduced as evidence of ‘agents’ as ‘indispensable tools’ for network managers. 

Such agents are then contrasted to the superior performance of ‘intelligent’ agents. 

However, it is stated these smarter entities that can perform the dual roles of manger 

and agent have this additional capacity due to code that “tells them exactly what to do, 

how to do it, and when to do it”. Autonomy has been identified as perhaps the one 

characteristic (albeit problematic) that those seeking for agent definitions can agree 

on. Since autonomy implies delegation rather than instruction then these intelligent 

agents, albeit smarter than SNMP agents, are again also not really agents. By 

constructing such a low unfocussed baseline for agents the result is that other entities 

become included under such a nebulous heading. The redundancy of the term merely 

serves to limit the practical application of the paradigm.  

 

This confusion can also be found in DiffServ, where bandwidth brokers are explicitly 

called agents in the RFC [108]:  

Thus this architecture is designed with agents called bandwidth 
brokers (BB) [2], that can be configured with organizational policies, 
keep track of the current allocation of marked traffic, and interpret 
new requests to mark traffic in light of the policies and current 
allocation. 

                                                 
xxvii ie software agent, not protocol 
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This has resulted in inconsistencies in research papers in this field: research that 

appears to present agents instead describes enhancements to the bandwidth broker 

concept. Thus in the abstract of [109] the two have merged: “For each link-state 

routing domain in the network there is a topology aware QoS agent (also known as a 

bandwidth broker)”. This paper confirms that the agents in the authors’ earlier works, 

compiled in [110], are synonymous with bandwidth brokers. That bandwidth brokers 

are entities that are delegated the responsibility of traffic marking appears to conform 

to the agent paradigm. Yet their role lacks the flexibility associated with that 

abstraction – the aim of delegation goes beyond mere distributed control. The 

flexibility, above all the sociability, of the Wooldridge / Jennings model, is lacking. 

While conceding that this is only one of many definitions of an agent, the bandwidth 

broker fails to incorporate other properties associated with agents, for example 

omitting any AI. 

 

Again, the Snoop protocol [111], developed to improve TCP efficiency in wireless 

networks, also deploys ‘agents’. These entities are ‘TCP modules’, responsible for 

monitoring and caching all packets passing through the agent’s base station. When 

packets are lostxxviii the agents retransmit them locally without forwarding the ACKs 

to the sender. Since the TCP layer remains unaware of packet loss, the congestion 

control algorithm is not triggered. The Snoop protocol is an example of Performance 

Enhancing Proxy (PEP), ie a method aimed at reducing performance degradation due 

to the characteristics of wireless links. The ‘agent’ in the protocol would appear to be 

the ‘entity’ – TCP-aware module – that enables the PEPs. Again, it could be seen that 

action is performed – Snoop is enabled – rather than an agent deliberates / decides / 

negotiates. The ‘agents’ are merely distributed entities – possibly actors. 

 

Finally, the Sequence Agent (SA) – developed in the packet sequencing architecture – 

is responsible for coordinating itinerary creation [30]. The tasks of such an agent 

include validating requests, providing itinerary leases, lease renewal and teardown. In 

small networks there is one agent; as network size increases multiple agent peers 

                                                 
xxviii indicated by duplicate TCP acknowledgements (ACKs) 
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communicate across domains. As argued in the previous paragraphs, however, there is 

little that distinguishes these entities as agent. 

 

It could just be accepted there are legacy reasons why the term ‘agent’ is employed in 

the literature. This innocuous usage encompasses entities for example with manager-

managed/slave relationships, entities that communicate according to protocols, 

entities that enact organizational policies. It can even be reduced to the most basic 

definition – something that does something, ie enacts agency – as stated in the 

following ‘characteristic’ of the TCP/IP suite: “TCP/IP protocol, and other protocols 

like it, is a result of the action of autonomous agents (computers)” [112]. 

Alternatively, as highlighted here, we can try to establish that there are extreme 

contradictions in the usage of this term. Focussing on this is not mere pedantry. 

Where a term is familiar in one domain, here networks, reintroducing it as a paradigm 

created from outside the domain (whether AI planning, control theory or cognitive 

science) results in inconsistencies, potentially undermining the deployment of agent-

like agents.  As Wooldridge and Jennings noted about the pragmatics of engineering 

agents [101]: 

“Ignoring themxxix will result in a backlash against agents similar to that 

experienced against expert systems, logic programming, and all the other 

good ideas that have promised to fundamentally change computing” 

While much of the paper that contains this quote warns about the over-abundance of 

software claiming to be agents, here the stress is on the relative paucity of 

deployment. The significant role that it was hoped intelligent agents may play could 

have been destabilized at a much earlier point by the overuse of the simplistic ‘agents’ 

detailed above. 

 

 

4.4 Agents in Networks 

While acknowledging the concerns outlined in section 4.3, nevertheless an agent-

based approach has been identified as an apposite mechanism for modelling 

interaction across networks. Where networks are complex, characterised by a 
                                                 
xxix ie the pragmatic aspects of agent technology 
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distributed and sizeable volume of information, agents offer the necessary flexibility 

to manage resources. Research has demonstrated the advantages of employing 

software agents specifically across telecommunications networks, where agents can 

use intelligence, for example, to negotiate contracts or to exploit resources such as 

bandwidth in times of congestion. Other research outlined here, it will be argued, 

utilises structures that are identical to the agent software engineering abstraction in all 

but name. Yet, also included is some work that claims to be agent-based yet fails to 

adequately demonstrate the role of agents. 

 

Additionally, a body of more theoretical work has demonstrated the advantage of 

agents for applying co-ordination and/or negotiation mechanisms [113,114], including 

trade-offs in telecommunications networks [115]. A more thorough analysis of this is 

beyond the scope of this thesis but such work compliments the applied agent work. 

 

4.4.1 Agent Architectures for Resource Allocation 
The focus in this sub-section is on agent architectures decomposed into hierarchical 

layers. Higher-level agents are responsible for deliberation, monitoring or 

collaboration and can disseminate their knowledge down to the lower level, 

increasingly reactive agents. Likewise, these agents can dispatch their discoveries or 

problems, to the upper levels. 

 

Deploying agents for resource allocation in telecommunications networks was proved 

to be an advantageous strategy in [116]. This work utilised agents to provide 

flexibility in allocating channels in cellular networks, such that cell blocking was 

minimised and channel usage maximised. Modelled on the INTERRAP architecture 

[89], the reactive agent layer was responsible for the rapid accommodation of traffic 

demand, the planning control layer aimed to optimise the local channel load 

distribution while the top most cooperative control layer focussed on load balancing 

across a wider area. By decomposing functions into layers, and through coordination 

the agent approach achieved better flexibility, despite some scalability and robustness 

concerns. Additionally, all calls were treated equally in this approach – no preference 

was given for service type. 
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The IMPACTxxx project implemented control strategies on an ATM test bed as a 

society of interacting agents [117]. The research employed an hierarchical agent 

architecture, implementing resource management strategies in reactive and planning 

layers. Two of the resource (management) agents were located in the higher (slower) 

planning layer – where for example network monitoring occurs – while the remaining 

resource management agent was located in the rapid reactive layer. The latter agent 

had to make immediate decisions over network admittance based on limited state so 

needed to function without the potential delay associated with planning competence. 

However, the reactive agent was located within the framework of the more strategic 

competence so, when necessary, higher-level decisions made by the planning layer – 

such as the bandwidth allocation for pipes managed by that agent – could be relayed 

down. Various other agents were deployed, for example, to operate as brokers, 

manage auction bids and to represent service providers. 

 

Successful implementation of the IMPACT society of agents was demonstrated across 

several test beds, albeit noting overheads due to choice of coding language and 

implementing SNMP [118]. One of the key concerns about the IMPACT project was 

scalability: with one reactive agent for every source-destination pair the network 

suffered severe growth constraints [119]. The agent devised to address this problem, 

by establishing connections traversing several IMPACT domains, was never 

implemented due to time constraints. Additionally the directory facilitator agent – 

responsible for white-pages services – represented a vulnerable single-point-of-failure 

in the IMPACT structure. Should this agent fail all other agents would become 

incapable of finding each other. 

 

In the SHUFFLE agent telecommunications project, agents were implemented in a 

system that dynamically allocated radio and associated fixed network resources in 3G 

mobile systems [120]. The aim was to provide end-users with an improved and more 

cost-effective service, and operators with increased opportunities for contingency 

management where allocation policies need to be dynamically changed. The system 

                                                 
xxx Implementation of Agents for CAC on an ATM testbed 
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evaluated how the resulting resource allocation system improved the overall 

performance of the network and the scheme was compared with more centralised 

approaches. The agent implementation allowed the project to explore various resource 

management strategies. Some of these strategies merely required minimal planning 

applied at the reactive level, while some required intelligent negotiation between 

components of the system in the planning layer. The results demonstrate a clear 

advantage to decentralised control. Additionally the intelligent, reputation-based 

selection of networks yielded over 25% improvement in blocking and dropping rates 

compared with conventional network selection (where the network that carries 

connection request is always asked to handle the call) in dynamic demand scenarios 

(intermittent hotspots or cell failures, for example). The project also demonstrated that 

SLA constrained QoS relaxation (by reduction of requested bit rates) yielded an 

improvement in blocking and dropping rates. Results show clearly that even the 

sophisticated intelligence of the negotiation of shapes could be performed in real time, 

as well as the relaxation and referral mechanisms, but the performance of the 

middleware is critical to any application. The mapping to the agent communication 

language, the network latency, the processing by conversation managers and the 

allocation to tasks lead to significant delays. 

 

The hierarchical architecture for MPLS-enabled networks in [121] was designed in 

response to the scalability concerns associated with the previous agent systems. By 

making the system complement the conventional management apparatus, robustness 

to agent system failure was ensured. Two agents were distributed to each node: 

deliberative P-agents (one per node) for maximising network performance and 

subordinate reactive M-agents (one per link) for monitoring. Should the M-agent be 

unable to respond to congestion over its logical path (LP) it alerts the node’s P-agent, 

which then communicates as necessary with the corresponding agent in other nodes to 

alleviate any hotspot. Additionally, P-agents are intended to incorporate learning. 

 

The work in [122] presents an agent approach to responding to adverse conditions – 

for example reacting to natural disasters or the added stress of large-scale public 

events – in (PSTN / ISDN / SDH) telecommunications networks. Traffic Management 

Networks (TMN) Operational Services (OS) collect traffic information from the 
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Network Elements (NEs, ie the digital exchanges) and pass commands down as 

necessary. OS can issue routing controls or traffic volume controls to network level, 

but traffic management is performed at network management level due to possible 

network heterogeneity (such as NEs from more than one vendor). Agents are located 

at each node (ie NE) – they can be particular to vendor or NE type. As in the 

IMPACT project, a hierarchical approach is employed: the control agent is reactive, 

running in a multi-agent host system. This system in turn notifies the reactive agent of 

changes in network status. 

 

Routing in [123] is calculated on-line based on network state. A controller agent is 

responsible for a region within a network. Such regions are then clustered into meta-

regions (in a similar fashion to PNNI [124]), controlled by a parent controller agent, 

which in turn are grouped into a higher region creating a hierarchical clustering 

structure. To make this adaptive, these regions are categorised into equivalence 

classes of nodes reachable at a certain bandwidth, such that a decreasing level of 

bandwidth mutually connects all nodes in regions higher up the hierarchy. Problems 

are ideally served locally and then passed up the hierarchy until the controller agent 

knows the two endpoints. This agent then coordinates the agents below it in the 

hierarchy to solve the routing problem. As demand rate increases the relative 

performance of the adaptive routing hierarchy suffered, although the authors argue 

that in non-uniform traffic scenarios the adaptive techniques should prove 

advantageous. 

 

As multi-agents systems (here used synonymously with DAI) become larger and the 

environment unreliable, adaptability – both of the agents and of the interaction 

structure among the agents – becomes imperative. If an agent’s problem space is 

suitable for machine learning or other AI techniques this ensures adaptability when 

scaling up. Additionally, including the actions and aims of other agents into an 

agent’s input space, so ensuring the propagation of an agent’s policy adaptations to 

the other agents in the space, can result in more interesting strategic behaviour, as 

demonstrated by Vidal and Durfee [125]. 

 



 51

4.4.1.1 Agent Framework 
To complement the work on agent architectures more formal work has been 

undertaken to improve agent frameworks. The aim of the Agentcities [126] initiative 

is to create a ‘global, open, heterogeneous network of agent platforms and services’. 

The focus lies on supporting consensual standards, open source, open access and 

shared resources. Agents run on different platforms, owned by separate organisations, 

with differing implementations and diverse service provision. Customers select a 

network service – essentially a standardised Service Level Specificationxxxi (SLS) – 

and then choose further modifications to the SLS, including schedule, extra QoS 

requirements and traffic description. The initial domain to both test and demonstrate 

the project was a travel agent platform (ie provider of location-based services). An 

interest group on wireless applications has sought to dynamically respond to user 

needs based on location through interaction between agents in both wireless and wired 

networks. The project still requires further work in developing ontologies, using 

semantic frameworks and content languages to encourage and enable agent 

communication. Although such developments are beyond the scope of this thesis it is 

included to demonstrate that work is still ongoing on agents in networks. 

 

4.4.2 Agent Intelligence: Routing  
The purpose of some of the earlier sections has been to examine the claims made for 

the role of agents in networks. This has necessitated not only establishing what is 

meant by an agent but also to expose the role of ‘agents’ in both network protocols 

and applications. This section investigates the work in agent-based network routing 

that is related to the research outlined in this thesis. These fit more closely the AI 

model of agents, primarily using reinforcement learning to update and refine routing 

tables. An advantage of reinforcement learning is that no prior knowledge (or model) 

is imposed on the agents – all knowledge and behaviour is learned from the 

environment. For a fuller analysis of reinforcement learning see section 6.1.1. 

 

In the reinforcement learning model presented in [127] – termed the proportional 

routing model – the action space of each agent is a proportion vector, consisting of the 

                                                 
xxxi The SLS is defined as the technical component of an SLA 
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percentage of traffic for each destination sent along each outbound link. In the 

training stage the input for the agent is the action taken by that agent plus any network 

observations from that time interval, such as the proportion vectors of other agents. 

The corresponding output is the system-wide throughput for that interval. The 

advantages of using adaptability in a routing strategy were clearly demonstrated. 

Unlike some previous work on adaptive agents, based round a Stackelberg game 

where the ‘leader’ agent imposes its actions into the other ‘follower’ agents’ action 

space [128], the research ‘interleaves’ their decisions so that any agent is both a leader 

to a certain extent and a follower. Thus each agent includes the actions of other agents 

in their action space. While there is concern about the extra state that may accrue for 

each agent the development of agent adaptability is encouraging. However, it is 

unlikely that this could be extended to an OSPF-enabled network – not only does it 

employ the Bellman-Ford metric but OSPF does not permit proportional routing.  

 

In another project employing reinforcement learning [129], each router in the network 

is represented as a partially observable Markov decision process (POMDP). The node 

decides where to route a packet according to a stochastic policy. This policy computes 

the shortest path and then sets controllers to route most of the subsequent traffic down 

the chosen path. Sporadically, traffic is also sent to explore any alternative links. Once 

a packet has arrived at its destination it sends an acknowledgement signal. This allows 

routers to calculate packet delivery time, which provides a reward value, which in 

turn is used to update the policy parameters. The policy algorithm’s performance is 

compared to a static routing scheme and two other deterministic routing algorithms, 

one based on shortest path and the other on value search reinforcement learning. The 

results demonstrate a clear advantage of the stochastic approach over the deterministic 

algorithms.  

 

The work using Q-learning in [130] generates extra control packets by sending link 

cost information from the next hop (rather than the destination node) to the sender. 

Oscillatory behaviour was exhibited, and although results proved better than using 

static routing algorithms, testing against dynamic algorithms was neglected. In [131] 

agents at every node also employ reinforcement learning – here Q-learning (see 

section 6.1.1.1) – with results tested against a network solely routing using a distance 
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vector algorithm. The agents aimed to optimally map state (spare capacities on 

connections and internal queues) to actions. After an initial period of learning results 

were considered to be ‘promising’ for improving both network reliability and 

efficiency, although the authors concede it is difficult to extrapolate the results to a 

larger network. A weakness with all the studies is a failure to report on the increased 

state space that is generated by using reinforcement learning. 

 

In [132] Application Service Providersxxxii (ASPs) – assign a user agent (UA) to each 

customer registering for a service. The UAs negotiate the customers Service Level 

Specification (SLSs) with the Network Service Providers (NSP)xxxiii, represented by a 

Policy Server (PS). Customers are offered either the desired QoS class (corresponding 

to a scheduling priority or dropping ration) or merely best-effort service depending on 

a utility measurement after the SLS-compliant charge is factored in. In common with 

the earlier analysis of the bandwidth broker, the interaction between entities (UA and 

PS) lacks the sophistication and flexibility promised by the agent paradigm. Another 

point to note is that this operates in an MPLS-enabled (ie connection-oriented) 

network. 

 

Unlike the above work with one agent per user (ie the UA), the work presented in 

[110] – which offers both immediate and advance reservations – has one reservation 

agent per network domain. Again, as mentioned earlier this ‘agent’ is synonymous 

with the bandwidth broker. Due to the slippage of usage of the term agent it is useful 

to relocate such example with other projects that also appear or claim to be using 

agents. The agent/BB queries routers about the status of their links, and is responsible 

for admission control. Later work evaluated the cost of the reservation system [109]. 

A punitive overhead identified was the cost of request-reply transactions when using a 

reliable communication protocol, such as TCP. The network core, ie where providers 

negotiate QoS contracts with each other, is presented as the most suitable location for 

advance reservation, unlike the access networks under consideration in this thesis. 

 

                                                 
xxxii third party organisations that provide outsourced services such as VoIP and video conferencing 
xxxiii usually termed ISPs in related research 
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4.4.3 Market Based Approach 
Many agent models cast their agents as co-operatively working to serve a common 

framework, for example improving network utilisation. This assumes that the network 

is a single common resource. In the deregulated telecommunications marketplace 

such assumptions may prove unrealistic. To reconcile this, market-based approaches 

have instead modelled self-interested agents, representing competing network owners 

in a market-based economy. Several market-based paradigms exist that employ an 

auction protocol/mechanism for allocating calls, for example [133], and in Intelligent 

Networks (IN) the computational economy model proposed in [134] and [135]. The 

dependence by the former on a centralised controller or by the latter on a distributor 

agent or auctioneer in the market models undermines system robustness. Partially to 

avoid this centralised entity and the resultant vulnerability should this fail a quote-

driven market approach has been proposed [136]. A limitation for applicability to 

connectionless networks is that service providers trade bandwidth associated with a 

fixed set of source-destination pairs. 

 

In [137] three sets of agents operate: those that sell the network resource (the link 

agents), those that buy those link resources and sell on these bundled as paths (the 

paths agents) and lastly those that represent a user, buying the paths (the call agents). 

Negotiation between agents is mediated via the double auction protocol, conducted at 

link markets (link agents selling to path agents) and path markets (path agents selling 

to call agents). As network utilisation rises the marginal utility for resources (ie links) 

also rises, so the pricing functions are structured accordingly. In the small sample 

network – consisting of 7 nodes connected with 24 directed links – 150 agents were 

established: 24 link agents and 126 path agents. As witnessed with the IMPACT 

project this represents a severe limitation to the scalability of the solution. 

Furthermore, it is obviously difficult to extrapolate from this to a connectionless 

system. 

 

In [138] Service Control Points (SCP) form the nexus of service execution in the 

Intelligent Network (IN) – an overlay network responsible for service provision to the 

corresponding transport network. If demand (ie service requests to that SCP) exceeds 

the capacity of the IN the SCP becomes overloaded. To manage this, a load control 
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mechanism depresses the call acceptance rate at the Service Switching Point (SSP) –

through which the telecommunication users access services offered by/in the IN – so 

that the SCP overload diminishes. A market-oriented programming paradigm [139] is 

employed to allocate Service Logic (SL) (ie access rights for the incoming load to the 

SCP) according to SSP demand rates. This creates an economy in which agents trade 

commodities – ie access to SL – through an auctioneer. When an agent sells an 

allocation of SL it receives some network money. The agent at the SSP is not 

endowed with any commodities (but has network money) while the agent representing 

the SCP has the capacity of the SCP to trade. In the agent architecture the co-

ordinator, while enabling the smooth running of auctions, does not function as a 

centralising point for the auctions. In this respect this agent is neither a bottleneck nor 

potential vulnerability in the system. Functionality is similar to the Agent 

Management System (AMS) and the Directory Facilitator (DF) in a FIPA compliant 

agent platform [140].  

 

The benefits of this approach were tested against Automatic Call Gapping (ACG) 

algorithm in a network consisting of 8 SSPs, 4 SCPs. The three SL types offered are 

VPN, a ring-back service and restricted-call forwarding service. Beyond an 

overloaded level (around 90%) the performance of the ACP diverges from the agent 

approach and degrades due to oscillations. A high level of revenue is maintained with 

the novel approach. Yet the flexibility and benefit of agent approach carries increased 

overhead due to the communication. This possibility could be reduced if a customised 

implementation rather than a general-purpose platform were employed. The work 

demonstrated a clear improvement over previous approaches in IN load control that 

have only one SCP or centralised controller. 

 

4.4.4 Ants 
Modelling the foraging behaviour of ants has proved a fruitful area of network routing 

research, notably [141,142]. This behaviour – termed stigmergy – is characterised by 

indirect communication through environmental modification, here by depositing 

pheromones. As ants forage they deposit pheromones, to guide them back to the nest. 

After finding food the ant returns home, reinforcing the pheromone trail. Food sources 
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located closer to the nest are reinforced sooner, are stronger (as less pheromone has 

evaporated) and hence are more likely to be chosen by the other ants. In turn the 

pheromone is further reinforced and this least-cost path established.  

 

In simulated ant networks a probabilistic (routing) table, representative of 

modification on the environment, mimics the strength of the pheromone trail. Ant 

packets investigate and report network topology and performance, altering the routing 

tables. Two distinct strategies are employed: updating the tables en route (online step-

by-step), or once the destination has been reached. Ants will probabilistically select 

routes with the highest stigmergic reinforcement. Additionally there is a mechanism 

that simulates the evaporation of the probability-pheromones, and noise is introduced 

to encourage exploration instead of mere exploitation of the paths.  

 

Shortcomings of this approach include slow convergence in response to network 

stress, scalability problems and possible sub-optimality due to the localised 

perspectives of the ants. Moreover whether ants could in practice be implemented in 

physical networks due to security considerations is questionable. However, this is a 

very active area of ongoing refinement, for example using genetic algorithms [143] or 

reinforcement learning with neural nets to dynamically modify ant response speed 

[144]. The purpose of including this approach is to highlight the issue of agent 

definition. In the basic AntNet model [145] ants are very simple agents, although they 

can store internal state, notably past history. Their basic abilities can be augmented, 

for example to incorporate a simple recovery procedure. Additionally they are 

disposable – in some models they die on arrival at their destination. Their autonomy is 

questionable, due to their simplicity. They lack the more sophisticated communication 

protocols that often are ascribed to agents. Yet they co-operate, via indirect 

communication. Yet the net result – shortest path routing – is achieved through the 

colony of mobile, distributed, active packets, a point reinforced in Dorigo’s writing. 

Furthermore, more recent work in this area [143] has removed a priori knowledge (so 

both routing table structure as well as content is evolved), requiring greater autonomy 

of the ant-packets. 
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4.5 Parallel Research 

The previous sections have attempted to address how agents operate in networks. 

Although it may appear that there is a body of work employing agents it was 

questionable whether some work can justifiably claim to be using agents rather than 

mere components or entitities. This section further develops this investigation by 

looking at non-agent-based research and trying to qualify whether this could be 

termed agent-based. The consequences of this can be interpreted in two ways. One 

interpretation is that if agent-based and non-agent-based research is indistinguishable 

in methodology, then the term becomes redundant. Agent, actors, managers, 

components and entities all blur into the same. However, as has been argued in the 

previous sections, entities that are NOT agents can be identified. The terminology – 

agents – may be the same while the praxis has differed. If some projects have been 

deemed to not be agent-based this is due to methodology/application differences. 

Clear distinctions can then be drawn between some agent-based and non-agent-based 

research. Thus the argument of the blurring can be partially refuted as identifiable 

distinctions operate. 

 

The contrary argument would seek to reinforce common ground between some agent-

based and non-agent-based research. Here the focus is on the application and not the 

title. As quoted earlier the term agent may be comprehendible to a wide audience, but 

it is not necessary the prevailing term for all disciplines. Flexible, intelligent, 

distributed management or control is not unique to agent-based research. Where such 

research shares the same characteristics as other agent-based work it is fruitless to 

preserve a rigid boundary between agent and non-agent work. Instead the notion of 

agent-like becomes valuable. 

 

4.5.1 Control Theory 
In [89] it was argued that control theory lacked the sophistication associated with 

agent research. This section provides one example of how recent developments in 

control theory have overcome such limitations. The intention behind providing an 

example is that it suggests that there may be a body of work that is agent-like, without 

being credited as such. 
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The work in [146] argues that a highly nonlinear system with large uncertainty such 

as the Internet is unsuited to the mathematical modelling associated with conventional 

congestion control. Also classic control theory is considered ineffective outside single 

switch node systems due to the complexity of large-scale networks with multiple 

parameters. An Active Queue Management (AQM) algorithm with intelligent control, 

ie knowledge structure, is presented. This Adaptive Optimized Marking (AOM) 

scheme achieves shorter queue length and drop rate than random early detection 

(RED) through tuning the trade off between buffer occupancy and link utilisationxxxiv. 

In the model Organisation and Coordination levels are responsible for higher level 

functions such as planning and intelligent decision making. The expert system forms 

the machine intelligence in the organisation level. The coordination level translates 

this to a control pattern for the lower layers. Both levels make qualitative decisions, 

whereas the execution level makes quantitative decisions, as it has to construct 

precision control signals. Or, to quote the authors: “Organization decides what the 

system is…Coordination decides where to control…Execution decides how to control 

the system”. 

 

However, it could be argued that intelligent control is equivalent to agent-based 

control. Certainly it accords with definitions that concentrate on knowledge 

representation and reasoning. Additionally this AQM system is located within the 

system, unlike the classic knowledge or expert systems that are disembodied. Müller’s 

analysis of the parent disciplines of intelligent agent design perhaps is the most 

pertinent for this analysis [86]. The controller process is considered analogous to an 

agent. Where the analogy breaks down, Müller argues, is in the complexity of most 

environments, which are not amenable to traditional solutions by differential 

equations associated with control theory. Likewise control theory is associated with 

an inability to manipulate incomplete and inconsistent information. However, the aim 

of the researchers here is to explicitly move away from the classical approach and 

hence the major obstacle to an agent definition is removed. As has been state earlier, 

with no authoritative definition of an agent, the presence of  knowledge structures will 

                                                 
xxxiv subject to the assumption that IP networks exhibit stationary or slow changing traffic distributions 



 59

not satisfy all agent researchers – Brook’s emergent intelligence model for example 

would reject such constructs. However, this control theory model would accord with 

many other agent examples, including some delineated earlier. 

 

4.5.2 Policy Based Management 
This final section provides an introduction to projects investigating policy based 

management, a growing area of means of automating network management through 

high-level directives [147]. Here policy is taken to mean “the unified regulation of 

access to network resources and services based on administrative criteria” [148]. 

Section 0 stated that the work in this project focused on the control, as opposed to 

data and management, plane. However, in order to fully qualify the role of agents in 

connectionless networks it is valuable to investigate developments in the management 

plane. These enhancements extend the bandwidth broker concept, and as already 

stated it would be overly generous to term that entity an agent. Additionally, policy 

based management usually does not profess to identify the components in the 

architecture as ‘agents’xxxv. However, there are many features underlying policy based 

management – distributed sophisticated management and monitoring, communication 

protocol – which would appear to demonstrate the flexibility associated with agents.  

 
The IETF states that a Policy Based Management System (PBM) should enforce 

differing levels of QoS guarantees for both users and applications, via policy rules 

[149]. These rules govern admission control, scheduling, traffic shaping for various 

users under varying traffic conditions. Parameters for the rules include a range of QoS 

metrics such a requested bandwidth, jitter or starting times. These systems are set up 

as two-tiered applications: for final policy decision, the policy manager (or policy 

server) at the top; the edge or boundary routersxxxvi, for policy enforcement, at the 

lower layer.  

 

                                                 
xxxv Although see AQUILA project 
xxxvi Additionally there is an LDAP server which stores the policy rules 
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4.5.2.1 Policy Projects 
The AQUILAxxxvii project implemented an architecture for end-to-end QoS 

provisioning in the Internet. The core network is DiffServ enabled and over this lies 

an overlay network – the Resource Control Layer (RCL). This layer performs 

resource control (monitoring, controlling and distributing resources) via the Resource 

Control Agent (RCA). Significantly it has been stated that: “An RCA is a 

generalisation of the concept of the Bandwidth Broker in the DiffServ architecture”. 

Additionally another ‘agent’ – the Admission Control Agent - in this layer, linked to 

each ingress/egress router, is responsible for both policy and admission control. 

Finally, this layer acts as in interface to the QoS for the End-user Application Toolkit 

(EAT). The EAT middleware operates at the control plane and is responsible for QoS 

reservations. Inter-domain there is a Border Gateway Routing Protocol (BGRP) 

Agentxxxviii at each border router that aggregates reservations for the same destination. 

Discussion about the agent-like qualities will wait till all three projects are introduced. 

 

The Cadenusxxxix project investigates automated service delivery by providers, 

through dynamically negotiated SLAs [150]. The aim is to translate (ie automate) an 

SLA, as specified by an end user, into an SLS, which describes the technical details of 

network specification. It is argued that the use of an SLS automates service activation 

in IP networks (whereas a user’s QoS request would be carried as a signal under the 

telecommunications model). The project operates with a longer-term dynamic QoS 

perspective than AQUILA (there is nevertheless acknowledged overlap with all three 

projects) and additionally does not investigate inter-domain QoS. The Cadenus 

architecture partitions the system into ‘Mediators’, which map user’s QoS requests to 

the corresponding service/network resources. This clearly demarcates service both 

from resource control and management and from the service creation machinery.  

 

The Access Mediator (AM) interacts with the user – establishing best-fit services – 

and the service providers – negotiating dynamic SLA features. The Service Mediator 

(SM) both incorporates new services to the Service Directory as well as managing the 

                                                 
xxxvii Adaptive Resource Control for QoS Using an IP-based Layered Architecture  
xxxviii This is still only in framework 
xxxix Creation and Deployment of End-User Services in Premium IP Networks 
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physical access to the requested services (employing the Resource Mediator, RM). 

Additionally the SM is responsible for preparing the user’s SLA and translating this 

into the SLS. The above mediators advertise their existence to each other via the 

Service Directory: whereby the SM is the seller and the AM is the buyer of the 

advertised services. There is only one Resource Mediator within an AS, and 

additionally one Network Controller for each network technologyxl within that 

domain. Communication between the RM and the network is based on COPs-like 

policy rules. The mediators employ the ‘Active Object Model’.  

 

The demarcation of service treatment (carried out by the SM) and the resource 

treatment (carried out by the RM, whose role is to translate service demands into 

specific network resources demands) differs from a standard SLS definition, since this 

usually defines scope (ie ingress and egress node). Thus a new type of SLS is 

identified so that the separation is not violated. The traditional offline SLA is 

identified as suitable for subscription and provisioning but not for the usage (call-by-

call) process. So CADENUS considers an invocation or i-SLA/i-SLS. The i-SLA just 

contains the service class to distinguish QoS levels, since all the other parts of the 

contract have been negotiated previously in the SLA subscription / provisioning 

process. 

 

The TEQUILA project [151] is concerned with longer-term traffic engineering than 

the other two projects. It investigates QoS provision in IP networks through SLS 

negotiation, monitoring and enforcement, intra-domain traffic engineering and inter-

domain SLS negotiation. The focus is on service management, ie defining services 

and service classes (service creation), the negotiation and subscription to services and 

service assurance. The framework consists of two time frames or epochs: the longer 

term service subscription – where customers subscribe for future services – and the 

more immediate service invocation for per-call requests – ie where customers invoke 

the services to which they have subscribed. This echoes the resource management 

timing: off-line network dimensioning and dynamic route management. Route 

                                                 
xl ie one for ADSL ‘technology domain’, one for DiffServ td…one for MPLS 
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selection is made in a distributed fashion, but the cost metric used to calculate the 

paths are manipulated by the network dimensioning component. 

 

The TEQUILA architecture is hybrid: the network-dimensioning element – 

responsible for mapping traffic requirements to the physical network – is centralised, 

while other network management elements are distributed to the nodes (either just the 

edge routers or to all routers) and are reactive. Additionally the high-level Policy 

Management Tool is centralised while the Policy Repository can be distributed. After 

storing policies in the repository activation information is passed to relevant Policy 

Consumer for retrieval and enforcement. The centralised Network Dimensioning 

(ND) maps traffic requirements to physical network resources and provides Network 

Dimensioning Directives – such as definitions of label switched paths (LSPs), 

anticipated loading of per-hop behaviours (PHBs) – to accommodate predicted traffic 

demands. The lower traffic engineering elements – Dynamic Route Management 

(DRtM, edge routers only, manages parameters for selecting LSPs) and Dynamic 

Resource Management (DRsM, all routers, manages buffer & scheduling parameters) 

– manage resources allocated by ND. For example, the DRsM would translate 

anticipated PHB loading into scheduling parameters. Provisioning thus incorporates 

long-term SLS and dynamic network state. In addition to producing the guidelines for 

sharing network resources, the ND is also policy-influenced from above. Example 

policies include: how often to trigger dimensioning; importance of a particular PHB; 

maximum number of alternative paths; parameter specifying the relative merit of low 

overall cost against network overload avoidance. 

 

TEQUILA’s system objectives are both traffic (ie obligations to customers via SLS) 

and resource-oriented (network optimality). The design requirements also incorporate 

avoiding overloading parts of the network and providing overall low network load. To 

avoid network hot-spots, instead of employing standard routing algorithms the ND 

employs a version of a k-shortest path algorithm. This finds paths subject to the cost 

and utilisation constraints. These two constraints lead to conflicting optimisation 

objectives and a non-linear optimisation problem [152]. 
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The EURESCOM project P1008 [153] identified a need for both the traditional long-

term service contract as well as a novel, dynamic, short-term contract. TEQUILA (as 

well as CADENUS) provides both features – SLS subscription (SLS-S), concerned 

with long-term policy-based admission and SLS invocation (SLS-I), a more dynamic 

component, which dynamically deals with each flow. 

 

In the TEQUILA architecture the principal reasoning – policy management and 

network dimensioning – is centralised. This not only makes the architecture 

potentially more vulnerable, in the example of network failure, but also introduces 

higher signalling overhead. Additionally the architecture is committed to a 

Diffserv/MPLS-based network.  

 

4.5.2.2 Common Open Policy Service Protocol (COPS) 
Common Open Policy Service Protocol is a client server protocol that defines 

communication messages between two operating entities, the policy decision point 

(PDP) and the policy enforcement point (PEP) [154]. In the policy based management 

architecture the PDP is located in the policy server, while the PEP is located at the 

edge/boundary routers. COPS can operate in an outsourcing mode, whereby a PEP 

receives a request for a connection servicing. The PEP then passes this up to its 

allocated PDP, which has to obtain the relevant policy rules from the LDAP server. 

Using these, an assessment is made by the PDP whether to accept or reject the 

connection. This decision is then passed back down to the requesting PEP, which in 

turn enforces the policy. By contrast, in the provisioning model the updates are found 

at the LDAP server, without the prompt caused by a connection request. Any policy 

changes are then enforced. COPS is considered to be a flexible protocol that is 

adaptable to other protocols. However, there are scalability questions due to both the 

limited number of PEPs supported by one PDP and the constraint on a PEP only 

connecting to one PDP. Additional concerns include inter-vendor COPS operation 

and support of legacy routers. 

 

Unified Policy-Based Management (UPBM) has been proposed to ameliorate some of 

the problems with COPS in policy based management architectures [149]. This three-
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tiered architecture adds network routersxli alongside the edge routers at the bottom of 

the hierarchy and also includes a middle tier: the policy enforcement agent (PEA). 

This translates different policy rules due to the relaxation of the tight coupling 

between PEPs and PDPs. Additionally PEAs act as intermediaries, providing COPS 

and content translation. This means the PEPs can now be non-COPS compliant, for 

example with legacy routers. When a PEA interacts with a new router it can use inter-

PEA communication where repository is non-sharable. 

 

4.5.2.3 Challenging the Demarcation 
It could be contended that the distinctions made in the earlier sections were somewhat 

arbitrary, reflecting the prejudice of personal research. Thus, it would be expected, 

researchers schooled in the Wooldridge / Jennings approach would focus on multi-

agent co-operation and reject less-collaborative AI-heavy agent models. Likewise, 

those favouring hierarchical decomposition may favour models with reactive agents 

and higher-level monitoring agents. Equally, although multi-agent systems usually 

stress decentralisation, in practice this is not always followed: for example, 

centralisation – of reservation state and SLAs – is found in the agent-based work of 

[155]. This could reverse much of the analysis of previous sections by arguing that 

there exists a growing area of what could be called agent-like applications. Certainly 

two of the projects mentioned used the term ‘agent’ (although as mentioned for one 

this was related to the bandwidth broker). 

 

The purpose of the section on policy based management has been to challenge 

assumptions about agents – perhaps both their flexibility and architecture can be 

found elsewhere, so the agent / not-agent distinction is increasingly redundant. It can 

conversely be argued that by building up from the bandwidth broker concept, the 

interaction between the entities or ‘agents’ in policy based management has been 

constrained. As discussed in the section on protocol agents the manager-managed 

relationship is too tightly circumscribed. Autonomy, while difficult (see the following 

section), underlines agent systems. Where this may be difficult then the AI model 

offers a partial solution, at least of agent-like behaviour.  

                                                 
xli core routers are not controlled as part of standard PBM 
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If it is conceded that these are not agent architectures, due to absence of AI and 

limited decentralisation, then the question ‘why use agents?’ is raised. In the 

SHUFFLE project cited earlier, the choice/overhead of the agent middleware was 

identified as a critical limitation. COPS, the middleware here would seem to be less 

problematic, with ongoing research addressing its weaknesses. Agents are not the 

only solution and it is important to locate them next to similar research.  

 

4.6 Summary: the role for agents 

While it is not novel to address the difference between network management agents 

and intelligent agents deployed in networks – see [156] for example – highlighting the 

tensions between the two models has aided an analysis on how successfully (or not) 

intelligent agents have penetrated telecommunications networks. If protocol agents 

provide such a weak model of agency, and if policy based management provides a 

flexible notion of control, the role of the agent may appear weak. Perhaps an analysis 

that stresses common ground with non-agent research and at the same more clearly 

demarcates agent roles will allow agent enhancements to flourish. 

 

Although the multi-agent system has been identified as pertinent to distributed 

management of complex networks due to distribution and flexibility this has proved 

more problematic in connectionless networks. While MPLS has provided a 

connection-oriented bridge to a connectionless world, evidence has been presented 

[70] for not requiring this technological upgrade. This then leaves the question of the 

suitability (as well as practicality) of agents in IP networks. Autonomy is the critical 

characteristic of an agent. OSPF relies on tight coupling between nodes that 

undermines this vital trait. This would appear to inhibit the successful deployment of 

agents. The analysis of agent deployment largely concurs with this. However, perhaps 

extracting elements from agent projects – without reducing them to the hollow model 

characterised by protocol agents or the non-agent agents described by Wooldridge / 

Jennings – can point to a successful use of agents. Instead, a more fragile agent-like 

model is proposed. This currently lacks the full complexity of agent communication, 

although certainly this could be added, alternatively taking advantage of the range of 
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protocol traffic available. Agents are fully distributed to nodes, unlike bandwidth 

brokers or the manager-agent model. However, unlike the Wooldridge / Jennings 

model the focus is on agent learning, notably reinforcement learning.  
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5 Sub-Optimal Routing 
 

Chapter 3 examined various understandings of QoS. The research presented in this, 

and the subsequent sections, focuses on routing enhancements that spread traffic away 

from the optimal paths offered by OSPF. This in turn increases network utilisation, 

with the aim of evening the distribution of traffic load within the network, satisfying 

both QoS and resource management goals. 

 

In all the novel enhancements presented in this thesis, end-to-end delay is used as the 

QoS metric. While acknowledging that more recent work has attempted to model 

multi-dimensional QoS [157], most comparative research avoids introducing such 

complexity and focuses on a single QoS dimension. Alternative deployments [79] 

have used the Bellman-Ford algorithm, which supports two metrics – since OSPF 

uses Dijkstra’s algorithm, which supports only one metric, this is beyond the scope of 

this research. 

 

Much QoS routing research has employed bandwidth (also termed load or utilisation) 

as the critical metric, for example [158,159,71,1]. With this bottleneck metric the path 

weight is that of its worst link (ie with lowest bandwidth). However, end-to-end delay 

is of significant concern for time-sensitive traffic and is receiving increasing focus 

[160]. Delay is seen by the ITU as one of the key parameters that affect the user. 

Indeed to the user, delay incorporates the effect of other parameters such as 

throughput [23]. For such an additive metric the path weight is represented by the sum 

of the weights of its links.  

 
 

5.1 Pseudo Delay Mechanism 

At times of network stress it is imperative to the network operator that premium 

traffic is not impeded by less valuable traffic. In a multi-class environment the routing 

system should spread this less valuable traffic away from the optimum routes so that it 

no longer affects the performance of gold traffic. The pseudo-delay mechanism 
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introduced here is designed to engineer this by masquerading longer or otherwise 

‘costlier’ routes as optimal. By providing pseudo-delay cost metrics, generated from 

observed network delay, the router can still employ the standard Dijkstra shortest path 

algorithm, to produce new ‘shortest’ paths.  

 

The concept of selecting a sub-optimal path is not in itself novel [161]. However, such 

work has often sought to address the issue of inaccurate link state information that 

arises due to the impracticality of continuously flooding latest costs. Here, by contrast 

inaccuracy is deliberately injected into the costs in order to encourage traffic down 

sub-optimal routes. This may appear to conflict with a standard objective of traffic 

engineering to optimise IP network performance [162]. However, it can be argued that 

the resource oriented performance objectives of traffic engineering set out in [14] will 

be addressed by allowing traffic to follow sub-optimal routes. Additionally much of 

the existing work has been carried out in connection-oriented networks for the CR-

LDP and RSVP-TE resource reservation schemes. 

 

Traffic is generated in the network using an ON/OFF model. Routing is implemented 

using OSPF with delay as the cost metric. At system initialisation the cost of each hop 

is set to the Cisco default. These initial values are modified by delay figures as the 

simulation develops. However, only gold traffic is routed according to observed 

delay, using exponential weighted moving averages:  

Adt = αOd + (1-α)Adt-1       (Equation 1) 

 

where Adt is weighted moving average delay at time t, Od is the observed delay and α 

is a constant. The cost metrics for silver and bronze (ie best-effort) traffic are 

modified by two factors – termed theta_1 and theta_2. These are generated such that 

when the OSPF cost metric is modified by the thetas they display a more severe delay 

figure for such traffic. The routing table for lower preference traffic is constructed 

consequently from data based on these pseudo-delay figures. A hop that is on the 

optimal path for the gold traffic would now be more costly so would not necessarily 

be included in the apparently ‘least cost’ path for the lower grade traffic. The new 

least cost path is now a ‘sub-optimal’ path presented as optimal. No alteration to the 
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routing algorithm is required. As network congestion increases this mechanism thus 

moves lower class traffic away from the optimal paths, where it may affect the 

performance of gold traffic.  

 

As stated above, the justification for employing sub-optimal routing is by observing 

that were lower class traffic routed along optimal paths it may receive less preferential 

treatment. One means to differentiate between traffic types would be to employ strict 

priority scheduling at each router. At times of network stress low-grade traffic could 

be starved at a router while preferential, delay-sensitive traffic is serviced. 

Alternatively, by routing away from these paths, the low-grade traffic is no longer 

delayed or starved at “hot spots”.  

 

If the packet delay between the two nodes is above a critical threshold, this observed 

delay is used to modify the thetas for that link. Critical thresholds are set for each 

service class to reflect delay-tolerance. As well as behaving reactively the system also 

displays proactive behaviour. For example, if the critical figure has not been reached 

but the traffic has been monotonically increasing (or decreasing) and crossed a lower 

‘trigger’ threshold (again set separately for each traffic type) the system registers this 

trend. Unlike the threshold trigger approach investigated in [72], more precise 

information is obtained by setting the trend trigger higher, ie confirming a trend after 

a longer period. A modifier is then calculated to depress the new theta value/s. This 

approach allows the system to monitor eg network congestion and anticipate such 

problems. By depressing the theta calculation with a modifier, the response will be 

lesser than if the critical threshold is passed. Equally, the system responds to 

downward shifts in delay – ie as congestion decreases a downward delay trend is 

identified and the thetas accordingly altered.  

 

The thetas are calculated using both the exponential weighted moving average delay 

and the exponential weighted moving average of the differences in observed delay. 

The exponential weighted moving average for the differences (ΔAdt) is calculated as: 

ΔAdt=β(Odt-Odt-1) + (1-β)(ΔAdt-1)        (Equation 2) 
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to reflect both performance shift and the rate of this shift in the calculation. If 

responding to an observed trend that crosses the trigger threshold, but is below the 

critical threshold theta_1 is calculated using a modifier to produce the following 

equation:  

θ1= θ1
t-x(Adt *γ(1+ ΔAdt)),       (Equation 3) 

 
where t-x is the time of the last theta revision. The value of γ is adjusted to reflect the 

scaling down of the simulation discussed in section 5.1.1 (ie affecting the default link 

cost). 

 
Modifications to the link cost metric in the link state database ensure that this metric 

is never lower than the original figure (ie the Cisco default). Theta_1 is used to 

manipulate the delay metric for silver traffic and a combination of the two thetas is 

used to affect the delay metric for bronze traffic. These figures are then flooded as an 

LSA to all other network nodes to advise them of the shift in network state. 

 

5.1.1 Results 
 
Early experiments demonstrated that the pseudo-delay mechanism rerouted lower 

status traffic away from optimal paths. This ensured that preferential traffic was not 

impeded at times of network stress. Rerouting onto the sub-optimal paths ensured that 

the lower grade traffic received better treatment; had such traffic shared the same 

paths as gold traffic it would have suffered at times of congestion. However, 

oscillatory behaviour, especially of the bronze, best-effort traffic was observed. This 

traffic was the first to be rerouted away from the optimal paths, but as delay increased 

on the sub-optimal paths again it would be rerouted. To avoid this flux, together with 

the frequent LSA generation and processing overhead, further dampeners were 

introduced into the system. Additionally, to make the simulation more malleable, 

variables such as transmission speed and packet generation rate (and consequently the 

critical and trigger threshold figures that activate updates) were scaled down, as 

mentioned in the simulation section. As a result the findings from the simulations 

should be read as relative, as absolute delay figures have to reflect this scaling down. 
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These earlier experiments, additionally, employed the default OPNET RNG (ie that 

used by Microsoft Visual Studio for simulations run in the Windows environment). 

 

Figure 9 shows network conditions prior to employing the pseudo-delay mechanism. 

Each graph shows averaged end-to-end delay over 11 runs, with 95% confidence 

intervals. Although the gold traffic experiences relatively high delay (ie above 150 

milliseconds) this can be explained by the scaling down of network parameters. 

Additionally all traffic classes experience an initial traffic surge in the empty network. 

As buffer build-out rises, however, performance stabilises for gold and silver traffic. 

By contrast the end-to-end delay increases for the best-effort traffic. The performance 

of this traffic is both markedly lower and volatile due to the combination of bursty 

nature of the traffic combined with the less generous treatment by the scheduler. The 

poor performance in the buffers is perhaps exacerbated by the relatively high volume 

of gold traffic (50%) in these simulationsxlii. 
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Figure 9: Routing without the Pseudo-Delay Mechanism 

 

                                                 
xlii The simulations results in section 8 are across networks with a lower volume of premium traffic 
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Figure 10 shows sample results of routing applying the pseudo-delay mechanism. For 

clarity confidence intervals have been omitted. Here the value of gamma (γ) in the 

modifier (equation 3) is set to 1000 and the value of the theta factors in critical 

conditions is based on both observed and average delay.  
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Figure 10: Routing with the Pseudo-Delay Mechanism 

 

As the pseudo-delay mechanism is introduced, perturbations are still observed 

initially for all traffic, most significantly bronze, but this disappears and the bronze 

end-to-end figure rapidly decreases to around a quarter of the peak value. Various 

adaptations have been explored for calculating modifiers, thetas and thresholds. An 

example is shown in Figure 11 a, b & c (with 95% confidence intervals). By changing 

the critical update theta calculation to ε(1+Adt), where ε is a constant, and shifting the 

ratio of theta_1 and theta_2 that generates the link cost for bronze traffic there are 

reductions in degree of perturbation and both peak and mean end-to-end delay for all 

classes. Obviously it is hard to quantify the benefit in a real network because of the 

scaling used, but there is reason to believe the force of the result still applies. The gold 

end-to-end delay mean is increasingly decreasing towards the critical 150 

milliseconds figure in a slow network. However, the results demonstrate that by 

manipulating the delay figures for the lower class traffic the performance of all traffic 

is improved.  
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Figure 11: Routing With the Enhanced Pseudo-Delay Mechanism 

 

Although sub-optimal routing is employed, an optimisation aim of traffic engineering 

is to increase throughput, and by extension network utilisation. In the early 

experiments while throughput for gold traffic remained constant, that for silver and 

bronze increased by 31% and 36%, respectively. In the modified experiments, with a 

higher percentage of gold traffic in the system to place extra stress on all classes, 

bronze traffic is the main beneficiary with a 40% increase in throughput. Throughput 

for the other classes increased slightly, but not significantly.  
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6 Learning 
 

The previous section introduced a heuristic for spreading traffic away from the 

‘optimal’xliii, congested links. Despite incorporating a mechanism for incorporating 

trend, the setting of threshold figures appeared arbitrary and rigid. A shortcoming of 

the algorithm is that delay only registers as critical once it reaches a precise, preset 

figure, yet is not treated as critical if it is eg a millisecond below this figure. A more 

responsive approach to trigger system responsiveness is outlined below – using 

principles of learning incorporated with fuzzy logic to ameliorate the inflexibility of 

the flooding triggers. 

 

A characteristic of several agent systems is the capacity of the agent to learn from its 

interaction with the environment. Although not all agent definitions incorporate 

learning, this property can aid an agent in responding more appropriately to a dynamic 

environment. The model developed here seeks both to discover when to flood and 

how high to set the theta factor. Additionally, instead of devising a communication 

strategy to propagate the learning, the model piggybacks on the existing, albeit limited 

protocol-based, communication between nodes provided by the routing protocol (ie 

OSPF). Although there is a loss of the sophistication usually demanded of an agent 

communication language (ACL), this removes the requirement of deploying agent 

middleware (with the attendant overhead, including devising ontologies etc, discussed 

in section 4.4.1). 

 

A disadvantage of many machine learning techniques is that a complete model of the 

problem domain has to be predefined. In most machine learning a supervisor 

knowledge base provides examples that guide the learning. It may, however, be 

impractical or impossible to produce models of appropriate behaviour for all 

situations that an agent encounters. Instead it may be more fruitful for an agent to 

learn from interacting with the environment, ie by its own experience rather than 

guided by a supervisory knowledge base. Although dynamic programming can be 

                                                 
xliii Remembering that the ‘optimal’ route may be considered selfish and thus not optimise network 
performance  
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used to solve reinforcement learning techniques, the requirement of a thorough, 

precise environment model, rather than one gleaned through discovery. 

 

By contrast reinforcement learning has proved attractive as the programmer does not 

have to define a vast set of conditions, instead learning entirely through the feedback 

resultant from acting on the environment. Since everything it learns has to derive from 

such interplay, a reinforcement learning agent is characterised by having to balance 

exploitation with exploration. As a rational agent is seeks to maximise its goal so it 

should select the most productive action. This will be one that has provided the 

highest reward in the past – thus the agent is exploiting its gained knowledge. 

However, in order to discover potentially more valuable actions the agent also needs 

to explore the environment, ie according to a set policy it should occasionally not 

follow what presents as the optimal action and instead choose an alternative action. 

 

However, a disadvantage of such techniques is that the state space is prone to 

dimensional explosion. As the problem space explored by the agent grows there is a 

corresponding escalation in the agent’s state space. Fuzzy logic or fuzzy set theory 

has been demonstrated as a solution to resolving the state space expansion in 

reinforcement learning [163]. Instead of having to store values for each state observed 

by the agent these can be graded by membership of fuzzy states, thus reducing the 

complexity of the state space. Thus fuzzy reinforcement learning has been chosen to 

add intelligence (agent behaviour) to each node, while according with the IP aims of 

limiting state. 

 

6.1 Fuzzy Reinforcement Learning 

Learning is used in this simulation to try to discover whether or not to flood an SLA, 

ie generate a more sensitive responsiveness to network delay. While flooding will 

result in routing tables that more accurately reflect the network state, a negative 

consequence is the time required for network convergence. Additionally, another 

parameter receptive to learning is the factor used to spread lower class traffic away 

from optimal routes, ie the theta value to add to the true cost (delay) for the lower 

class traffic. This section first investigates reinforcement learning and outlines its 
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suitability for solving these problems. An introduction to fuzzy logic is then 

presented, finally combining the two into the selected fuzzy reinforcement learning 

model to show how the flooding and theta decisions can be learned by the agent. 

 

6.1.1 Reinforcement Learning 
Reinforcement learning has been chosen as it can learn directly from the dynamics of 

the environment. No prior knowledge of the environment is required and there is no 

need for training and modelling decisions. In order for the agent to learn, evaluative 

feedback is employed to indicate the success of an action. This is in contrast to an 

instructive feedback model where a new action would be chosen independently of the 

previous one.  

 

A reinforcement learning system is primarily composed of a policy, reward function 

and value function. The policy corresponds to the action choice in response to the 

perceived environment state. The policy is essentially equivalent to the definition of 

an agent’s behaviour, ie a mapping from percept to action. This corresponds to the 

(reactive) agent (Ag) function [97]: 

Ag : E →Ac (Equation 4) 

where the agent (Ag) is the function mapping the environment (E) state to an action 

(Ac). Although a rational agent is considered a goal-maximiser, reinforcement 

learning will not necessarily choose the greedy action. Instead the policy should 

balance exploitation (ie acting on what is already known) with exploration (ie 

randomly searching or choosing an action). An ε greedy approach is a common policy 

employed in reinforcement learning. In the exploitation phase the action selected has 

the highest strength, or returns the highest reward. However, this chosen action is not 

necessarily the one that is performed; the action selection mechanism is set to 

randomly explore, ie flood, with a small probabilityxliv of ε.  

 

The process can be considered as a run, ie a sequence of episodes, where an episode 

consists of a state, action selection and the resultant state. Figure 12 shows a model of 

                                                 
xliv for example, the value of ε used in the simulations is 0.001 
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a run consisting of episodes, moving from one state to the next. At state st, at time t, 

action at is chosen. More formally, at = π(st), where π is the policy (eg ε greedy) at st. 

This generates reward rt+1 and returns the new state st+1, ie a Markov chain with a 

reward process.  

 

 

Figure 12: Episodes of states and state-action pairsxlv 

 

The reward function returns the immediate desirability of the state (or state-action 

pair) for the agent. The routing protocol in IP networks is designed to be quiet – only 

responding by flooding LSAs when necessary – so it is generally more desirable not 

to flood. Thus the reward for not flooding is set to be higher on average than that 

returned from a flood. Although an agent cannot alter the reward function, this 

function can be used to affect the policy, ie future action selections in a given state. 

 

The reinforcement value function by contrast corresponds to an estimation of the 

longer-term value of each state (or state-action pair). Unlike rewards, which are 

directly provided by the environment, the value of a state (or state-action pair) can 

only be estimated gradually by the agent as it interacts with the environment. The 

value corresponds to the totality of the rewards over the future from that state. 

Although some states (or state-action pairs) may offer a low reward (ie immediate 

feedback) the states that follow that choice may generate high rewards, so a greater 

long-term value is accrued. Thus a flooding decision may produce a lower immediate 

reward, but result in lowered congestion, yielding an elevated long-term value. 

 

                                                 
xlv From Sutton, Barto op cit page 145 

st st+1 st+2 
st, at st+1, at+1 

rt+1 rt+2 

st+2, at+2 
 

. . . . 
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The value functions or judgements, since they are estimates, must be reified 

throughout a run or simulation. Two prominent update approaches exist for 

reinforcement learning problems: Monte Carlo and temporal differences. In the 

former value estimates are only reinforced at the end of a run. A Monte Carlo method 

demands that a run terminates, so that feedback can be provided solely on completion 

of and not during that run.  

 

A temporal difference (TD) approach has been chosen in this research reinforcing 

value estimates after the next step. Unlike Monte Carlo methods, temporal difference 

methods (in common with dynamic programming) are characterised by bootstrapping, 

ie updating estimated values with other estimates. The step-by-step temporal 

difference approach – where changes to the value estimate are based on a difference 

between estimates at two different times – can be generalised by the following update 

rule: 

( ) ( ) ( ) ( )[ ]tttt sVsVsVsV −+← +1α      (Equation 5)   

where V(st) is the estimated value of state s at time t and α is a learning parameterxlvi. 

Thus the estimate of a state’s value at time t is updated based on that estimate plus 

difference between the estimates of that state at two distinct time steps (hence, 

temporal difference). A factor, λ, is used to indicate how many preceding temporal 

states are to be updated – in this research the simplest case is used where λ is set to 0, 

ie TD(0), so only the preceding state is updated (ie st  is updated by estimates of st+1). 

This minimal TD method can be represented by: 

( ) ( ) ( ) ( )[ ]ttttt sVsVrsVsV −++← ++ 11 γα     (Equation 6) 

where rt+1 is the reward obtained for moving to state st+1 and γ is a discount factor.  
 
 

Other techniques – including simulated annealing and genetic algorithms – termed 

‘evolutionary methods’ and differentiated from reinforcement learning techniques in 

[91], can also be used to solve reinforcement learning problems. Unlike the approach 

investigated here, value functions are not employed in evolutionary methods, so 

                                                 
xlvi Also known as the step-size parameter. If this is set to zero no learning (ie revision of values) takes 
place; as it reaches one learning takes place at a faster rate 
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individual states, or state-action pairs, are not estimated. Actions chosen inside a run 

are not registered. Thus moves that may have contributed significantly to the success 

of the final outcome are weighted equally with those that may have had a negative or 

neutral impact.  

 

A shortcoming of reinforcement learning is the expansion of state space required for 

an agent’s reasoning. Techniques deployed to control the scalability limitation of the 

associated large look-up table – both the space required for storing and the speed of 

information access – have included neural networks and self-organizing maps. 

However, since both these techniques and reinforcement learning itself are 

characterised by slow learning rates these are not feasible solutions in busy network 

environments. As seen in the previous section, employing fuzzy states and actions 

reduces state space, as a vast range of crisp states corresponds to a greatly reduced 

range of fuzzy states, with faster convergence. Thus combining fuzzy tools with 

reinforcement learning, ie fuzzy reinforcement learning, may be a feasible given the 

constraints associated with the network environments under investigation. 

 

6.1.1.1 On-Policy and Off-Policy Learning 
An important way of differentiating between the various temporal difference methods 

is whether they are on-policy or off-policy learners. On-policy learners evaluate and 

improve the value of a policy while using it for behaviour control; off-policy learners 

separate the policy used to generate behaviour from that which is being evaluated, ie 

evaluate one policy while following another. A consequence of this latter approach is 

that the system can learn about policies that are never followed. Q-Learning [164] is 

an example of an off-policy temporal difference control algorithm. This updates a 

state action pair based on the maximum reward achievable from the next state-action 

pairing: 

( ) ( ) ( ) ( )[ ]tttattttt asQasQrasQasQ ,,max,, 11 −++← ++ γα   (Equation 7) 
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where ( )tt asQ ,  is the value of the state action pair taken at time t, α is the learning 

factor and γ a discount factor. This can be shown in a backup diagramxlvii as: 

Figure 13: Q-Learning Backup Diagram 

 

where the filled circles indicate action nodes, the white circle a state node and the arc 

that the maximum of the action nodes will be taken. Thus the first action (leftmost 

filled circle) – corresponding to at of state action pairing (st, at) – results in the new 

state (st+1), the white circle. From this the action that would return the maximum 

reward would be chosen to reinforce the value Q(st, at). The arc indicates that the 

maximum of the next action nodes is taken. If the topmost action taken from st+1 were 

predicted to return the highest reward this would be included in the update function. 

However, due to the need to maintain sufficient exploration this may not be the action 

selected by the policy at that next state.  

 

By contrast the on-policy approach evaluates only the policy being followed – ie the 

policy is enhanced solely using estimated values for the current policy. Sarsaxlviii, an 

on-policy approach, learns the value of state-action pairs from transitions from state-

action pair to state-action pair. The notable difference from the Q-Learning equation 

is that the maximum operator is discarded and replaced with the value of the next 

(followed) state-action pair:  

( ) ( ) ( ) ( )[ ]ttttttttt asQasQrasQasQ ,,,, 111 −++← +++ γα   (Equation 8) 

 

With Sarsa, unlike the procedure in Q-Learning, if an ε-greedy policy is applied, this 

value of ε is included in the Q update. Thus the best policy given the systematic 

departures (exploration), is learned under Sarsa; the best policy learnt under Q-
                                                 
xlvii Although shown horizontally for consistency with other diagrams, standard backup diagrams are 
drawn vertically 
xlviii The name is derived from the state-action transition quintuple: State, Action, Reward, State, Action  
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Learning does not incorporate this exploration so explicitly. A result of this is that the 

cost of exploration is factored into the on-policy learning and the system can avoid 

more disadvantageous outcomes [165]. 

 

For this research a fuzzy Sarsa, ie on-policy, algorithm was chosen. This approach has 

been demonstrated to provide robust and accurate results with a significantly smaller 

state space than the corresponding non-fuzzy model [166]. The model used is 

explained fully in section 6.1.3. 

 

6.1.2 Fuzzy Logic Control 
It is complex to construct a precise mathematical model for all the variables – whether 

triggering thresholds, or theta parameters – in the system. Where a formal analytical 

model cannot be used – ie rigorous theoretical approaches are inapplicable – fuzzy 

logic can prove a valuable tool [167, 168]. Fuzzy logic control has been employed to 

solve various network challenges, including active queue management schemes in IP 

networks for congestion control [169], call admission control [170] and routing in 

connection-oriented networks [171, 172]. An overview of its applicability to QoS 

management is provided in [173]; a comparison to other techniques used to handle 

uncertainty is provided in [174].  

 

Fuzzy set theory/logic considers degrees of belonging to a set as opposed to classic 

(Boolean) set theory where an element is either a member or not a member of a given 

set. Instead of truth of membership being represented either by 1 (member) or 0 (not 

member), in fuzzy logic truth values lie in the range [0,1]. As an example, when 

considering variables such as age, temperature or bandwidth, a classic approach 

would create discrete sets (or intervals), for example young/old, cold/hot, 

empty/congested, where “young = ¬ old” etc. The truth of each state is an either-or 

membership statement: for example, in a world comprising people of all ages, for the 

element ‘age 13 years’ the truth of being young is 1 while the truth of being old is 0. 

By contrast, since fuzzy logic is based on truth values in the range [0,1] rather than 

just 0 and 1, the element ‘age 13 years’ may belong to fuzzy set YOUNG with 

membership degree 0.9 and belong to fuzzy set OLD with membership degree 0.1. As 
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a result the transition from membership of YOUNG to membership of OLD is more 

gradual than the abrupt jump from member to not-member in the traditional rigid 

(true/false) model. 
Figure 14: Classic (interval-based) (a) and Fuzzy (b) Membership 

 

Fuzzy logic is used in fuzzy controllers to simulate human thinking. A fuzzy set is a 

mapping of real numbers (such as ages {24, 25, 35, 37, 82}) to a set of symbolic 

labels (YOUNG, MIDDLE-AGED, OLD), to reflect how a user classifies with natural 

language. The ‘fuzzification’ process involves taking crisp values from a ‘universe of 

discourse’xlix, such as age (or, in networks: delay or available bandwidth), and 

classifying it into a fuzzy set, such as OLD. The degree (or grade) of membership to 

which this value belongs to the set is calculating by using a membership function – 

μOLD(). Membership functions can be formed from a range of shapes: they can be 

generated from cosine or exponential functions; they can be linear, trapezoidal, 

triangular or singleton. For computational simplicity triangular or shouldered patterns 

are often chosen [175]. 

                                                 
xlix Also known as ‘world domain’ or ‘reference super set’ 
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Figure 15: Fuzzy Controller 

 

Figure 15 shows a Fuzzy Control System, including the fuzzifier/fuzzification unit 

discussed above. In the Mamdani-style inference approach used here [176], the next 

stage of the process involves the fuzzy inference engine taking the fuzzy input and 

applying relevant fuzzy rules. Relationships between fuzzy sets are represented by 

such fuzzy rules, stored in the rule-base, usually in the format ‘if – then -’, ie 

implications. As an example, a rule could be 

‘IF (age IS OLD) THEN (compensation IS HIGH)’ 

‘Age IS OLD’ is true with any value within [0,1]. If, for a given crisp value si (eg ‘age 

2 years’), the membership μOLD(si) is zero, this rule is not active. Although the rule 

fires it cannot contribute to the final output value. Significantly, for any crisp value, 

multiple rules may both fire and be active: crisp input ‘age 13’ may fire rules with 

antecedents of ‘IF(age IS OLD)’ as well as ‘IF(age IS YOUNG)’ with membership of 

both greater than zero.  
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In fuzzy controllers the relationships between objects – either within the same set or 

between different sets – are of interest. An AND (ie logical ∧ )l operation is generally 

used in a rule to combine at least two objects in the antecedent, for example  

‘IF (age IS OLD) AND (injury IS HIGH) THEN (compensation IS HIGH)’ 

The AND operation corresponds to taking the minimum, ie the weakest, of the degree 

of membership values. Alternatively, usually where there is a parallel connection, the 

OR (ie logical∨ ) operator can be used. This operator returns the maximum of the 

degree of membership values.  

 

The implication process works to truncate the output fuzzy set (‘compensation IS 

HIGH’) to the height given by the antecedent. A graphical example is shown in  

Figure 16 (with arbitrary membership values). 

 

 

 

Figure 16: Fuzzy Inference 

 

The inference engine fires the following two rules:  

R1: IF age a is HIGH OR injury i is HIGH THEN compensation is HIGH 

R2: IF age a is LOW AND injury i is LOW THEN compensation is LOW 

                                                 
l Although in Mamdani’s paper (op cit) the symbols are reversed: ∧ corresponds to min (ie or) and 
∨ corresponds to max (ie and) 
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For rule R1, using OR, the maximum μ value (of the antecedent) is taken to represent 

how much the rule contributes (to the consequent). Here ( )iHIGH
injuryμ  (shown as μ2 in the 

diagram) is higher than ( )aHIGH
ageμ (ie μ1). This degree of membership (μ2) is used as 

the firing strength for that rule. This strength is in turn used to modify (crop) the 

output graph, ie the one corresponding to HIGH compensation. In rule R2 the 

operation AND is used, thus the lowest degree of membership (μ3) is used for the 

firing strength. Finally the inference engine aggregates the two contributing output 

graphs, using the AND (max) operator, producing a new fuzzy set, represented by the 

rightmost graph. 

 

To return a final crisp output (or decision) this fuzzy set must be defuzzified. Various 

techniques can be employed, notably mean of maxima (ie the point with the strongest 

possibility), last of maxima (LOM) or first of maxima (FOM). The most common 

deffuzification approach to obtain a crisp control signal is the centre of mass (also 

know as centre of gravity or centre of area) method. This is simplified from 

calculations over a continuum of points to that using a sample of points: 

 

( )

( )∑
∑

=

i
i

i
ii

x

xx
signal

μ

μ
      (Equation 9) 

 

The following section explains how this is incorporated into a reinforcement learning 

model to provide a means of reacting to and anticipating congestion. 

 

6.1.3 Fuzzy Reinforcement Model 
Membership functions (HIGH, MEDIUM and LOW) for the delay experienced by 

gold trafficli are shown in Figure 17. Earlier work used s-curves, but trapezoidal 

functions were substituted for their computational simplicity. In the model the 

membership functions for delay are additive, ie for any crisp value the sum of the 

                                                 
li ie the amount of time the traffic spends in the out-subqueue before it leaves that node 
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membership functions equals one (Σμ = 1) as this has been shown empirically to 

make the system more robust to noise [177]. 

 
Figure 17: Delay Membership Function 

 

Early work used just fuzzy membership with no learning. Encouraged by this, the first 

work employing learning restricted the number of sets to just two, ie HIGH and LOW, 

to reduce state space. To compensate for the loss of the middle fuzzy set the sets for 

LOW and HIGH were adjusted to allow for greater overlap. In addition, the observed 

delay values for silver traffic were not used, ie there were no silver_HIGH and 

silver_LOW fuzzy sets. Thus the decision model concentrated solely on the observed 

values for the two extreme classes: gold and bronze. The rationale behind this was to 

investigate whether learning, with artificially constrained state space, proved 

advantageous. Encouraged by these early results the state space was expanded further 

– from 4 to 27 – to incorporate all three classes and sets. Figure 18 provides a map of 

the fuzzy sets for delay:  

 

Gold_LOW Gold_HIGH 

Gold delay (ms) 

1 

0 

Gold_MEDIUM 
 
μ 



 87

 GOLD FUZZY SETS

0

0.2

0.4

0.6

0.8

1

1.2

0 53 99 145 153 199 245 253 299 345
gold delay (ms)

m
u

GOLD LOW
GOLD MEDIUM
GOLD HIGH

 

 

 SILVER FUZZY SETS

0

0.2

0.4

0.6

0.8

1

1.2

0 53 99 145 153 199 245 253 299 345

silver delay (ms)

m
u

SILVER LOW
SILVER MEDIUM
SILVER HIGH

 

 

 BRONZE FUZZY SETS

0

0.2

0.4

0.6

0.8

1

1.2

0 53 99 145 153 199 245 253 299 345

bronze delay (ms)

m
u

BRONZE LOW
BRONZE MEDIUM
BRONZE HIGH

 

 

 

Figure 18: Fuzzy Sets for Delay 
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Additionally there is one membership function for delay trend, the exponential 

weighted moving average of the relative difference (δ): 

( ) 1
1

1 1
)(

−
−

− −+
−

= t
t

tt
t OD

ODOD
δβ

β
δ     (Equation 10) 

where OD is the observed delay. To prevent a sluggish delay trend figure the value of 

β was set to 0.8. Thus this metric responds more sensitively to recent shifts in delay. 

The same fuzzy set, shown in Figure 19, was used for all classes. This is to identify 

whether, despite apparent low absolute delay figures, delay is building up over that 

link. This potentially allows the system to behave proactively, moving traffic away 

from a link before delay becomes critical. 

 

 

 

Figure 19: Delta Fuzzy Set 

 

For each time period there is a triple of observed values: delay experienced by gold 

traffic, delay experienced by silver traffic and delay experienced by bronze traffic. 

This triplet forms a crisp state/input. There are twenty seven (fuzzy) states (ŝ1a to ŝ1za) 

corresponding to one crisp input s1, used to fire rules: 
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Crisp state Fuzzy 
states 

Gold 
Membership 

Silver 
Membership 

Bronze 
Membership 

ŝ1a Gold_HIGH Silver_HIGH Bronze_HIGH 
ŝ1b Gold_HIGH Silver_HIGH Bronze_MEDIUM 
ŝ1c Gold_HIGH Silver_HIGH Bronze_LOW 
ŝ1d Gold_HIGH Silver_MEDIUM Bronze_HIGH 
… … … … 
ŝ1x Gold_LOW Silver_ MEDIUM Bronze_LOW 
ŝ1y Gold_LOW Silver_LOW Bronze_HIGH 
ŝ1z Gold_LOW Silver_LOW Bronze_MEDIUM 

 
 
 
 
s1 

ŝ1za Gold_LOW Silver_LOW Bronze_LOW 
Table 3: Fuzzy States 

 
For each of the three traffic classes the OR (ie maximum) value of the delay 

(eg ( )delaygoldobsHIGHGOLD ___μ ) and the delay trend (eg ( )δμ goldGOLD ) 

memberships is found. In Table 3, for fuzzy state ŝ1a the gold class membership 

corresponds to: 

( ) ( )δμμ GOLDHIGHGOLD delaygoldobs ∨___      (Equation 
11) 

The maximum was chosen so that a sudden shift in network conditions (the delay 

membership) would not be negated by a sluggish trend. The AND (ie minimum) value 

of the gold and bronze memberships for each traffic class is then found, to produce 

the membership for that state, eg μŝ1a is composed of: 

( ) ( ) ( ) ( )
( ) ( )]__[

]__[]__[

_

__

δμμ

δμμδμμ

BRONZEHIGHBRONZE

SILVERHIGHSILVERGOLDHIGHGOLD

delaybronzeobs

delaysilverobsdelaygoldobs

∨

∧∨∧∨

 (Equation 12) 

 

For each state there are two possible actions to choose from: θ_High and θ_Lowlii. 

Here θ is the factor used to manipulate the true link cost for lower class traffic, as first 

presented in the pseudo-delay mechanism in Section 5.1. The relationship between the 

state and actions is presented in the backup diagram, Figure 20. This diagram shows 

the possible successor statesliii after an action: taking action a1
t at state st moves the 

simulation on to state st+1; taking action a2
t at state st moves the simulation on to state 

st+1'. It should be noted that, unlike in a state transition diagram, here the consequent, 
                                                 
lii it will be seen later how these actions correspond into flood or not flood, together with the theta 
calculation 
liii This is true for fuzzy and non-fuzzy states so the ŝ notation is not used 
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st+1, of the state action pair (st, a1
t) may not necessarily be a different state to the 

consequent st+1', of the state action pair (st, a2
t). Indeed st+1 may be identical to its 

precedent st. The state outcome is dependent on the effectiveness of the action and, 

for non-deterministic processes, the environmental conditions. For example, in an 

auction scenario action a1
t could be ‘bid £40’ and action a2

t could be ‘bid £10’. If the 

desired object were either removed from sale, or attracted a higher counter-bid neither 

actions would be successful (given that the aim of the action was to make a purchase). 

Thus the consequent states st+1 and st+1' would be identical, ie with the same amount 

of money and number of goods bought as state st.  

Figure 20: State  Actions  New States 

 

At fuzzy state ŝ1a, corresponding to Gold_HIGH AND Silver_HIGH AND 

Bronze_HIGH the system can choose between fuzzy actions θ_High or θ_Low. These 

state action pairings are shown in Table 4: 

 Table 4: Fuzzy State Action Pairs 

 

 AND Fuzzy Action 

Gold_HIGH Silver_HIGH Bronze_HIGH θ _High ŝ1a 
Gold_HIGH Silver_HIGH Bronze_HIGH θ _Low 

st 

st+1 

st+1' 

a1
t 

a2
t 

 
a1

t: flood LSA 
a2

t: do not flood LSA 



 91

This state-action pairing can also be described as fuzzy rules, R1 and R2, where the 

fuzzy state forms the antecedent of the rule, and the fuzzy action the consequent: 

 

R1 IF Gold_HIGH AND Silver_HIGH AND Bronze_HIGH THEN θ _High 

R2 IF Gold_HIGH AND Silver_HIGH AND Bronze_HIGH THEN θ _Low 

   

                               fuzzy state 

  

 fuzzy action 

  

                                                              fuzzy rule 

Table 5: Fuzzy Rules 

    

Critically, this differs from standard fuzzy controllers that often show only one 

possible consequent from a state (rule antecedent), for example 

R1: IF Gold_HIGH AND Silver_HIGH AND Bronze_HIGH THEN θ _High 

R2: IF Gold_LOW AND Silver_HIGH AND Bronze_LOW THEN θ _Low, 

 

or, omitting the silver class and the medium level, in the more common tabular form: 

 Bronze_HIGH Bronze_LOW 

Gold_HIGH θ_High θ_High 

Gold_LOW θ_Low θ_Low 

Table 6: Fuzzy State-Actions without Learning 

 

In standard controllers with no learning there is only one possible action per fuzzy 

state. By contrast, when using reinforcement learning the system is trying to learn the 

appropriate actions for the prevailing conditions. The corresponding table for such a 

scenario is instead: 

 Bronze_HIGH Bronze_LOW 

Gold_HIGH θ_High 

θ_Low 

θ_High 

θ_Low 

Gold_LOW θ_Low 

θ_High 

θ_Low 

θ_High 

Table 7: Fuzzy State-Actions with Learning 
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Rather than deciding at design time that the action of choice for the state Gold_HIGH 

AND Bronze_HIGH should be to flood an SLAliv this is instead resolved (ie learnt) at 

run time, for each set of observed (ie crisp) delay figures. The rationale for this is that 

although intuitively there are scenarios where a definite action can be defined, as 

shown in Table 8 (where * represents any level), it is not evident how the system 

ought to behave for all states. Thus all states (including the ones with intuitive action 

choices) are learned. 

 

If any class of traffic is experiencing high levels of delay then the node should flood 
traffic. Related rules:  
IF GOLD_HIGH SILVER_* BRONZE_* THEN θ_High/Flood 

IF GOLD_* SILVER_HIGH BRONZE_* THEN θ_High/Flood 

IF GOLD_* SILVER_* BRONZE_HIGH THEN θ_High/Flood 

If gold or silver traffic are experiencing low levels of delay while bronze traffic is 
not experiencing a high level of delay then the node should not flood traffic. Related 
rules: 
IF  GOLD_LOW SILVER_LOW BRONZE_LOW THEN θ_Low/¬Flood 

IF GOLD_LOW SILVER_LOW BRONZE_MED THEN θ_Low/¬Flood 

Table 8: Intuitive Statements and Corresponding Fuzzy Rules 

 

Table 9 provides a partial list of the state action pairs (rules). Each crisp state has a 

membership in more than one fuzzy state, ie fires more than one rule, ie state-action 

pair. Where the membership value (μ) for the rule/state action pair is zero the rule will 

not contribute to the decision making process. In turn, for each fuzzy state in this 

model there are two state action pairs, ie possible rules to fire. Each state action pair 

has an associated strength, or FQ value, which indicates that pair’s suitability to be in 

the optimal modellv. For example, for state ŝ1a and action θ_High there is one FQ 

value – FQ(ŝ1a, â1) – and for state ŝ1a and action θ_Low there is another FQ value - 

FQ(ŝ1a, â2). An ε greedy policy is taken to choose the action for each fuzzy state. 

This guarantees that with (small) probability ε a random action is chosen; otherwise 

the action with the highest known reward, ie FQ value, is chosen for each fuzzy state 

(ŝ1a - ŝ1za), corresponding to crisp state s1. This provides for exploration as well as 
                                                 
liv It will be shown later how θ_High corresponds to flood and θ_Low corresponds to NOT flood 
lv The FQ element of fuzzy Sarsa corresponds to the Q-value of standard Sarsa, which in turn is 
equivalent to the V or value element in Q-learning. 
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exploitation of known values. Additionally, where the FQ values are equal for the two 

state action pairings the resultant action is chosen randomly.  

 

Gold_HIGH Silver_HIGH Bronze_HIGH θ_High FQ(ŝ1a, â1) ŝ1a 
Gold_HIGH Silver_HIGH Bronze_HIGH 

μŝ1a 
θ_Low FQ(ŝ1a, â2) 

Gold_HIGH Silver_HIGH Bronze_MED θ_High FQ(ŝ1b, â1) ŝ1b 
Gold_HIGH Silver_HIGH Bronze_MED 

μŝ1b 
θ_Low FQ(ŝ1b, â2) 

Gold_HIGH Silver_HIGH Bronze_LOW θ_High FQ(ŝ1c, â1) ŝ1c 
Gold_HIGH Silver_HIGH Bronze_LOW 

μŝ1c 
θ_Low FQ(ŝ1c, â2) 

Gold_HIGH Silver_MED Bronze_HIGH θ_High FQ(ŝ1d, â1) ŝ1d 
Gold_HIGH Silver_MED Bronze_HIGH 

μŝ1d 
θ_Low FQ(ŝ1d, â2) 

 … … …  …  
Gold_LOW Silver_MED Bronze_LOW μŝ1x θ_High FQ(ŝ1x, â1) ŝ1x 
Gold_LOW Silver_MED Bronze_LOW  θ_Low FQ(ŝ1x, â2) 
Gold_LOW Silver_LOW Bronze_HIGH μŝ1y θ_High FQ(ŝ1y, â1) ŝ1y 
Gold_LOW Silver_LOW Bronze_HIGH  θ_Low FQ(ŝ1y, â2) 
Gold_LOW Silver_LOW Bronze_MED μŝ1z θ_High FQ(ŝ1z, â1) ŝ1z 
Gold_LOW Silver_LOW Bronze_MED  θ_Low FQ(ŝ1z, â2) 
Gold_LOW Silver_LOW Bronze_LOW θ_High FQ(ŝ1za, â1) ŝ1za 
Gold_LOW Silver_LOW Bronze_LOW 

μŝ1za 
θ_Low FQ(ŝ1za, â2) 

Table 9: Fuzzy State Action Pairs for all States 

 

The focus now shifts to the penultimate column of Table 9 – how to choose the 

action. Not only are crisp states fuzzified in the fuzzy reinforcement learning 

algorithm but so are the actions. Here the actions θ_Low and θ_High are represented 

by two fuzzy sets. The θ_Low fuzzy set is represented as a singleton, returning a zero 

value. The rationale for this is that this corresponds to a ‘do not flood’ action choice – 

thus the value of the smear factor (the θ) is irrelevant. However, the (fuzzy) action 

θ_High corresponds to a ‘flood with theta’ action choice. The membership function 

for θ_High is a steep curvelvi, truncated to return a maximum value of two, given by 

the following equation: 

 }1,2min{ xe α−−       (Equation 13) 

An inverse transformation is employed – ie the membership of the fuzzy state is used 

to obtain the value of theta. This θ value is used for the action figure, ac(ŝi), or 

acHigh_θ) towards the calculation of the theta used to manipulate the link cost metrics. 

  

                                                 
lvi Various other curves were investigated, including cosine and logarithmic functions  
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Figure 21: Fuzzy Action Membership Functions 

 

In practice the critical action decision for IP networks is binary, ie whether to flood or 

not, as opposed to the more familiar continuous decision space discussed in section 

6.1.2. A weighted probabilistic choice is used to determine (defuzzify) the flooding 

decision. This is consistent with similar approaches for reinforcement learning 

problems, eg [178]. For each fuzzy state the FQ values for a flood action are weighted 

by the state’s membership value. The sum of these are then normalised against the 

totals for both flood and do not flood: 
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A flood then occurs with the above given probability. This, again, allows for 

exploration (ie not following what presents as the optimal solution). The value of 

theta, to manipulate the cost metric, is generated by calculating the centre of mass of 

all the chosen actions for each fuzzy state:  

  

 

1 

μ 

2 θ 

0 

θ_Low θ_High 
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where ac(ŝi) is the action value for the state action pair with the highest FQ value for 

each fuzzy state (ŝi)lvii, for all fuzzy states with μ>0. This action value provides the 

theta value, ie the factor added to the true cost of a link, as shown in Table 10. The 

cost of the link is then flooded in the LSA using gold observed delay for the gold 

traffic across that link, silver observed delay plus theta for the silver traffic and bronze 

observed delay plus theta for the bronze. Thus all link state databases will be updated 

with the fabricated link costs. 

Table 10: Theta Flooding 

 

The purpose of the reinforcement learning model is to update the FQ values for each 

state-action pair (rule), ie to learn the appropriate FQ value for state-action pairs. The 

fuzzy Sarsa equation, from [166], is used to update the FQ values for each state-action 

pair: 
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16) 

where α is the learning factor, γ is a discount factor, r the reward and ξ is the 

‘fuzzification factor’. The discount factor was set to 0.9, seen as a typical value for 

discrete-time reinforcement learning [179]. The fuzzification factor, introduced in 

[180], is used to weight each rule contribution. This is represented by the relative 

contribution of the state action pair (rule) with respect to the contribution provided by 

all the state action pairs that correspond to the same crisp state: 

 

                                                 
lvii Hereafter for clarity s will be used in place of ŝ as all future states will be fuzzy so the crisp:fuzzy 
distinction does not need to be maintained 

Gold Traffic Silver Traffic Bronze Traffic 

ObservedDelayGOLD  ObservedDelaySILVER+ θ ObservedDelayBRONZE + θ 
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where μ(st) is the membership of that fuzzy state (of the state-action pairing) whose 

FQ values are being updated. 

 

A reward, calculated when the new observed delay figures are viewed ten seconds 

laterlviii, forms the means to evaluate outcomes. The reward is a signal from the 

environment to the node (or, more formally, agent). The reward returned is weighted 

to (initiallylix) return a value of one for a no flood decision. Otherwise the relative 

difference (Rel_D) of the delay, capped to return a minimum value of zero and a 

maximum of one, is returned as the reward: 

 

Rel_D = 1

1

−

− −
t
ij

t
ij

t
ij

OD
ODOD

      (Equation 18) 

 

where t
ijOD  is the observed delay over link i-j at time t. Research has highlighted the 

advantage of selecting a relative over a ‘delta’/fixed threshold [181,182] when 

triggering updates, thus this appears a valid means of establishing a reward. As stated 

earlier, the essential difference between Sarsa and Q-learning was that the former is 

an on-policy learner and so employed only actions that are followed. Thus 

),( j
t

j

j
t asFQ∑

∀

 corresponds to the FQ values selected by the ε greedy policy at the 

next time interval. 

 

The algorithm for the reinforcement learning is as follows: 

 

                                                 
lviii Time intervals are discussed in Section 7.5 
lix This value is varied in simulations 
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Figure 22: Tokarchuk’s Fuzzy Sarsa Algorithm 

 
 
 
 
 
 

• Initialise all FQ(s,a) values to zero 

• Initialise st (start fuzzy state) 

• Choose at for st using COA, using all st that match the crisp state s and at 

using ε greedy selection policy 

• For each step (ie every 10 second delay inspection): 

o Take action at – observe r and st+1  

o Choose at+1 from st+1 using e greedy selection policy for all st+1  

match st+1 
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• st  = st+1  , at = at+1 
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7 Design and Verification 
 
A simulation was constructed using OPNET modeller 8.1 [183]. This operates at the 
packet level. 
 
 

7.1 Topology  
In the simulation there are 13 active nodeslx, of which 6 (the darker nodes in Figure 

23) generate data traffic. All 20 links are bi-directional with identical transmission 

rates, giving the average node degree of 3.23. Such a topology is consistent with 

comparable research [184].  

 

 

Figure 23: Network Topology 

 
The destination for each data packet is allocated randomly, with the exception of 

traffic generated at nodes 0 and 7. All traffic from these two nodes has the destination 

field set to 11. The rationale behind this is to guarantee generating a traffic ‘hot spot’ 

                                                 
lx Irregularities in the node numbering are explained by inactive nodes which are not represented in the 
digram 
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where the congestion level causes the delay to increase over a link – here the link 

from node 8 to node 11. 

 
 

7.2 Nodes 
The nodes have been designed to be largely consistent with current node 

architectures, such as Juniper Networks M160 [185] or Cisco 7200. 

 

 
 

Figure 24: Node model 

 
Each node has an in-queue (labelled ‘in_q_no’) for each link and a corresponding out-

queue (labelled ‘q-no’). The node represented in  has an in and out queue for each of 

its five neighbours, plus an in queue for the traffic from the traffic generator. The 

traffic generator is discussed later. The blue arrows represent the direction of traffic 

within the node; the red arrows, discussed later, are statistic wires. These are a means 

in OPNET for a processor to obtain variable values from another processor within the 

same node. 
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7.2.1 In-Queues 
Since it is assumed that the processor operates at wire speed there are no sub queues 

within the in-queues and no queue size. Any packet dropping is performed at the out-

queues. As each in-queue receives a packet, whether data or signal, it sets a flag. The 

core processor for each node polls these flags on a round-robin basislxi. If the flag is 

set the core processor forces an (OPNET remote) interrupt in that in-queue and the 

packet is forwarded to the processor.  

 

 
Figure 25: In-Queue Model 

 

7.2.2 Out-Queues 
Each out-queue has four sub-queues to buffer packets when they arrive faster than the 

transmission rate. The default queue limit for a Cisco 7200 router, for example, is 64 

packets before a drop policy is initiated. For the 7500 routers the default limit is 

calculated according to a proportional allowance for each class in the parent buffers 

[186]. The determination is based on a maximum delay of 500ms with an average 

packet size of 250 byteslxii. 

 

The first (highest priority) sub-queue forwards signal traffic the next three forward the 

gold, silver and bronze data traffic respectively. The signal sub-queue is serviced 

ahead of all the other queues. When this is empty a class-based queuing mechanism is 

employed. Gold traffic is statistically serviced 70% of the time, silver 20% and 10%, 

when there is traffic in all sub-queues. To mimic packet transmission the queue holds 

the packet to be sent for the packet service time (packet size/transmission speed 

seconds), during which time it cannot service any other packets already in the sub-
                                                 
lxi In OPNET there is a statistic wire, red in node model, from each in-queue to the core processor 
lxii This ‘low’ figure of packet size is due to the level of TCP service traffic. 
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queues (though it can add newly arrived packets to the sub-queues). No propagation 

delay is modelled, which is plausible for access networks. 

 
Each out-queue stores delay statistics for the sub-queues, representing the time spent 

in a sub-queue (less the service time). These figures can be accessed by the core 

processor via a statistic wire (one for each sub-queue, excluding the signal sub-queue) 

and are used to determine the delay from one node to its neighbours for all classes. 

 

7.2.3 Core Processor 
In this module delay over outgoing links is monitored, packets reaching their 

destination are destroyed, packets for forwarding are switched from the in-queue to 

the appropriate out-queue and any learning is undertaken. The ‘agent-like’ element of 

the simulation is located here. 

 

The data structures associated with the OSPF protocol are located in this module. The 

link state database contains costs for each class/link from every node in the network. 

The routing table contains the next hop for each class/destination. While an authentic 

router would maintain both routing and forwarding table, instead the simplified 

simulation router maintains just the routing table, as conceptually the two tables are 

similar [187], and the core processor acts as both routing and forwarding engine. 

 

 

Figure 26: Core Processor Model 
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7.3 Packet Generation 
Traditionally network traffic has been modelled using a Poisson process (ie packet 

arrival is memory-free and interarrival rate is exponentially distributed). Where a user 

population is large, with each user only responsible for a small percentage of overall 

Internet traffic and user sessions are mutually independent, a Poisson session arrival 

process would be expected. While this model appears correct for modelling network 

user session arrivals [188], it has latterly been considered unsuitable for describing 

both the network connections that make up such sessions as well as packet arrivals. 

The analysis of Ethernet traffic in [189] demonstrated that self-similarity was the 

prevailing characteristic. Ignoring this inherent burstiness by employing the Poisson 

model, it is argued, distorts traffic behaviour. For example Poisson models of packet 

traffic smooth aggregate traffic as the number of sources increase, rather than 

intensifying it. However, the overview of traffic modelling in [190] now suggests that 

packet-level behaviour may have shifted to a Poisson process. Indeed the authors 

suggest that individual links may display variable behaviour. 

 

Another concern for this analysis is whether the assumption of stationary process 

holds in networkslxiii. However, even if it is accepted that traffic follows the Poisson 

distribution, recent physical analysis of queue output [191] suggests the output of a 

stable queue is not stationary. Even if the external traffic is stationary (eg its arrival is 

exponentially distributed) the internal traffic process is not stationary. This raises the 

question of whether a representative time slice can be found for any learning 

techniques.  

 

Faced with these findings, it becomes more problematic how to model the traffic 

across the links. Since much work investigating QoS provision across IP networks 

still employs the Poisson model for traffic generation, for consistency several of the 

simulations presented here use this model. When using this latter model an inter-

                                                 
lxiii This is an issue for most artificial intelligence, not solely reinforcement learning 
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arrival time (ie 1/λ) of 0.0884 is setlxiv. Additionally, to simulate burstiness, an 

ON/OFF packet generation was used in the simulations. The approach delineated in 

[192] was to employ a standard ON/OFF Markov source (and additionally a periodic 

source) with fixed transmission rate when ON, arguing that it captures the behaviour 

where performance is largely determined by bursty congestion. ON/OFF models, with 

exponentially distributed ON and OFF times, are also utilised in the IST project 

MESCAL [193] to model VoIP traffic. In the simulations in this work the ON and 

OFF times are distributed according to a uniform integer distribution, set to 90% to 

remain in the same state. 

 

Traffic of all classes is generated from an identical source / generation model. Thus 

these simulations doe not attempt to model classes based on application, for example 

gold traffic as VoIP and best-effort as email. Instead classes are based on user 

demand. Here a customer pays for gold-class service, expecting a certain level of 

guarantee, while the customer who is unwilling to pay for service guarantees accepts 

the prevailing best-effort service. This is not an unrealistic assumption – although the 

focus on QoS primarily considers needs of applications with differing demands these 

still function, albeit often less efficiently, in the traditional best-effort internet. Thus, 

using the example in [194], a university student may be prepared to accept the 

shortcomings of standard internet VoIP, while the Principal may both require high-

quality calls and have the funds to pay for this. Here the role of the QoS 

enhancements is to provide a generalised solution rather than one tailored to the 

assumed needs of various applications.  

 

7.3.1 Random Number Generator 
The Mersenne Twister has been used as the Random Number Generator (RNG) due to 

its rigorous statistical properties, such as a long period of equidistribution [195]. 

Additionallly it demonstrates efficient memory usage and is four times faster than 

rand(). The critical importance of selecting an acceptable RNG in order to validate 

results was stressed in [196]. 

                                                 
lxiv In an ON/OFF simulation the delay (ie wait time in each state) is set to be packet size/service time. 
The packet size is 4420 and the service time is 100,000, ie 0.0442. Since the generator is in the send 
state 50% of the time the comparative poisson interarrival time is 2*0.0442, ie 0.0884 
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At the start of each simulation a new ‘seed’ is generated by the RNG (and the value 

stored in a file for consistency with other simulations). This seed is fed in to the RNG 

in a succeeding simulation, where multiple runs were required of the ‘same’ 

simulation. An example is shown below: 

 
1643545771 1979890667 
2024759641 511486124 
431267977 1902544604 
246090048 1169522929 
1861415293 1417352009 
324587625 879442603 
1152939417 1536053098 
563448707 75532875 
1731460838 1233963376 
1674506578 1235311782 
632206830 219358932 
1042982389 1379843426 

Table 11: Randomly Generated Seeds 

 
 

7.4 Packet Format 
All data packets are identical in size. The size of 440 bytes was chosen as 

representative of TCP packet size, ignoring the small (40-44 byte) packets, for 

example TCP acknowledgement [197]. The headers of interest, ie for QoS 

differentiation, would be absorbed into the SERVICE TYPE header field currently 

employed by DSC field points, as discussed in section 2.1. The size of service 

packets, ie LSAs, is set at 35 bytes. 

 
 

7.5 Multi-class Traffic 
Traffic is split into three classes: gold (priority), silver and bronze (best-effort), 

randomly allocated in the ratio 2:3:5 respectively. The two lower priority classes, 

silver and bronze, can also be further randomly demarcated into strata, numbered 1-5, 

if alternative routing is employed. This is to provide a means of routing a percentage 

(0-100% in multiples of 20%) of the traffic for a class without having to redesign the 

OSPF forwarding mechanism. Within the out queue class based scheduling is 

employed to enable favourable treatment for the higher-class traffic. Priority is always 

given to service traffic, such as OSPF LSAs. The work in [72] demonstrated that such 
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traffic represents a very small proportion of all traffic so the preferential treatment 

should not hinder the data traffic. This latter traffic is routed such that in a queue with 

data traffic of all classes gold is serviced 70% of the time, silver 20% and bronze 

10%. 

 
The delay experienced in each out-subqueue is polled every 10 seconds by the core 

processor. This period is chosen to mimic the OSPF hello timer. 

 

 

7.6 Simulation Scaling 

Ideally the network simulated should be running at Ethernet transmission rate, ie 10 

Mbits/seclxv. To mimic this, the out-queue service rate was set to 10,000,000, the 

interrupt delay in the generator was set to 10,000,000/packet size (ie 4420), the 

polling rate of the in-queues by the core processor was set to 

0.0000001*LinkNumber. However, the simulation as a result ran slowly, due to the 

number of events to process per second. For malleability the simulation was scaled 

down by a factor of 100. Later simulations have further scaled this rate down, in order 

to analyse the efficacy of the algorithms under greater strain. 

 

 

7.7 Simulation Verification 
The aim of verification is to capture programming and coding errors, or more 

precisely to evaluate how correctly a model’s implementation matches the intent of 

the designer [198]. 

 
To verify correct functioning of the input queues the number of events in the event 

queue of each core process (in OPNET terms: how many local events were in the 

queue) was monitored. A function, define_interrupts(), was coded to list the events 

local to each process.  Figure 27 shows typical command line output. The stream 

interrupts are packets (either service or data) and self interrupts are called for 

monitoring in-queues, generating LSAs etc. 
                                                 
lxv It could be argued that speeds across a MAN would be even higher, eg up to 10-gigabit Ethernet 
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Figure 27: Interrupts 

 
To verify queue servicing a small verification network was built, as shown in . In the 

network four generating nodes sent traffic to a fifth sink node. Tests were run to 

confirm that the input queues serviced the packets they received. Figure 29 

demonstrates that all the packets received by the input queue (the top graph) are then 

delivered by that queue (the lower graph). Further tests verified that the round robin 

scheduling mechanism was fair: Figure 30 shows that the core process of node_0 (the 

sink node) removes a balanced number of packets from each of its inqueues (in_q_1-

in_q_4, which each receive packets from the corresponding nodes 1-4). Correct 

functioning of the class-based weighted fair queue mechanism was also verified, 

demonstrated in Figure 31 (albeit for the earlier simulations where a higher 

percentage of traffic was gold). 

 



 107

Figure 28: Verification Network 

 

 
Figure 29: In_Queue Servicing 
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Figure 30: Round Robin Servicing 

 

Figure 31: Weighted Fair Queue 

 
The correct functioning of the ON/OFF packet generation mechanism is demonstrated 
in Figure 32, showing that the generator is either in a wait or a send_packet state: 



 109

 

Figure 32: ON/OFF Packet Generation 

 
 
 
To quantify whether the network had been placed under strain, the utilisation of the 

link from nodes 8→11 was measured. Figure 33 shows that at certain points in the 

simulation this link was heavily utilised (60% and above), representing considerable 

traffic stress. 
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Figure 33: Link Utilisation 

 
Further simulation verification can be found in Appendix 1. 
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8 Results 
 

The motivation behind this work was to investigate whether agents could have a role 

in IP network resource allocation. Given the tension between the close coupled nature 

of IP networks and the autonomy demanded of the agent paradigm the role of agents 

is potentially compromised. However, since learning is one of the key features that 

characterise agent intelligence it was resolved to employ this property in order to add 

more responsiveness to a dynamic environment. The behaviour of the intelligent 

network is contrasted to that where a heuristic (ie the non-learning pseudo-delay 

mechanism presented in section 5.1) is used to modify traffic. 

 
The majority of results shown are for single simulation runs. Confidence intervals 

(over multiple runs differing by RNG seed) are omitted as much of the evidence from 

various simulations has indicated a limited spread for the intervals. However, the 

following figure (12 runs, ON/OFF traffic generation, reward of five for not-flooding 

and 100,000 bits/second transmission rate) illustrates an issue with simulations that 

employ reinforcement learning. Exploration is a vital ingredient to this learning 

mechanism. A risk associated with this is increased variability – as can be seen by 

some of the confidence intervals. Reducing exploration would lead to a reduction in 

variability, however this would negate one of the inherent learning properties.   
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Figure 34: Bronze Delay with Confidence Intervals 
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8.1 OSPF 

The control status of the network is displayed in Figure 35 where the performance 

under a benchmark OSPF is shown for both Poisson and ON/OFF generated traffic. 

With this version of OSPF only periodic flooding occurs; no LSAs are sent out in 

response to increased network delay. Thus these periodic floods are the only points 

where nodes are updated with network conditions. The network shifts in response to 

the periodic flooding can clearly been seen in the graphs, most notably around the 

first (1800 second) flood. 
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 native OSPF bronze traffic
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Figure 35: Benchmark OSPF 

 
Although this is a benchmark OSPF model, it is perhaps unfairly crude as a control 

given that it is highly unresponsive to network stresses. A more sensitive OSPF model 

was created with high and low watermark thresholds: if delay reaches a critical 

threshold an LSA flood was generated, setting link cost (for that class) to 10; if the 

delay over this link was restored to a lower threshold a new LSA flood, with class/link 

cost of 1, was propagated. 
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Figure 36: OSPF with Responsive Flooding 

 

This responsive model represents an additional yardstick against which the more 

sophisticated algorithms must be tested. The network average end-to-end delay 

figures for gold, silver and bronze are 0.115, 0.123 and 0.219 seconds respectively, in 

a network with the standard transmission rate of 100,000 bits/second. The 

corresponding standard deviation measurements are 0.004, 0.008 and 0.106. 

However, once strain is placed on the network the performance of bronze traffic 

degrades. The following graphs show network average end-to-end delay in a network 

where the transmission rate has been lowered to 75,000 bits/second. In this congested 
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network the network average delay is now 0.198, 0.239 and 11.076 respectively for 

gold, silver, bronze traffic. The standard deviation figures are 0.009, 0.028 and 

17.716. 
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 c) Bronze
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Figure 37: OSPF with Responsive Flooding in a Congested Network 

 

 

8.2 Average Network Delay  
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Figure 38: Network End-to-End Delaylxvi 

 
A comparison of the average end-to-end delay across the network is presented in 

Figure 38. The benchmark OSPF simulation (ie with no flooding other than every 30 

minutes), used as a control, merely performs regular 30 minute updates – there is no 

other responsiveness to congestion. The average delay for gold traffic across the three 

                                                 
lxvi Simulation parameters: ON/OFF traffic generation; transmission speed 100,000 bits/second 
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models showed negligible difference: learning 0.115, heuristic (ie the pseudo-delay 

mechanism with no learning) 0.118, OSPF 0.119 seconds. The average for silver 

traffic again only showed a slight improvement due to learning, and a marginally 

worse performance for the heuristic: learning 0.128, heuristic 0.142, OSPF 0.130. 

However, bronze traffic achieves lower delay across both the learning and heuristic 

networks: learning 0.34, heuristic 0.41, OSPF 0.61. This suggests that the 

performance of the low cost traffic can be enhanced without compromising on the 

handling of the premium traffic. However, traffic appears more volatile across the 

intelligent (learning) network, compared to that employing the heuristic. The 

maximum delay exhibited by bronze traffic in the learning network was 4.56 seconds; 

the equivalent for the heuristic network was 1.94. The standard deviation confirms the 

relative instability of the learning mechanism: 0.328 for learning, 0.209 for heuristic. 

An explanation for this could be found in the exploratory nature of a reinforcement 

learning policy – an ε greedy strategy will occasionally follow less apparently 

advantageous action choices. The heuristic will, however, always be guided by its rule 

of thumb and not exhibit any exploratory behaviour.  

 

However, the heuristic and the learning simulation results compare less favourably to 

the more responsive model of OSPF – with the high and low watermark thresholds – 

shown in Figure 36. This could suggest that the extremely simple algorithm that 

ignores the delay values across a link in favour of applying a crude high cost metric 

may prove a more successful strategy. The heuristic and learning mechanisms sought 

to respond more sensitively to prevailing (and anticipated) network conditions, yet 

adding an artificially high cost appears to outperform their sophistication. While 

conceding that such simplicity is apparently more successful in the lightly congested 

network the benefits of the more complex approach will be considered in the 

following section. 

 

 

8.3 Responsiveness to Congestion 

As stated in section 7.6, the transmission rate was originally downgraded from 10 

Mbits/second to 100,000 bits/second in order to make the simulations more amenable. 
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In order to investigate how the system behaves under greater traffic stress the link 

transmission rate in several of the later simulations were further scaled down to 

75,000 bits/second. Figure 39 displays average network link utilisation across both a 

slow (ie scaled down to 75,000 bits/second, as shown by the dark red bars) and fast (ie 

standard 100,000 bits/second) network. Additionally, differing reward functions were 

employed: a no-flood reward of one (r1) across the congested network and a no-flood 

reward of eight (r8) across the faster network. As would be expected, with more strain 

on the slow network, three links became highly congested, displaying utilisation rates 

of 60-70%. 

Figure 39: Slow and Fast Network Link Utilisationlxvii 

 

In an ON/OFF network with links slowed to 75,000 bit/sec, link utilisation is shown 

in Figure 40.  Utilisation is shown for a range of conditions, for learning with 

differing reward functions (where r1 and r2 are a non-flood reward of one and two 

respectivelylxviii) and for a simulation running the pseudo-delay heuristic.  

                                                 
lxvii Simulation parameters: ON/OFF traffic generation 
lxviii The impact of the reward function is examined more closely in section 8.7. 
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Figure 40: Slow Network Link Utilisation 
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Figure 41: Impact of Slow Links on Delaylxix 

 
The traffic impact of the slower links is shown in Figure 41, with the learning 

mechanism employed over both low and high speed links. Notably much higher 

average delay, standard deviation and peak end-to-end delay is observed for bronze 

traffic (as expected). A shorter simulated run over a network with the lower speed 

links – bronze traffic is presented in Figure 42 – reveals both the benchmark OSPF 

protocol and the learning struggling with the network conditions. The OSPF network 

can only send out periodic LSAs (every 30 minutes) so cannot respond to increasing 

                                                 
lxix Simulation parameters: ON/OFF traffic generation; transmission rate 75,000; learning reward=1 
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network stresses outside these flood times. While the responsiveness of the learning 

algorithm aids it in avoiding the massive delay figures associated with the benchmark 

OSPF, once the vast delay surges die down, the OSPF network becomes associated 

for some time with lower average delay.   
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Figure 42: OSPF v. Learning over Slow Links 

 
The end-to-end delay for traffic with destination node 11 is shown in Figure 43, 

suggesting that traffic to this node is responsible for much of the congestion in the 

network.  
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Figure 43: Impact of Slow Links on Node 11 Traffic 
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These results demonstrate that although neither mechanism can adequately solve the 

routing problem in a very congested network, the peak and average performance of 

the learning mechanism outweighs that of the non-responsive (ie benchmark) OSPF. 

Results for the more responsive OSPF model in Figure 37 also showed that a previous 

successful, albeit simple algorithm, struggled once the network underwent greater 

strain. The bronze network average delay for the learning mechanism of 1.560 

seconds (with standard deviation of 2.613) compares favourably with the responsive 

OSPF figures of 11.076 (17.716). This indicates that seeking to add sensitivity to 

network routing is a valuable goal. 

 

 

8.4 Traffic Model 

Most of the results (including all those above) are from networks with ON/OFF 

generated traffic. Nevertheless, as stated earlier [see section 7.3], Poisson distributed 

traffic is frequently used in related research, despite doubts about its suitability to 

model IP network traffic. Due to its widespread usage, several simulations were run 

using Poisson traffic – a comparison of network average end-to-end delay is shown in 

Figure 44. Across this two-hour long run the average bronze delay is lower for 

Poisson traffic (0.261 seconds) compared to ON/OFF (0.341 seconds). However, due 

to the some large spikes in the Poisson simulation the standard deviation is higher 

than that for ON/OFF (0.490 compared to 0.319). 
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Figure 44: ON/OFF & Poisson Traffic 

 
 
 

8.5 Node Level Analysis 

Many of the results examine average network performance. However, it is valuable to 

examine performance at specific nodes – notably those which will suffer excessive 

congestion or will receive rerouted traffic. 

 

8.5.1 Node 9 
With the current network configuration, the effect of the theta factor should be to 

spread more traffic towards node 9. The critical link of interest is node_9→node_11, 

ie the link served by queue_4 at this node. 
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Figure 45: Node 9 Queue 4 - Queue Size 
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The packet size in the data (ie not signal) traffic subqueues is shown in Figure 45. 

There is a subqueue for each traffic class, to allow for differential servicing.  In these 

runs the transmission rate was lowered to 75,000, to generate higher congestion. The 

behaviour in the bronze subqueue is of most interest. The average queue length over 

the learning run was 0.854 packets, standard deviation of 2.898, peak size 67.9; the 

heuristic run generated corresponding figures of 0.652, 1.216, 14.6. Again, there is 

increased variability in the learning simulation. 

 

A shorter simulation was run, increasing the reward figure to eight, in a standard 

speed network (ie transmission rate of 100,000 bits/sec). Figure 46 shows the volume 

of traffic routed at node 9, again with much variation in the bronze traffic, although 

volatility was considerably high for silver Poisson generated traffic (standard 

deviation of 19.302 for ON/OFF, 54.736 for Poisson). 
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Figure 46: Node_9 Traffic Routed 

 
Several of the spikes occur around 1800, 3600, 5400 seconds (etc). This is most 

pronounced for the Poisson generated traffic. These times coincide with the OSPF 

regular update floods, ie at these points nodes received the latest link conditions for 

the entire network. Since the reward function is biased against flooding (examined in 

more depth in section 8.7) this suggests it rendered the network relatively irresponsive 

to traffic conditions.  

 



 126

8.5.2 Node 11 
Behaviour at node 11 presents a useful analysis of the effectiveness of any routing 

policies. The network traffic pattern is deliberately skewed so that all traffic generated 

from nodes 0 and 7 is sent to node 11.  This places stress on the immediate links, 

notably node_8→node_11 and node_12→node_11. The aim of both the heuristic and 

the learning (intelligence) is to smear the lower class traffic away from these links by 

presenting alternative links (eg routing via node_13→node_9) as ‘optimal’. 
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Figure 47: Node 11 Traffic End-To-End Delay 

 

Figure 47 shows the end-to-end delay experienced by all traffic with final destination 

node_11. The link transmission rate for each link was depressed to 75,000 bits/second 

in order to add more strain to the network.  The average bronze delay (shown in graph 

c) is lower (1.29 seconds) for traffic carried over the intelligent network, compared to 

the one operating a heuristic (2.39 seconds). That for silver is again lower (0.263 

intelligent compared to 0.328 heuristic), while the difference is less significant for 

gold (0.194 intelligent compared to 0.173 heuristic). The purpose of the heuristic and 

learning mechanisms is to ensure that the performance of high-grade traffic is not 

impaired by the lower-traffic. At the same time the aim is to demonstrate enhanced 

handling of low-grade (especially best-effort) traffic by spreading it away from the 

‘optimal’ links. Were bronze traffic still sent down these links, higher end-to-end 

delay would be expected due to disadvantageous handling by the queue servicing 

mechanism. These results support the proposition that adding the intelligence to the 

pseudo-delay routing improves the performance of lower grade traffic. 

 

 

8.6 Calibration of the Fuzzy Sets 

The calibration of the fuzzy sets for delay (LOW, MEDIUM and HIGH) for all three 

traffic classes was critical for system responsiveness. If, for example, these were fixed 

too low then too many observed delay measurements would have high membership 
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(μ) in the HIGH set (and conversely few high memberships would be observed in the 

LOW set). As a result the system would be in permanent flux due to continuous 

flooding, with limited network convergence. However, if the sets were mapped too 

high then delays would rarely register – most high membership readings would occur 

in the LOW set – making the system too sluggish and irresponsive to congestion. Two 

simulations were run to explore the impact of shifting the fuzzy sets to the right. A 

rightward shift, as explained above, has the effect of making a wider range of (crisp) 

delay observations correspond to high membership of a LOW fuzzy set. By extension, 

the level of observed delay that corresponds to a membership greater than zero of the 

HIGH fuzzy set is raised.  
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Figure 48: Shifting Fuzzy Setslxx 

 

Since shifting the sets rightward had a minimal effect on the delay figures 

(gold/silver/bronze average delay of 0.115, 0.128, 0.339 for the low sets compared to 

0.116, 0.126 and 0.375 for the high sets) it was decided to employ these higher sets 

for the simulation results. The rationale behind this was to minimise the number of 

floods. 

 

 

8.7 Reward Function 

OSPF is characterised as a quiet protocol. Flooding only takes place where necessary 

– at times of network stress or due to the regular link state update procedure. As a 

result the reinforcement learning reward function was biased towards not flooding, to 

avoid the problems associated with network convergence. A potential consequence of 

this is that network congestion could increase, as the system would be less responsive 

to congestion. However, work cited earlier [72] indicated that the low-

flood/inaccurate database trade-off could be an acceptable price to pay for a quieter 

network.  

 

                                                 
lxx Simulation Parameters: transmission rate 100,000 bits/second 
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Figure 49: Network Average End-to-End Delay with Shifting Reward 
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Figure 49 shows the impact on end-to-end delay across the network of manipulating 

the non-flooding bias in the reward function. Originally the function was set so that a 

non-flooding action choice returned a reward of one. Later simulations (with the 

slower transmission rate of 75,000 bits/second) investigated the network impact of 

setting the non-flooding reward to two, then to five. The maximum reward possible 

after a flood is kept stationary at one, regardless of the level of congestion. There is a 

negligible (albeit positive) effect on gold traffic, and a minimal positive effect on 

silver traffic due to the increase in the reward figure. The most notable finding is the 

effect on bronze traffic – both volatility and average delay decrease, notably once the 

reward rises to five. For bronze traffic with reward of 1, then 2, then 5 the average 

delay was 1.595, 1.467 and 0.712 respectively, with standard deviation of 2.613, 

2.526 and 0.908 respectively. Results for reward of eight have been shown earlier, 

when comparing Poisson with ON/OFF in Figure 44 and when investigating the 

behaviour at node 9 in Figure 46lxxi. 

 

Finally, a decaying reward function was introduced to add hysteresis after flooding. 

The mechanism greatly enhanced the reward for not-flooding LSAs in response to 

congestion across the link immediately after a flood. This figure then decayed to a 

minimum of one. The results depicted in Figure 50 (with transmission rate of 100,000 

bits/second) can be compared to those in Figure 38 (where reward in the learning 

model is set to one for not flooding). The average bronze delay in the earlier chart is 

0.339 seconds with standard deviation of 0.328, contrasted to an average of 0.241 

seconds with standard deviation of 0.144 with the decaying reward function. 

 

                                                 
lxxi Although these shorter simulations were run across a less congested network, with transmission 
speed of 100,000 
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Figure 50: Decaying Reward Function 
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However, the operation of this decay mechanism was ineffective in more congested 

networks. When the transmission rate was reduced to 75,000 bits/second the bias 

towards not flooding resulted in an inability to respond to network conditions. In such 

networks the system was unable to flood LSAs so traffic continued to be sent along 

overcrowded links. The results of this, showing network average end to end delay, are 

depicted in Figure 51. Here bronze average end to end delay is 2.318 seconds with a 

standard deviation of 3.745 seconds. 
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Figure 51: Decaying Reward Function over Slow Links 
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9 Discussion and Further Work 
A significant proportion of this thesis was consumed in establishing how agents could 

operate across IP networks. This involved distinguishing an intelligent or software 

agent from many entities that are termed ‘agents’, especially in the protocol literature. 

Yet an agent is not a silver bullet [199]; different solutions exploit different agent 

desiderata and other non-agent solutions may provide equal flexibility. This resulted 

in a more nuanced argument for an agent-like solution. An illustration in this work is 

leveraging the existing communication structure – the ‘agents’ deployed into each 

node currently communicate using protocol traffic, ie LSUs/LSAs – rather than 

developing a complex communication protocol. Through exploiting the existing 

protocol, the results of the learning garnered at each node could be shared, thus 

providing an agent-like (or agent-based) solution. 

 

The enhancements / results from this research sought to confirm two premises: that 

sub-optimal routing of traffic in a multi-class network is a viable resource 

management strategy; that adding intelligence is beneficial. The purpose underlying 

this section is to validate whether these have been met. Both concerns – the role of 

agents in IP networks and the success of the sub-optimal routing strategy – will be 

addressed through answering two questions: 

“Is OSPF an agent-based system?” 

“Does this work demonstrate an agent-based system?” 

Although section 4.3 specifically investigated the use of the term agent in network 

protocols OSPF makes no explicit claim to be employing agents. However, it could be 

argued that (superficially) many of the properties of this routing protocol overlap with 

an agent system. Furthermore, since both the pseudo-delay heuristic and the 

intelligent strategy piggyback on the OSPF messaging protocol can a clear distinction 

be made between these approaches and OSPF? Not only must it be proved that the 

intelligent modification is more successful than OSPF, but that by its design it forms 

an agent-based approach. 

 

In [100] the authors examined the pragmatics underlying the development of agent 

systems. Agents, they argued, were another addition to the wealth of software 
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engineering abstractions that aided the management of complex systems: “Just as 

many systems may naturally be understood and modelled as a collection of 

interacting but passive objects, so many other systems may be naturally understood 

and modelled as a collection of interacting autonomous agents”. However, they 

identified that this distinction could be lost, for example at the time of writing there 

was in their opinion a tendency to view any distributed system as a multi-agent 

system. While rejecting complexity of design, eg overuse of AI when not necessary, 

for its own sake they nevertheless demanded some AI component to agents. This will 

form a partial guideline to the resolution of whether OSPF and the enhancements 

presented here operate as agent systems. 

 

A network running OSPF is comprised of distributed nodes operating a discovery, 

communication and authentication mechanism. Nodes are unaware of network 

topology when the system originates, ie there is no centralised network-view imposed 

on the distributed nodes. Through exchanging Hello packets to establish neighbours, 

followed by LSAs each node establishes an identical topological view (represented by 

the link state database) and can then generate a routing table. The communication 

mechanism for example allows nodes to discover: when links are down, when link 

costs have changed, when packets have been received. Whether the communication 

entity is thought of as a node/router or abstracted to an object operating at that node, it 

is still insufficient to describe this as an agent system. Although OSPF is very 

powerful, and although it does not rely on a centralised object imposing a fixed 

topology on the nodes, it is nevertheless an AI-free (ie not an intelligent) distributed 

system. 

 

Very recent (as yet unpublished) developments in agent research promote ‘agents as a 

design metaphor’ [200]. Researchers focussing on the applicability of software agents 

have rejected the bottom-up approach to agent definition discussed in this thesis – ie 

one building on characteristics such as autonomy, reactiveness, proactiveness – in 

favour of a top-down approach. As such this top-down approach concentrates the 

analysis on the design methodologies, architectures and supporting infrastructures 

required for complex, dynamic (often heterogeneous) environments. The bottom-up 

approach would perhaps focus on whether OSPF routers are truly autonomous, or 
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whether the sociability demands of the Wooldridge/Jennings approach is satisfied by 

IP communication protocol.  

 

Yet having established that OSPF could not legitimately be called an agent system, 

without making such a term redundant, it may not be necessarily evident that the 

enhancements presented in this work could legitimately be seen as agent-based. 

Certainly the aim behind the pseudo-delay heuristic was to establish the validity of 

spreading less vital traffic away from ‘optimal’ routes rather than investigating the 

role of agents. However, the goal of the intelligent routing was to present an agent-

based strategy for routing. A ‘fragile’ model of agents was presented (using the 

bottom-up approach) in section 4.6, rejecting the full complexity of communication / 

negotiation strategies and protocols. Learning was proposed as a key agent 

characteristic. This sets the intelligent routing model apart from a straightforward 

distributed system – this approach could instead be said to successfully negotiate the 

agent-level pitfall of failing to employ AI. Nevertheless, perhaps the richness of 

communication and support architectures that form the top-down approach are 

lacking. A limitation to considering this agent system as a design metaphor is that 

heterogeneity is compromised in connectionless networks: nodes must share their 

network vision in order to avoid routing loops. However, in section 9.2, future work 

that could enhance the effectiveness of the approach adopted is discussed. Adding 

further, longer-term learning to the system will require a more elaborate agent 

architectural design both within and between nodes. 

 

9.1 Evaluation of Results 

It is clear from the results that adding intelligence to IP routing does not produce 

overwhelming advantages. However, it will be argued that there is sufficient evidence 

to support further investigation into applying agent-based techniques. 

 

The early research developed in section 5 investigated manipulating the perceived 

cost metrics across links in order to spread lower-cost traffic away from the optimal 

paths. Favourable results encouraged adding an agent flavour to this research, ie 

adding intelligence in the form of learning. Reinforcement learning was chosen due to 
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the advantage of not requiring the imposition of a preconceived framework or model. 

The necessary exploratory element of this form of learning, however, may explain the 

relative variability of results when compared to the heuristic. Strategies to ameliorate 

this are discussed in the future work section.  

 

In the later set of simulations (ie those presented as results in section 8) two models of 

OSPF are presented: the highly irresponsive benchmark model and one with both high 

and low watermark thresholds. The benchmark model forms a useful control, to 

examine how the network performs without responding to any traffic surges. 

However, the watermark version represents a more critical challenge to any 

enhancements. It especially presents a useful critique of the current learning model as 

the latter is founded around learning when to flood (and to a lesser extent the value of 

the theta factor). Here flooding is in response to increased congestion, but because of 

the state space used the learning model cannot differentiate between a flood that 

increases link cost and one that decreases it (ie when network congestion has 

resolved). Thus, should link cost fall to a level below that which provoked a flood no 

LSA would be flooded resetting the cost. An advantage of this is it helps minimise 

flooding and the associated convergence overhead, but it limits responsiveness. 

 

In the standard network, ie with link transmission rate of 100,000 bits/second the 

OSPF mechanism appeared the most successful strategy. However, adding strain to 

the network revealed its critical shortcoming – without the sophistication of the 

heuristic or learning mechanisms its strategy proved too crude. Although the learning 

mechanism outperforms OSPF in a congested network end-to-end delay figures were 

still poor. However, with very high utilisation over several links, such figures would 

be expected. 

 

Some results indicate that the learning outperforms the heuristic (notably those for 

end-to-end delay for node_11); others indicate higher variability. This is, as discussed, 

most likely due to the exploratory nature of the learning. Manipulating the 

reinforcement reward function was shown to improve performance, most significantly 

when biasing the mechanism against flooding. However, as was demonstrated in the 

more congested network this can lead to the system failing to respond adequately to 
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network stress. Thus, although the results point to the advantage of adding 

intelligence they also suggest that the current solution is not intelligent enough. 

 

9.2 Future Work 

Having established that an agent system may prove effective in connectionless 

networks, future work is required to investigate whether further responsiveness can be 

added to enhance system optimisation. Such work would involve developing both a 

richer agent architecture and an augmented learning strategy. Arguments for giving 

inter-AS interactions an agent label are possibly more valid – feasibly, future work 

could explore inter-AS routing although the focus in this section, as within this 

project, will be within an AS. 

 

Ideally additional agent behaviour would have been extended to each node – although 

mobile agents were considered outside the scope of this research future work would 

allow monitoring ants (ie those operating in the higher layer) to be sent from each 

node. These would operate at a strategic level, to complement the current 

reinforcement learning mechanism. Earlier architectures under consideration had also 

incorporated a centralised Network Agent responsible for longer-term learning (eg 

Bayesian Reasoning). The findings from the lower-level learning agents would be fed 

to this agent. Should this agent fail the network could still function, so robustness 

would be guaranteed. 

 

A shortcoming of the reinforcement learning algorithm presented here is that FQ 

values are necessarily short term, being updated every time step. This may be 

appropriate in a smooth (Poisson) environment, but in a bursty Internet environment it 

may prove advantageous to feed the results of the learning into more long-term rules. 

Although beyond the current scope of this research, future work could investigate the 

advantage of incorporating case-based reasoning [201] into the learning. Case-based 

reasoning agents would be distributed to each node (and employed in place of the 

agents proposed in the previous paragraph), leading to a potentially more powerful 

agent architecture.  
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Additionally, many of the limitations to the learning are a consequence of the limited 

state space adopted. Although, as stated early, a benefit of adding fuzzy sets to the 

reinforcement learning algorithm is to control the expansion of state space, it could be 

advantageous to include extra parameters into the learning. Incorporating further 

information such as the time since the last flood and then making the rewards 

dependent on this time could prove useful. Another feature to factor in would be high 

and low watermark thresholds. The case-base reasoning agents could be used to 

formulate, for example, high and low rules. These rules in turn could be corrected by 

the findings of the reinforcement learning agents, ensuring the model worked 

effectively in a dynamic environment.  

 

Finally it would be useful to explore a wide range of network topologies to test for 

scalability and to discover whether surges would invalidate the benefits of spreading 

traffic away from the optimal paths. A more realistic router architecture could also be 

included in the simulation by making the queue buffers finite. Currently the buffers in 

each node are infinite. This was considered a necessary artifice since the learning 

mechanism concentrated on a single cost metric: end-to-end delay. The rationale 

behind not imposing finite queues was that this could result in packets being dropped 

at times of high link utilisation. In turn this packet loss could mask the traffic stress on 

the network, decreasing (and hence masking) the delay rates.  
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10 Summary 
Section 4.4 queried the viability of employing the term agent in network 

environments. The over usage of this term had led, it was argued, to redundancy – 

anything could be, and indeed claimed to be, an agent. Mere agency was often 

sufficient to some authors. This was perhaps not surprising – even within the agent 

community can prove difficult to agree on what constitutes this special software 

engineering abstraction. Nevertheless, by the end of the chapter the notion of ‘agent-

like’ had been explored. This has resulted in a recasting of the agent:network 

relationship, with an attempt to answer a new question: 

What elements of agent-like behaviour/practice can prove advantageous in a 

tightly-coupled distributed environment? 

 

Autonomy, the prevailing characteristic of an agent, is undermined in such 

environments: nodes in an AS need identical link state databases to run OSPF 

effectively. Communication already exists, albeit in a protocol form, without the 

flexibility promised by agent designers/theorists. Since the means by which the nodes 

in the network can respond to changes in the environment is limited to flooding, ie 

sharing new link state information with all other nodes, the means by which an 

‘agent’ can act upon the environment is by affecting when such floods are triggered 

and the contents of the LSA (ie manipulating link costs). This still concurs with the 

notion of agents as “situated problem solvers” in [202].  

 

Of course, having limited autonomy, communication and social interaction imposed 

by the close coupling of the system, this only left learning as a vehicle for augmenting 

behaviour. This thesis looked at viable approaches to learning in the constrained 

environment, but even here the problem had to be formulated essentially as a control 

problem. There is no scope for radically new behaviours. Reinforcement learning 

does have exploratory steps but only within a defined range and reward framework.   

 

Results indicated that routing sub-optimally, using pseudo-delay figures, could result 

in improved network optimality. This finding is pertinent given that so-called optimal 
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strategies have been demonstrated to result in non-optimal networks. Thus what may 

appear as a contrary, indeed contradictory, strategy may prove an efficient means of 

traffic engineering. Adding learning, ie the agent behaviour, increases the 

responsiveness of the pseudo-delay mechanism, with potentially greater sensitivity 

through expanding into a more complex agent learning architecture. Whether termed 

agent-like or agent-based, adding learning to a tightly-coupled network is here 

presented as an advantageous strategy. 
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Appendix A: Simulation Verification 
 
This appendix lists further examples of simulation verification mechanisms and 

experiments. The mechanisms can be grouped into: 

1. Halting the simulation 

2. Printouts to screen – using printf() statements. 

3. Printouts to file 

Combinations of the above approaches were employed to verify accurate simulation. 

Validation experiments were run to confirm the changes in link costs and the correct 

propagation of LSAs 

 

Printouts were applied to trace, for example, correct procedure when propagating 

LSAs. When a node propagates a single LSA (ie not when performing a periodic 

flood for all link states) the procedure should be to update the node’s own linkstate 

database, generate the new routing table, create an LSA, encapsulate it and send it to 

neighbouring nodes. Printouts to the screen inside each function would demonstrate 

the order of function calls and routing table update. Simulations would be terminated 

– using the OPNET procedure op_sim_end() – to allow analysis of screen printout. 

Additionally termination would be used to trap illegal states – for example incorrect 

LSA delivery, unidentified LSAs, incorrectly terminating algorithms.  

 

File printouts are employed to trace, for example, correct allocation and deallocation 

of resources (pointers and packets), network utilisation, how often floods are triggered 

and in response to what network conditions 

 

Artificially rising link cost 
The purpose of this is to demonstrate that modifying a link cost alters the spf 

calculation. This causes all routing tables to modify their recommended next hop 

(where appropriate) for destinations that previously routed across this prohibitively 

expensive link. This exercise also demonstrates the propagation of each LSA 

(showing where each LSA has travelled and when it gets destroyed to prevent 

continuous flooding) 



 144

 

 

Back up Table 
The following screen grab provides an example backup table, for node 14 (numbered 

16 by the simulation kernel): 

 
The first entry shows the number of alternative next hops for a given destination 

(corresponding to the destinations in the traditional routing table) 

 

The next screen capture demonstrates that the out-queues for node 10 (ie 8 in the 

topology diagram) have received packets from the core processor for all five 

neighbours. The simulation is terminated once the first neighbour receives its LSA. 

 
 

To confirm correct propagation of LSAs their paths through the network were traced 

by printing out to a file. This demonstrates that after the original node (10) sends out 
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the LSA to its five neighbours all nodes receive the LSA and no node sends it out 

more than once (ie the flooding is self-limiting). On receipt of an LSA (after 

confirming this is an original LSA) a node forwards it on to all its neighbours 

(including the one which previously forwarded it). However, the nodes with only one 

neighbour do not propagate LSAs furtherlxxii. 

 
10 sending LSA to 2 

10 sending LSA to 9 

10 sending LSA to 14 

10 sending LSA to 13 

10 sending LSA to 15 

2 forwarding LSA to nbr 15 

2 forwarding LSA to nbr 10 

15 forwarding LSA to nbr 2 

15 forwarding LSA to nbr 11 

15 forwarding LSA to nbr 10 

14 forwarding LSA to nbr 8 

14 forwarding LSA to nbr 10 

14 forwarding LSA to nbr 13 

14 forwarding LSA to nbr 16 

14 forwarding LSA to nbr 7 

11 forwarding LSA to nbr 4 

11 forwarding LSA to nbr 12 

11 forwarding LSA to nbr 15 

11 forwarding LSA to nbr 13 

8 forwarding LSA to nbr 14 

8 forwarding LSA to nbr 7 

7 forwarding LSA to nbr 16 

7 forwarding LSA to nbr 14 

7 forwarding LSA to nbr 8 

16 forwarding LSA to nbr 6 

16 forwarding LSA to nbr 12 

16 forwarding LSA to nbr 13 

16 forwarding LSA to nbr 14 

16 forwarding LSA to nbr 7 

13 forwarding LSA to nbr 14 

13 forwarding LSA to nbr 16 

13 forwarding LSA to nbr 10 

13 forwarding LSA to nbr 11 

12 forwarding LSA to nbr 6 

12 forwarding LSA to nbr 11 

12 forwarding LSA to nbr 16 

6 forwarding LSA to nbr 12 

6 forwarding LSA to nbr 16 

 

 

The following printout to file shows the updated routing table at node 10 (numbered 8 

in the topology). At time 0, packets to the neighbouring node 14 are routed directly. 

However, at time 10, although observed delay is negligible an artificial load is 

imposed on the link 10-14. The new routing table shows that packets from 10 to 14 

are now routed via hop 13 as link 10-14 is prohibitively expensive. 

 
time: 0.000000 
2 hop is 2 
4 hop is 13 
6 hop is 13 
7 hop is 14 
8 hop is 14 
9 hop is 9 
10 hop is 0 
11 hop is 13 
12 hop is 13 
13 hop is 13 
14 hop is 14 

                                                 
lxxii This means their neighbour does not receive an indirect acknowledgement, but that is acceptable in 
such a controlled network 
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15 hop is 15 
16 hop is 13 
 
at 10.000000: node 10 to link 14: 
 delay G: 0.000000, S: 0.000000, B: 0.000000, theta 0.000000 
delay metrics: 5000000, 5000000, 5000000 
MTRC sending LSA, seq 0 re theta 
time: 10.000000 
2 hop is 2 
4 hop is 13 
6 hop is 13 
7 hop is 13 
8 hop is 13 
9 hop is 9 
10 hop is 0 
11 hop is 13 
12 hop is 13 
13 hop is 13 
14 hop is 13 
15 hop is 15 
16 hop is 13 

 

The following diagram shows the number/volume of packets in the system (with 

points taken at 12 second intervals). This is used to verify the packet creation and 

destruction process. 
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