
 1

Agent-Based Resource
Management in IP Networks

Karen Victoria Shoop

Submitted for the degree of Doctor of Philosophy

Department of Electronic Engineering
Queen Mary, University of London

 2

Abstract
The growth in traffic across IP networks has been mirrored by a demand for higher

quality service provision. As the generic IP best-effort paradigm is no longer suitable

given the diversity of customer and application requirements, there is a need to

provide Quality of Service (QoS) across multi-class networks. Such treatment must

not only satisfy the requirements demanded of high-grade traffic but also ensure that

best-effort traffic receives an appropriate level of service.

This thesis investigates the applicability of agent technology in multi-class

connectionless networks. An analysis of agents in telecommunication networks is

undertaken, questioning whether all work that claims to employ agents is indeed

doing so. Likewise the thesis explores whether a body of network research could be

described as agent-based despite not declaring such entities. The ramifications of such

inconsistencies are discussed to highlight whether indeed intelligent software agents

are well placed to provide the sophistication necessary for QoS provision in a

distributed and dynamic environment. Furthermore, in a tightly coupled environment

the autonomy associated with agents is constrained. Connectionless networks rely on

a set of related next hops to route traffic along least cost paths; employing agent

intelligence at each node may lead to inconsistencies. This research argues that while

deploying agent technology may be inappropriate at the IP level, nevertheless

techniques associated with an agent approach provide important enhancements to

routing.

This thesis introduces a novel “sub-optimal” adaptation to the OSPF routing protocol,

based on masqueraded cost metrics and allowing for proactive routing, in anticipation

of congestion. Fuzzy reinforcement learning is then introduced to add further

responsiveness to the system. Finally this is located within the development of agents

in networks.

 3

Acknowledgements

This project was largely supported with funding from Nokia Corporation. Many
thanks are especially due to Andreas (Andrepeter) Heiner, for his helpful advice and
endless patience.

Additionally I would like to acknowledge the EPSRC for funding the initial work on
this project.

It is perhaps impossible to know where to begin with thanking my supervisors, John
Bigham and Chris Phillips. They have encouraged, supported and cajoled me through
this work: through various dead ends, simulation disasters and self-doubt. I would like
to salute them as great mentors and very firm friends.

Also many thanks are due to Ho, Michele, Lynda and Laurie in the department for
their support. Laurissa is due admiration for her expertise in reinforcement learning,
shared over many lunches. Additionally all those who have formed room 356: Costas,
Janny, Jim, Landong, Leonid, and most of all Damian for believing I could do this.
Plus those who have very patiently put up with a friend trying to finish a PhD: Livy,
Aimee, Jules, Nick, Fiona, Rob, Clare, Joe, Freddie, Theo and Albert.

Many thanks to my family for their encouragement: Sandra, Stanley (alias Mum and
Dad), Tanya, Vik and Fiona

Most of all, special thanks to Mark – without whom all this would be pointless – for
all his love, confidence and support.

And lastly to Zed, whose arrival midway through the PhD has led to some interesting
challenges. Finally I shall be able to answer his call to “stop doing your PhD
Mummy”.

 4

Table of Contents
Abstract ..2

Acknowledgements..3

Table of Contents...4

List of Figures ..7

List of Tables ...8

Glossary ...9

1 Introduction..12

1.1 Motivation..12
1.2 Contribution ...13
1.3 Thesis Outline ..14

2 IP Networks ...15

2.1 The IP Datagram..16
2.2 OSPF..17

3 Quality of Service ..21

3.1 QoS Unmanaged Solution: Over Provisioning ..24
3.2 QoS: Resource Management..26

3.2.1 Integrated Services (IntServ) ...26
3.2.2 Differentiated Services (DiffServ)...27

3.2.2.1 SCORE / DPS ..28
3.2.3 Multiprotocol Label Switching (MPLS)..29
3.2.4 QoS Routing...31

3.2.4.1 Opaque/Traffic Engineering LSA..34
3.2.4.2 Alternative Routing..36

4 Agents ..38

4.1 Parent Disciplines ..38
4.1.1 Why Agents in Networks...40

4.2 Agent Properties...40
4.3 ‘Agents’ in Network Protocols ..42
4.4 Agents in Networks..46

4.4.1 Agent Architectures for Resource Allocation......................................47
4.4.1.1 Agent Framework ..51

4.4.2 Agent Intelligence: Routing...51
4.4.3 Market Based Approach ..54
4.4.4 Ants ..55

4.5 Parallel Research..57
4.5.1 Control Theory...57
4.5.2 Policy Based Management...59

 5

4.5.2.1 Policy Projects ...60
4.5.2.2 Common Open Policy Service Protocol (COPS).............................63
4.5.2.3 Challenging the Demarcation ..64

4.6 Summary: the role for agents...65

5 Sub-Optimal Routing...67

5.1 Pseudo Delay Mechanism..67
5.1.1 Results..70

6 Learning ...74

6.1 Fuzzy Reinforcement Learning..75
6.1.1 Reinforcement Learning ..76

6.1.1.1 On-Policy and Off-Policy Learning...79
6.1.2 Fuzzy Logic Control ..81
6.1.3 Fuzzy Reinforcement Model..85

7 Design and Verification ...98

7.1 Topology..98
7.2 Nodes ...99

7.2.1 In-Queues...100
7.2.2 Out-Queues ..100
7.2.3 Core Processor ...101

7.3 Packet Generation ..102
7.3.1 Random Number Generator...103

7.4 Packet Format ..104
7.5 Multi-class Traffic ...104
7.6 Simulation Scaling...105
7.7 Simulation Verification..105

8 Results..110

8.1 OSPF..111
8.2 Average Network Delay ..115
8.3 Responsiveness to Congestion...117
8.4 Traffic Model ...121
8.5 Node Level Analysis..122

8.5.1 Node 9..122
8.5.2 Node 11..126

8.6 Calibration of the Fuzzy Sets...127
8.7 Reward Function..129

9 Discussion and Further Work ..135

9.1 Evaluation of Results ...137
9.2 Future Work ...139

10 Summary ..141

Appendix A: Simulation Verification..143

Author’s Publications...147

 6

References..148

 7

List of Figures
Figure 1: TCP/IP reference model ...15
Figure 2: IPv4 Datagram..16
Figure 3: Service TypeField showing DSCP...16
Figure 4: First Line of IPv6 Header...17
Figure 5: Looping due to inconsistent link state databases..18
Figure 6: Flooding LSUs encapsulating Router LSAs ..19
Figure 7: Unequal Cost Paths ..30
Figure 8: OSPF Opaque LSA ..35
Figure 9: Routing without the Pseudo-Delay Mechanism...71
Figure 10: Routing with the Pseudo-Delay Mechanism..72
Figure 11: Routing With the Enhanced Pseudo-Delay Mechanism73
Figure 12: Episodes of states and state-action pairs ..77
Figure 13: Q-Learning Backup Diagram ...80
Figure 14: Classic (interval-based) (a) and Fuzzy (b) Membership82
Figure 15: Fuzzy Controller...83
Figure 16: Fuzzy Inference ..84
Figure 17: Delay Membership Function ..86
Figure 18: Fuzzy Sets for Delay ..87
Figure 19: Delta Fuzzy Set ..88
Figure 20: State Actions New States..90
Figure 21: Fuzzy Action Membership Functions ..94
Figure 22: Tokarchuk’s Fuzzy Sarsa Algorithm..97
Figure 23: Network Topology ...98
Figure 24: Node model ..99
Figure 25: In-Queue Model ...100
Figure 26: Core Processor Model ..101
Figure 27: Interrupts ..106
Figure 28: Verification Network..107
Figure 29: In_Queue Servicing..107
Figure 30: Round Robin Servicing ..108
Figure 31: Weighted Fair Queue..108
Figure 32: ON/OFF Packet Generation ...109
Figure 33: Link Utilisation...109
Figure 34: Bronze Delay with Confidence Intervals ...110
Figure 35: Benchmark OSPF...112
Figure 36: OSPF with Responsive Flooding ...113
Figure 37: OSPF with Responsive Flooding in a Congested Network......................115
Figure 38: Network End-to-End Delay..116
Figure 39: Slow and Fast Network Link Utilisation..118
Figure 40: Slow Network Link Utilisation ..119
Figure 41: Impact of Slow Links on Delay..119
Figure 42: OSPF v. Learning over Slow Links..120
Figure 43: Impact of Slow Links on Node 11 Traffic ...120
Figure 44: ON/OFF & Poisson Traffic ..122
Figure 45: Node 9 Queue 4 - Queue Size ..123
Figure 46: Node_9 Traffic Routed...125

 8

Figure 47: Node 11 Traffic End-To-End Delay...127
Figure 48: Shifting Fuzzy Sets...129
Figure 49: Network Average End-to-End Delay with Shifting Reward....................130
Figure 50: Decaying Reward Function ..132
Figure 51: Decaying Reward Function over Slow Links...134

List of Tables
Table 1: Network QoS Characteristics ..22
Table 2: ITU-T Model of User-Centric QoS ...23
Table 3: Fuzzy States ...89
Table 4: Fuzzy State Action Pairs..90
Table 5: Fuzzy Rules ...91
Table 6: Fuzzy State-Actions without Learning ..91
Table 7: Fuzzy State-Actions with Learning ...91
Table 8: Intuitive Statements and Corresponding Fuzzy Rules...................................92
Table 9: Fuzzy State Action Pairs for all States ..93
Table 10: Theta Flooding...95
Table 11: Randomly Generated Seeds...104

 9

Glossary
ACK Acknowledgement (TCP)

AF Assured Forwarding

AI Artificial Intelligence

AQM Active Queue Management

AS Autonomous System

ASP Application Service Provider

ATM Asynchronous Transfer Mode

BA Behaviour Aggregate

BB Bandwidth Broker

BE Best-Effort

BFD Bidirectional Forwarding Detection Protocol

BGP Border Gateway Protocol

COA Care Of Address

COPS Common Open Policy Service Protocol

CPU Central Processing Unit

CR-LDP Constraint-Based Routed Label Distribution Protocol

DAI Distributed Artificial Intelligence

DPS Dynamic Packet State

DiffServ Differentiated Services

EF Expedited Forwarding

FEC Forward Equivalence Class

FIPA Foundation for Intelligent Physical Agents

FQ Fuzzy Q strength

FTP File Transfer Protocol

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IN Intelligent Network

IntServ Integrated Services

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

 10

IS-IS Intermediate System to Intermediate System

ISDN Integrated Services Digital Network

ISP Internet Service Provider

ITU International Telecommunications Union

ITU-T International Telecommunications Union – Telecommunications

Standardisation Sector

LDP Label Distribution Protocol

LP Logical Path

LSA Link State Advertisement

LSP Label Switched Path

LSR Label Switched Router

LSU Link State Update

MAN Metropolitan Area Network

MIB Management Information Base

MPLS MultiProtocol Label Switching

NSP Network Service Provider

OO Object-Oriented

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OSPF-TE Open Shortest Path First Protocol with Traffic Engineering Extensions

PEP Performance Enhancing Proxy

PNNI Private Network-Network Interface

PS Policy Server

PSTN Public Switched Telephone Network

QoS Quality of Service

QOSPF Quality of Service-based Open Shortest Path First

RED Random Early Detection

RFC Request for Comment

RIP Routing Information Protocol

RNG Random Number Generator

RSVP Resource ReSerVation Protocol

RSVP-TE Resource ReSerVation Protocol with Traffic Engineering Extensions

Sarsa State, Action, Reward, State, Action

 11

SCP Service Control Point

SCORE Stateless Core

SLA Service Level Agreement

SLS Service Level Specification

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

spf shortest path first

TCP Transmission Control Protocol

TE Traffic Engineering

TED Traffic Engineering Database

TD Temporal Difference

TLV Type/Length/Value Structure

UA User Agent

UDP User Datagram Protocol

VoIP Voice over IP

WDM Wavelength Division Multiplexing

 12

1 Introduction

This section outlines the initial stimulus and the objectives for this research.

1.1 Motivation
The motivation underlying this research derives from the changing profile of IPi

network users and applications. Data and voice network convergence – IP networks

with both the public switched telephone networks (PSTNs) and integrated services

digital networks (ISDN), leading to the growth of IP telephonyii – is the new

paradigm. This convergence, together with the growth in exacting applications, such a

video conferencing and distance learning, and an increasingly demanding user profile

has led to a focus on how to manage network resources more efficiently. At the same

time, alongside these novel profiles, the traditional best-effort traffic associated with

IP networks has grown, for example due both to increased use of web applications

and I/O heavy scientific applications [1]. Solutions must be sought to service both

those users and applications that require higher quality treatment while also

preserving the needs of best-effort customers and applications. It is notable that much

work addressing these network challenges neglects the performance of best-effort

traffic [2] despite no evidence that such traffic will cease to form the dominant traffic

in such networks for the near future.

First it has to be established whether offering quality of service (QoS) is indeed a

resource management issue. Although many papers refer to a dichotomy – those who

advocate network dimensioning versus those who propose a managed QoS solution –

little evaluation is provided to support the proponents of excess bandwidth. Since

service differentiation – offering premium as well as best-effort and other traffic

classes – results in higher overheads, an analysis must consider why this is considered

an attractive or necessary option. Costs include increased network complexity,

processing overhead, storage of reservation state; benefits include potentially

increasing both network throughput and revenues.

i Networks that employ TCP/IP protocols. The role of the IP protocol is considered fundamental so
TCP/IP networks/internets/internetworks are commonly called IP networks
ii referred to hereafter as Voice over IP (VoIP)

 13

Since QoS appears to be a resource management issue, then intelligent agents would

seem to afford increased functionality. Although their applicability to resource

management has been demonstrated in connection-oriented networks, IP networks are

characterised as connectionless. Furthermore, due to concerns about network security,

a challenge was to investigate the use of static rather than mobile agents. However,

the growth in agent telecommunications research has somewhat stalled. A prevailing

explanation is that agents are a ‘fad’ – that the concept not just the abstraction is

overused. There is a need for a thorough review of agent literature, to examine

whether there has been and still is a role for agent technology or whether it is simply a

label for a design metaphor and could simply be replaced by a more specific label in

the context of the application e.g. Web Service in the context of business to business

communication. This in turn requires an examination of a conflict between the notion

of the agent, as a software engineering abstraction, and the concept of agent as

embodied in network protocol literature.

1.2 Contribution
Much has been promised about the benefits of agents in telecommunications

networks. It is perhaps surprising in light of such claims that there is comparatively

little ongoing research and deployment in this area. As far as the author is aware,

although there have been a few overviews of agents, for example [3], there has been

no systematic analysis of the role of agents in networks, especially IP networks. A

major contribution of this thesis is a review of agents in networks, culminating in a

proposition explaining why the development may have been hindered. Additionally

this analysis attempts to glean a possible role for agents in connectionless networks.

While more has been written about agents in connection-oriented networks, the role

of agents – specifically those that do not display mobility – in a connectionless

network is rarely investigated. This thesis presents a role for agent – or agent-like –

behaviour in such systems.

This thesis presents novel enhancements to the OSPF routing protocol that are

sensitive both to the shifts in link costs as well as the trend in such costs. The initial

 14

work presents a heuristic that spreads traffic away from optimal links. While

appearing to contradict the goal of network optimisation, the proposal is that allowing

low-class traffic to follow sub-optimal links increases network utilisation, thus

increasing network optimisation. Agent intelligence is then employed to add further

sensitivity. Recognising that adding intelligence to routers increases state, fuzzy logic

is used as a means of inhibiting the dimensional growth associated with learning

techniques.

1.3 Thesis Outline
Section 2 provides an overview of IP networks in order to establish why the provision

of QoS across such networks is such an important research area. The subsequent

section qualifies what is understood by QoS in networks. Having considered the

varying definitions the two main ‘schools’ are addressed: section 3.1 examines the

argument that no resource management is necessary – instead network over

provisioning alone, by avoiding resource-contention, provides QoS; section 3.2

introduces resource management solutions.

Following this an introduction to the agent paradigm is presented, commencing with a

presentation of the elusive nature of what constitutes an agent. From this section 4.3

questions whether the lability of this term in regard to its deployment in network

protocols has undermined wider usage of this abstraction. Examples of agent

applications in networks are provided. Additionally, similar practice that is not

explicitly labelled agent-based is reviewed.

Section 5 presents an enhancement to IP routing, spreading non-premium traffic away

from optimal paths. The purpose for this is to establish whether this is forms a

beneficial strategy, before adding intelligence to the system. Section 6 introduces

fuzzy reinforcement learning, providing an overview of both fuzzy control and

reinforcement learning before delineating the novel application in IP networks. After

evaluating results, the final sections establish the contribution to agent research.

vii In this thesis such computers are called routers, hosts or nodes

 15

2 IP Networks

The growth of IP networks has been driven by the advantage garnered by decoupling

services from the underlying hardware. Interconnection is via simple, connectionless

protocols. This results in increased robustness due to reduced dependency between

requester and receiver. In IP networks host computers connected to form subnetsvii.

Subnets in turn join other subnets to form the Internet. But, critically, compared to

other networks QoS is explicitly omitted from network design.

The service provided across IP networks is characterised as a connectionless and

unreliable system that offers best-effort packet delivery. The notion ‘best-effort’

implies that: admission is not denied to any traffic entering the network; all traffic is

treated equally; traffic will be transmitted in the best possible way given available

resources at any given time – artificial delays are neither generated nor unnecessary

losses caused. A consequence of this is that there is no assurance of in-sequence

delivery or indeed of packet arrival. Conceptually the reference model (ie the TCP/IP

model) has five layers, as shown in Figure 1:

5: Application layer

4: Transport layerviii

3: Network layer

2: Data Link layerix

1: Physical layer

Figure 1: TCP/IP reference model

However, in practice the focus is placed on the three uppermost layers: the network

layer responsible for connectionless packet routing and forwarding (defined by the

Internet Protocol, IP); the transport layer responsible for effective transport service

(either the reliable Transmission Control Protocol, TCP or the unreliable User

viii This is shortened from ‘Host-to-Host Transport’ layer
ix Some interpretations of the TCP/IP protocol suite have four layers and merge the data link and
physical layers into one ‘network interface/subnetwork/network access’ layer

 16

Datagram Protocol, UDP); the application layer responsible for application services

(such as TELNET, FTP, SNMP). The IP protocol defines the basic transfer unit

(packet), the datagram, across IP networks. Additionally it is responsible for packet

routing, discussed in section 2.2.

2.1 The IP Datagram
If a more reliable service than best-effort is to be offered to some customers or to

certain application traffic the routers have to be capable of distinguishing between the

datagrams they receive. Enhancements to network protocols are necessarily

conservative. Thus the means of differentiating packets should ideally be found in the

IP datagram header, shown in Figure 2.

8 bits 8 bits 8 bits 8 bits
VERSION H.LEN SERVICE TYPE TOTAL LENGTH

IDENTIFICATION FLAGS FRAGMENT OFFSET
TIME TO LIVE PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS
DESTINATION IP ADDRESS

IP OPTIONS (IF ANY) PADDING
DATA

…

Figure 2: IPv4 Datagram

The preferred choice of field is the eight-bit SERVICE TYPE field, redefined by the

IETF to provide for the Differentiated Servicesx codepoint (DSCP) [4], shown in

Figure 3:

0 1 2 3 4 5

CODEPOINT UNUSED

Figure 3: Service TypeField showing DSCP

x see section 0

 17

This could theoretically identify 64 different levels of service, although in practice

fewer classes would be utilised. Additionally for backward compatibility with

previous subfield definition, the first three bits of the field (previously the precedence

subfield) provide for eight classes of service. An alternative choice could be to use the

IP OPTION field.

In the IPv6 protocol packet header there are two components that can support QoS via

demarcating / differentiating service [5] [6]. The 8-bit TRAFFIC CLASS field

corresponds to the differentiated services interpretation of the SERVICE TYPE in

IPv4. Additionally the FLOW LABEL field was established for labelling packets

belonging to certain traffic flows which require specific handling. Figure 4 shows the

first line of the IPv6 datagram header:

VERSION TRAFFIC CLASS FLOW LABEL

Figure 4: First Line of IPv6 Header

2.2 OSPF
An Interior Gateway Protocol (IGP)xi is employed in IP networks to select the routers

or paths through which traffic traverses. These routing protocols fall into two classes:

those that employ a distance vector algorithm and those that employ a link state one.

With the former neighbouring routers periodically share routing information; with the

latter each router advertises to the network link state information (ie the state of each

of its links) through a process called flooding (described below). This research uses

OSPF, a well-tested, robust and widely deployed link state routing protocol [7], as the

IGP. Other research work investigating QoS in the internet uses RIP – which employs

the Bellman-Ford distance vector algorithm – as the IGP for example in order to use

more than one QoS metric [8]. Another more formalised link state routing protocol,

IS-IS [9], is also employed in some networks. However, OSPF is increasingly

becoming the IGP of choice and, furthermore, it is the IETF recommended IGP.

Enhancements that incorporate QoS into OSPF are discussed in section 3.2.4.

xi also known as intra-domain internet routing protocol

 18

In each OSPF enabled router a topological database, known as the link state database,

contains link details for the entire network or Autonomous System (AS). The

topology is established through a neighbour discovery process at system setupxii. Each

router runs the shortest path first (spf), also know as Dijkstra’s, algorithm to calculate

the shortest path from that router to every known destination in the AS [10]. This

produces a shortest path tree, with that router as tree root. A routing table is then

constructed to state the next hop (ie next router) for all destinations. If all the link

state databases are not identical / synchronised the routing tables will be inconsistent

and looping may arise. This is shown in Figure 5, where packets for destination C will

be trapped in a loop between A to D and D to A till timeout.

Figure 5: Looping due to inconsistent link state databases

OSPF specifies ‘Hello’ messages that are sent out regularly (the default setting of the

HelloInterval is 10 seconds) between neighbours that act as keepalives. If a hello

message is not received from a neighbour after a designated time, known as the

RouterDeadIntervalxiii the router sends out a Link State Advertisement (LSA)

containing information about that link, encapsulated in a Link State Update (LSU)

xii The protocol specifies Database Description and Link State Request OSPF packets for database /
topology discovery
xiii Cisco uses a default of 4 times the HelloInterval (ie 4x10 seconds) for the RouterDeadInterval

LSD: A…

B C cost 5

D C cost 2

A D cost 1

RT:

C next hop D

LSD: D…

B C cost 1

D C cost 5

D A cost 1

A B cost 1

RT:

C next hop A
A

D B

C

LSD: A…

B C cost 5

D C cost 2

A D cost 1

RT:

C next hop D

LSD: D…

B C cost 1

D C cost 5

D A cost 1

A B cost 1

RT:

C next hop A
A

D B

C

 19

message. The neighbours, on receiving the LSU, extract the LSA, find the new link

cost (in the ‘metric’ field), and update their link state database. The LSU is then

retransmitted to all their neighbours. This forwarding process constitutes flooding.

Routers discard LSAs/LSUs they have previously forwarded. This both limits the

flooding mechanism and provides an implicit acknowledgement service (although

OSPF also specifies an explicit Link State Acknowledgement). Once databases are

updated, Dijkstra’s algorithm is run again and an updated routing table constructed.

Periodically (by default every 30 minutes, although Cisco now implements an OSPF

LSA group pacing feature to stagger the refreshing [11]) every router floods an LSU

packet containing details of all their connecting links. This flushing mechanism (the

link state refresh) guards against, for example, corrupted link state databases and also

acts as a keepalive. If there are no topological changes, OSPF is a quiet protocol, apart

from the Hello messages and periodic updates.

Figure 6: Flooding LSUs encapsulating Router LSAs

OSPF has been designed to swiftly respond to topology, rather than traffic, change,

with the route cost largely based on traffic-insensitive metrics. Indeed the

OSPF packet type
= 4 (LSU)
…
No. LSAs=1
LSA Type = 1
Router ID
No. Links = 3
Link 1 Description
Link 2 Description
Link 2 Description

OSPF packet type
= 4 (LSU)
…
No. LSAs=1
LSA Type = 1
Router ID
No. Links = 3
Link 1 Description
Link 2 Description
Link 2 Description

OSPF packet type
= 4 (LSU)
…
No. LSAs=1
LSA Type = 1
Router ID
No. Links = 3
Link 1 Description
Link 2 Description
Link 2 Description

Link 1 Link 2

Link 3

LSAs

LSU

 20

implementation is optimised for a single metric, either the hop count or an

administrative weightxiv. Examples of policies include Cisco (up to release 10.3)

employing inversely proportional to link capacity [12]xv, later replaced by 108/BWxvi

(line speed bps), ie reference bandwidth / configured bandwidth [13], while vendors

such as Bay typically use the hop count configuration [8].

Such a protocol is opportunistic, selecting exclusively the current shortest/least cost

path (and other equal-cost paths) to a given destination, ie the optimal route.

Alternative, ie feasible, paths that offer acceptable costs, ie second-least cost, third-

least cost, cannot be selected by the spf algorithm, even if the cost differential is

negligible. Another consequence of this is, after new costs are flooded across the

network, if a new cheaper cost path is found traffic will be rerouted across this.

Although the original path may have been able to meet service requirements the

opportunistic approach will automatically reroute. If a rapidly changing metric such as

available bandwidth is selected this may result in frequent traffic oscillations. In turn

users may experience variable delay and jitter, compromising their quality of service.

Imbalance can also result in the network due to the shortest path calculations, with

least cost paths potentially converging over the same links. This potentially leads to

congestion over the optimal routes, with relative sparseness of traffic across other

sections of the network, including other feasible routes to the given destinations.

xiv coded as a 16-bit integer
xv This parameter is still employed by some researchers investigating QoS routing
xvi This gives a cost of 1 for FDDI/fast Ethernet, 6 for token ring and 10 for Ethernet. The default
reference bandwidth of 108 can be changed for media with higher bandwidths (such as Gigabit
Ethernet)

 21

3 Quality of Service

Servicing the demands new applications or users presents a challenge to the best-

effort paradigm of IP networks. While the prevailing model in the telephony networks

is characterised by offering QoS guarantees this is not intrinsic to the IP service

model. To provide resource allocation across such networks thus requires

investigating whether the current paradigm is sufficient – indeed that QoS can be

achieved across an unmanaged best-effort network – or whether efficient management

will be required.

A related concern is that of traffic engineering (TE) – the aim to optimise both

network resource utilisation and traffic performance [14]. The traffic oriented

objectives of traffic engineering overlap with those discussed below when addressing

the notion of QoS for traffic streams. It should be noted that in best-effort networks

minimizing packet loss is the key objective; with multi-class networks characterized

by demanding applications/users other objectives such as delay become more critical.

The resource oriented performance objective of traffic engineering focuses on

ensuring that some links in a network are not congested while others are lightly

utilised. Congestion may occur due to insufficient network resources – this problem

can be ameliorated by enhanced provisioning (see section 3.1) or congestion control

techniques such as queue management. However, the focus in this research is where

inefficient resource allocation results in over- and under-utilised links/areas in the

network. Traffic engineering, notably load balancing, can obviate the congestion

resulting in both improved traffic profiles and network optimisation. The research

presented here presents a novel means of spreading traffic over less-utilised links,

thus can be considered traffic engineering for a resource allocation problem.

This chapter addresses the issue of QoS – what it is, whether it is indeed presents a

challenge to IP networks and looking at research that addresses its provision. QoS,

however, remains a loosely defined term: some characterise it by explicit measurable

parameters; others focus on less precise notions of user perceptions. The International

Telecommunications Union (ITU) definition of QoS emphasises “perceived QoS”, ie

 22

reflecting the user’s experience of a particular service: “the collective effect of service

performance which determines the degree of satisfaction of a user of the service”

[15]. By contrast an IETF definition focuses on ‘intrinsic QoS’, ie technical

parameters that can be measured and compared against promised service: “a set of

service requirements to be met by the network while transporting a flow” [16].

Various network or technology level QoS parameters are listed in Table 1, from [17].

Table 1: Network QoS Characteristics

Such guarantees, however, can vary in precision, as outlined in [18]. For example,

quantitative (or hard QoS) specifies hard guarantees for the QoS parameter. In such

cases a contract could guarantee, for example, that delay is less than 150 milliseconds.

The statistical guarantee allows for some deviation from the quantitative measure,

using a probabilistic measure such as 95% of the time delay to be less than 150

milliseconds. The qualitative approach is more imprecise, allowing for more

flexibility with implementation but more uncertainty over fulfilment. Finally the

relative guarantee, probably the weakest of the categories, considers performance

relative to another guarantee in the same system, for example better than a lower

priority QoS class.

Moreover the user demands can be mapped explicitly (to specific requested

throughput, latency etc) or implicitly (ie corresponding to the requested service class).

Category Parameters

Timeliness Delay (latency)

 Response Time

 Jitter (variation in delay)

Bandwidth Systems-level Data Rate

 Application-level Data Rate

 Transaction Rate

Reliability Mean Time to Failure (MTTF)

 Mean Time to Repair (MTTR)

 Mean Time Between Failure (MTBF)

 Percentage of Time Available

 Packet Loss Rate

 Bit Error Rate

 23

Different services have different demands: VoIP is sensitive to packet delay and its

variation (ie jitter) but less so to packet (ie information) loss; jukebox services are less

demanding with respect to delay [19]; for telemedicine delivery accuracy is more

important than either jitter or overall delay [20]. Additionally, QoS can also be

defined in terms of transparency and accessibility [21], or high availability and

provision of an even traffic load distribution [22]. provides a mapping of QoS delay

requirements for various applications, based on a user-centric (ie ITU-T) model [23].

Error Tolerant Application Error Intolerant Application QoS specification

conversational voice and video command/control
(eg Telnet, interactive games)

Interactive:
delay << 1s

voice/video messaging transactions
(e-commerce, email, web browsing)

Responsive:
delay ~ 2s

streaming audio and video messaging, downloading
(FTP, still images)

Timely:
delay ~ 2s

fax background
(eg usenet)

Noncritical:
delay >>10s

Table 2: ITU-T Model of User-Centric QoS

More precise definitions set out in [24], specify classes of service, ranging from class

0 (real-time highly interactive traffic that is sensitive to jitter) through class 3

(interactive transaction data) to class 6 (for default IP applications, with unspecified

upper bound for mean delay, loss ratio etc).

In technologies such as Asynchronous Transfer Mode (ATM) QoS refers to set

metrics, such as delay or jitter, that apply to a connection once it has been accepted

[25]. Connections are only accepted when there are sufficient resources both to set up

the call at the required QoS throughout the network and to maintain that of any

existing calls. However, to integrate existing heterogeneous systems in order to

provide for this is highly complex. By contrast the IP model considers network

hardware as a transmission platform, with functionality residing in the software

located in host servers or routers. It can be debated whether QoS can be achieved

across such networks by allowing for an abundance of bandwidth, or whether it can

only be achieved through a combination of management and novel technologies and

protocols. This is addressed in the following sections.

 24

A final point to note is that while the literature generally discusses ‘optimal’ routing,

more accurately the selection of low-delay routes (the ‘optimal’ choice for each user)

results in a Nash Equilibrium [26]. In general such equilibriums rarely coincide with

social optimisation, and indeed total network latency is not-minimised. Thus routing

along least-cost paths can be termed ‘selfish’ rather than optimal. Although this

research concentrates on connection-oriented networks it is nevertheless valuable for

indicating that optimal routing (from the perspective of the user) is inherently selfish,

resulting a degraded network performance.

3.1 QoS Unmanaged Solution: Over Provisioning
Network congestion can be considered as symptomatic of insufficient network

resources. A solution to this would be enhanced bandwidth provision rather than

seeking to manage / control network traffic. In networks characterised by bandwidth

abundance, bottlenecks would never arise, hence a best-effort service (whereby traffic

is transmitted according to the best possible way given network resources) would be

entirely sufficient. Consequently there is no need to differentiate between user flows,

either on the basic of customer or application demands, and the network architecture

can remain straightforward. With the advent of technologies such as wavelength

division multiplexing (WDM) over provisioning of bandwidth has become feasible.

Research has indicated that for links with capacity greater than 1 Gb/s, even at

utilization levels around 80-90%, adding network management would decrease delay

across the network by merely 4ms [27]. The QoS improvement to even stringent

applications such as VoIP would be so marginal as to be unnoticeable. Confidence of

a bandwidth glut has even led to concern over bandwidth outpacing processing [28].

Furthermore, an analysis of data networks claims that estimates based on the average

size of data networks has greatly exaggerate the volume of data traffic and that IP

networks are utilized at a low fraction of their capacity [29].

Although the following section details a range of techniques designed to explicitly

implement QoS in practice the penetration of such approaches has been limited [30].

Despite the existence and availability of alternative technologies, over provisioning is

 25

often the chosen approach. Furthermore, although much research in QoS provision

focuses on prioritizing classes of traffic (from premium to best-effort), there may be

organisational impediments that again prevent this happening in practice. Thus,

business as well as technical issues appear to support the over provisioning claim.

However, it can be debated that over provisioning is not feasible beyond the network

core [31]. The work in this thesis considers an access rather than such a carrier

network. With an unpredictable demand model for data traffic [32] it is argued that

improving network dimensioning in itself is unlikely to cope with future Internet

usage, and may aggravate the problem [33]. Indeed, it has been demonstrated that

techniques designed to reduce network load, such as proxy caching – where an

intermediate server caches documents for a set of clients – are conversely responsible

for an increase in bandwidth consumption [34]. Incomplete HTTP transfers, ie those

aborted by user request, could consume 18% more bandwidth than in a system not

operating with proxy serversxvii, due mainly to bandwidth mismatch. As a

consequence, the authors of [35] suggest the importance of modelling user behaviour

when considering network provisioning. The behaviour profile of impatient users –

who interrupt a transfer when frustrated by poor network performance, eg delay, low

throughput – should be included when analysing network capacity. Another

impediment to caching is the increased use of cookies – ie personalisation of web

browsing. It would appear that an approach that is designed to lower the traffic burden

has been undermined by lags in network upgrade, advances in application provision

and user behaviour. This suggests that over-provisioning alone may not be efficient or

sophisticated enough to provide for future services. Furthermore, an analysis of

network-wide traffic flow has revealed that a small proportion of demands is

responsible for the bulk of traffic [36]. It is argued that should such sources alter their

behaviour, large-scale network variability will result, thus traffic engineering is

critical for controlling such demand.

Finally, it may not be in the interest of the Internet service providers (ISPs) to treat all

customers equally, ie to not differentiate. Without explicit resource management there

xvii If the proxy continues to download upon aborts

 26

can be no varying tariff levels, thus the ISP misses out on potential profit margins

[37]. In an arena characterised by commercial competition and high equipment costs,

differentiating provides a means of increasing network revenue without equivalent

investment in network infrastructure.

3.2 QoS: Resource Management
Having rejected the unmanaged approach, this section briefly outlines various

solutions to the perceived need to manage service across networks. The approaches

include enhancements to the IP protocol suite, technology shifts as well as

augmentations to established routing protocols. It has been argued that many of the

proposed schemes ignore the interaction between TCP and the lower layers [38]. Such

an analysis is beyond the scope of this research. QoS solutions can be broadly

subdivided into three blocks, or planes: management, control and data. The

management plane is responsible for issues such as network policy, provision of

service level agreements (SLAs), ie contracts, and metering. The control plane covers

admission control, QoS routing and resource reservation, ie mechanisms for affecting

the traffic paths. Techniques in the data plane include queuing and scheduling, packet

marking and traffic classification, policing and shaping, ie those directly involved

with the data traffic. The focus of this thesis is on the control plane, specifically QoS

routing, although this necessitates employing an appropriate scheduling policy.

3.2.1 Integrated Services (IntServ)
The aim of the Integrated Services model (IntServ) was to offer precise per-flow

service provisioning in the Internet [39]. The IntServ architecture offered two new

service classes – guaranteed service (GS) and controlled load service (CL) – in

addition to the traditional IP best-effort service. GS resembles the ITU

Telecommunications Standardization Sector (ITU-T) dedicated bandwidth (DBW)

transfer capability, and was developed for real-time applications. CL service

resembles the ITU-T statistical bandwidth (SBW) capacity and was planned for

 27

elastic applications with an expected QoS level. The Resource ReSerVation Protocol

(RSVP) was used as the end-to-end signalling protocol [40]. This protocol is

responsible for carrying reservation requests – the traffic specifications, network

resource availability etc – through the network As RSVP uses a soft-state mechanism,

a refresh of a path used by a session is necessary after a regular interval (typically 30

seconds).

Scalability limitations have served to hamper the commercial implementation of the

IntServ/RSVP architecture. The precise granularity offered by IntServ, specifically

the per microflow service guarantees which demand ever router maintains per-flow

state, undermines its operability in large-scale networks [41], although deployment in

smaller networks may be manageable. In response to these concerns the IETF

developed the Differentiated Services model.

3.2.2 Differentiated Services (DiffServ)
Faced with the scalability concerns evident in IntServ, a model that provides for

coarser granularity was proposed [42]. The Differentiated Services model (DiffServ)

addresses the scalability concerns inherent in the stateful approach of IntServ by

providing coarser granularity. This ‘stateless’ approach, by contrast, keeps complexity

to the network edge, as traffic enters the network, whereas the network core remains

simple. At the edge routers packets are aggregated into service classes, which are

given differentiated treatment inside the network. All the classification, marking and

policing takes place at the edge of the DiffServ domain. Packets belonging to a

particular flow, or Behaviour Aggregate (BA) are marked with the DSCP in the

SERVICE TYPE field of the IP header (see section 2.1) based on agreed policy at the

domain boundary. Subsequent core routers apply specified queuing or scheduling

behaviour – per hop behaviour (PHB) – based on the DSCP. All packets with the

same DSCP are treated equally. Expedited Forwarding (EF) and Assured Forwarding

(AF) form the known PHBs. The premium service, EF PHB, has been designed to

support applications that demand low jitter, loss and delay. This service seeks to

emulate a virtual leased line, providing a guaranteed peak bandwidth service with

negligible queuing delay. The AF PHB offer similar delay characteristics as

 28

(undropped) best-effort packets. The strength of its guarantee is dependent on how

each link is currently provisioned for bursts of assured packets.

While DiffServ is more scalable its critics point both to lower flexibility and coarser

assurance level compared to per flow mechanisms. Solutions such as dynamic core

provisioning [43] have, however, provided means of providing fairer provisioning

within traffic aggregates, although the centralised nature of the algorithm may raise

scalability concerns. While a standard DiffServ guarantee may be, for example that

premium traffic receives better handling than low-priority traffic, enhancements such

as proportional difference [44] further refine the class differentiation. Also

highlighted is the problem of scalable and robust admission control. Additionally,

solutions such as DiffServ that keep per-flow state only at edge-routers are potentially

less robust – one mis-configured edge router can affect the entire domain [45]. Indeed

another major concern raised about DiffServ is the complex management required:

routers must be precisely configured (using a complex configuration command script,

with reconfiguration only possible through rebooting) and the QoS promised by the

system must be closely monitored [46]. Another issue, raised in [47], is the limitations

of the DiffServ “boundary-centric operational model”. Signalling both from the

network core to the DiffServ boundary, and from the boundary to the client/end

application needs to be defined. Despite these qualifications, DiffServ is being

adopted both within the MPLS world and by many investigating QoS routing. Section

4.5.2 presents policy-based management approaches that have been designed to

ameliorate the management of DiffServ networks.

3.2.2.1 SCORE / DPS
The requirement for routers to maintain per-flow state in the IntServ model limited its

scalability, and hence deployment. Another approach that seeks to preserve the per-

flow granularity without burdening the routers is Dynamic Packet State (DPS), also

known as the SCORE (stateless core) architecture [48]xviii. Instead of locating the

information necessary for providing the precision of IntServ service gurantees inside

the routers, the per-flow rate information is now stored in the IP packets themselves.

xviii also referred to as Core-Stateless Fair Queuing (CSFQ)

 29

As in DiffServ, edge-routers differentiate between end-to-end flows, ie provide per-

flow management. This enables the support of per-flow DiffServ delay guarantees.

Unlike IntServ the core routers no longer perform this task, turning a stateful network

into a stateless one, ie the ‘stateless core’.

As packets arrive at the edge routers the flow state is computed and inserted into the

IP header. A major, if not the critical, problem with this approach is this use of the

header. As discussed in section 2.1 there are a limited number of bits in the header for

QoS differentiation. Additionally migrating adaptations / enhancements may in

practice be problematic. Solutions suggested for DPS include the link layer and

network layer headers, as an IP option or somewhere (ie finding some spare room) in

the IP header. The second option may be the most feasible, though in practice this

could still be challenging. The other two suggestions, however, are unlikely to be

taken up as they require a major adaptation to the IP packet format. This radical

alteration to pre-existing packet format undermines the chances of deployment of this

approach [49].

3.2.3 Multiprotocol Label Switching (MPLS)
Multiprotocol Label Switching (MPLS) [50] provides a flexible means of establishing

reserved paths across networks, thus guaranteeing the appropriate level of service

requested. By aggregating traffic into simultaneous flows, known as forward

equivalence classes (FEC), the aim is to enable scalability as well as reliability.

Complexity is confined to the edge of the network, leaving the core simple, again to

ensure scalability. Edge Label Switched Routers (LSRs) apply labels to packets

entering an MPLS area. Other LSRs then use this label to forward the packet until it

reaches its egress edge LSR, which removes the label. The path through the network

is termed a Label Switched Path (LSP). At each hop along the LSP the MPLS label is

used to ascertain the next hop in that LSP. The Label Distribution Protocol (LDP) sets

the procedures by which the LSRs establish an LSP through the network, ie the means

by which MPLS can support QoS. No single protocol is established in the MPLS

architecture; protocols such as Constraint-Based LSP Set-up using LDP (CR-LDP)

[51] or RSVP-TE (RSVP with traffic engineering extensions) [52] can be employed.

 30

Additionally, to further support QoS, DiffServ BAs can be mapped onto MPLS, as set

out in [53]. Aggregate flow can be mapped onto the LSPs that most closely offer the

required DiffServ objectives. This necessitates fitting DSCP settings in the 3-bit

experimental (EXP) field in the MPLS header.

An advantage of the connection-oriented path scheme of MPLS is that traffic can be

shared between two paths, even when link costs are unequal. Using the shortest path

paradigm, traffic can be split only over equal (lowest) cost paths. Thus, as shown in

the small network in Figure 7, traffic from router R1 to router R4 will be sent via R3

if routing with Dijkstra’s algorithm. The links from R1 to R4 via R2 will be

underutilised. As congestion builds up over links R1-R3 and R3-R4 the costs may

increase, making the route via R2 cheaper. This results in route flapping. Using

MPLS, however, signalling protocols set up paths for each flow, reserving resources

along these paths. This may result in fewer network oscillations.

Figure 7: Unequal Cost Paths

MPLS is effectively a shim-layer between level 2 and level 3 (in the TCP/IP protocol

model), ie between the data link layer and the network (IP) layer and is not as such a

protocol. When used in IP networks it can be considered as a means to provide

connection-oriented service in a connectionless network. As such a thorough analysis

R1

R2

R3

R4

2 2

21

 31

of QoS and MPLS is beyond the scope of this research, which investigates

connectionless (“cloud”) rather than connection-oriented (“string-oriented”) networks

[54]. Despite some doubts – both technical (eg scalability) and economic – being

raised about the widespread deployment of MPLS [30], initiatives such as BT 21C

[55] suggest such predictions may be unduly pessimistic.

3.2.4 QoS Routing
Under QoS routingxix packets are forwarded based not only on the resource

availability in the network but also according to the requirements of the traffic flows,

for example guarantees offered by service providers. As outlined in section 2.2,

routing using native OSPF is optimised for hop count or an administrative weight.

The main objectives of QoS-based routing, as stated in [16], are considered to be

dynamically determining feasible paths and optimising resource usage. In OSPF non-

optimal costs cannot be used to route traffic, even if network resource optimisation

would be improved by doing so. Although resource consumption can be limited by

minimising hop count (where this is the prevailing metric), so aiding network

resource efficiency, these hops may be heavily loaded. Network resource efficiency

may also be optimised by spreading network load, ie seeking to utilise least loaded

paths. This optimisation trade-off cannot be effectively addressed with the standard

OSPF implementation. This section investigates the body of research that has

investigated QoS enhancements to the OSPF routing protocol, sometimes termed

QOSPF. An overview of routing strategies is presented in [56]. The performance of

these enhancements is often comparable to that obtainable through technology shifts

such as MPLS. This is considered advantageous as deployment across networks

would be more straightforward. While conceding that optimisation my not be an

attainable goal, manipulating the OSPF cost metric can prove an impressive resource

allocation strategy.

An additional concern is that even when apparently indicating network availability,

the routing tables generated in OSPF are based on imprecise state routing information

[57] due to network dynamics, approximate calculations, routing aggregation and

xix Also known as constraint-based routing

 32

hidden information (eg for security reasons). Indeed [58] argues that 99% of routing

information was inaccurate at that time in the Internet. Approaches that attempt to

infer resource availability probability information, sometimes termed ‘probability

based routing’, have been introduced to compensate for the shortcomings of

availability based QoS routing.

QOSPF [59] presents a refined version of OSPF that incorporates both link bandwidth

and propagation delay. A “widest-shortest” (ie minimum hop with maximum

bandwidth) path is pre-computed. See also [60, 61]. Source routingxx, ie where a path

to the destination rather than the next hop is computed, is employed in some models

[62], contrasting to the exclusively hop-by-hop approach presented in this work.

Similarly, the Cost-based QoS Routing techniques employed in [63] and the QoS

system in [64] are explicitly designed solely for MPLS networks, not connectionless

ones. Although the work in [65] also runs over an MPLS network, its employment of

sub optimal paths is pertinent to the research presented here.

Another point to note is that much of the cited research primarily focuses on the

traffic of one service class in the network, rather than addressing sharing resources

between traffic requiring differential handling. Conversely, the work in [66] examined

the ramifications of QoS routing on best-effort traffic in both lightly and heavily

loaded networks. Selecting shortest-widest paths, for example, even in lightly loaded

networks were shown to adversely affect the throughput of the best-effort traffic; QoS

routing has, perhaps surprisingly, been demonstrated as desirable even when networks

are lightly loaded [1]. That work furthermore determines that relying on data plane

techniques alone by statically partitioning link resources [67] is inadequate to the

challenge of multi-class routing.

The research outlined in [68] examines how routing protocols, including OSPF, can

emulate “optimal routing”, ie following an ideal set of paths and loads identified from

using information about traffic entering and leaving networks. An optimal distribution

of traffic is impossible due to the inherent constraints of shortest path routing (with

xx either loose or full source-routing

 33

destination based forwarding) and splitting traffic solely over equal cost shortest

paths. Furthermore the OSPF weight setting problem has been demonstrated to be

NP-hard [69]. However near optimal results were obtained by approximating optimal

link loads and applying novel traffic splitting heuristics. Performance levels from

these experiments were comparable with those obtained using MPLS. These results

are significant as they indicate that it is not necessary to anchor investigations into

Internet QoS to novel technologies. This work reinforces the finding of earlier

research that investigated optimising OSPF weights in order to enhance traffic

engineering [70]. That earlier research had demonstrated that with appropriate weight

settings 50-100% more demand could be supported than using Cisco’s defaultxxi and

approach within a few percent of the best possible routing including MPLS. Later

work by the same authors developed their local search heuristic to accommodate link

failures by focussing on critical links [71].

A consequence of QOSPF is a raised level of LSA flooding, due to shifts in link costs

[59]. Experimental results [72] have demonstrated that flooding small packets such as

LSAs consumes a small percentage of bandwidth, so should not represent a burden on

an already congested network. Additionally the overhead caused by updating the link

state databases and generating routing tables should not be problematic for modern

router CPUs. Additionally research on reducing routing table computation overhead,

such as the “divide-and-conquer” scheme [73] or router clustering [74], mitigates the

router load.

However, the convergence issue is of greater concern. The work in [75] investigates

routing around link failure by allowing weight changes. It may take a few seconds for

all routers in the network to return to a steady state – ie for each router to update its

link state database and recalculate the corresponding routing tablexxii. During this time

routers will have inconsistent link state databases. This may lead to looping (see

earlier) if, for example node “A” routes all packets for destination “G” to next hop

“B” and this node “B” routes all packets for destination “G” to next hop “A”. Packets

xxi albeit, the research used the outdated Cisco inverse-capacity-weight metric
xxii Although beyond the scope of this research, convergence time takes even longer in a connection-
oriented network as traffic engineered paths have to be rerouted – old paths torn down and new ones
set up – after network perturbations.

 34

will bounce between “A” and “B” until time out or till convergence, resulting in

network inefficiency. Suggestions that address the accuracy versus overhead trade-off

have examined when to trigger link state updates [72], thus lessening the rate of

convergence. Choosing a higher threshold, so generating a LSA only after a sufficient

rise in cost metric can be an acceptable compromise. The loss of accuracy in the link

state databases often does not greatly reduce network performance. An alternative

approach includes the time to detect failure in the convergence time. Modifying the

Hello interval so that they are in the sub second range has been demonstrated to

significantly reduce convergence time [76], provided that the interval be sensitively

set. The research found that reducing the Hello interval further – to the millisecond

range – resulted, however, in route flapping due to increased Hello timeouts. Despite

this, millisecond convergence is considered necessary for high-availability and forms

an area of active research [77]. Since strictly following the OSPF protocol results in a

relative high granularity of failure – minimum 2 second detection – another approach

is to employ the bi-directional forwarding detection protocol (BFD) to track

connectivity [78]. Another approach has been to reduce the interval between the

periodic update floods: the default interval of 30 minutes is reduced to 2 seconds in

[79]. This is unlikely to be feasible, as it would result in continuous database

updating.

A criticism that can be levelled at much of the work in QoS routing is that it fails to

address the performance of best-effort traffic. A ‘best-effort-friendly’ (‘BE-friendly’)

method, presented in [80], selects QoS paths that minimize best-effort delay.

However, the network under consideration implements MPLS: all QoS traffic follows

LSPs; best-effort traffic is destination, hop-by-hop routed.

3.2.4.1 Opaque/Traffic Engineering LSA
This section looks at an example of QoS routing – OSPF-TE – in greater depth. The

discussion of OSPF in section 2.2 considered the deployment of Router LSAs (OSPF

LSA type 1). Enhancements to OSPF, notably OSPF-TE utilise the novel opaque

 35

LSAxxiii (type 10, flooded within an area), defined in [81]. This allows supplementary

information about link states to be inserted into an LSA.

8 bits 8 bits 8 bits 8 bits

LS AGE OPTIONS TYPE = 10

OPAQUE TYPE=1 OPAQUE ID / INSTANCE

ADVERTISING ROUTER

SEQUENCE NUMBER

LS CHECKSUM LENGTH

TLV TYPE TLV LENGTH

TLV VALUE

Figure 8: OSPF Opaque LSA

The link state ID – 32 bits in the router LSA – is now decomposed into the 8-bit

opaque type field and the 24-bit opaque ID. The Traffic Engineering (TE) LSA [82]

uses type 1 of the former field, and refers to the latter field, which has no topological

significance, as the ‘instance’. The purpose of this field is to allow the maintenance of

multiple traffic engineering LSAs. The Type/Length/Value (TLV) type specifies the

type of information carried; the length field specifies the length of the value field in

bytes or octets; the value field contains the actual value. In the (TE) opaque LSA the

TLV triplet, termed a link TLV, encodes link-specific information including

maximum link bandwidth (ie true link capacity), maximum reservable bandwidth and

unreserved bandwidth.

The novel LSA is flooded in the same manner as router LSAs, and the Link State

Database now incorporates the extra traffic engineering data. Using this extended

datastructure, now termed the TE database (TED), routers are able to compute end-to-

end MPLS paths offering QoS guarantees. Unlike the native OSPF Link State

Database, the TED can be revised by the node as the status of each of its links alters.

If approaches are employed to reduce LSA flooding, router databases will no longer

be synchronised and looping may result. This could be alleviated by more frequent

flooding. However, contrary to the findings reported in [72], protocol overhead is

xxiii Opaque LSAs can only be flooded to opaque-capable neighbours, ie those who set the O-bit in the
Options field as part of the neighbourhood discovery process

 36

substantial. Unlike native and other enhanced versions of OSPF, where LSAs are sent

with information regarding the router, with OSPF-TE advertisements are sent for each

link. Where nodal degree is high, for example in a dense mesh network, protocol

traffic can increase considerably [83]. This work demonstrates the alteration to the

basic trade off – between the accuracy of routing information and the overhead due to

flooding protocol traffic – by manipulating the OSPF MinLSInterval and

MinLSAArrival settings, responsible for controlling the rate of LSAs. This suggests

that careful selection of network triggers may enhance the viability of OSPF-TE,

albeit in connection-oriented networks. As such this is beyond the scope of this

research, but is included to demonstrate both that incorporating extra information into

LSAs and adding to protocol traffic are viable management strategies.

3.2.4.2 Alternative Routing
The shift here is from local optimisation, ie the least-cost path, to acknowledging that

network-wide optimisation may be obtained through more efficient resource

utilization. However, although the ability to select acceptable paths may be desirable,

uncontrolled alternate routing [84] is rejected due to adverse performance impact in

times of network stress [16]. The attractions of this approach are founded on both

feasibility (ie that traffic can follow an alternative rather than being dropped) and

fairness (ie sharing resources). Alternate routing is derived from telephony, to support

flows that could not follow their primary paths, so reducing network blocking. As

network load increases, to avoid being blocked, some traffic is routed to the alternate

path. However, this utilises more resources than if all traffic is routed along its

primary path. As load increases further the primary traffic on the alternate paths may

suffer and in turn become rerouted to a corresponding alternate path. The net result in

times of heavy load is inefficient resource utilisation. To ameliorate the impact of

rerouting away from the optimal path mechanisms such as using state protection to

prioritise primary over alternative traffic can be employed. Under this scheme

alternate routing is blocked once utilisation on that path is above a certain threshold.

The obvious objection to the above approach is that OSPF selects purely the shortest

cost (or equal shortest cost) paths. To allow for selection of alternate paths would

 37

require an overhaul of the protocol, or use of connection-oriented techniques beyond

the scope of this research. However, it is included here as background towards the

enhancements developed later in this thesis.

 38

4 Agents

An agent is a software engineering abstraction that has proved elusive to precise

definition. The major characteristic that probably all definitions agree on is autonomy,

such that the designer delegates to rather than instructs the agent. An elementary agent

definition considers it as an entity that perceives its environment through sensors and

acts upon that environment through effectors / actuators [85]. More developed,

although still simplistic, definitions describe a software entity responsible for

automating tasks [86]. Various alternative definitions adapt this to incorporate the

properties that are considered essential to distinguish an agent from a program or

object or other software-engineering abstraction – some stress goal-directedness,

others mobility, others learning, others communication skills or sociability and others

focus on response in a timely fashion, or location in some ‘real world’. More

specifically the authors of [87] identify the following dimensions that characterise

agents: autonomy, reactivity, proactivity, responsibility, continuity, interactivity,

adaptability, rationality, cooperation and robustness.

4.1 Parent Disciplines

While not aiming to provide an in-depth analysis of the history of intelligent agents,

an overview of the parent disciplines provides clues to why there is some confusion

about what constitutes an agent. Agents can be seen to have emerged from concurrent

actors (themselves a product of Distributed Artificial Intelligence, DAI), where an

actor: “is a computation agent which has a mail address and a behaviour. Actors

communicate by message-passing and carry out their actions concurrently”.

However, more recent understandings would expect behaviour beyond simple

message passing and concurrent action.

The approach delineated in [85] stresses the artificial intelligence (AI) origins of

agents. According to this analysis, software agents fall under the ‘acting rationally’

 39

quadrant of AIxxiv. This is in contrast to thinking humanly (the cognitive science

approach), acting humanly (as investigated in Turing’s imitation game [88]) and

thinking rationally (the ‘Laws of Though’, ie a purely logic-based approach). By

contrast Műller in [89] promotes the importance of cognitive psychology alongside

classical AI planning systems to the development of the agent paradigm. To these he

adds control theory, with a footnote acknowledging object-oriented (OO)

programming and distributed systems (this latter is further stressed in [90]).

In common with the above texts the analysis here bypasses the cognitive science /

psychology links. While most work on agents in telecommunications has stressed the

AI nature of agents, control theory will be reconsidered later in this section. This may

prove fruitful for examining why ‘agents’ have not been as widely deployed as

predicted. Significantly, if agents initially grew out of control theory and AI planning,

but then diverged from the former, one would not expect to see the term agents

deployed in control theory research. This implies that structural, or institutional,

issues have hampered agent progress. Or, to be more precise, that agents may have

developed outside ‘agent’-friendly departments and as a result not been ascribed as

suchxxv. Thus if the limitations identified by Műller that inhibit the agent side of

control theory have been lifted, then it can be argued that intelligent control theory is

another element of agent development. Indeed, the description of the reinforcement

learning problem in [91] states:

 “We use the terms agent, environment, and action instead of the
engineers’ terms controller, controlled system (or plant) and control
signal because they are meaningful to a wider audience”.

In section 4.5.1 aspects of intelligent control will be proposed as agent-based,

according to most acceptable definitions of ‘agent’. This will be contrasted to some

work that has come from agent-friendly departments that fails to adequately

demonstrate the application of agents, despite their claims.

xxiv Rational action is considered to be where an agent selects the most appropriate action to achieve its
goals given what it senses and what it may have been informed about the environment.
xxv The control theory parallel development is also noted in [91]

 40

4.1.1 Why Agents in Networks
As stated earlier, networks are increasingly characterised by complexity: an expansion

in technologies; the convergence of voice and data networks and infrastructures,

enhanced by market deregulation. This can also be viewed as increased network depth

– set of services – as well as breadth – the number of users [92]. Due to this growth

both in network complexity and traffic volumes there is an increased need for systems

/ networks / services that are reactive (ie responsive and adaptive in a timely fashion),

proactive and decentralised [93]. Distributed, dynamic and open systems demand

some autonomy; delegation is necessary in order to manage more effectively

compared to human-centred management [94]. Distributed management, instead of a

monolithic / centralised structure, would appear to offer advantages such as

scalability, flexibility and robustness. However, it is acknowledged that careful

consideration should be given to the granularity of agent architecture to avoid

unnecessary complication and communication overhead.

An advantage of the agent approach is its capacity to incorporate legacy software.

‘Agentification’ essentially encapsulates such software inside an agent shell, thus

enabling non-agent enabled systems or nodes to work alongside agent-based ones.

However, this in turn raises the prospect of the hollow agent – one that appears like an

agent but lacks any agent-properties other than those provided by the agent wrapper.

4.2 Agent Properties

Since this field has proved so contentious it is advantageous to attempt to identify

more thoroughly the composition of an agent. Furthermore, it is useful to delineate

some boundaries that establish how an agent could usefully operate in network

environments. There is a considerable focus in the literature on mobile agents, see for

example the survey in [95]. However, network managers may prove reluctant to

surrender control to unpredictable entities that can be difficult to control. The research

developed here exclusively focuses on static agents, ie those confined to a node. The

overview of agents in networks, in section 4.4.4, will nevertheless provide an

illustration of some mobile agents, notably ants, but the purpose of this is to indicate

 41

the breadth of agent-network research and to illustrate the use of reinforcement

learning techniques.

The first ‘simple’ agent definition provided earlier would enable a simple control

system, such as a thermostat, or software daemons to be considered as agents. Such a

classification is usually refined to incorporate intelligence. A prominent definition of

such agents interprets intelligent behaviour as flexible behaviour, ie characterised by

reactivity, proactiveness and social ability [96]. Indeed, the stress placed by the

authors, Wooldridge and Jennings, is on agent sociability, ie communication and

cooperation/negotiation skills.

However, ascribing intelligence to agents is in itself difficult as some architectures

afford little behaviour to an individual agent that could be considered intelligent from

an AI perspective, as proposed by the cognitive or deliberative school (represented in

the DAI domain). Brooks explicitly rejected decision-making based on manipulation

of symbolic representations of knowledge (as displayed for example by deductive-

reasoning agents, see [97]) and argued that intelligence is not disembodied but is a

product of the interaction that an agent maintains with its environment [98].

Intelligent behaviour could be seen to emerge under his ‘subsumption’ architecture

from the interaction of various simpler behaviours. Although critics of his work point

to the limited applicability of the architecture, emergent intelligence, as championed

by the ‘reactive’ school, has also been displayed in multi-agent systems modelled on

(social) insect behaviour. In the multi-agent world ants, for example, [see section

4.4.4] are intentionally created as simple, disposable agents – intelligence emerges

from the behaviour of the colony rather than through individual deliberation or

deduction. Thus the notion of a smart or intelligent agent is not in itself simple: the

agent could be Wooldridge / Jennings intelligent (ie collaborative), it could be

intelligent from an AI perspective (eg able to learn or to manipulate a knowledge

base) or the intelligence could emerge either through interaction with the environment

and/or other agents.

As objects become more sophisticated it may be useful to distinguish them from

agents. Although agents share many characteristics, objects are structurally simpler

 42

and inherently more passive [99]. For example, an object has to be activated (or

invoked) by sending a message. Objects can access all publicly accessible methods of

other objects (ie objects have no control over their behaviour); agents can only request

other agents to perform actions. Active objects, encompassing their own thread of

control, reach closer to the notion of an agent. However, it can be argued that their

patterns of interaction are still rigid and pre-designed, and that they lack the fluidity of

agent organisational structures.

4.3 ‘Agents’ in Network Protocols

It has been acknowledged that the agent paradigm is challenging. This is not merely

due to the above difficulties in agreeing on a consistent working definition of what

makes an agent but also due to the pragmatics of engineering such systems, as

outlined in [100][101]. There is no doubt to those authors that agents, as they argue,

have been oversold – the benefits from such an abstraction tool may also in some

situations be achieved using non-agent techniques. This will be further investigated in

section 4.5. Their analysis concentrates on novel applications that often fallaciously

(or optimistically) claim to employ agents. Additionally, the term ‘agent’ is embedded

in the architectures of various network schemes. This section introduces the

proposition that the history of ‘agents’ in networks has operated orthogonally to the

development of the agent paradigm (derived from AI, control theory and cognitive

science). This argument is more extensive than the statement that ‘agents’ in network

literature / architectures differ from ‘software agents’ or ‘intelligent agents’. The

proposition here is that the limited capabilities that constitute ‘agents’ in some

network protocols have dampened the expectations for agent technology. In turn this

permits enhanced ‘agents’ to be developed without the sophistication or flexibility

promised for either ‘true’ software agents or their framework. The following forms an

introduction to a thorough, and much needed, analysis of the deployment of ‘agents’

in IP networks, examining how these are deployed in, for example, mobile IP, Simple

Network Management Protocol (SNMP) and DiffServ.

 43

Mobile IP is designed to enable transparent routing of IP datagrams to mobile devices

(such as laptop computers) in the Internet [102]. In mobile IP each mobile device

(termed ‘node’) has a home address that corresponds to its home network. When the

node roams outside its home network any packets addressed to this home address

have to be forwarded. The router or node responsible for both tunnelling datagrams to

be delivered to the mobile node and for maintaining the location information

regarding this node is termed the ‘home agent’ (HA). For delivery to be successful the

mobile node must register with another entity, also termed ‘agent’ on the new, or

‘foreign’, network. This foreign agent (FA) allocates a new IP address, termed the

care of address (COA), to the mobile node. This COA is then registered by the mobile

node with its HA through the exchange of a Registration Request and Registration

Reply message. The HA encapsulates any packets destined for the mobile node and

tunnels it to this registered address. The FA in turn de-encapsulates the packet and

forwards it to the mobile node. Without these delivery agents, as a node changed its

point of attachment it would lose its ability to communicate.

Yet it is arguable whether these agents are indeed agents, in a form distinguishable

from a ‘router’ or an ‘entity’ or just a program. While they ‘communicate’ with

messages, such as Agent Advertisements, this lacks the sophistication of a speech

action protocol, as outlined for example by FIPA [103]. Although this would fail the

Wooldridge / Jennings agent definition, it should be conceded that communication

skills are not stressed in all agent definitions or practice. However, the agents

presented fail to accord with either maximal (eg Wooldridge / Jennings) or minimal

(eg ‘simple’) definitions of agents: decentralised management and elementary

communication is not sufficient.

In SNMP [104], the TCP/IP standard for network management, ‘agents’ are again

employed: there is a manager-entity (“traditionally called an agent”xxvi) relationship,

as originally devised for OSI systems management [105]. ‘Agents’ in each device –

such as a bridge, router, hub and switch – are responsible for data collection regarding

the managed object. This information is stored inside a Management Information

xxvi Case et al, section 2.1, p.2

 44

Base (MIB). The agents are polled by the SNMP management station with requests

for information on that device’s operational status. The management station then

displays the retrieved information for analysis by a network manager.

The RFC for SNMP acknowledges that calling the SNMP entity in each node an agent

is a consequence of the established naming (ie established in the earlier RFCs); the

terminology is not due to inherent agent-like properties. A sample glossary [106]

provides the following definition of agent: “In network management an agent is the

server software that runs on a host or router being managed”, which again fails to

accord with even a generous definition of an agent.

Furthermore, the transformation of agent as simple component into agent as complex

software engineering abstraction (the agent paradigm) is a point of confusion in more

generalxxvii agent literature. In [107] the concept of agent-manager via SNMP is

introduced as evidence of ‘agents’ as ‘indispensable tools’ for network managers.

Such agents are then contrasted to the superior performance of ‘intelligent’ agents.

However, it is stated these smarter entities that can perform the dual roles of manger

and agent have this additional capacity due to code that “tells them exactly what to do,

how to do it, and when to do it”. Autonomy has been identified as perhaps the one

characteristic (albeit problematic) that those seeking for agent definitions can agree

on. Since autonomy implies delegation rather than instruction then these intelligent

agents, albeit smarter than SNMP agents, are again also not really agents. By

constructing such a low unfocussed baseline for agents the result is that other entities

become included under such a nebulous heading. The redundancy of the term merely

serves to limit the practical application of the paradigm.

This confusion can also be found in DiffServ, where bandwidth brokers are explicitly

called agents in the RFC [108]:

Thus this architecture is designed with agents called bandwidth
brokers (BB) [2], that can be configured with organizational policies,
keep track of the current allocation of marked traffic, and interpret
new requests to mark traffic in light of the policies and current
allocation.

xxvii ie software agent, not protocol

 45

This has resulted in inconsistencies in research papers in this field: research that

appears to present agents instead describes enhancements to the bandwidth broker

concept. Thus in the abstract of [109] the two have merged: “For each link-state

routing domain in the network there is a topology aware QoS agent (also known as a

bandwidth broker)”. This paper confirms that the agents in the authors’ earlier works,

compiled in [110], are synonymous with bandwidth brokers. That bandwidth brokers

are entities that are delegated the responsibility of traffic marking appears to conform

to the agent paradigm. Yet their role lacks the flexibility associated with that

abstraction – the aim of delegation goes beyond mere distributed control. The

flexibility, above all the sociability, of the Wooldridge / Jennings model, is lacking.

While conceding that this is only one of many definitions of an agent, the bandwidth

broker fails to incorporate other properties associated with agents, for example

omitting any AI.

Again, the Snoop protocol [111], developed to improve TCP efficiency in wireless

networks, also deploys ‘agents’. These entities are ‘TCP modules’, responsible for

monitoring and caching all packets passing through the agent’s base station. When

packets are lostxxviii the agents retransmit them locally without forwarding the ACKs

to the sender. Since the TCP layer remains unaware of packet loss, the congestion

control algorithm is not triggered. The Snoop protocol is an example of Performance

Enhancing Proxy (PEP), ie a method aimed at reducing performance degradation due

to the characteristics of wireless links. The ‘agent’ in the protocol would appear to be

the ‘entity’ – TCP-aware module – that enables the PEPs. Again, it could be seen that

action is performed – Snoop is enabled – rather than an agent deliberates / decides /

negotiates. The ‘agents’ are merely distributed entities – possibly actors.

Finally, the Sequence Agent (SA) – developed in the packet sequencing architecture –

is responsible for coordinating itinerary creation [30]. The tasks of such an agent

include validating requests, providing itinerary leases, lease renewal and teardown. In

small networks there is one agent; as network size increases multiple agent peers

xxviii indicated by duplicate TCP acknowledgements (ACKs)

 46

communicate across domains. As argued in the previous paragraphs, however, there is

little that distinguishes these entities as agent.

It could just be accepted there are legacy reasons why the term ‘agent’ is employed in

the literature. This innocuous usage encompasses entities for example with manager-

managed/slave relationships, entities that communicate according to protocols,

entities that enact organizational policies. It can even be reduced to the most basic

definition – something that does something, ie enacts agency – as stated in the

following ‘characteristic’ of the TCP/IP suite: “TCP/IP protocol, and other protocols

like it, is a result of the action of autonomous agents (computers)” [112].

Alternatively, as highlighted here, we can try to establish that there are extreme

contradictions in the usage of this term. Focussing on this is not mere pedantry.

Where a term is familiar in one domain, here networks, reintroducing it as a paradigm

created from outside the domain (whether AI planning, control theory or cognitive

science) results in inconsistencies, potentially undermining the deployment of agent-

like agents. As Wooldridge and Jennings noted about the pragmatics of engineering

agents [101]:

“Ignoring themxxix will result in a backlash against agents similar to that

experienced against expert systems, logic programming, and all the other

good ideas that have promised to fundamentally change computing”

While much of the paper that contains this quote warns about the over-abundance of

software claiming to be agents, here the stress is on the relative paucity of

deployment. The significant role that it was hoped intelligent agents may play could

have been destabilized at a much earlier point by the overuse of the simplistic ‘agents’

detailed above.

4.4 Agents in Networks

While acknowledging the concerns outlined in section 4.3, nevertheless an agent-

based approach has been identified as an apposite mechanism for modelling

interaction across networks. Where networks are complex, characterised by a

xxix ie the pragmatic aspects of agent technology

 47

distributed and sizeable volume of information, agents offer the necessary flexibility

to manage resources. Research has demonstrated the advantages of employing

software agents specifically across telecommunications networks, where agents can

use intelligence, for example, to negotiate contracts or to exploit resources such as

bandwidth in times of congestion. Other research outlined here, it will be argued,

utilises structures that are identical to the agent software engineering abstraction in all

but name. Yet, also included is some work that claims to be agent-based yet fails to

adequately demonstrate the role of agents.

Additionally, a body of more theoretical work has demonstrated the advantage of

agents for applying co-ordination and/or negotiation mechanisms [113,114], including

trade-offs in telecommunications networks [115]. A more thorough analysis of this is

beyond the scope of this thesis but such work compliments the applied agent work.

4.4.1 Agent Architectures for Resource Allocation
The focus in this sub-section is on agent architectures decomposed into hierarchical

layers. Higher-level agents are responsible for deliberation, monitoring or

collaboration and can disseminate their knowledge down to the lower level,

increasingly reactive agents. Likewise, these agents can dispatch their discoveries or

problems, to the upper levels.

Deploying agents for resource allocation in telecommunications networks was proved

to be an advantageous strategy in [116]. This work utilised agents to provide

flexibility in allocating channels in cellular networks, such that cell blocking was

minimised and channel usage maximised. Modelled on the INTERRAP architecture

[89], the reactive agent layer was responsible for the rapid accommodation of traffic

demand, the planning control layer aimed to optimise the local channel load

distribution while the top most cooperative control layer focussed on load balancing

across a wider area. By decomposing functions into layers, and through coordination

the agent approach achieved better flexibility, despite some scalability and robustness

concerns. Additionally, all calls were treated equally in this approach – no preference

was given for service type.

 48

The IMPACTxxx project implemented control strategies on an ATM test bed as a

society of interacting agents [117]. The research employed an hierarchical agent

architecture, implementing resource management strategies in reactive and planning

layers. Two of the resource (management) agents were located in the higher (slower)

planning layer – where for example network monitoring occurs – while the remaining

resource management agent was located in the rapid reactive layer. The latter agent

had to make immediate decisions over network admittance based on limited state so

needed to function without the potential delay associated with planning competence.

However, the reactive agent was located within the framework of the more strategic

competence so, when necessary, higher-level decisions made by the planning layer –

such as the bandwidth allocation for pipes managed by that agent – could be relayed

down. Various other agents were deployed, for example, to operate as brokers,

manage auction bids and to represent service providers.

Successful implementation of the IMPACT society of agents was demonstrated across

several test beds, albeit noting overheads due to choice of coding language and

implementing SNMP [118]. One of the key concerns about the IMPACT project was

scalability: with one reactive agent for every source-destination pair the network

suffered severe growth constraints [119]. The agent devised to address this problem,

by establishing connections traversing several IMPACT domains, was never

implemented due to time constraints. Additionally the directory facilitator agent –

responsible for white-pages services – represented a vulnerable single-point-of-failure

in the IMPACT structure. Should this agent fail all other agents would become

incapable of finding each other.

In the SHUFFLE agent telecommunications project, agents were implemented in a

system that dynamically allocated radio and associated fixed network resources in 3G

mobile systems [120]. The aim was to provide end-users with an improved and more

cost-effective service, and operators with increased opportunities for contingency

management where allocation policies need to be dynamically changed. The system

xxx Implementation of Agents for CAC on an ATM testbed

 49

evaluated how the resulting resource allocation system improved the overall

performance of the network and the scheme was compared with more centralised

approaches. The agent implementation allowed the project to explore various resource

management strategies. Some of these strategies merely required minimal planning

applied at the reactive level, while some required intelligent negotiation between

components of the system in the planning layer. The results demonstrate a clear

advantage to decentralised control. Additionally the intelligent, reputation-based

selection of networks yielded over 25% improvement in blocking and dropping rates

compared with conventional network selection (where the network that carries

connection request is always asked to handle the call) in dynamic demand scenarios

(intermittent hotspots or cell failures, for example). The project also demonstrated that

SLA constrained QoS relaxation (by reduction of requested bit rates) yielded an

improvement in blocking and dropping rates. Results show clearly that even the

sophisticated intelligence of the negotiation of shapes could be performed in real time,

as well as the relaxation and referral mechanisms, but the performance of the

middleware is critical to any application. The mapping to the agent communication

language, the network latency, the processing by conversation managers and the

allocation to tasks lead to significant delays.

The hierarchical architecture for MPLS-enabled networks in [121] was designed in

response to the scalability concerns associated with the previous agent systems. By

making the system complement the conventional management apparatus, robustness

to agent system failure was ensured. Two agents were distributed to each node:

deliberative P-agents (one per node) for maximising network performance and

subordinate reactive M-agents (one per link) for monitoring. Should the M-agent be

unable to respond to congestion over its logical path (LP) it alerts the node’s P-agent,

which then communicates as necessary with the corresponding agent in other nodes to

alleviate any hotspot. Additionally, P-agents are intended to incorporate learning.

The work in [122] presents an agent approach to responding to adverse conditions –

for example reacting to natural disasters or the added stress of large-scale public

events – in (PSTN / ISDN / SDH) telecommunications networks. Traffic Management

Networks (TMN) Operational Services (OS) collect traffic information from the

 50

Network Elements (NEs, ie the digital exchanges) and pass commands down as

necessary. OS can issue routing controls or traffic volume controls to network level,

but traffic management is performed at network management level due to possible

network heterogeneity (such as NEs from more than one vendor). Agents are located

at each node (ie NE) – they can be particular to vendor or NE type. As in the

IMPACT project, a hierarchical approach is employed: the control agent is reactive,

running in a multi-agent host system. This system in turn notifies the reactive agent of

changes in network status.

Routing in [123] is calculated on-line based on network state. A controller agent is

responsible for a region within a network. Such regions are then clustered into meta-

regions (in a similar fashion to PNNI [124]), controlled by a parent controller agent,

which in turn are grouped into a higher region creating a hierarchical clustering

structure. To make this adaptive, these regions are categorised into equivalence

classes of nodes reachable at a certain bandwidth, such that a decreasing level of

bandwidth mutually connects all nodes in regions higher up the hierarchy. Problems

are ideally served locally and then passed up the hierarchy until the controller agent

knows the two endpoints. This agent then coordinates the agents below it in the

hierarchy to solve the routing problem. As demand rate increases the relative

performance of the adaptive routing hierarchy suffered, although the authors argue

that in non-uniform traffic scenarios the adaptive techniques should prove

advantageous.

As multi-agents systems (here used synonymously with DAI) become larger and the

environment unreliable, adaptability – both of the agents and of the interaction

structure among the agents – becomes imperative. If an agent’s problem space is

suitable for machine learning or other AI techniques this ensures adaptability when

scaling up. Additionally, including the actions and aims of other agents into an

agent’s input space, so ensuring the propagation of an agent’s policy adaptations to

the other agents in the space, can result in more interesting strategic behaviour, as

demonstrated by Vidal and Durfee [125].

 51

4.4.1.1 Agent Framework
To complement the work on agent architectures more formal work has been

undertaken to improve agent frameworks. The aim of the Agentcities [126] initiative

is to create a ‘global, open, heterogeneous network of agent platforms and services’.

The focus lies on supporting consensual standards, open source, open access and

shared resources. Agents run on different platforms, owned by separate organisations,

with differing implementations and diverse service provision. Customers select a

network service – essentially a standardised Service Level Specificationxxxi (SLS) –

and then choose further modifications to the SLS, including schedule, extra QoS

requirements and traffic description. The initial domain to both test and demonstrate

the project was a travel agent platform (ie provider of location-based services). An

interest group on wireless applications has sought to dynamically respond to user

needs based on location through interaction between agents in both wireless and wired

networks. The project still requires further work in developing ontologies, using

semantic frameworks and content languages to encourage and enable agent

communication. Although such developments are beyond the scope of this thesis it is

included to demonstrate that work is still ongoing on agents in networks.

4.4.2 Agent Intelligence: Routing
The purpose of some of the earlier sections has been to examine the claims made for

the role of agents in networks. This has necessitated not only establishing what is

meant by an agent but also to expose the role of ‘agents’ in both network protocols

and applications. This section investigates the work in agent-based network routing

that is related to the research outlined in this thesis. These fit more closely the AI

model of agents, primarily using reinforcement learning to update and refine routing

tables. An advantage of reinforcement learning is that no prior knowledge (or model)

is imposed on the agents – all knowledge and behaviour is learned from the

environment. For a fuller analysis of reinforcement learning see section 6.1.1.

In the reinforcement learning model presented in [127] – termed the proportional

routing model – the action space of each agent is a proportion vector, consisting of the

xxxi The SLS is defined as the technical component of an SLA

 52

percentage of traffic for each destination sent along each outbound link. In the

training stage the input for the agent is the action taken by that agent plus any network

observations from that time interval, such as the proportion vectors of other agents.

The corresponding output is the system-wide throughput for that interval. The

advantages of using adaptability in a routing strategy were clearly demonstrated.

Unlike some previous work on adaptive agents, based round a Stackelberg game

where the ‘leader’ agent imposes its actions into the other ‘follower’ agents’ action

space [128], the research ‘interleaves’ their decisions so that any agent is both a leader

to a certain extent and a follower. Thus each agent includes the actions of other agents

in their action space. While there is concern about the extra state that may accrue for

each agent the development of agent adaptability is encouraging. However, it is

unlikely that this could be extended to an OSPF-enabled network – not only does it

employ the Bellman-Ford metric but OSPF does not permit proportional routing.

In another project employing reinforcement learning [129], each router in the network

is represented as a partially observable Markov decision process (POMDP). The node

decides where to route a packet according to a stochastic policy. This policy computes

the shortest path and then sets controllers to route most of the subsequent traffic down

the chosen path. Sporadically, traffic is also sent to explore any alternative links. Once

a packet has arrived at its destination it sends an acknowledgement signal. This allows

routers to calculate packet delivery time, which provides a reward value, which in

turn is used to update the policy parameters. The policy algorithm’s performance is

compared to a static routing scheme and two other deterministic routing algorithms,

one based on shortest path and the other on value search reinforcement learning. The

results demonstrate a clear advantage of the stochastic approach over the deterministic

algorithms.

The work using Q-learning in [130] generates extra control packets by sending link

cost information from the next hop (rather than the destination node) to the sender.

Oscillatory behaviour was exhibited, and although results proved better than using

static routing algorithms, testing against dynamic algorithms was neglected. In [131]

agents at every node also employ reinforcement learning – here Q-learning (see

section 6.1.1.1) – with results tested against a network solely routing using a distance

 53

vector algorithm. The agents aimed to optimally map state (spare capacities on

connections and internal queues) to actions. After an initial period of learning results

were considered to be ‘promising’ for improving both network reliability and

efficiency, although the authors concede it is difficult to extrapolate the results to a

larger network. A weakness with all the studies is a failure to report on the increased

state space that is generated by using reinforcement learning.

In [132] Application Service Providersxxxii (ASPs) – assign a user agent (UA) to each

customer registering for a service. The UAs negotiate the customers Service Level

Specification (SLSs) with the Network Service Providers (NSP)xxxiii, represented by a

Policy Server (PS). Customers are offered either the desired QoS class (corresponding

to a scheduling priority or dropping ration) or merely best-effort service depending on

a utility measurement after the SLS-compliant charge is factored in. In common with

the earlier analysis of the bandwidth broker, the interaction between entities (UA and

PS) lacks the sophistication and flexibility promised by the agent paradigm. Another

point to note is that this operates in an MPLS-enabled (ie connection-oriented)

network.

Unlike the above work with one agent per user (ie the UA), the work presented in

[110] – which offers both immediate and advance reservations – has one reservation

agent per network domain. Again, as mentioned earlier this ‘agent’ is synonymous

with the bandwidth broker. Due to the slippage of usage of the term agent it is useful

to relocate such example with other projects that also appear or claim to be using

agents. The agent/BB queries routers about the status of their links, and is responsible

for admission control. Later work evaluated the cost of the reservation system [109].

A punitive overhead identified was the cost of request-reply transactions when using a

reliable communication protocol, such as TCP. The network core, ie where providers

negotiate QoS contracts with each other, is presented as the most suitable location for

advance reservation, unlike the access networks under consideration in this thesis.

xxxii third party organisations that provide outsourced services such as VoIP and video conferencing
xxxiii usually termed ISPs in related research

 54

4.4.3 Market Based Approach
Many agent models cast their agents as co-operatively working to serve a common

framework, for example improving network utilisation. This assumes that the network

is a single common resource. In the deregulated telecommunications marketplace

such assumptions may prove unrealistic. To reconcile this, market-based approaches

have instead modelled self-interested agents, representing competing network owners

in a market-based economy. Several market-based paradigms exist that employ an

auction protocol/mechanism for allocating calls, for example [133], and in Intelligent

Networks (IN) the computational economy model proposed in [134] and [135]. The

dependence by the former on a centralised controller or by the latter on a distributor

agent or auctioneer in the market models undermines system robustness. Partially to

avoid this centralised entity and the resultant vulnerability should this fail a quote-

driven market approach has been proposed [136]. A limitation for applicability to

connectionless networks is that service providers trade bandwidth associated with a

fixed set of source-destination pairs.

In [137] three sets of agents operate: those that sell the network resource (the link

agents), those that buy those link resources and sell on these bundled as paths (the

paths agents) and lastly those that represent a user, buying the paths (the call agents).

Negotiation between agents is mediated via the double auction protocol, conducted at

link markets (link agents selling to path agents) and path markets (path agents selling

to call agents). As network utilisation rises the marginal utility for resources (ie links)

also rises, so the pricing functions are structured accordingly. In the small sample

network – consisting of 7 nodes connected with 24 directed links – 150 agents were

established: 24 link agents and 126 path agents. As witnessed with the IMPACT

project this represents a severe limitation to the scalability of the solution.

Furthermore, it is obviously difficult to extrapolate from this to a connectionless

system.

In [138] Service Control Points (SCP) form the nexus of service execution in the

Intelligent Network (IN) – an overlay network responsible for service provision to the

corresponding transport network. If demand (ie service requests to that SCP) exceeds

the capacity of the IN the SCP becomes overloaded. To manage this, a load control

 55

mechanism depresses the call acceptance rate at the Service Switching Point (SSP) –

through which the telecommunication users access services offered by/in the IN – so

that the SCP overload diminishes. A market-oriented programming paradigm [139] is

employed to allocate Service Logic (SL) (ie access rights for the incoming load to the

SCP) according to SSP demand rates. This creates an economy in which agents trade

commodities – ie access to SL – through an auctioneer. When an agent sells an

allocation of SL it receives some network money. The agent at the SSP is not

endowed with any commodities (but has network money) while the agent representing

the SCP has the capacity of the SCP to trade. In the agent architecture the co-

ordinator, while enabling the smooth running of auctions, does not function as a

centralising point for the auctions. In this respect this agent is neither a bottleneck nor

potential vulnerability in the system. Functionality is similar to the Agent

Management System (AMS) and the Directory Facilitator (DF) in a FIPA compliant

agent platform [140].

The benefits of this approach were tested against Automatic Call Gapping (ACG)

algorithm in a network consisting of 8 SSPs, 4 SCPs. The three SL types offered are

VPN, a ring-back service and restricted-call forwarding service. Beyond an

overloaded level (around 90%) the performance of the ACP diverges from the agent

approach and degrades due to oscillations. A high level of revenue is maintained with

the novel approach. Yet the flexibility and benefit of agent approach carries increased

overhead due to the communication. This possibility could be reduced if a customised

implementation rather than a general-purpose platform were employed. The work

demonstrated a clear improvement over previous approaches in IN load control that

have only one SCP or centralised controller.

4.4.4 Ants
Modelling the foraging behaviour of ants has proved a fruitful area of network routing

research, notably [141,142]. This behaviour – termed stigmergy – is characterised by

indirect communication through environmental modification, here by depositing

pheromones. As ants forage they deposit pheromones, to guide them back to the nest.

After finding food the ant returns home, reinforcing the pheromone trail. Food sources

 56

located closer to the nest are reinforced sooner, are stronger (as less pheromone has

evaporated) and hence are more likely to be chosen by the other ants. In turn the

pheromone is further reinforced and this least-cost path established.

In simulated ant networks a probabilistic (routing) table, representative of

modification on the environment, mimics the strength of the pheromone trail. Ant

packets investigate and report network topology and performance, altering the routing

tables. Two distinct strategies are employed: updating the tables en route (online step-

by-step), or once the destination has been reached. Ants will probabilistically select

routes with the highest stigmergic reinforcement. Additionally there is a mechanism

that simulates the evaporation of the probability-pheromones, and noise is introduced

to encourage exploration instead of mere exploitation of the paths.

Shortcomings of this approach include slow convergence in response to network

stress, scalability problems and possible sub-optimality due to the localised

perspectives of the ants. Moreover whether ants could in practice be implemented in

physical networks due to security considerations is questionable. However, this is a

very active area of ongoing refinement, for example using genetic algorithms [143] or

reinforcement learning with neural nets to dynamically modify ant response speed

[144]. The purpose of including this approach is to highlight the issue of agent

definition. In the basic AntNet model [145] ants are very simple agents, although they

can store internal state, notably past history. Their basic abilities can be augmented,

for example to incorporate a simple recovery procedure. Additionally they are

disposable – in some models they die on arrival at their destination. Their autonomy is

questionable, due to their simplicity. They lack the more sophisticated communication

protocols that often are ascribed to agents. Yet they co-operate, via indirect

communication. Yet the net result – shortest path routing – is achieved through the

colony of mobile, distributed, active packets, a point reinforced in Dorigo’s writing.

Furthermore, more recent work in this area [143] has removed a priori knowledge (so

both routing table structure as well as content is evolved), requiring greater autonomy

of the ant-packets.

 57

4.5 Parallel Research

The previous sections have attempted to address how agents operate in networks.

Although it may appear that there is a body of work employing agents it was

questionable whether some work can justifiably claim to be using agents rather than

mere components or entitities. This section further develops this investigation by

looking at non-agent-based research and trying to qualify whether this could be

termed agent-based. The consequences of this can be interpreted in two ways. One

interpretation is that if agent-based and non-agent-based research is indistinguishable

in methodology, then the term becomes redundant. Agent, actors, managers,

components and entities all blur into the same. However, as has been argued in the

previous sections, entities that are NOT agents can be identified. The terminology –

agents – may be the same while the praxis has differed. If some projects have been

deemed to not be agent-based this is due to methodology/application differences.

Clear distinctions can then be drawn between some agent-based and non-agent-based

research. Thus the argument of the blurring can be partially refuted as identifiable

distinctions operate.

The contrary argument would seek to reinforce common ground between some agent-

based and non-agent-based research. Here the focus is on the application and not the

title. As quoted earlier the term agent may be comprehendible to a wide audience, but

it is not necessary the prevailing term for all disciplines. Flexible, intelligent,

distributed management or control is not unique to agent-based research. Where such

research shares the same characteristics as other agent-based work it is fruitless to

preserve a rigid boundary between agent and non-agent work. Instead the notion of

agent-like becomes valuable.

4.5.1 Control Theory
In [89] it was argued that control theory lacked the sophistication associated with

agent research. This section provides one example of how recent developments in

control theory have overcome such limitations. The intention behind providing an

example is that it suggests that there may be a body of work that is agent-like, without

being credited as such.

 58

The work in [146] argues that a highly nonlinear system with large uncertainty such

as the Internet is unsuited to the mathematical modelling associated with conventional

congestion control. Also classic control theory is considered ineffective outside single

switch node systems due to the complexity of large-scale networks with multiple

parameters. An Active Queue Management (AQM) algorithm with intelligent control,

ie knowledge structure, is presented. This Adaptive Optimized Marking (AOM)

scheme achieves shorter queue length and drop rate than random early detection

(RED) through tuning the trade off between buffer occupancy and link utilisationxxxiv.

In the model Organisation and Coordination levels are responsible for higher level

functions such as planning and intelligent decision making. The expert system forms

the machine intelligence in the organisation level. The coordination level translates

this to a control pattern for the lower layers. Both levels make qualitative decisions,

whereas the execution level makes quantitative decisions, as it has to construct

precision control signals. Or, to quote the authors: “Organization decides what the

system is…Coordination decides where to control…Execution decides how to control

the system”.

However, it could be argued that intelligent control is equivalent to agent-based

control. Certainly it accords with definitions that concentrate on knowledge

representation and reasoning. Additionally this AQM system is located within the

system, unlike the classic knowledge or expert systems that are disembodied. Müller’s

analysis of the parent disciplines of intelligent agent design perhaps is the most

pertinent for this analysis [86]. The controller process is considered analogous to an

agent. Where the analogy breaks down, Müller argues, is in the complexity of most

environments, which are not amenable to traditional solutions by differential

equations associated with control theory. Likewise control theory is associated with

an inability to manipulate incomplete and inconsistent information. However, the aim

of the researchers here is to explicitly move away from the classical approach and

hence the major obstacle to an agent definition is removed. As has been state earlier,

with no authoritative definition of an agent, the presence of knowledge structures will

xxxiv subject to the assumption that IP networks exhibit stationary or slow changing traffic distributions

 59

not satisfy all agent researchers – Brook’s emergent intelligence model for example

would reject such constructs. However, this control theory model would accord with

many other agent examples, including some delineated earlier.

4.5.2 Policy Based Management
This final section provides an introduction to projects investigating policy based

management, a growing area of means of automating network management through

high-level directives [147]. Here policy is taken to mean “the unified regulation of

access to network resources and services based on administrative criteria” [148].

Section 0 stated that the work in this project focused on the control, as opposed to

data and management, plane. However, in order to fully qualify the role of agents in

connectionless networks it is valuable to investigate developments in the management

plane. These enhancements extend the bandwidth broker concept, and as already

stated it would be overly generous to term that entity an agent. Additionally, policy

based management usually does not profess to identify the components in the

architecture as ‘agents’xxxv. However, there are many features underlying policy based

management – distributed sophisticated management and monitoring, communication

protocol – which would appear to demonstrate the flexibility associated with agents.

The IETF states that a Policy Based Management System (PBM) should enforce

differing levels of QoS guarantees for both users and applications, via policy rules

[149]. These rules govern admission control, scheduling, traffic shaping for various

users under varying traffic conditions. Parameters for the rules include a range of QoS

metrics such a requested bandwidth, jitter or starting times. These systems are set up

as two-tiered applications: for final policy decision, the policy manager (or policy

server) at the top; the edge or boundary routersxxxvi, for policy enforcement, at the

lower layer.

xxxv Although see AQUILA project
xxxvi Additionally there is an LDAP server which stores the policy rules

 60

4.5.2.1 Policy Projects
The AQUILAxxxvii project implemented an architecture for end-to-end QoS

provisioning in the Internet. The core network is DiffServ enabled and over this lies

an overlay network – the Resource Control Layer (RCL). This layer performs

resource control (monitoring, controlling and distributing resources) via the Resource

Control Agent (RCA). Significantly it has been stated that: “An RCA is a

generalisation of the concept of the Bandwidth Broker in the DiffServ architecture”.

Additionally another ‘agent’ – the Admission Control Agent - in this layer, linked to

each ingress/egress router, is responsible for both policy and admission control.

Finally, this layer acts as in interface to the QoS for the End-user Application Toolkit

(EAT). The EAT middleware operates at the control plane and is responsible for QoS

reservations. Inter-domain there is a Border Gateway Routing Protocol (BGRP)

Agentxxxviii at each border router that aggregates reservations for the same destination.

Discussion about the agent-like qualities will wait till all three projects are introduced.

The Cadenusxxxix project investigates automated service delivery by providers,

through dynamically negotiated SLAs [150]. The aim is to translate (ie automate) an

SLA, as specified by an end user, into an SLS, which describes the technical details of

network specification. It is argued that the use of an SLS automates service activation

in IP networks (whereas a user’s QoS request would be carried as a signal under the

telecommunications model). The project operates with a longer-term dynamic QoS

perspective than AQUILA (there is nevertheless acknowledged overlap with all three

projects) and additionally does not investigate inter-domain QoS. The Cadenus

architecture partitions the system into ‘Mediators’, which map user’s QoS requests to

the corresponding service/network resources. This clearly demarcates service both

from resource control and management and from the service creation machinery.

The Access Mediator (AM) interacts with the user – establishing best-fit services –

and the service providers – negotiating dynamic SLA features. The Service Mediator

(SM) both incorporates new services to the Service Directory as well as managing the

xxxvii Adaptive Resource Control for QoS Using an IP-based Layered Architecture
xxxviii This is still only in framework
xxxix Creation and Deployment of End-User Services in Premium IP Networks

 61

physical access to the requested services (employing the Resource Mediator, RM).

Additionally the SM is responsible for preparing the user’s SLA and translating this

into the SLS. The above mediators advertise their existence to each other via the

Service Directory: whereby the SM is the seller and the AM is the buyer of the

advertised services. There is only one Resource Mediator within an AS, and

additionally one Network Controller for each network technologyxl within that

domain. Communication between the RM and the network is based on COPs-like

policy rules. The mediators employ the ‘Active Object Model’.

The demarcation of service treatment (carried out by the SM) and the resource

treatment (carried out by the RM, whose role is to translate service demands into

specific network resources demands) differs from a standard SLS definition, since this

usually defines scope (ie ingress and egress node). Thus a new type of SLS is

identified so that the separation is not violated. The traditional offline SLA is

identified as suitable for subscription and provisioning but not for the usage (call-by-

call) process. So CADENUS considers an invocation or i-SLA/i-SLS. The i-SLA just

contains the service class to distinguish QoS levels, since all the other parts of the

contract have been negotiated previously in the SLA subscription / provisioning

process.

The TEQUILA project [151] is concerned with longer-term traffic engineering than

the other two projects. It investigates QoS provision in IP networks through SLS

negotiation, monitoring and enforcement, intra-domain traffic engineering and inter-

domain SLS negotiation. The focus is on service management, ie defining services

and service classes (service creation), the negotiation and subscription to services and

service assurance. The framework consists of two time frames or epochs: the longer

term service subscription – where customers subscribe for future services – and the

more immediate service invocation for per-call requests – ie where customers invoke

the services to which they have subscribed. This echoes the resource management

timing: off-line network dimensioning and dynamic route management. Route

xl ie one for ADSL ‘technology domain’, one for DiffServ td…one for MPLS

 62

selection is made in a distributed fashion, but the cost metric used to calculate the

paths are manipulated by the network dimensioning component.

The TEQUILA architecture is hybrid: the network-dimensioning element –

responsible for mapping traffic requirements to the physical network – is centralised,

while other network management elements are distributed to the nodes (either just the

edge routers or to all routers) and are reactive. Additionally the high-level Policy

Management Tool is centralised while the Policy Repository can be distributed. After

storing policies in the repository activation information is passed to relevant Policy

Consumer for retrieval and enforcement. The centralised Network Dimensioning

(ND) maps traffic requirements to physical network resources and provides Network

Dimensioning Directives – such as definitions of label switched paths (LSPs),

anticipated loading of per-hop behaviours (PHBs) – to accommodate predicted traffic

demands. The lower traffic engineering elements – Dynamic Route Management

(DRtM, edge routers only, manages parameters for selecting LSPs) and Dynamic

Resource Management (DRsM, all routers, manages buffer & scheduling parameters)

– manage resources allocated by ND. For example, the DRsM would translate

anticipated PHB loading into scheduling parameters. Provisioning thus incorporates

long-term SLS and dynamic network state. In addition to producing the guidelines for

sharing network resources, the ND is also policy-influenced from above. Example

policies include: how often to trigger dimensioning; importance of a particular PHB;

maximum number of alternative paths; parameter specifying the relative merit of low

overall cost against network overload avoidance.

TEQUILA’s system objectives are both traffic (ie obligations to customers via SLS)

and resource-oriented (network optimality). The design requirements also incorporate

avoiding overloading parts of the network and providing overall low network load. To

avoid network hot-spots, instead of employing standard routing algorithms the ND

employs a version of a k-shortest path algorithm. This finds paths subject to the cost

and utilisation constraints. These two constraints lead to conflicting optimisation

objectives and a non-linear optimisation problem [152].

 63

The EURESCOM project P1008 [153] identified a need for both the traditional long-

term service contract as well as a novel, dynamic, short-term contract. TEQUILA (as

well as CADENUS) provides both features – SLS subscription (SLS-S), concerned

with long-term policy-based admission and SLS invocation (SLS-I), a more dynamic

component, which dynamically deals with each flow.

In the TEQUILA architecture the principal reasoning – policy management and

network dimensioning – is centralised. This not only makes the architecture

potentially more vulnerable, in the example of network failure, but also introduces

higher signalling overhead. Additionally the architecture is committed to a

Diffserv/MPLS-based network.

4.5.2.2 Common Open Policy Service Protocol (COPS)
Common Open Policy Service Protocol is a client server protocol that defines

communication messages between two operating entities, the policy decision point

(PDP) and the policy enforcement point (PEP) [154]. In the policy based management

architecture the PDP is located in the policy server, while the PEP is located at the

edge/boundary routers. COPS can operate in an outsourcing mode, whereby a PEP

receives a request for a connection servicing. The PEP then passes this up to its

allocated PDP, which has to obtain the relevant policy rules from the LDAP server.

Using these, an assessment is made by the PDP whether to accept or reject the

connection. This decision is then passed back down to the requesting PEP, which in

turn enforces the policy. By contrast, in the provisioning model the updates are found

at the LDAP server, without the prompt caused by a connection request. Any policy

changes are then enforced. COPS is considered to be a flexible protocol that is

adaptable to other protocols. However, there are scalability questions due to both the

limited number of PEPs supported by one PDP and the constraint on a PEP only

connecting to one PDP. Additional concerns include inter-vendor COPS operation

and support of legacy routers.

Unified Policy-Based Management (UPBM) has been proposed to ameliorate some of

the problems with COPS in policy based management architectures [149]. This three-

 64

tiered architecture adds network routersxli alongside the edge routers at the bottom of

the hierarchy and also includes a middle tier: the policy enforcement agent (PEA).

This translates different policy rules due to the relaxation of the tight coupling

between PEPs and PDPs. Additionally PEAs act as intermediaries, providing COPS

and content translation. This means the PEPs can now be non-COPS compliant, for

example with legacy routers. When a PEA interacts with a new router it can use inter-

PEA communication where repository is non-sharable.

4.5.2.3 Challenging the Demarcation
It could be contended that the distinctions made in the earlier sections were somewhat

arbitrary, reflecting the prejudice of personal research. Thus, it would be expected,

researchers schooled in the Wooldridge / Jennings approach would focus on multi-

agent co-operation and reject less-collaborative AI-heavy agent models. Likewise,

those favouring hierarchical decomposition may favour models with reactive agents

and higher-level monitoring agents. Equally, although multi-agent systems usually

stress decentralisation, in practice this is not always followed: for example,

centralisation – of reservation state and SLAs – is found in the agent-based work of

[155]. This could reverse much of the analysis of previous sections by arguing that

there exists a growing area of what could be called agent-like applications. Certainly

two of the projects mentioned used the term ‘agent’ (although as mentioned for one

this was related to the bandwidth broker).

The purpose of the section on policy based management has been to challenge

assumptions about agents – perhaps both their flexibility and architecture can be

found elsewhere, so the agent / not-agent distinction is increasingly redundant. It can

conversely be argued that by building up from the bandwidth broker concept, the

interaction between the entities or ‘agents’ in policy based management has been

constrained. As discussed in the section on protocol agents the manager-managed

relationship is too tightly circumscribed. Autonomy, while difficult (see the following

section), underlines agent systems. Where this may be difficult then the AI model

offers a partial solution, at least of agent-like behaviour.

xli core routers are not controlled as part of standard PBM

 65

If it is conceded that these are not agent architectures, due to absence of AI and

limited decentralisation, then the question ‘why use agents?’ is raised. In the

SHUFFLE project cited earlier, the choice/overhead of the agent middleware was

identified as a critical limitation. COPS, the middleware here would seem to be less

problematic, with ongoing research addressing its weaknesses. Agents are not the

only solution and it is important to locate them next to similar research.

4.6 Summary: the role for agents

While it is not novel to address the difference between network management agents

and intelligent agents deployed in networks – see [156] for example – highlighting the

tensions between the two models has aided an analysis on how successfully (or not)

intelligent agents have penetrated telecommunications networks. If protocol agents

provide such a weak model of agency, and if policy based management provides a

flexible notion of control, the role of the agent may appear weak. Perhaps an analysis

that stresses common ground with non-agent research and at the same more clearly

demarcates agent roles will allow agent enhancements to flourish.

Although the multi-agent system has been identified as pertinent to distributed

management of complex networks due to distribution and flexibility this has proved

more problematic in connectionless networks. While MPLS has provided a

connection-oriented bridge to a connectionless world, evidence has been presented

[70] for not requiring this technological upgrade. This then leaves the question of the

suitability (as well as practicality) of agents in IP networks. Autonomy is the critical

characteristic of an agent. OSPF relies on tight coupling between nodes that

undermines this vital trait. This would appear to inhibit the successful deployment of

agents. The analysis of agent deployment largely concurs with this. However, perhaps

extracting elements from agent projects – without reducing them to the hollow model

characterised by protocol agents or the non-agent agents described by Wooldridge /

Jennings – can point to a successful use of agents. Instead, a more fragile agent-like

model is proposed. This currently lacks the full complexity of agent communication,

although certainly this could be added, alternatively taking advantage of the range of

 66

protocol traffic available. Agents are fully distributed to nodes, unlike bandwidth

brokers or the manager-agent model. However, unlike the Wooldridge / Jennings

model the focus is on agent learning, notably reinforcement learning.

 67

5 Sub-Optimal Routing

Chapter 3 examined various understandings of QoS. The research presented in this,

and the subsequent sections, focuses on routing enhancements that spread traffic away

from the optimal paths offered by OSPF. This in turn increases network utilisation,

with the aim of evening the distribution of traffic load within the network, satisfying

both QoS and resource management goals.

In all the novel enhancements presented in this thesis, end-to-end delay is used as the

QoS metric. While acknowledging that more recent work has attempted to model

multi-dimensional QoS [157], most comparative research avoids introducing such

complexity and focuses on a single QoS dimension. Alternative deployments [79]

have used the Bellman-Ford algorithm, which supports two metrics – since OSPF

uses Dijkstra’s algorithm, which supports only one metric, this is beyond the scope of

this research.

Much QoS routing research has employed bandwidth (also termed load or utilisation)

as the critical metric, for example [158,159,71,1]. With this bottleneck metric the path

weight is that of its worst link (ie with lowest bandwidth). However, end-to-end delay

is of significant concern for time-sensitive traffic and is receiving increasing focus

[160]. Delay is seen by the ITU as one of the key parameters that affect the user.

Indeed to the user, delay incorporates the effect of other parameters such as

throughput [23]. For such an additive metric the path weight is represented by the sum

of the weights of its links.

5.1 Pseudo Delay Mechanism

At times of network stress it is imperative to the network operator that premium

traffic is not impeded by less valuable traffic. In a multi-class environment the routing

system should spread this less valuable traffic away from the optimum routes so that it

no longer affects the performance of gold traffic. The pseudo-delay mechanism

 68

introduced here is designed to engineer this by masquerading longer or otherwise

‘costlier’ routes as optimal. By providing pseudo-delay cost metrics, generated from

observed network delay, the router can still employ the standard Dijkstra shortest path

algorithm, to produce new ‘shortest’ paths.

The concept of selecting a sub-optimal path is not in itself novel [161]. However, such

work has often sought to address the issue of inaccurate link state information that

arises due to the impracticality of continuously flooding latest costs. Here, by contrast

inaccuracy is deliberately injected into the costs in order to encourage traffic down

sub-optimal routes. This may appear to conflict with a standard objective of traffic

engineering to optimise IP network performance [162]. However, it can be argued that

the resource oriented performance objectives of traffic engineering set out in [14] will

be addressed by allowing traffic to follow sub-optimal routes. Additionally much of

the existing work has been carried out in connection-oriented networks for the CR-

LDP and RSVP-TE resource reservation schemes.

Traffic is generated in the network using an ON/OFF model. Routing is implemented

using OSPF with delay as the cost metric. At system initialisation the cost of each hop

is set to the Cisco default. These initial values are modified by delay figures as the

simulation develops. However, only gold traffic is routed according to observed

delay, using exponential weighted moving averages:

Adt = αOd + (1-α)Adt-1 (Equation 1)

where Adt is weighted moving average delay at time t, Od is the observed delay and α

is a constant. The cost metrics for silver and bronze (ie best-effort) traffic are

modified by two factors – termed theta_1 and theta_2. These are generated such that

when the OSPF cost metric is modified by the thetas they display a more severe delay

figure for such traffic. The routing table for lower preference traffic is constructed

consequently from data based on these pseudo-delay figures. A hop that is on the

optimal path for the gold traffic would now be more costly so would not necessarily

be included in the apparently ‘least cost’ path for the lower grade traffic. The new

least cost path is now a ‘sub-optimal’ path presented as optimal. No alteration to the

 69

routing algorithm is required. As network congestion increases this mechanism thus

moves lower class traffic away from the optimal paths, where it may affect the

performance of gold traffic.

As stated above, the justification for employing sub-optimal routing is by observing

that were lower class traffic routed along optimal paths it may receive less preferential

treatment. One means to differentiate between traffic types would be to employ strict

priority scheduling at each router. At times of network stress low-grade traffic could

be starved at a router while preferential, delay-sensitive traffic is serviced.

Alternatively, by routing away from these paths, the low-grade traffic is no longer

delayed or starved at “hot spots”.

If the packet delay between the two nodes is above a critical threshold, this observed

delay is used to modify the thetas for that link. Critical thresholds are set for each

service class to reflect delay-tolerance. As well as behaving reactively the system also

displays proactive behaviour. For example, if the critical figure has not been reached

but the traffic has been monotonically increasing (or decreasing) and crossed a lower

‘trigger’ threshold (again set separately for each traffic type) the system registers this

trend. Unlike the threshold trigger approach investigated in [72], more precise

information is obtained by setting the trend trigger higher, ie confirming a trend after

a longer period. A modifier is then calculated to depress the new theta value/s. This

approach allows the system to monitor eg network congestion and anticipate such

problems. By depressing the theta calculation with a modifier, the response will be

lesser than if the critical threshold is passed. Equally, the system responds to

downward shifts in delay – ie as congestion decreases a downward delay trend is

identified and the thetas accordingly altered.

The thetas are calculated using both the exponential weighted moving average delay

and the exponential weighted moving average of the differences in observed delay.

The exponential weighted moving average for the differences (ΔAdt) is calculated as:

ΔAdt=β(Odt-Odt-1) + (1-β)(ΔAdt-1) (Equation 2)

 70

to reflect both performance shift and the rate of this shift in the calculation. If

responding to an observed trend that crosses the trigger threshold, but is below the

critical threshold theta_1 is calculated using a modifier to produce the following

equation:

θ1= θ1
t-x(Adt *γ(1+ ΔAdt)), (Equation 3)

where t-x is the time of the last theta revision. The value of γ is adjusted to reflect the

scaling down of the simulation discussed in section 5.1.1 (ie affecting the default link

cost).

Modifications to the link cost metric in the link state database ensure that this metric

is never lower than the original figure (ie the Cisco default). Theta_1 is used to

manipulate the delay metric for silver traffic and a combination of the two thetas is

used to affect the delay metric for bronze traffic. These figures are then flooded as an

LSA to all other network nodes to advise them of the shift in network state.

5.1.1 Results

Early experiments demonstrated that the pseudo-delay mechanism rerouted lower

status traffic away from optimal paths. This ensured that preferential traffic was not

impeded at times of network stress. Rerouting onto the sub-optimal paths ensured that

the lower grade traffic received better treatment; had such traffic shared the same

paths as gold traffic it would have suffered at times of congestion. However,

oscillatory behaviour, especially of the bronze, best-effort traffic was observed. This

traffic was the first to be rerouted away from the optimal paths, but as delay increased

on the sub-optimal paths again it would be rerouted. To avoid this flux, together with

the frequent LSA generation and processing overhead, further dampeners were

introduced into the system. Additionally, to make the simulation more malleable,

variables such as transmission speed and packet generation rate (and consequently the

critical and trigger threshold figures that activate updates) were scaled down, as

mentioned in the simulation section. As a result the findings from the simulations

should be read as relative, as absolute delay figures have to reflect this scaling down.

 71

These earlier experiments, additionally, employed the default OPNET RNG (ie that

used by Microsoft Visual Studio for simulations run in the Windows environment).

Figure 9 shows network conditions prior to employing the pseudo-delay mechanism.

Each graph shows averaged end-to-end delay over 11 runs, with 95% confidence

intervals. Although the gold traffic experiences relatively high delay (ie above 150

milliseconds) this can be explained by the scaling down of network parameters.

Additionally all traffic classes experience an initial traffic surge in the empty network.

As buffer build-out rises, however, performance stabilises for gold and silver traffic.

By contrast the end-to-end delay increases for the best-effort traffic. The performance

of this traffic is both markedly lower and volatile due to the combination of bursty

nature of the traffic combined with the less generous treatment by the scheduler. The

poor performance in the buffers is perhaps exacerbated by the relatively high volume

of gold traffic (50%) in these simulationsxlii.

Gold Average End to End Delay

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

minutes

se
cs

Bronze Average End to End Delay

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

minutes

se
cs

Figure 9: Routing without the Pseudo-Delay Mechanism

xlii The simulations results in section 8 are across networks with a lower volume of premium traffic

Silver Average End to End Delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

minutes

se
cs

 72

Figure 10 shows sample results of routing applying the pseudo-delay mechanism. For

clarity confidence intervals have been omitted. Here the value of gamma (γ) in the

modifier (equation 3) is set to 1000 and the value of the theta factors in critical

conditions is based on both observed and average delay.

End to End Delay

0

0.2

0.4

0.6

0.8

1

1.2

0 6 12 18
minutes

de
la

y
(s

ec
)

gold silver bronze

Figure 10: Routing with the Pseudo-Delay Mechanism

As the pseudo-delay mechanism is introduced, perturbations are still observed

initially for all traffic, most significantly bronze, but this disappears and the bronze

end-to-end figure rapidly decreases to around a quarter of the peak value. Various

adaptations have been explored for calculating modifiers, thetas and thresholds. An

example is shown in Figure 11 a, b & c (with 95% confidence intervals). By changing

the critical update theta calculation to ε(1+Adt), where ε is a constant, and shifting the

ratio of theta_1 and theta_2 that generates the link cost for bronze traffic there are

reductions in degree of perturbation and both peak and mean end-to-end delay for all

classes. Obviously it is hard to quantify the benefit in a real network because of the

scaling used, but there is reason to believe the force of the result still applies. The gold

end-to-end delay mean is increasingly decreasing towards the critical 150

milliseconds figure in a slow network. However, the results demonstrate that by

manipulating the delay figures for the lower class traffic the performance of all traffic

is improved.

 73

Gold Average End to End Delay

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

minutes
de

la
y

(s
ec

)

Silver Average End to End Delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30
minutes

de
la

y
(s

ec
)

Bronze Average End to End Delay

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

minutes

de
la

y
(s

ec
)

Figure 11: Routing With the Enhanced Pseudo-Delay Mechanism

Although sub-optimal routing is employed, an optimisation aim of traffic engineering

is to increase throughput, and by extension network utilisation. In the early

experiments while throughput for gold traffic remained constant, that for silver and

bronze increased by 31% and 36%, respectively. In the modified experiments, with a

higher percentage of gold traffic in the system to place extra stress on all classes,

bronze traffic is the main beneficiary with a 40% increase in throughput. Throughput

for the other classes increased slightly, but not significantly.

 74

6 Learning

The previous section introduced a heuristic for spreading traffic away from the

‘optimal’xliii, congested links. Despite incorporating a mechanism for incorporating

trend, the setting of threshold figures appeared arbitrary and rigid. A shortcoming of

the algorithm is that delay only registers as critical once it reaches a precise, preset

figure, yet is not treated as critical if it is eg a millisecond below this figure. A more

responsive approach to trigger system responsiveness is outlined below – using

principles of learning incorporated with fuzzy logic to ameliorate the inflexibility of

the flooding triggers.

A characteristic of several agent systems is the capacity of the agent to learn from its

interaction with the environment. Although not all agent definitions incorporate

learning, this property can aid an agent in responding more appropriately to a dynamic

environment. The model developed here seeks both to discover when to flood and

how high to set the theta factor. Additionally, instead of devising a communication

strategy to propagate the learning, the model piggybacks on the existing, albeit limited

protocol-based, communication between nodes provided by the routing protocol (ie

OSPF). Although there is a loss of the sophistication usually demanded of an agent

communication language (ACL), this removes the requirement of deploying agent

middleware (with the attendant overhead, including devising ontologies etc, discussed

in section 4.4.1).

A disadvantage of many machine learning techniques is that a complete model of the

problem domain has to be predefined. In most machine learning a supervisor

knowledge base provides examples that guide the learning. It may, however, be

impractical or impossible to produce models of appropriate behaviour for all

situations that an agent encounters. Instead it may be more fruitful for an agent to

learn from interacting with the environment, ie by its own experience rather than

guided by a supervisory knowledge base. Although dynamic programming can be

xliii Remembering that the ‘optimal’ route may be considered selfish and thus not optimise network
performance

 75

used to solve reinforcement learning techniques, the requirement of a thorough,

precise environment model, rather than one gleaned through discovery.

By contrast reinforcement learning has proved attractive as the programmer does not

have to define a vast set of conditions, instead learning entirely through the feedback

resultant from acting on the environment. Since everything it learns has to derive from

such interplay, a reinforcement learning agent is characterised by having to balance

exploitation with exploration. As a rational agent is seeks to maximise its goal so it

should select the most productive action. This will be one that has provided the

highest reward in the past – thus the agent is exploiting its gained knowledge.

However, in order to discover potentially more valuable actions the agent also needs

to explore the environment, ie according to a set policy it should occasionally not

follow what presents as the optimal action and instead choose an alternative action.

However, a disadvantage of such techniques is that the state space is prone to

dimensional explosion. As the problem space explored by the agent grows there is a

corresponding escalation in the agent’s state space. Fuzzy logic or fuzzy set theory

has been demonstrated as a solution to resolving the state space expansion in

reinforcement learning [163]. Instead of having to store values for each state observed

by the agent these can be graded by membership of fuzzy states, thus reducing the

complexity of the state space. Thus fuzzy reinforcement learning has been chosen to

add intelligence (agent behaviour) to each node, while according with the IP aims of

limiting state.

6.1 Fuzzy Reinforcement Learning

Learning is used in this simulation to try to discover whether or not to flood an SLA,

ie generate a more sensitive responsiveness to network delay. While flooding will

result in routing tables that more accurately reflect the network state, a negative

consequence is the time required for network convergence. Additionally, another

parameter receptive to learning is the factor used to spread lower class traffic away

from optimal routes, ie the theta value to add to the true cost (delay) for the lower

class traffic. This section first investigates reinforcement learning and outlines its

 76

suitability for solving these problems. An introduction to fuzzy logic is then

presented, finally combining the two into the selected fuzzy reinforcement learning

model to show how the flooding and theta decisions can be learned by the agent.

6.1.1 Reinforcement Learning
Reinforcement learning has been chosen as it can learn directly from the dynamics of

the environment. No prior knowledge of the environment is required and there is no

need for training and modelling decisions. In order for the agent to learn, evaluative

feedback is employed to indicate the success of an action. This is in contrast to an

instructive feedback model where a new action would be chosen independently of the

previous one.

A reinforcement learning system is primarily composed of a policy, reward function

and value function. The policy corresponds to the action choice in response to the

perceived environment state. The policy is essentially equivalent to the definition of

an agent’s behaviour, ie a mapping from percept to action. This corresponds to the

(reactive) agent (Ag) function [97]:

Ag : E →Ac (Equation 4)

where the agent (Ag) is the function mapping the environment (E) state to an action

(Ac). Although a rational agent is considered a goal-maximiser, reinforcement

learning will not necessarily choose the greedy action. Instead the policy should

balance exploitation (ie acting on what is already known) with exploration (ie

randomly searching or choosing an action). An ε greedy approach is a common policy

employed in reinforcement learning. In the exploitation phase the action selected has

the highest strength, or returns the highest reward. However, this chosen action is not

necessarily the one that is performed; the action selection mechanism is set to

randomly explore, ie flood, with a small probabilityxliv of ε.

The process can be considered as a run, ie a sequence of episodes, where an episode

consists of a state, action selection and the resultant state. Figure 12 shows a model of

xliv for example, the value of ε used in the simulations is 0.001

 77

a run consisting of episodes, moving from one state to the next. At state st, at time t,

action at is chosen. More formally, at = π(st), where π is the policy (eg ε greedy) at st.

This generates reward rt+1 and returns the new state st+1, ie a Markov chain with a

reward process.

Figure 12: Episodes of states and state-action pairsxlv

The reward function returns the immediate desirability of the state (or state-action

pair) for the agent. The routing protocol in IP networks is designed to be quiet – only

responding by flooding LSAs when necessary – so it is generally more desirable not

to flood. Thus the reward for not flooding is set to be higher on average than that

returned from a flood. Although an agent cannot alter the reward function, this

function can be used to affect the policy, ie future action selections in a given state.

The reinforcement value function by contrast corresponds to an estimation of the

longer-term value of each state (or state-action pair). Unlike rewards, which are

directly provided by the environment, the value of a state (or state-action pair) can

only be estimated gradually by the agent as it interacts with the environment. The

value corresponds to the totality of the rewards over the future from that state.

Although some states (or state-action pairs) may offer a low reward (ie immediate

feedback) the states that follow that choice may generate high rewards, so a greater

long-term value is accrued. Thus a flooding decision may produce a lower immediate

reward, but result in lowered congestion, yielding an elevated long-term value.

xlv From Sutton, Barto op cit page 145

st st+1 st+2
st, at st+1, at+1

rt+1 rt+2

st+2, at+2

. . . .

 78

The value functions or judgements, since they are estimates, must be reified

throughout a run or simulation. Two prominent update approaches exist for

reinforcement learning problems: Monte Carlo and temporal differences. In the

former value estimates are only reinforced at the end of a run. A Monte Carlo method

demands that a run terminates, so that feedback can be provided solely on completion

of and not during that run.

A temporal difference (TD) approach has been chosen in this research reinforcing

value estimates after the next step. Unlike Monte Carlo methods, temporal difference

methods (in common with dynamic programming) are characterised by bootstrapping,

ie updating estimated values with other estimates. The step-by-step temporal

difference approach – where changes to the value estimate are based on a difference

between estimates at two different times – can be generalised by the following update

rule:

() () () ()[]tttt sVsVsVsV −+← +1α (Equation 5)

where V(st) is the estimated value of state s at time t and α is a learning parameterxlvi.

Thus the estimate of a state’s value at time t is updated based on that estimate plus

difference between the estimates of that state at two distinct time steps (hence,

temporal difference). A factor, λ, is used to indicate how many preceding temporal

states are to be updated – in this research the simplest case is used where λ is set to 0,

ie TD(0), so only the preceding state is updated (ie st is updated by estimates of st+1).

This minimal TD method can be represented by:

() () () ()[]ttttt sVsVrsVsV −++← ++ 11 γα (Equation 6)

where rt+1 is the reward obtained for moving to state st+1 and γ is a discount factor.

Other techniques – including simulated annealing and genetic algorithms – termed

‘evolutionary methods’ and differentiated from reinforcement learning techniques in

[91], can also be used to solve reinforcement learning problems. Unlike the approach

investigated here, value functions are not employed in evolutionary methods, so

xlvi Also known as the step-size parameter. If this is set to zero no learning (ie revision of values) takes
place; as it reaches one learning takes place at a faster rate

 79

individual states, or state-action pairs, are not estimated. Actions chosen inside a run

are not registered. Thus moves that may have contributed significantly to the success

of the final outcome are weighted equally with those that may have had a negative or

neutral impact.

A shortcoming of reinforcement learning is the expansion of state space required for

an agent’s reasoning. Techniques deployed to control the scalability limitation of the

associated large look-up table – both the space required for storing and the speed of

information access – have included neural networks and self-organizing maps.

However, since both these techniques and reinforcement learning itself are

characterised by slow learning rates these are not feasible solutions in busy network

environments. As seen in the previous section, employing fuzzy states and actions

reduces state space, as a vast range of crisp states corresponds to a greatly reduced

range of fuzzy states, with faster convergence. Thus combining fuzzy tools with

reinforcement learning, ie fuzzy reinforcement learning, may be a feasible given the

constraints associated with the network environments under investigation.

6.1.1.1 On-Policy and Off-Policy Learning
An important way of differentiating between the various temporal difference methods

is whether they are on-policy or off-policy learners. On-policy learners evaluate and

improve the value of a policy while using it for behaviour control; off-policy learners

separate the policy used to generate behaviour from that which is being evaluated, ie

evaluate one policy while following another. A consequence of this latter approach is

that the system can learn about policies that are never followed. Q-Learning [164] is

an example of an off-policy temporal difference control algorithm. This updates a

state action pair based on the maximum reward achievable from the next state-action

pairing:

() () () ()[]tttattttt asQasQrasQasQ ,,max,, 11 −++← ++ γα (Equation 7)

 80

where ()tt asQ , is the value of the state action pair taken at time t, α is the learning

factor and γ a discount factor. This can be shown in a backup diagramxlvii as:

Figure 13: Q-Learning Backup Diagram

where the filled circles indicate action nodes, the white circle a state node and the arc

that the maximum of the action nodes will be taken. Thus the first action (leftmost

filled circle) – corresponding to at of state action pairing (st, at) – results in the new

state (st+1), the white circle. From this the action that would return the maximum

reward would be chosen to reinforce the value Q(st, at). The arc indicates that the

maximum of the next action nodes is taken. If the topmost action taken from st+1 were

predicted to return the highest reward this would be included in the update function.

However, due to the need to maintain sufficient exploration this may not be the action

selected by the policy at that next state.

By contrast the on-policy approach evaluates only the policy being followed – ie the

policy is enhanced solely using estimated values for the current policy. Sarsaxlviii, an

on-policy approach, learns the value of state-action pairs from transitions from state-

action pair to state-action pair. The notable difference from the Q-Learning equation

is that the maximum operator is discarded and replaced with the value of the next

(followed) state-action pair:

() () () ()[]ttttttttt asQasQrasQasQ ,,,, 111 −++← +++ γα (Equation 8)

With Sarsa, unlike the procedure in Q-Learning, if an ε-greedy policy is applied, this

value of ε is included in the Q update. Thus the best policy given the systematic

departures (exploration), is learned under Sarsa; the best policy learnt under Q-

xlvii Although shown horizontally for consistency with other diagrams, standard backup diagrams are
drawn vertically
xlviii The name is derived from the state-action transition quintuple: State, Action, Reward, State, Action

 81

Learning does not incorporate this exploration so explicitly. A result of this is that the

cost of exploration is factored into the on-policy learning and the system can avoid

more disadvantageous outcomes [165].

For this research a fuzzy Sarsa, ie on-policy, algorithm was chosen. This approach has

been demonstrated to provide robust and accurate results with a significantly smaller

state space than the corresponding non-fuzzy model [166]. The model used is

explained fully in section 6.1.3.

6.1.2 Fuzzy Logic Control
It is complex to construct a precise mathematical model for all the variables – whether

triggering thresholds, or theta parameters – in the system. Where a formal analytical

model cannot be used – ie rigorous theoretical approaches are inapplicable – fuzzy

logic can prove a valuable tool [167, 168]. Fuzzy logic control has been employed to

solve various network challenges, including active queue management schemes in IP

networks for congestion control [169], call admission control [170] and routing in

connection-oriented networks [171, 172]. An overview of its applicability to QoS

management is provided in [173]; a comparison to other techniques used to handle

uncertainty is provided in [174].

Fuzzy set theory/logic considers degrees of belonging to a set as opposed to classic

(Boolean) set theory where an element is either a member or not a member of a given

set. Instead of truth of membership being represented either by 1 (member) or 0 (not

member), in fuzzy logic truth values lie in the range [0,1]. As an example, when

considering variables such as age, temperature or bandwidth, a classic approach

would create discrete sets (or intervals), for example young/old, cold/hot,

empty/congested, where “young = ¬ old” etc. The truth of each state is an either-or

membership statement: for example, in a world comprising people of all ages, for the

element ‘age 13 years’ the truth of being young is 1 while the truth of being old is 0.

By contrast, since fuzzy logic is based on truth values in the range [0,1] rather than

just 0 and 1, the element ‘age 13 years’ may belong to fuzzy set YOUNG with

membership degree 0.9 and belong to fuzzy set OLD with membership degree 0.1. As

 82

a result the transition from membership of YOUNG to membership of OLD is more

gradual than the abrupt jump from member to not-member in the traditional rigid

(true/false) model.
Figure 14: Classic (interval-based) (a) and Fuzzy (b) Membership

Fuzzy logic is used in fuzzy controllers to simulate human thinking. A fuzzy set is a

mapping of real numbers (such as ages {24, 25, 35, 37, 82}) to a set of symbolic

labels (YOUNG, MIDDLE-AGED, OLD), to reflect how a user classifies with natural

language. The ‘fuzzification’ process involves taking crisp values from a ‘universe of

discourse’xlix, such as age (or, in networks: delay or available bandwidth), and

classifying it into a fuzzy set, such as OLD. The degree (or grade) of membership to

which this value belongs to the set is calculating by using a membership function –

μOLD(). Membership functions can be formed from a range of shapes: they can be

generated from cosine or exponential functions; they can be linear, trapezoidal,

triangular or singleton. For computational simplicity triangular or shouldered patterns

are often chosen [175].

xlix Also known as ‘world domain’ or ‘reference super set’

13 13

YOUNG YOUNG

age age

μ μOLD OLD

(a) (b)

.1

.9
1

 83

Figure 15: Fuzzy Controller

Figure 15 shows a Fuzzy Control System, including the fuzzifier/fuzzification unit

discussed above. In the Mamdani-style inference approach used here [176], the next

stage of the process involves the fuzzy inference engine taking the fuzzy input and

applying relevant fuzzy rules. Relationships between fuzzy sets are represented by

such fuzzy rules, stored in the rule-base, usually in the format ‘if – then -’, ie

implications. As an example, a rule could be

‘IF (age IS OLD) THEN (compensation IS HIGH)’

‘Age IS OLD’ is true with any value within [0,1]. If, for a given crisp value si (eg ‘age

2 years’), the membership μOLD(si) is zero, this rule is not active. Although the rule

fires it cannot contribute to the final output value. Significantly, for any crisp value,

multiple rules may both fire and be active: crisp input ‘age 13’ may fire rules with

antecedents of ‘IF(age IS OLD)’ as well as ‘IF(age IS YOUNG)’ with membership of

both greater than zero.

Rule Base

Fuzzy Inference
Engine

Defuzzifier Fuzzifier

Crisp Input

Fuzzy
Set

Fuzzy
Set

 Crisp Output

 84

In fuzzy controllers the relationships between objects – either within the same set or

between different sets – are of interest. An AND (ie logical ∧)l operation is generally

used in a rule to combine at least two objects in the antecedent, for example

‘IF (age IS OLD) AND (injury IS HIGH) THEN (compensation IS HIGH)’

The AND operation corresponds to taking the minimum, ie the weakest, of the degree

of membership values. Alternatively, usually where there is a parallel connection, the

OR (ie logical∨) operator can be used. This operator returns the maximum of the

degree of membership values.

The implication process works to truncate the output fuzzy set (‘compensation IS

HIGH’) to the height given by the antecedent. A graphical example is shown in

Figure 16 (with arbitrary membership values).

Figure 16: Fuzzy Inference

The inference engine fires the following two rules:

R1: IF age a is HIGH OR injury i is HIGH THEN compensation is HIGH

R2: IF age a is LOW AND injury i is LOW THEN compensation is LOW

l Although in Mamdani’s paper (op cit) the symbols are reversed: ∧ corresponds to min (ie or) and
∨ corresponds to max (ie and)

Age Injury

OR

Compensation

HIGH

a i

result
a i

μ1
μ2

μ2

μ3

μ4
μ3AND

R1

R2

HIGH

LOW LOWLOW

HIGH

 85

For rule R1, using OR, the maximum μ value (of the antecedent) is taken to represent

how much the rule contributes (to the consequent). Here ()iHIGH
injuryμ (shown as μ2 in the

diagram) is higher than ()aHIGH
ageμ (ie μ1). This degree of membership (μ2) is used as

the firing strength for that rule. This strength is in turn used to modify (crop) the

output graph, ie the one corresponding to HIGH compensation. In rule R2 the

operation AND is used, thus the lowest degree of membership (μ3) is used for the

firing strength. Finally the inference engine aggregates the two contributing output

graphs, using the AND (max) operator, producing a new fuzzy set, represented by the

rightmost graph.

To return a final crisp output (or decision) this fuzzy set must be defuzzified. Various

techniques can be employed, notably mean of maxima (ie the point with the strongest

possibility), last of maxima (LOM) or first of maxima (FOM). The most common

deffuzification approach to obtain a crisp control signal is the centre of mass (also

know as centre of gravity or centre of area) method. This is simplified from

calculations over a continuum of points to that using a sample of points:

()

()∑
∑

=

i
i

i
ii

x

xx
signal

μ

μ
 (Equation 9)

The following section explains how this is incorporated into a reinforcement learning

model to provide a means of reacting to and anticipating congestion.

6.1.3 Fuzzy Reinforcement Model
Membership functions (HIGH, MEDIUM and LOW) for the delay experienced by

gold trafficli are shown in Figure 17. Earlier work used s-curves, but trapezoidal

functions were substituted for their computational simplicity. In the model the

membership functions for delay are additive, ie for any crisp value the sum of the

li ie the amount of time the traffic spends in the out-subqueue before it leaves that node

 86

membership functions equals one (Σμ = 1) as this has been shown empirically to

make the system more robust to noise [177].

Figure 17: Delay Membership Function

Early work used just fuzzy membership with no learning. Encouraged by this, the first

work employing learning restricted the number of sets to just two, ie HIGH and LOW,

to reduce state space. To compensate for the loss of the middle fuzzy set the sets for

LOW and HIGH were adjusted to allow for greater overlap. In addition, the observed

delay values for silver traffic were not used, ie there were no silver_HIGH and

silver_LOW fuzzy sets. Thus the decision model concentrated solely on the observed

values for the two extreme classes: gold and bronze. The rationale behind this was to

investigate whether learning, with artificially constrained state space, proved

advantageous. Encouraged by these early results the state space was expanded further

– from 4 to 27 – to incorporate all three classes and sets. Figure 18 provides a map of

the fuzzy sets for delay:

Gold_LOW Gold_HIGH

Gold delay (ms)

1

0

Gold_MEDIUM

μ

 87

 GOLD FUZZY SETS

0

0.2

0.4

0.6

0.8

1

1.2

0 53 99 145 153 199 245 253 299 345
gold delay (ms)

m
u

GOLD LOW
GOLD MEDIUM
GOLD HIGH

 SILVER FUZZY SETS

0

0.2

0.4

0.6

0.8

1

1.2

0 53 99 145 153 199 245 253 299 345

silver delay (ms)

m
u

SILVER LOW
SILVER MEDIUM
SILVER HIGH

 BRONZE FUZZY SETS

0

0.2

0.4

0.6

0.8

1

1.2

0 53 99 145 153 199 245 253 299 345

bronze delay (ms)

m
u

BRONZE LOW
BRONZE MEDIUM
BRONZE HIGH

Figure 18: Fuzzy Sets for Delay

 88

Additionally there is one membership function for delay trend, the exponential

weighted moving average of the relative difference (δ):

() 1
1

1 1
)(

−
−

− −+
−

= t
t

tt
t OD

ODOD
δβ

β
δ (Equation 10)

where OD is the observed delay. To prevent a sluggish delay trend figure the value of

β was set to 0.8. Thus this metric responds more sensitively to recent shifts in delay.

The same fuzzy set, shown in Figure 19, was used for all classes. This is to identify

whether, despite apparent low absolute delay figures, delay is building up over that

link. This potentially allows the system to behave proactively, moving traffic away

from a link before delay becomes critical.

Figure 19: Delta Fuzzy Set

For each time period there is a triple of observed values: delay experienced by gold

traffic, delay experienced by silver traffic and delay experienced by bronze traffic.

This triplet forms a crisp state/input. There are twenty seven (fuzzy) states (ŝ1a to ŝ1za)

corresponding to one crisp input s1, used to fire rules:

δ

μ

0 50 150

 89

Crisp state Fuzzy
states

Gold
Membership

Silver
Membership

Bronze
Membership

ŝ1a Gold_HIGH Silver_HIGH Bronze_HIGH
ŝ1b Gold_HIGH Silver_HIGH Bronze_MEDIUM
ŝ1c Gold_HIGH Silver_HIGH Bronze_LOW
ŝ1d Gold_HIGH Silver_MEDIUM Bronze_HIGH
… … … …
ŝ1x Gold_LOW Silver_ MEDIUM Bronze_LOW
ŝ1y Gold_LOW Silver_LOW Bronze_HIGH
ŝ1z Gold_LOW Silver_LOW Bronze_MEDIUM

s1

ŝ1za Gold_LOW Silver_LOW Bronze_LOW
Table 3: Fuzzy States

For each of the three traffic classes the OR (ie maximum) value of the delay

(eg ()delaygoldobsHIGHGOLD ___μ) and the delay trend (eg ()δμ goldGOLD)

memberships is found. In Table 3, for fuzzy state ŝ1a the gold class membership

corresponds to:

() ()δμμ GOLDHIGHGOLD delaygoldobs ∨___ (Equation
11)

The maximum was chosen so that a sudden shift in network conditions (the delay

membership) would not be negated by a sluggish trend. The AND (ie minimum) value

of the gold and bronze memberships for each traffic class is then found, to produce

the membership for that state, eg μŝ1a is composed of:

() () () ()
() ()]__[

]__[]__[

_

__

δμμ

δμμδμμ

BRONZEHIGHBRONZE

SILVERHIGHSILVERGOLDHIGHGOLD

delaybronzeobs

delaysilverobsdelaygoldobs

∨

∧∨∧∨

 (Equation 12)

For each state there are two possible actions to choose from: θ_High and θ_Lowlii.

Here θ is the factor used to manipulate the true link cost for lower class traffic, as first

presented in the pseudo-delay mechanism in Section 5.1. The relationship between the

state and actions is presented in the backup diagram, Figure 20. This diagram shows

the possible successor statesliii after an action: taking action a1
t at state st moves the

simulation on to state st+1; taking action a2
t at state st moves the simulation on to state

st+1'. It should be noted that, unlike in a state transition diagram, here the consequent,

lii it will be seen later how these actions correspond into flood or not flood, together with the theta
calculation
liii This is true for fuzzy and non-fuzzy states so the ŝ notation is not used

 90

st+1, of the state action pair (st, a1
t) may not necessarily be a different state to the

consequent st+1', of the state action pair (st, a2
t). Indeed st+1 may be identical to its

precedent st. The state outcome is dependent on the effectiveness of the action and,

for non-deterministic processes, the environmental conditions. For example, in an

auction scenario action a1
t could be ‘bid £40’ and action a2

t could be ‘bid £10’. If the

desired object were either removed from sale, or attracted a higher counter-bid neither

actions would be successful (given that the aim of the action was to make a purchase).

Thus the consequent states st+1 and st+1' would be identical, ie with the same amount

of money and number of goods bought as state st.

Figure 20: State Actions New States

At fuzzy state ŝ1a, corresponding to Gold_HIGH AND Silver_HIGH AND

Bronze_HIGH the system can choose between fuzzy actions θ_High or θ_Low. These

state action pairings are shown in Table 4:

 Table 4: Fuzzy State Action Pairs

 AND Fuzzy Action

Gold_HIGH Silver_HIGH Bronze_HIGH θ _High ŝ1a
Gold_HIGH Silver_HIGH Bronze_HIGH θ _Low

st

st+1

st+1'

a1
t

a2
t

a1

t: flood LSA
a2

t: do not flood LSA

 91

This state-action pairing can also be described as fuzzy rules, R1 and R2, where the

fuzzy state forms the antecedent of the rule, and the fuzzy action the consequent:

R1 IF Gold_HIGH AND Silver_HIGH AND Bronze_HIGH THEN θ _High

R2 IF Gold_HIGH AND Silver_HIGH AND Bronze_HIGH THEN θ _Low

 fuzzy state

 fuzzy action

 fuzzy rule

Table 5: Fuzzy Rules

Critically, this differs from standard fuzzy controllers that often show only one

possible consequent from a state (rule antecedent), for example

R1: IF Gold_HIGH AND Silver_HIGH AND Bronze_HIGH THEN θ _High

R2: IF Gold_LOW AND Silver_HIGH AND Bronze_LOW THEN θ _Low,

or, omitting the silver class and the medium level, in the more common tabular form:

 Bronze_HIGH Bronze_LOW

Gold_HIGH θ_High θ_High

Gold_LOW θ_Low θ_Low

Table 6: Fuzzy State-Actions without Learning

In standard controllers with no learning there is only one possible action per fuzzy

state. By contrast, when using reinforcement learning the system is trying to learn the

appropriate actions for the prevailing conditions. The corresponding table for such a

scenario is instead:

 Bronze_HIGH Bronze_LOW

Gold_HIGH θ_High

θ_Low

θ_High

θ_Low

Gold_LOW θ_Low

θ_High

θ_Low

θ_High

Table 7: Fuzzy State-Actions with Learning

 92

Rather than deciding at design time that the action of choice for the state Gold_HIGH

AND Bronze_HIGH should be to flood an SLAliv this is instead resolved (ie learnt) at

run time, for each set of observed (ie crisp) delay figures. The rationale for this is that

although intuitively there are scenarios where a definite action can be defined, as

shown in Table 8 (where * represents any level), it is not evident how the system

ought to behave for all states. Thus all states (including the ones with intuitive action

choices) are learned.

If any class of traffic is experiencing high levels of delay then the node should flood
traffic. Related rules:
IF GOLD_HIGH SILVER_* BRONZE_* THEN θ_High/Flood

IF GOLD_* SILVER_HIGH BRONZE_* THEN θ_High/Flood

IF GOLD_* SILVER_* BRONZE_HIGH THEN θ_High/Flood

If gold or silver traffic are experiencing low levels of delay while bronze traffic is
not experiencing a high level of delay then the node should not flood traffic. Related
rules:
IF GOLD_LOW SILVER_LOW BRONZE_LOW THEN θ_Low/¬Flood

IF GOLD_LOW SILVER_LOW BRONZE_MED THEN θ_Low/¬Flood

Table 8: Intuitive Statements and Corresponding Fuzzy Rules

Table 9 provides a partial list of the state action pairs (rules). Each crisp state has a

membership in more than one fuzzy state, ie fires more than one rule, ie state-action

pair. Where the membership value (μ) for the rule/state action pair is zero the rule will

not contribute to the decision making process. In turn, for each fuzzy state in this

model there are two state action pairs, ie possible rules to fire. Each state action pair

has an associated strength, or FQ value, which indicates that pair’s suitability to be in

the optimal modellv. For example, for state ŝ1a and action θ_High there is one FQ

value – FQ(ŝ1a, â1) – and for state ŝ1a and action θ_Low there is another FQ value -

FQ(ŝ1a, â2). An ε greedy policy is taken to choose the action for each fuzzy state.

This guarantees that with (small) probability ε a random action is chosen; otherwise

the action with the highest known reward, ie FQ value, is chosen for each fuzzy state

(ŝ1a - ŝ1za), corresponding to crisp state s1. This provides for exploration as well as

liv It will be shown later how θ_High corresponds to flood and θ_Low corresponds to NOT flood
lv The FQ element of fuzzy Sarsa corresponds to the Q-value of standard Sarsa, which in turn is
equivalent to the V or value element in Q-learning.

 93

exploitation of known values. Additionally, where the FQ values are equal for the two

state action pairings the resultant action is chosen randomly.

Gold_HIGH Silver_HIGH Bronze_HIGH θ_High FQ(ŝ1a, â1) ŝ1a
Gold_HIGH Silver_HIGH Bronze_HIGH

μŝ1a
θ_Low FQ(ŝ1a, â2)

Gold_HIGH Silver_HIGH Bronze_MED θ_High FQ(ŝ1b, â1) ŝ1b
Gold_HIGH Silver_HIGH Bronze_MED

μŝ1b
θ_Low FQ(ŝ1b, â2)

Gold_HIGH Silver_HIGH Bronze_LOW θ_High FQ(ŝ1c, â1) ŝ1c
Gold_HIGH Silver_HIGH Bronze_LOW

μŝ1c
θ_Low FQ(ŝ1c, â2)

Gold_HIGH Silver_MED Bronze_HIGH θ_High FQ(ŝ1d, â1) ŝ1d
Gold_HIGH Silver_MED Bronze_HIGH

μŝ1d
θ_Low FQ(ŝ1d, â2)

 … … … …
Gold_LOW Silver_MED Bronze_LOW μŝ1x θ_High FQ(ŝ1x, â1) ŝ1x
Gold_LOW Silver_MED Bronze_LOW θ_Low FQ(ŝ1x, â2)
Gold_LOW Silver_LOW Bronze_HIGH μŝ1y θ_High FQ(ŝ1y, â1) ŝ1y
Gold_LOW Silver_LOW Bronze_HIGH θ_Low FQ(ŝ1y, â2)
Gold_LOW Silver_LOW Bronze_MED μŝ1z θ_High FQ(ŝ1z, â1) ŝ1z
Gold_LOW Silver_LOW Bronze_MED θ_Low FQ(ŝ1z, â2)
Gold_LOW Silver_LOW Bronze_LOW θ_High FQ(ŝ1za, â1) ŝ1za
Gold_LOW Silver_LOW Bronze_LOW

μŝ1za
θ_Low FQ(ŝ1za, â2)

Table 9: Fuzzy State Action Pairs for all States

The focus now shifts to the penultimate column of Table 9 – how to choose the

action. Not only are crisp states fuzzified in the fuzzy reinforcement learning

algorithm but so are the actions. Here the actions θ_Low and θ_High are represented

by two fuzzy sets. The θ_Low fuzzy set is represented as a singleton, returning a zero

value. The rationale for this is that this corresponds to a ‘do not flood’ action choice –

thus the value of the smear factor (the θ) is irrelevant. However, the (fuzzy) action

θ_High corresponds to a ‘flood with theta’ action choice. The membership function

for θ_High is a steep curvelvi, truncated to return a maximum value of two, given by

the following equation:

 }1,2min{ xe α−− (Equation 13)

An inverse transformation is employed – ie the membership of the fuzzy state is used

to obtain the value of theta. This θ value is used for the action figure, ac(ŝi), or

acHigh_θ) towards the calculation of the theta used to manipulate the link cost metrics.

lvi Various other curves were investigated, including cosine and logarithmic functions

 94

Figure 21: Fuzzy Action Membership Functions

In practice the critical action decision for IP networks is binary, ie whether to flood or

not, as opposed to the more familiar continuous decision space discussed in section

6.1.2. A weighted probabilistic choice is used to determine (defuzzify) the flooding

decision. This is consistent with similar approaches for reinforcement learning

problems, eg [178]. For each fuzzy state the FQ values for a flood action are weighted

by the state’s membership value. The sum of these are then normalised against the

totals for both flood and do not flood:

()

() ()∑∑

∑

==

=

+
= 27

1
_

27

1
_

27

1
_

ˆ,ˆ)ˆ(ˆ,ˆ)ˆ(

ˆ,ˆ)ˆ(
)(

i
Lowiii

i
Highiii

i
Highiii

asFQsasFQs

asFQs
FLOODprob

θθ

θ

μμ

μ
 (Equation 14)

A flood then occurs with the above given probability. This, again, allows for

exploration (ie not following what presents as the optimal solution). The value of

theta, to manipulate the cost metric, is generated by calculating the centre of mass of

all the chosen actions for each fuzzy state:

1

μ

2 θ

0

θ_Low θ_High

 95

∑

∑

=

== 27

1

27

1

)ˆ(

)ˆ()ˆ(

i
i

i
ii

s

sacs
theta

μ

μ
 (Equation 15)

where ac(ŝi) is the action value for the state action pair with the highest FQ value for

each fuzzy state (ŝi)lvii, for all fuzzy states with μ>0. This action value provides the

theta value, ie the factor added to the true cost of a link, as shown in Table 10. The

cost of the link is then flooded in the LSA using gold observed delay for the gold

traffic across that link, silver observed delay plus theta for the silver traffic and bronze

observed delay plus theta for the bronze. Thus all link state databases will be updated

with the fabricated link costs.

Table 10: Theta Flooding

The purpose of the reinforcement learning model is to update the FQ values for each

state-action pair (rule), ie to learn the appropriate FQ value for state-action pairs. The

fuzzy Sarsa equation, from [166], is used to update the FQ values for each state-action

pair:

() () () () () ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ∑

∀
−−−−−−−

−−
j

i
t

i
ttas

j
t

j
ttas

i
t

i
t

i
t

i
t asFQasFQrasFQasFQ j

t
j

t
i
t

i
t

111,,1111 ,,,,
11

ξγαξ (Equation

16)

where α is the learning factor, γ is a discount factor, r the reward and ξ is the

‘fuzzification factor’. The discount factor was set to 0.9, seen as a typical value for

discrete-time reinforcement learning [179]. The fuzzification factor, introduced in

[180], is used to weight each rule contribution. This is represented by the relative

contribution of the state action pair (rule) with respect to the contribution provided by

all the state action pairs that correspond to the same crisp state:

lvii Hereafter for clarity s will be used in place of ŝ as all future states will be fuzzy so the crisp:fuzzy
distinction does not need to be maintained

Gold Traffic Silver Traffic Bronze Traffic

ObservedDelayGOLD ObservedDelaySILVER+ θ ObservedDelayBRONZE + θ

 96

()
()

()∑
=

= 27

1

,

i
i

t
as

s

s
ii

μ

μ
ξ (Equation 17)

where μ(st) is the membership of that fuzzy state (of the state-action pairing) whose

FQ values are being updated.

A reward, calculated when the new observed delay figures are viewed ten seconds

laterlviii, forms the means to evaluate outcomes. The reward is a signal from the

environment to the node (or, more formally, agent). The reward returned is weighted

to (initiallylix) return a value of one for a no flood decision. Otherwise the relative

difference (Rel_D) of the delay, capped to return a minimum value of zero and a

maximum of one, is returned as the reward:

Rel_D = 1

1

−

− −
t
ij

t
ij

t
ij

OD
ODOD

 (Equation 18)

where t
ijOD is the observed delay over link i-j at time t. Research has highlighted the

advantage of selecting a relative over a ‘delta’/fixed threshold [181,182] when

triggering updates, thus this appears a valid means of establishing a reward. As stated

earlier, the essential difference between Sarsa and Q-learning was that the former is

an on-policy learner and so employed only actions that are followed. Thus

),(j
t

j

j
t asFQ∑

∀

 corresponds to the FQ values selected by the ε greedy policy at the

next time interval.

The algorithm for the reinforcement learning is as follows:

lviii Time intervals are discussed in Section 7.5
lix This value is varied in simulations

 97

Figure 22: Tokarchuk’s Fuzzy Sarsa Algorithm

• Initialise all FQ(s,a) values to zero

• Initialise st (start fuzzy state)

• Choose at for st using COA, using all st that match the crisp state s and at

using ε greedy selection policy

• For each step (ie every 10 second delay inspection):

o Take action at – observe r and st+1

o Choose at+1 from st+1 using e greedy selection policy for all st+1

match st+1

o () () () () () ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ∑

∀
−−−−−−−

−−
j

i
t

i
ttas

j
t

j
ttas

i
t

i
t

i
t

i
t asFQasFQrasFQasFQ j

t
j

t
i
t

i
t

111,,1111 ,,,,
11

ξγαξ

• st = st+1 , at = at+1

 98

7 Design and Verification

A simulation was constructed using OPNET modeller 8.1 [183]. This operates at the
packet level.

7.1 Topology
In the simulation there are 13 active nodeslx, of which 6 (the darker nodes in Figure

23) generate data traffic. All 20 links are bi-directional with identical transmission

rates, giving the average node degree of 3.23. Such a topology is consistent with

comparable research [184].

Figure 23: Network Topology

The destination for each data packet is allocated randomly, with the exception of

traffic generated at nodes 0 and 7. All traffic from these two nodes has the destination

field set to 11. The rationale behind this is to guarantee generating a traffic ‘hot spot’

lx Irregularities in the node numbering are explained by inactive nodes which are not represented in the
digram

8

9

13

12 11

14 10

0

2

45

6

7

 99

where the congestion level causes the delay to increase over a link – here the link

from node 8 to node 11.

7.2 Nodes
The nodes have been designed to be largely consistent with current node

architectures, such as Juniper Networks M160 [185] or Cisco 7200.

Figure 24: Node model

Each node has an in-queue (labelled ‘in_q_no’) for each link and a corresponding out-

queue (labelled ‘q-no’). The node represented in has an in and out queue for each of

its five neighbours, plus an in queue for the traffic from the traffic generator. The

traffic generator is discussed later. The blue arrows represent the direction of traffic

within the node; the red arrows, discussed later, are statistic wires. These are a means

in OPNET for a processor to obtain variable values from another processor within the

same node.

 100

7.2.1 In-Queues
Since it is assumed that the processor operates at wire speed there are no sub queues

within the in-queues and no queue size. Any packet dropping is performed at the out-

queues. As each in-queue receives a packet, whether data or signal, it sets a flag. The

core processor for each node polls these flags on a round-robin basislxi. If the flag is

set the core processor forces an (OPNET remote) interrupt in that in-queue and the

packet is forwarded to the processor.

Figure 25: In-Queue Model

7.2.2 Out-Queues
Each out-queue has four sub-queues to buffer packets when they arrive faster than the

transmission rate. The default queue limit for a Cisco 7200 router, for example, is 64

packets before a drop policy is initiated. For the 7500 routers the default limit is

calculated according to a proportional allowance for each class in the parent buffers

[186]. The determination is based on a maximum delay of 500ms with an average

packet size of 250 byteslxii.

The first (highest priority) sub-queue forwards signal traffic the next three forward the

gold, silver and bronze data traffic respectively. The signal sub-queue is serviced

ahead of all the other queues. When this is empty a class-based queuing mechanism is

employed. Gold traffic is statistically serviced 70% of the time, silver 20% and 10%,

when there is traffic in all sub-queues. To mimic packet transmission the queue holds

the packet to be sent for the packet service time (packet size/transmission speed

seconds), during which time it cannot service any other packets already in the sub-

lxi In OPNET there is a statistic wire, red in node model, from each in-queue to the core processor
lxii This ‘low’ figure of packet size is due to the level of TCP service traffic.

 101

queues (though it can add newly arrived packets to the sub-queues). No propagation

delay is modelled, which is plausible for access networks.

Each out-queue stores delay statistics for the sub-queues, representing the time spent

in a sub-queue (less the service time). These figures can be accessed by the core

processor via a statistic wire (one for each sub-queue, excluding the signal sub-queue)

and are used to determine the delay from one node to its neighbours for all classes.

7.2.3 Core Processor
In this module delay over outgoing links is monitored, packets reaching their

destination are destroyed, packets for forwarding are switched from the in-queue to

the appropriate out-queue and any learning is undertaken. The ‘agent-like’ element of

the simulation is located here.

The data structures associated with the OSPF protocol are located in this module. The

link state database contains costs for each class/link from every node in the network.

The routing table contains the next hop for each class/destination. While an authentic

router would maintain both routing and forwarding table, instead the simplified

simulation router maintains just the routing table, as conceptually the two tables are

similar [187], and the core processor acts as both routing and forwarding engine.

Figure 26: Core Processor Model

 102

7.3 Packet Generation
Traditionally network traffic has been modelled using a Poisson process (ie packet

arrival is memory-free and interarrival rate is exponentially distributed). Where a user

population is large, with each user only responsible for a small percentage of overall

Internet traffic and user sessions are mutually independent, a Poisson session arrival

process would be expected. While this model appears correct for modelling network

user session arrivals [188], it has latterly been considered unsuitable for describing

both the network connections that make up such sessions as well as packet arrivals.

The analysis of Ethernet traffic in [189] demonstrated that self-similarity was the

prevailing characteristic. Ignoring this inherent burstiness by employing the Poisson

model, it is argued, distorts traffic behaviour. For example Poisson models of packet

traffic smooth aggregate traffic as the number of sources increase, rather than

intensifying it. However, the overview of traffic modelling in [190] now suggests that

packet-level behaviour may have shifted to a Poisson process. Indeed the authors

suggest that individual links may display variable behaviour.

Another concern for this analysis is whether the assumption of stationary process

holds in networkslxiii. However, even if it is accepted that traffic follows the Poisson

distribution, recent physical analysis of queue output [191] suggests the output of a

stable queue is not stationary. Even if the external traffic is stationary (eg its arrival is

exponentially distributed) the internal traffic process is not stationary. This raises the

question of whether a representative time slice can be found for any learning

techniques.

Faced with these findings, it becomes more problematic how to model the traffic

across the links. Since much work investigating QoS provision across IP networks

still employs the Poisson model for traffic generation, for consistency several of the

simulations presented here use this model. When using this latter model an inter-

lxiii This is an issue for most artificial intelligence, not solely reinforcement learning

 103

arrival time (ie 1/λ) of 0.0884 is setlxiv. Additionally, to simulate burstiness, an

ON/OFF packet generation was used in the simulations. The approach delineated in

[192] was to employ a standard ON/OFF Markov source (and additionally a periodic

source) with fixed transmission rate when ON, arguing that it captures the behaviour

where performance is largely determined by bursty congestion. ON/OFF models, with

exponentially distributed ON and OFF times, are also utilised in the IST project

MESCAL [193] to model VoIP traffic. In the simulations in this work the ON and

OFF times are distributed according to a uniform integer distribution, set to 90% to

remain in the same state.

Traffic of all classes is generated from an identical source / generation model. Thus

these simulations doe not attempt to model classes based on application, for example

gold traffic as VoIP and best-effort as email. Instead classes are based on user

demand. Here a customer pays for gold-class service, expecting a certain level of

guarantee, while the customer who is unwilling to pay for service guarantees accepts

the prevailing best-effort service. This is not an unrealistic assumption – although the

focus on QoS primarily considers needs of applications with differing demands these

still function, albeit often less efficiently, in the traditional best-effort internet. Thus,

using the example in [194], a university student may be prepared to accept the

shortcomings of standard internet VoIP, while the Principal may both require high-

quality calls and have the funds to pay for this. Here the role of the QoS

enhancements is to provide a generalised solution rather than one tailored to the

assumed needs of various applications.

7.3.1 Random Number Generator
The Mersenne Twister has been used as the Random Number Generator (RNG) due to

its rigorous statistical properties, such as a long period of equidistribution [195].

Additionallly it demonstrates efficient memory usage and is four times faster than

rand(). The critical importance of selecting an acceptable RNG in order to validate

results was stressed in [196].

lxiv In an ON/OFF simulation the delay (ie wait time in each state) is set to be packet size/service time.
The packet size is 4420 and the service time is 100,000, ie 0.0442. Since the generator is in the send
state 50% of the time the comparative poisson interarrival time is 2*0.0442, ie 0.0884

 104

At the start of each simulation a new ‘seed’ is generated by the RNG (and the value

stored in a file for consistency with other simulations). This seed is fed in to the RNG

in a succeeding simulation, where multiple runs were required of the ‘same’

simulation. An example is shown below:

1643545771 1979890667
2024759641 511486124
431267977 1902544604
246090048 1169522929
1861415293 1417352009
324587625 879442603
1152939417 1536053098
563448707 75532875
1731460838 1233963376
1674506578 1235311782
632206830 219358932
1042982389 1379843426

Table 11: Randomly Generated Seeds

7.4 Packet Format
All data packets are identical in size. The size of 440 bytes was chosen as

representative of TCP packet size, ignoring the small (40-44 byte) packets, for

example TCP acknowledgement [197]. The headers of interest, ie for QoS

differentiation, would be absorbed into the SERVICE TYPE header field currently

employed by DSC field points, as discussed in section 2.1. The size of service

packets, ie LSAs, is set at 35 bytes.

7.5 Multi-class Traffic
Traffic is split into three classes: gold (priority), silver and bronze (best-effort),

randomly allocated in the ratio 2:3:5 respectively. The two lower priority classes,

silver and bronze, can also be further randomly demarcated into strata, numbered 1-5,

if alternative routing is employed. This is to provide a means of routing a percentage

(0-100% in multiples of 20%) of the traffic for a class without having to redesign the

OSPF forwarding mechanism. Within the out queue class based scheduling is

employed to enable favourable treatment for the higher-class traffic. Priority is always

given to service traffic, such as OSPF LSAs. The work in [72] demonstrated that such

 105

traffic represents a very small proportion of all traffic so the preferential treatment

should not hinder the data traffic. This latter traffic is routed such that in a queue with

data traffic of all classes gold is serviced 70% of the time, silver 20% and bronze

10%.

The delay experienced in each out-subqueue is polled every 10 seconds by the core

processor. This period is chosen to mimic the OSPF hello timer.

7.6 Simulation Scaling

Ideally the network simulated should be running at Ethernet transmission rate, ie 10

Mbits/seclxv. To mimic this, the out-queue service rate was set to 10,000,000, the

interrupt delay in the generator was set to 10,000,000/packet size (ie 4420), the

polling rate of the in-queues by the core processor was set to

0.0000001*LinkNumber. However, the simulation as a result ran slowly, due to the

number of events to process per second. For malleability the simulation was scaled

down by a factor of 100. Later simulations have further scaled this rate down, in order

to analyse the efficacy of the algorithms under greater strain.

7.7 Simulation Verification
The aim of verification is to capture programming and coding errors, or more

precisely to evaluate how correctly a model’s implementation matches the intent of

the designer [198].

To verify correct functioning of the input queues the number of events in the event

queue of each core process (in OPNET terms: how many local events were in the

queue) was monitored. A function, define_interrupts(), was coded to list the events

local to each process. Figure 27 shows typical command line output. The stream

interrupts are packets (either service or data) and self interrupts are called for

monitoring in-queues, generating LSAs etc.

lxv It could be argued that speeds across a MAN would be even higher, eg up to 10-gigabit Ethernet

 106

Figure 27: Interrupts

To verify queue servicing a small verification network was built, as shown in . In the

network four generating nodes sent traffic to a fifth sink node. Tests were run to

confirm that the input queues serviced the packets they received. Figure 29

demonstrates that all the packets received by the input queue (the top graph) are then

delivered by that queue (the lower graph). Further tests verified that the round robin

scheduling mechanism was fair: Figure 30 shows that the core process of node_0 (the

sink node) removes a balanced number of packets from each of its inqueues (in_q_1-

in_q_4, which each receive packets from the corresponding nodes 1-4). Correct

functioning of the class-based weighted fair queue mechanism was also verified,

demonstrated in Figure 31 (albeit for the earlier simulations where a higher

percentage of traffic was gold).

 107

Figure 28: Verification Network

Figure 29: In_Queue Servicing

 108

Figure 30: Round Robin Servicing

Figure 31: Weighted Fair Queue

The correct functioning of the ON/OFF packet generation mechanism is demonstrated
in Figure 32, showing that the generator is either in a wait or a send_packet state:

 109

Figure 32: ON/OFF Packet Generation

To quantify whether the network had been placed under strain, the utilisation of the

link from nodes 8→11 was measured. Figure 33 shows that at certain points in the

simulation this link was heavily utilised (60% and above), representing considerable

traffic stress.

poisson utilisation, link 8-11

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

%
ut

ili
sa

tio
n

Figure 33: Link Utilisation

Further simulation verification can be found in Appendix 1.

 110

8 Results

The motivation behind this work was to investigate whether agents could have a role

in IP network resource allocation. Given the tension between the close coupled nature

of IP networks and the autonomy demanded of the agent paradigm the role of agents

is potentially compromised. However, since learning is one of the key features that

characterise agent intelligence it was resolved to employ this property in order to add

more responsiveness to a dynamic environment. The behaviour of the intelligent

network is contrasted to that where a heuristic (ie the non-learning pseudo-delay

mechanism presented in section 5.1) is used to modify traffic.

The majority of results shown are for single simulation runs. Confidence intervals

(over multiple runs differing by RNG seed) are omitted as much of the evidence from

various simulations has indicated a limited spread for the intervals. However, the

following figure (12 runs, ON/OFF traffic generation, reward of five for not-flooding

and 100,000 bits/second transmission rate) illustrates an issue with simulations that

employ reinforcement learning. Exploration is a vital ingredient to this learning

mechanism. A risk associated with this is increased variability – as can be seen by

some of the confidence intervals. Reducing exploration would lead to a reduction in

variability, however this would negate one of the inherent learning properties.

 bronze average global delay

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000 3500 4000

time (secs)

et
e

de
la

y
(s

ec
s)

Figure 34: Bronze Delay with Confidence Intervals

 111

8.1 OSPF

The control status of the network is displayed in Figure 35 where the performance

under a benchmark OSPF is shown for both Poisson and ON/OFF generated traffic.

With this version of OSPF only periodic flooding occurs; no LSAs are sent out in

response to increased network delay. Thus these periodic floods are the only points

where nodes are updated with network conditions. The network shifts in response to

the periodic flooding can clearly been seen in the graphs, most notably around the

first (1800 second) flood.

 native OSPF gold traffic

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time (secs)

en
d-

to
-e

nd
 d

el
ay

 (s
ec

s)

poisson
ON/OFF

 native OSPF silver traffi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time (secs)

en
d-

to
-e

nd
 d

el
ay

 (s
ec

s)

poisson
ON/OFF

 112

 native OSPF bronze traffic

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time (secs)

en
d-

to
-e

nd
 d

el
ay

 (s
ec

s)

poisson
ON/OFF

Figure 35: Benchmark OSPF

Although this is a benchmark OSPF model, it is perhaps unfairly crude as a control

given that it is highly unresponsive to network stresses. A more sensitive OSPF model

was created with high and low watermark thresholds: if delay reaches a critical

threshold an LSA flood was generated, setting link cost (for that class) to 10; if the

delay over this link was restored to a lower threshold a new LSA flood, with class/link

cost of 1, was propagated.

 a) Gold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 113

 b) Silver

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 c) Bronze

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

Figure 36: OSPF with Responsive Flooding

This responsive model represents an additional yardstick against which the more

sophisticated algorithms must be tested. The network average end-to-end delay

figures for gold, silver and bronze are 0.115, 0.123 and 0.219 seconds respectively, in

a network with the standard transmission rate of 100,000 bits/second. The

corresponding standard deviation measurements are 0.004, 0.008 and 0.106.

However, once strain is placed on the network the performance of bronze traffic

degrades. The following graphs show network average end-to-end delay in a network

where the transmission rate has been lowered to 75,000 bits/second. In this congested

 114

network the network average delay is now 0.198, 0.239 and 11.076 respectively for

gold, silver, bronze traffic. The standard deviation figures are 0.009, 0.028 and

17.716.

 a) Gold

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 b) Silver

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 115

 c) Bronze

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

Figure 37: OSPF with Responsive Flooding in a Congested Network

8.2 Average Network Delay

 a) Gold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
ospf
heuristic

 116

 b) Silver

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
ospf
heuristic

 c) Bronze

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

en
d

to
 e

nd
 d

el
ay

 (s
ec

s)

learning
ospf
heuristic

Figure 38: Network End-to-End Delaylxvi

A comparison of the average end-to-end delay across the network is presented in

Figure 38. The benchmark OSPF simulation (ie with no flooding other than every 30

minutes), used as a control, merely performs regular 30 minute updates – there is no

other responsiveness to congestion. The average delay for gold traffic across the three

lxvi Simulation parameters: ON/OFF traffic generation; transmission speed 100,000 bits/second

 117

models showed negligible difference: learning 0.115, heuristic (ie the pseudo-delay

mechanism with no learning) 0.118, OSPF 0.119 seconds. The average for silver

traffic again only showed a slight improvement due to learning, and a marginally

worse performance for the heuristic: learning 0.128, heuristic 0.142, OSPF 0.130.

However, bronze traffic achieves lower delay across both the learning and heuristic

networks: learning 0.34, heuristic 0.41, OSPF 0.61. This suggests that the

performance of the low cost traffic can be enhanced without compromising on the

handling of the premium traffic. However, traffic appears more volatile across the

intelligent (learning) network, compared to that employing the heuristic. The

maximum delay exhibited by bronze traffic in the learning network was 4.56 seconds;

the equivalent for the heuristic network was 1.94. The standard deviation confirms the

relative instability of the learning mechanism: 0.328 for learning, 0.209 for heuristic.

An explanation for this could be found in the exploratory nature of a reinforcement

learning policy – an ε greedy strategy will occasionally follow less apparently

advantageous action choices. The heuristic will, however, always be guided by its rule

of thumb and not exhibit any exploratory behaviour.

However, the heuristic and the learning simulation results compare less favourably to

the more responsive model of OSPF – with the high and low watermark thresholds –

shown in Figure 36. This could suggest that the extremely simple algorithm that

ignores the delay values across a link in favour of applying a crude high cost metric

may prove a more successful strategy. The heuristic and learning mechanisms sought

to respond more sensitively to prevailing (and anticipated) network conditions, yet

adding an artificially high cost appears to outperform their sophistication. While

conceding that such simplicity is apparently more successful in the lightly congested

network the benefits of the more complex approach will be considered in the

following section.

8.3 Responsiveness to Congestion

As stated in section 7.6, the transmission rate was originally downgraded from 10

Mbits/second to 100,000 bits/second in order to make the simulations more amenable.

 118

In order to investigate how the system behaves under greater traffic stress the link

transmission rate in several of the later simulations were further scaled down to

75,000 bits/second. Figure 39 displays average network link utilisation across both a

slow (ie scaled down to 75,000 bits/second, as shown by the dark red bars) and fast (ie

standard 100,000 bits/second) network. Additionally, differing reward functions were

employed: a no-flood reward of one (r1) across the congested network and a no-flood

reward of eight (r8) across the faster network. As would be expected, with more strain

on the slow network, three links became highly congested, displaying utilisation rates

of 60-70%.

Figure 39: Slow and Fast Network Link Utilisationlxvii

In an ON/OFF network with links slowed to 75,000 bit/sec, link utilisation is shown

in Figure 40. Utilisation is shown for a range of conditions, for learning with

differing reward functions (where r1 and r2 are a non-flood reward of one and two

respectivelylxviii) and for a simulation running the pseudo-delay heuristic.

lxvii Simulation parameters: ON/OFF traffic generation
lxviii The impact of the reward function is examined more closely in section 8.7.

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

utilisation %

nu
m

be
r o

f l
in

ks

slow r1
fast r8

 119

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

utilisation %

nu
m

be
r o

f l
in

ks

r1
r2
heur

Figure 40: Slow Network Link Utilisation

 c) Bronze

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

low
high

Figure 41: Impact of Slow Links on Delaylxix

The traffic impact of the slower links is shown in Figure 41, with the learning

mechanism employed over both low and high speed links. Notably much higher

average delay, standard deviation and peak end-to-end delay is observed for bronze

traffic (as expected). A shorter simulated run over a network with the lower speed

links – bronze traffic is presented in Figure 42 – reveals both the benchmark OSPF

protocol and the learning struggling with the network conditions. The OSPF network

can only send out periodic LSAs (every 30 minutes) so cannot respond to increasing

lxix Simulation parameters: ON/OFF traffic generation; transmission rate 75,000; learning reward=1

 120

network stresses outside these flood times. While the responsiveness of the learning

algorithm aids it in avoiding the massive delay figures associated with the benchmark

OSPF, once the vast delay surges die down, the OSPF network becomes associated

for some time with lower average delay.

 c) Bronze

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
ospf

Figure 42: OSPF v. Learning over Slow Links

The end-to-end delay for traffic with destination node 11 is shown in Figure 43,

suggesting that traffic to this node is responsible for much of the congestion in the

network.

 c) Bronze

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
ospf

Figure 43: Impact of Slow Links on Node 11 Traffic

 121

These results demonstrate that although neither mechanism can adequately solve the

routing problem in a very congested network, the peak and average performance of

the learning mechanism outweighs that of the non-responsive (ie benchmark) OSPF.

Results for the more responsive OSPF model in Figure 37 also showed that a previous

successful, albeit simple algorithm, struggled once the network underwent greater

strain. The bronze network average delay for the learning mechanism of 1.560

seconds (with standard deviation of 2.613) compares favourably with the responsive

OSPF figures of 11.076 (17.716). This indicates that seeking to add sensitivity to

network routing is a valuable goal.

8.4 Traffic Model

Most of the results (including all those above) are from networks with ON/OFF

generated traffic. Nevertheless, as stated earlier [see section 7.3], Poisson distributed

traffic is frequently used in related research, despite doubts about its suitability to

model IP network traffic. Due to its widespread usage, several simulations were run

using Poisson traffic – a comparison of network average end-to-end delay is shown in

Figure 44. Across this two-hour long run the average bronze delay is lower for

Poisson traffic (0.261 seconds) compared to ON/OFF (0.341 seconds). However, due

to the some large spikes in the Poisson simulation the standard deviation is higher

than that for ON/OFF (0.490 compared to 0.319).

 a) Gold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1000 2000 3000 4000 5000 6000 7000 8000

time (secs)

et
e

de
la

y
(s

ec
s)

on/off
poisson

 122

 b) Silver

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000

time (secs)

et
e

de
la

y
(s

ec
s)

on/off
poisson

 c) Bronze

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000

time (secs)

et
e

de
la

y
(s

ec
s)

on/off
poisson

Figure 44: ON/OFF & Poisson Traffic

8.5 Node Level Analysis

Many of the results examine average network performance. However, it is valuable to

examine performance at specific nodes – notably those which will suffer excessive

congestion or will receive rerouted traffic.

8.5.1 Node 9
With the current network configuration, the effect of the theta factor should be to

spread more traffic towards node 9. The critical link of interest is node_9→node_11,

ie the link served by queue_4 at this node.

 123

 a) Gold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

qu
eu

e
si

ze
 (p

ac
ke

ts
)

learning
heuristic

 b) Silver

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

qu
eu

e
si

ze
 (p

ac
ke

ts
)

learning
heuristic

 c) Bronze

0

10

20

30

40

50

60

70

80

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

qu
eu

e
si

ze
 (p

ac
ke

ts
)

learning
heuristic

Figure 45: Node 9 Queue 4 - Queue Size

 124

The packet size in the data (ie not signal) traffic subqueues is shown in Figure 45.

There is a subqueue for each traffic class, to allow for differential servicing. In these

runs the transmission rate was lowered to 75,000, to generate higher congestion. The

behaviour in the bronze subqueue is of most interest. The average queue length over

the learning run was 0.854 packets, standard deviation of 2.898, peak size 67.9; the

heuristic run generated corresponding figures of 0.652, 1.216, 14.6. Again, there is

increased variability in the learning simulation.

A shorter simulation was run, increasing the reward figure to eight, in a standard

speed network (ie transmission rate of 100,000 bits/sec). Figure 46 shows the volume

of traffic routed at node 9, again with much variation in the bronze traffic, although

volatility was considerably high for silver Poisson generated traffic (standard

deviation of 19.302 for ON/OFF, 54.736 for Poisson).

 a) Gold

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000

time (secs)

tr
af

fic
 ro

ut
ed

 (p
ac

ke
ts

)

on/off
poisson

 125

 b) Silver

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000

time (secs)

tr
af

fic
 ro

ut
ed

 (p
ac

ke
ts

)

on/off
poisson

 c) Bronze

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000
time (secs)

tr
af

fic
 ro

ut
ed

 (p
ac

ke
ts

)

on/off
poisson

Figure 46: Node_9 Traffic Routed

Several of the spikes occur around 1800, 3600, 5400 seconds (etc). This is most

pronounced for the Poisson generated traffic. These times coincide with the OSPF

regular update floods, ie at these points nodes received the latest link conditions for

the entire network. Since the reward function is biased against flooding (examined in

more depth in section 8.7) this suggests it rendered the network relatively irresponsive

to traffic conditions.

 126

8.5.2 Node 11
Behaviour at node 11 presents a useful analysis of the effectiveness of any routing

policies. The network traffic pattern is deliberately skewed so that all traffic generated

from nodes 0 and 7 is sent to node 11. This places stress on the immediate links,

notably node_8→node_11 and node_12→node_11. The aim of both the heuristic and

the learning (intelligence) is to smear the lower class traffic away from these links by

presenting alternative links (eg routing via node_13→node_9) as ‘optimal’.

 a) Gold

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
heuristic

 b) Silver

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
heuristic

 127

 c) Bronze

0

2

4

6

8

10

12

14

16

18

20

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

learning
heuristic

Figure 47: Node 11 Traffic End-To-End Delay

Figure 47 shows the end-to-end delay experienced by all traffic with final destination

node_11. The link transmission rate for each link was depressed to 75,000 bits/second

in order to add more strain to the network. The average bronze delay (shown in graph

c) is lower (1.29 seconds) for traffic carried over the intelligent network, compared to

the one operating a heuristic (2.39 seconds). That for silver is again lower (0.263

intelligent compared to 0.328 heuristic), while the difference is less significant for

gold (0.194 intelligent compared to 0.173 heuristic). The purpose of the heuristic and

learning mechanisms is to ensure that the performance of high-grade traffic is not

impaired by the lower-traffic. At the same time the aim is to demonstrate enhanced

handling of low-grade (especially best-effort) traffic by spreading it away from the

‘optimal’ links. Were bronze traffic still sent down these links, higher end-to-end

delay would be expected due to disadvantageous handling by the queue servicing

mechanism. These results support the proposition that adding the intelligence to the

pseudo-delay routing improves the performance of lower grade traffic.

8.6 Calibration of the Fuzzy Sets

The calibration of the fuzzy sets for delay (LOW, MEDIUM and HIGH) for all three

traffic classes was critical for system responsiveness. If, for example, these were fixed

too low then too many observed delay measurements would have high membership

 128

(μ) in the HIGH set (and conversely few high memberships would be observed in the

LOW set). As a result the system would be in permanent flux due to continuous

flooding, with limited network convergence. However, if the sets were mapped too

high then delays would rarely register – most high membership readings would occur

in the LOW set – making the system too sluggish and irresponsive to congestion. Two

simulations were run to explore the impact of shifting the fuzzy sets to the right. A

rightward shift, as explained above, has the effect of making a wider range of (crisp)

delay observations correspond to high membership of a LOW fuzzy set. By extension,

the level of observed delay that corresponds to a membership greater than zero of the

HIGH fuzzy set is raised.

 a) Gold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

high
low

 b) Silver

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

high
low

 129

 c) Bronze

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

high
low

Figure 48: Shifting Fuzzy Setslxx

Since shifting the sets rightward had a minimal effect on the delay figures

(gold/silver/bronze average delay of 0.115, 0.128, 0.339 for the low sets compared to

0.116, 0.126 and 0.375 for the high sets) it was decided to employ these higher sets

for the simulation results. The rationale behind this was to minimise the number of

floods.

8.7 Reward Function

OSPF is characterised as a quiet protocol. Flooding only takes place where necessary

– at times of network stress or due to the regular link state update procedure. As a

result the reinforcement learning reward function was biased towards not flooding, to

avoid the problems associated with network convergence. A potential consequence of

this is that network congestion could increase, as the system would be less responsive

to congestion. However, work cited earlier [72] indicated that the low-

flood/inaccurate database trade-off could be an acceptable price to pay for a quieter

network.

lxx Simulation Parameters: transmission rate 100,000 bits/second

 130

 a) Gold

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

en
d-

to
-e

nd
 d

el
ay

 (s
ec

s)
1
2
5

 b) Silver

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

et
e

de
la

y
(s

ec
s)

1
2
3

 c) Bronze

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000

time (secs)

en
d-

to
-e

nd
 d

el
ay

1
2
5

Figure 49: Network Average End-to-End Delay with Shifting Reward

 131

Figure 49 shows the impact on end-to-end delay across the network of manipulating

the non-flooding bias in the reward function. Originally the function was set so that a

non-flooding action choice returned a reward of one. Later simulations (with the

slower transmission rate of 75,000 bits/second) investigated the network impact of

setting the non-flooding reward to two, then to five. The maximum reward possible

after a flood is kept stationary at one, regardless of the level of congestion. There is a

negligible (albeit positive) effect on gold traffic, and a minimal positive effect on

silver traffic due to the increase in the reward figure. The most notable finding is the

effect on bronze traffic – both volatility and average delay decrease, notably once the

reward rises to five. For bronze traffic with reward of 1, then 2, then 5 the average

delay was 1.595, 1.467 and 0.712 respectively, with standard deviation of 2.613,

2.526 and 0.908 respectively. Results for reward of eight have been shown earlier,

when comparing Poisson with ON/OFF in Figure 44 and when investigating the

behaviour at node 9 in Figure 46lxxi.

Finally, a decaying reward function was introduced to add hysteresis after flooding.

The mechanism greatly enhanced the reward for not-flooding LSAs in response to

congestion across the link immediately after a flood. This figure then decayed to a

minimum of one. The results depicted in Figure 50 (with transmission rate of 100,000

bits/second) can be compared to those in Figure 38 (where reward in the learning

model is set to one for not flooding). The average bronze delay in the earlier chart is

0.339 seconds with standard deviation of 0.328, contrasted to an average of 0.241

seconds with standard deviation of 0.144 with the decaying reward function.

lxxi Although these shorter simulations were run across a less congested network, with transmission
speed of 100,000

 132

 Gold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 Silver

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 Bronze

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

Figure 50: Decaying Reward Function

 133

However, the operation of this decay mechanism was ineffective in more congested

networks. When the transmission rate was reduced to 75,000 bits/second the bias

towards not flooding resulted in an inability to respond to network conditions. In such

networks the system was unable to flood LSAs so traffic continued to be sent along

overcrowded links. The results of this, showing network average end to end delay, are

depicted in Figure 51. Here bronze average end to end delay is 2.318 seconds with a

standard deviation of 3.745 seconds.

 a) Gold

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 b) Silver

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

 134

 c) Bronze

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time (secs)

et
e

de
la

y
(s

ec
s)

Figure 51: Decaying Reward Function over Slow Links

 135

9 Discussion and Further Work
A significant proportion of this thesis was consumed in establishing how agents could

operate across IP networks. This involved distinguishing an intelligent or software

agent from many entities that are termed ‘agents’, especially in the protocol literature.

Yet an agent is not a silver bullet [199]; different solutions exploit different agent

desiderata and other non-agent solutions may provide equal flexibility. This resulted

in a more nuanced argument for an agent-like solution. An illustration in this work is

leveraging the existing communication structure – the ‘agents’ deployed into each

node currently communicate using protocol traffic, ie LSUs/LSAs – rather than

developing a complex communication protocol. Through exploiting the existing

protocol, the results of the learning garnered at each node could be shared, thus

providing an agent-like (or agent-based) solution.

The enhancements / results from this research sought to confirm two premises: that

sub-optimal routing of traffic in a multi-class network is a viable resource

management strategy; that adding intelligence is beneficial. The purpose underlying

this section is to validate whether these have been met. Both concerns – the role of

agents in IP networks and the success of the sub-optimal routing strategy – will be

addressed through answering two questions:

“Is OSPF an agent-based system?”

“Does this work demonstrate an agent-based system?”

Although section 4.3 specifically investigated the use of the term agent in network

protocols OSPF makes no explicit claim to be employing agents. However, it could be

argued that (superficially) many of the properties of this routing protocol overlap with

an agent system. Furthermore, since both the pseudo-delay heuristic and the

intelligent strategy piggyback on the OSPF messaging protocol can a clear distinction

be made between these approaches and OSPF? Not only must it be proved that the

intelligent modification is more successful than OSPF, but that by its design it forms

an agent-based approach.

In [100] the authors examined the pragmatics underlying the development of agent

systems. Agents, they argued, were another addition to the wealth of software

 136

engineering abstractions that aided the management of complex systems: “Just as

many systems may naturally be understood and modelled as a collection of

interacting but passive objects, so many other systems may be naturally understood

and modelled as a collection of interacting autonomous agents”. However, they

identified that this distinction could be lost, for example at the time of writing there

was in their opinion a tendency to view any distributed system as a multi-agent

system. While rejecting complexity of design, eg overuse of AI when not necessary,

for its own sake they nevertheless demanded some AI component to agents. This will

form a partial guideline to the resolution of whether OSPF and the enhancements

presented here operate as agent systems.

A network running OSPF is comprised of distributed nodes operating a discovery,

communication and authentication mechanism. Nodes are unaware of network

topology when the system originates, ie there is no centralised network-view imposed

on the distributed nodes. Through exchanging Hello packets to establish neighbours,

followed by LSAs each node establishes an identical topological view (represented by

the link state database) and can then generate a routing table. The communication

mechanism for example allows nodes to discover: when links are down, when link

costs have changed, when packets have been received. Whether the communication

entity is thought of as a node/router or abstracted to an object operating at that node, it

is still insufficient to describe this as an agent system. Although OSPF is very

powerful, and although it does not rely on a centralised object imposing a fixed

topology on the nodes, it is nevertheless an AI-free (ie not an intelligent) distributed

system.

Very recent (as yet unpublished) developments in agent research promote ‘agents as a

design metaphor’ [200]. Researchers focussing on the applicability of software agents

have rejected the bottom-up approach to agent definition discussed in this thesis – ie

one building on characteristics such as autonomy, reactiveness, proactiveness – in

favour of a top-down approach. As such this top-down approach concentrates the

analysis on the design methodologies, architectures and supporting infrastructures

required for complex, dynamic (often heterogeneous) environments. The bottom-up

approach would perhaps focus on whether OSPF routers are truly autonomous, or

 137

whether the sociability demands of the Wooldridge/Jennings approach is satisfied by

IP communication protocol.

Yet having established that OSPF could not legitimately be called an agent system,

without making such a term redundant, it may not be necessarily evident that the

enhancements presented in this work could legitimately be seen as agent-based.

Certainly the aim behind the pseudo-delay heuristic was to establish the validity of

spreading less vital traffic away from ‘optimal’ routes rather than investigating the

role of agents. However, the goal of the intelligent routing was to present an agent-

based strategy for routing. A ‘fragile’ model of agents was presented (using the

bottom-up approach) in section 4.6, rejecting the full complexity of communication /

negotiation strategies and protocols. Learning was proposed as a key agent

characteristic. This sets the intelligent routing model apart from a straightforward

distributed system – this approach could instead be said to successfully negotiate the

agent-level pitfall of failing to employ AI. Nevertheless, perhaps the richness of

communication and support architectures that form the top-down approach are

lacking. A limitation to considering this agent system as a design metaphor is that

heterogeneity is compromised in connectionless networks: nodes must share their

network vision in order to avoid routing loops. However, in section 9.2, future work

that could enhance the effectiveness of the approach adopted is discussed. Adding

further, longer-term learning to the system will require a more elaborate agent

architectural design both within and between nodes.

9.1 Evaluation of Results

It is clear from the results that adding intelligence to IP routing does not produce

overwhelming advantages. However, it will be argued that there is sufficient evidence

to support further investigation into applying agent-based techniques.

The early research developed in section 5 investigated manipulating the perceived

cost metrics across links in order to spread lower-cost traffic away from the optimal

paths. Favourable results encouraged adding an agent flavour to this research, ie

adding intelligence in the form of learning. Reinforcement learning was chosen due to

 138

the advantage of not requiring the imposition of a preconceived framework or model.

The necessary exploratory element of this form of learning, however, may explain the

relative variability of results when compared to the heuristic. Strategies to ameliorate

this are discussed in the future work section.

In the later set of simulations (ie those presented as results in section 8) two models of

OSPF are presented: the highly irresponsive benchmark model and one with both high

and low watermark thresholds. The benchmark model forms a useful control, to

examine how the network performs without responding to any traffic surges.

However, the watermark version represents a more critical challenge to any

enhancements. It especially presents a useful critique of the current learning model as

the latter is founded around learning when to flood (and to a lesser extent the value of

the theta factor). Here flooding is in response to increased congestion, but because of

the state space used the learning model cannot differentiate between a flood that

increases link cost and one that decreases it (ie when network congestion has

resolved). Thus, should link cost fall to a level below that which provoked a flood no

LSA would be flooded resetting the cost. An advantage of this is it helps minimise

flooding and the associated convergence overhead, but it limits responsiveness.

In the standard network, ie with link transmission rate of 100,000 bits/second the

OSPF mechanism appeared the most successful strategy. However, adding strain to

the network revealed its critical shortcoming – without the sophistication of the

heuristic or learning mechanisms its strategy proved too crude. Although the learning

mechanism outperforms OSPF in a congested network end-to-end delay figures were

still poor. However, with very high utilisation over several links, such figures would

be expected.

Some results indicate that the learning outperforms the heuristic (notably those for

end-to-end delay for node_11); others indicate higher variability. This is, as discussed,

most likely due to the exploratory nature of the learning. Manipulating the

reinforcement reward function was shown to improve performance, most significantly

when biasing the mechanism against flooding. However, as was demonstrated in the

more congested network this can lead to the system failing to respond adequately to

 139

network stress. Thus, although the results point to the advantage of adding

intelligence they also suggest that the current solution is not intelligent enough.

9.2 Future Work

Having established that an agent system may prove effective in connectionless

networks, future work is required to investigate whether further responsiveness can be

added to enhance system optimisation. Such work would involve developing both a

richer agent architecture and an augmented learning strategy. Arguments for giving

inter-AS interactions an agent label are possibly more valid – feasibly, future work

could explore inter-AS routing although the focus in this section, as within this

project, will be within an AS.

Ideally additional agent behaviour would have been extended to each node – although

mobile agents were considered outside the scope of this research future work would

allow monitoring ants (ie those operating in the higher layer) to be sent from each

node. These would operate at a strategic level, to complement the current

reinforcement learning mechanism. Earlier architectures under consideration had also

incorporated a centralised Network Agent responsible for longer-term learning (eg

Bayesian Reasoning). The findings from the lower-level learning agents would be fed

to this agent. Should this agent fail the network could still function, so robustness

would be guaranteed.

A shortcoming of the reinforcement learning algorithm presented here is that FQ

values are necessarily short term, being updated every time step. This may be

appropriate in a smooth (Poisson) environment, but in a bursty Internet environment it

may prove advantageous to feed the results of the learning into more long-term rules.

Although beyond the current scope of this research, future work could investigate the

advantage of incorporating case-based reasoning [201] into the learning. Case-based

reasoning agents would be distributed to each node (and employed in place of the

agents proposed in the previous paragraph), leading to a potentially more powerful

agent architecture.

 140

Additionally, many of the limitations to the learning are a consequence of the limited

state space adopted. Although, as stated early, a benefit of adding fuzzy sets to the

reinforcement learning algorithm is to control the expansion of state space, it could be

advantageous to include extra parameters into the learning. Incorporating further

information such as the time since the last flood and then making the rewards

dependent on this time could prove useful. Another feature to factor in would be high

and low watermark thresholds. The case-base reasoning agents could be used to

formulate, for example, high and low rules. These rules in turn could be corrected by

the findings of the reinforcement learning agents, ensuring the model worked

effectively in a dynamic environment.

Finally it would be useful to explore a wide range of network topologies to test for

scalability and to discover whether surges would invalidate the benefits of spreading

traffic away from the optimal paths. A more realistic router architecture could also be

included in the simulation by making the queue buffers finite. Currently the buffers in

each node are infinite. This was considered a necessary artifice since the learning

mechanism concentrated on a single cost metric: end-to-end delay. The rationale

behind not imposing finite queues was that this could result in packets being dropped

at times of high link utilisation. In turn this packet loss could mask the traffic stress on

the network, decreasing (and hence masking) the delay rates.

 141

10 Summary
Section 4.4 queried the viability of employing the term agent in network

environments. The over usage of this term had led, it was argued, to redundancy –

anything could be, and indeed claimed to be, an agent. Mere agency was often

sufficient to some authors. This was perhaps not surprising – even within the agent

community can prove difficult to agree on what constitutes this special software

engineering abstraction. Nevertheless, by the end of the chapter the notion of ‘agent-

like’ had been explored. This has resulted in a recasting of the agent:network

relationship, with an attempt to answer a new question:

What elements of agent-like behaviour/practice can prove advantageous in a

tightly-coupled distributed environment?

Autonomy, the prevailing characteristic of an agent, is undermined in such

environments: nodes in an AS need identical link state databases to run OSPF

effectively. Communication already exists, albeit in a protocol form, without the

flexibility promised by agent designers/theorists. Since the means by which the nodes

in the network can respond to changes in the environment is limited to flooding, ie

sharing new link state information with all other nodes, the means by which an

‘agent’ can act upon the environment is by affecting when such floods are triggered

and the contents of the LSA (ie manipulating link costs). This still concurs with the

notion of agents as “situated problem solvers” in [202].

Of course, having limited autonomy, communication and social interaction imposed

by the close coupling of the system, this only left learning as a vehicle for augmenting

behaviour. This thesis looked at viable approaches to learning in the constrained

environment, but even here the problem had to be formulated essentially as a control

problem. There is no scope for radically new behaviours. Reinforcement learning

does have exploratory steps but only within a defined range and reward framework.

Results indicated that routing sub-optimally, using pseudo-delay figures, could result

in improved network optimality. This finding is pertinent given that so-called optimal

 142

strategies have been demonstrated to result in non-optimal networks. Thus what may

appear as a contrary, indeed contradictory, strategy may prove an efficient means of

traffic engineering. Adding learning, ie the agent behaviour, increases the

responsiveness of the pseudo-delay mechanism, with potentially greater sensitivity

through expanding into a more complex agent learning architecture. Whether termed

agent-like or agent-based, adding learning to a tightly-coupled network is here

presented as an advantageous strategy.

 143

Appendix A: Simulation Verification

This appendix lists further examples of simulation verification mechanisms and

experiments. The mechanisms can be grouped into:

1. Halting the simulation

2. Printouts to screen – using printf() statements.

3. Printouts to file

Combinations of the above approaches were employed to verify accurate simulation.

Validation experiments were run to confirm the changes in link costs and the correct

propagation of LSAs

Printouts were applied to trace, for example, correct procedure when propagating

LSAs. When a node propagates a single LSA (ie not when performing a periodic

flood for all link states) the procedure should be to update the node’s own linkstate

database, generate the new routing table, create an LSA, encapsulate it and send it to

neighbouring nodes. Printouts to the screen inside each function would demonstrate

the order of function calls and routing table update. Simulations would be terminated

– using the OPNET procedure op_sim_end() – to allow analysis of screen printout.

Additionally termination would be used to trap illegal states – for example incorrect

LSA delivery, unidentified LSAs, incorrectly terminating algorithms.

File printouts are employed to trace, for example, correct allocation and deallocation

of resources (pointers and packets), network utilisation, how often floods are triggered

and in response to what network conditions

Artificially rising link cost
The purpose of this is to demonstrate that modifying a link cost alters the spf

calculation. This causes all routing tables to modify their recommended next hop

(where appropriate) for destinations that previously routed across this prohibitively

expensive link. This exercise also demonstrates the propagation of each LSA

(showing where each LSA has travelled and when it gets destroyed to prevent

continuous flooding)

 144

Back up Table
The following screen grab provides an example backup table, for node 14 (numbered

16 by the simulation kernel):

The first entry shows the number of alternative next hops for a given destination

(corresponding to the destinations in the traditional routing table)

The next screen capture demonstrates that the out-queues for node 10 (ie 8 in the

topology diagram) have received packets from the core processor for all five

neighbours. The simulation is terminated once the first neighbour receives its LSA.

To confirm correct propagation of LSAs their paths through the network were traced

by printing out to a file. This demonstrates that after the original node (10) sends out

 145

the LSA to its five neighbours all nodes receive the LSA and no node sends it out

more than once (ie the flooding is self-limiting). On receipt of an LSA (after

confirming this is an original LSA) a node forwards it on to all its neighbours

(including the one which previously forwarded it). However, the nodes with only one

neighbour do not propagate LSAs furtherlxxii.

10 sending LSA to 2

10 sending LSA to 9

10 sending LSA to 14

10 sending LSA to 13

10 sending LSA to 15

2 forwarding LSA to nbr 15

2 forwarding LSA to nbr 10

15 forwarding LSA to nbr 2

15 forwarding LSA to nbr 11

15 forwarding LSA to nbr 10

14 forwarding LSA to nbr 8

14 forwarding LSA to nbr 10

14 forwarding LSA to nbr 13

14 forwarding LSA to nbr 16

14 forwarding LSA to nbr 7

11 forwarding LSA to nbr 4

11 forwarding LSA to nbr 12

11 forwarding LSA to nbr 15

11 forwarding LSA to nbr 13

8 forwarding LSA to nbr 14

8 forwarding LSA to nbr 7

7 forwarding LSA to nbr 16

7 forwarding LSA to nbr 14

7 forwarding LSA to nbr 8

16 forwarding LSA to nbr 6

16 forwarding LSA to nbr 12

16 forwarding LSA to nbr 13

16 forwarding LSA to nbr 14

16 forwarding LSA to nbr 7

13 forwarding LSA to nbr 14

13 forwarding LSA to nbr 16

13 forwarding LSA to nbr 10

13 forwarding LSA to nbr 11

12 forwarding LSA to nbr 6

12 forwarding LSA to nbr 11

12 forwarding LSA to nbr 16

6 forwarding LSA to nbr 12

6 forwarding LSA to nbr 16

The following printout to file shows the updated routing table at node 10 (numbered 8

in the topology). At time 0, packets to the neighbouring node 14 are routed directly.

However, at time 10, although observed delay is negligible an artificial load is

imposed on the link 10-14. The new routing table shows that packets from 10 to 14

are now routed via hop 13 as link 10-14 is prohibitively expensive.

time: 0.000000
2 hop is 2
4 hop is 13
6 hop is 13
7 hop is 14
8 hop is 14
9 hop is 9
10 hop is 0
11 hop is 13
12 hop is 13
13 hop is 13
14 hop is 14

lxxii This means their neighbour does not receive an indirect acknowledgement, but that is acceptable in
such a controlled network

 146

15 hop is 15
16 hop is 13

at 10.000000: node 10 to link 14:
 delay G: 0.000000, S: 0.000000, B: 0.000000, theta 0.000000
delay metrics: 5000000, 5000000, 5000000
MTRC sending LSA, seq 0 re theta
time: 10.000000
2 hop is 2
4 hop is 13
6 hop is 13
7 hop is 13
8 hop is 13
9 hop is 9
10 hop is 0
11 hop is 13
12 hop is 13
13 hop is 13
14 hop is 13
15 hop is 15
16 hop is 13

The following diagram shows the number/volume of packets in the system (with

points taken at 12 second intervals). This is used to verify the packet creation and

destruction process.

Packets in the system

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time (secs)

nu
m

be
r o

f p
ac

ke
ts

 147

Author’s Publications

Bourne, Rachel, Shoop, Karen & Jennings, Nicholas “Dynamic Evaluation of
Coordination Mechanisms for Autonomous Agents” in ‘Progress in Artificial
Intelligence’, LNAI 2258, December 2001, ISBN 3-540-43030-X

Shoop, K. & Bigham J. “A Hybrid Agent-Based Architecture for Network Resource
Management”, Proceedings PGNET 2002, Liverpool, UK, August 2002

Shoop, K., Bigham, J. & Phillips, C. “Resource management employing pseudo-delay
for IP networks”, Proceedings 1st IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, Nevada, USA, January 2004

Shoop, Karen, Phillips, Chris & Bigham, John “Agent-Based Sub-Optimal Routing in
Multi-Class IP Networks”, Proceedings International Conference on Computing,
Communications and Control Technologies: CCCT’04, Austin, Texas, USA, August
2004

Shoop, K., Bigham, J. & Phillips, C. “Resource Management Employing Learned
Pseudo-Delay for Multi-Service IP Networks”, Proceedings 10th European
Conference on Networks and Optical Communications, NOC2005, London, UK, July
2005

 148

References

[1] Ma, Qingming & Steenkiste, Peter “Supporting Dynamic Inter-Class Resource

Sharing: A Multi-Class QoS Routing Algorithm”, INFOCOM ’99, New York,
March 1999

[2] Hochkar, Hedia, Ikenaga, Takeshi, Kawahara, Kenji & Oie, Yuji “Multi-class
QoS Routing Strategies Based on the Network State”, Computer
Communications, Vol. 28, Issue 11, 5 July 2005

[3] Nwana, Hyacinth S. “Software Agents: An Overview”, Knowledge
Engineering Review, Vol. 11, No. 3, October/November 1996

[4] Nichols, K., Blake S., Baker, F. & Black, D. “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers”, RFC 2474,
December 1998

[5] Deering, S. & Hinden, R. “Internet Protocol, Version 6 (IPv6) Specification”,
RFC 2460, December 1998

[6] Huitema, Christian “IPv6: The New Internet Protocol”, 2nd Edition, Prentice
Hall, 1998, ISBN 0-13-850505-5

[7] Moy, J. “OSPF Version 2”, RFC 1247, July 1991

[8] Doyle, Jeff “Routing TCP/IP Volume I”, Cisco Press, 2001, ISBN 1-57870-
041-8

[9] Huitema, Christian “Routing in the Internet”, 2nd Edition, Prentice Hall, 2000,
ISBN 0-13-022647-5

[10] Weiss, Mark Allen “Data Structures and Algorithm Analysis in C”, The
Benjamin/Cummings Publishing Company, 1993, ISBN 0-8053-5440-9

[11] URL:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113aa/11
3aa_2/58cfeats/ospfpace.htm

[12] Cisco “Configuring OSPF”, 1997

[13] URL:
www.cisco.com/en/US/products/sw/iosswrel/ps1831/products_configuration_
guide_chapter09186a00800b3f2b.html

[14] Awduche, D et al “Requirements for Traffic Engineering over MPLS”, RFC
2702, Sept 1999

[15] ITU-T Recommendation E.800 “Terms and Definitions Related to Quality of
Service and Network Performance Including Dependability”, August 1993

[16] E. Crawley, R. Nair, B. Rajagopalan and H. Sandick “A Framework for QoS-
based Routing in the Internet”, RFC 2386, August 1998

 149

[17] Chalmers, Dan & Sloman, Morris “A Survey of Quality of Service in Mobile

Computing Environments”, IEEE Communication Surveys, 2nd Quarter 1999

[18] van der Zee, Martin & Heijenk, Geert “Quality of Service in Bluetooth
Networking. Part I”, Technical Report University of Twente, TR-CTIT-01-01,
January 2001, http://ing.ctit.utwente.nl/WU1/

[19] de Castro, Miguel F., M’hamed, Abdallah, Gaiti, Dominique & Oliveira,
Mauro “Simulated Internet Traffic Behaviour under Different QoS
Management Scenarios”, Proceedings ISCC’03, Antalya, Turkey, June/July
2003

[20] Lu, Hui-Lan & Faynberg, Igor “An Architectural Framework for Support of
Quality of Service in Packet Networks”, IEEE Communications Magazine,
Vol. 41, No. 6, June 2003

[21] Bonald, T., Ouselati-Boulahia, S. & Roberts, J. “IP traffic and QoS control:
towards a flow-aware architecture”, Proceedings WTC 2002, Paris, September
2002

[22] Schollmeier, Gero & Winkler, Christian “Providing Sustainable QoS in Next-
Generation Networks”, IEEE Communications Magazine, Vol. 42, No. 6, June
2004

[23] ITU-T Recommendation “End-User Multimedia QoS Categories”, G.1010,
November 2001

[24] ITU-T Recommendation “Network Performance Objectives for IP-based
Services”, Y.1541, May 2002

[25] Cuthbert, L. G. & Sapanel, J. C. “ATM, The Broadband Telecommunications
Solution”, IEE Telecommunications Series 29, 1993, ISBN 0-85286-815-9

[26] Roughgarden, Tim & Tardos, Éva “How Bad is Selfish Routing?” Journal of
the ACM, Vol. 49, Issue 2, March 2002

[27] Fraleigh, C., Tobagi, F. & Diot, C. “Provisioning IP Backbone Networks To
Support Latency Sensitive Traffic” Proceedings INFOCOM 2003, San
Francisco, USA, April 2003

[28] Smith, J.M. “Selected Challenges in Computer Networking”, Computer, Vol.
32, Issue 1, January 1999

[29] Odlyzko, A. M. “Data Networks are Lightly Utilized and Will Stay That
Way”, Review of Network Economics, Vol. 2, Issue 3, September 2003

[30] Moore, Sean S. B. & Siller, Curtis A. Jnr “Packet Sequencing: A
Deterministic Protocol for QoS in IP Networks”, IEEE Communications
Magazine, Vol. 41, No. 10, October 2003

[31] Christin, Nicolas & Liebeherr, Jorg A QoS Architecture for Quantitative
Service Differentiation, IEEE Communications Magazine, Vol. 41, No. 6,
June 2003

 150

[32] Huston, Geoff, “Internet Performance Survival Guide: QoS Strategies for

Multiservice Networks”, Wiley, 2000, ISBN 0-471-37808-9

[33] Jain, R “Myths About Congestion Management in High-Speed Networks”,
Internetworking: Research & Experience, Vol. 3, 1992

[34] Feldman, Anja et al “Performance of Web Proxy Caching in Heterogeneous
Bandwidth Environments”, Proceedings INFOCOM ’99, Vol. 1, New York,
March 1999

[35] Yang, Shanchieh Jay & de Veciana, Gustavo “Enhancing Both Network and
User Performance for Networks Supporting Best Effort Traffic”, IEEE/ACM
Transactions on Networking, Vol. 12, No. 2, April 2004

[36] Feldmann et al “Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience”, IEEE/ACM Transactions on Networking, Vol.
9, No. 3, June 2001

[37] Gozdecki, Janusz, Jajszczyk, Andrzej & Stankiewicz, Rafal “Quality of
Service Terminology in IP Networks”, IEEE Communications Magazine, Vol.
41, No. 3, March 2003

[38] Giresh, Muckai K. “Quality of Service in the Internet: The State-of-the-art and
Challenges”, Proceedings of IEEE 38th Conference on Decision and Control,
Phoenix, USA, December 1999

[39] Braden, R., Clark D. & Shenker S. “Integrated Services in the Internet: an
overview”, RFC 1633, June 1994

[40] Braden, R. et al “Resource Reservation Protocol (RSVP), version 1 –
functional specification”, RFC 2205, September 1997

[41] Mankin, A. (ed) et al “Resource ReSerVation Protocol (RSVP) Version 1
Applicability Statement Some Guidelines on Deployment”, RFC 2208,
September 1997

[42] Blake, S. et al “An Architecture for Differentiated Services”, RFC 2475,
December 1998

[43] Liao, Raymond R.-F. & Campbell, Andrew T. “Dynamic Core Provisioning
for Quantitative Differentiated Services”, IEEE/ACM Transactions on
Networking, Vol. 12, No. 3, June 2004

[44] Chen, Yang, Qiao, Chunming, Hamdi, Mounir & Tsang, Danny H. K.
“Proportional Differentiation: A Scalable QoS Approach”, IEEE
Communications Magazine, Vol. 41, No. 6, June 2003

[45] Machiraju, Sridhar, Seshadri, Mukund & Stoica, Ion “A Scalable and Robust
Solution for Bandwidth Allocation”, Proceedings of IWQoS’02, New York,
May 2002

[46] Achir, Nadjib et al “Active Technology as an Efficient Approach to Control
DiffServ Networks: The DACA Architecture”, LNCS 2496, 2002, ISSN 0302-
9743

 151

[47] Huston, G. “Next Steps for the IP QoS Architecture”, RFC 2990, November

2000

[48] Stoica, Ion & Zhang, Hui “Providing Guaranteed Services Without Per-flow
Management”, Proceedings of ACM SIGCOMM ’99, Boston, USA, August
1999

[49] Welzl, Michael & Franzens, Leopold “Scalability and Quality of Service: a
Trade-off?”, IEEE Communications Magazine, Vol. 41, No. 6, June 2003

[50] Rosen, E., Viswanathan, A. & Callon, R. “Multiprotocol Label Switching
Architecture”, RFC 3031, January 2001

[51] Jamoussi, B. et al “Constraint-Based LSP Setup Using LDP”, RFC 3212,
January 2002

[52] Awduche, D. et al “RSVP-TE: Extensions to RSVP for LSP Tunnels”, RFC
3209, December 2001

[53] Le Faucheur, F. et al “Multi-Protocol Label Switching (MPLS) Support of
Differentiated Services”, RFC 3270, May 2002

[54] Estrin, Judy “Clouds Versus Strings: why IP will continue to provide the
foundation of the Internet”, White Paper, Packet Design Inc, 2000

[55] URL: http://www.wirelessiq.info/content/qa/4.html

[56] Chen, Shigang & Nahrstedt, Klara “An Overview of Quality of Service
Routing for Next-Generation High-Speed Networks: Problems and Solutions”,
IEEE Network, Vol. 12, Issue 6, November/December 1998

[57] Lorenz, Dean H. & Orda, Ariel “QoS Routing in Networks with Uncertain
Parameters”, IEEE/ACM Transactions on Networking, Vol. 6, No. 6
December 1998

[58] Labovitz, C., Malan, G. R. & Jahanian, F. “Internet Routing Instability”,
IEEE/ACM Transactions on Networking, Vol. 6, No. 5, October 1998

[59] Apostolopoulos, G. et al “QoS Routing Mechanism and OSPF Extensions”,
RFC 2676, August 1999

[60] Ma, Q. & Steenkiste P. “Quality of Service Routing for Traffic with
Performance Guarantees” Proceedings of IFIP 5th International Workshop of
Quality of Service, New York, May 1997

[61] Apostolopoulos, G., Guérin, R., Kamat, S. & Tripathi, S. “Improving QoS
Routing Performance Under Inaccurate Link State Information”, Proceedings
of 16th International Teletraffic Congress (ITC’16), Edinburgh, UK, June 1999

[62] Guérin, Roch A. & Orda, Ariel “QoS Routing in Networks with Inaccurate
Information: Theory and Algorithms”, IEEE/ACM Transactions on
Networking, Vol. 7, No. 3, June 1999

[63] Chu, Jian, Lea, Chin-Tau & Wong, Albert “Cost-based QoS Routing”,
Proceedings of ICCCN 2003, Dallas, USA October 2003

 152

[64] Das, S. et al “A QoS Network Management System for Robust and Reliable

Multimedia Services”, Proceedings of Multimedia on the Internet, MMNS
2002, LNCS 2496, 2002, ISSN 0302-9743

[65] Lim, S.H., Yaacob, M.H., Phang, K.K. & Ling, T.C. “Traffic Engineering
Enhancements to QoS-OSPF in DiffServ and MPLS Networks”, IEE
Proceedings – Communications, Vol. 151, No. 1, February 2004

[66] Ma, Qingming & Steenkiste, Peter “On Path Selection for Traffic with
Bandwidth Guarantees”, International Conference on Network Protocols,
Atlanta, USA, October 1997

[67] Floyd, Sally & Jacobson, Van “Link-Sharing and Resource Management
Models for Packet Networks”, IEEE/ACM Transactions on Networking, Vol.
3, No. 4, August 1995

[68] Sridharan, Ashwin, Guérin, Roch & Diot, Christophe “Achieving Near-
Optimal Traffic Engineering Solutions for Current OSPF/IS-IS Networks”,
Proceedings INFOCOM 2003, San Francisco, April 2003

[69] Fortz, B. & Thorup, M. “Increasing Internet Capacity Using Local Search”,
Technical Report IS-MG 2000/21, Université Libre de Bruxelles, 2000,
http://www.ulb.ac.be/polytech/smg/publications/Preprints/FullText/Fortz00_2
1.pdf

[70] Fortz, Bernard & Thorup, Mikkel “Internet Traffic Engineering by Optimizing
OSPF Weights”, Proceedings INFOCOM 2000, Vol. 2, Tel Aviv, Israel,
March 2000

[71] Fortz, Bernard & Thorup, Mikkel “Robust Optimization of OSPF/IS-IS
Weights”, Proceedings of INOC 2003, Paris, France, October 2003

[72] Apostolopoulos, G., Guérin, R & Kamat, S. “Implementation and Performance
Measurements of QoS Routing Extensions to OSPF”, Proceedings INFOCOM
’99, Vol. 2, March 1999

[73] Xiao, Xipeng & Ni, Lionel “Reducing Routing Table Computation Cost in
OSPF”, Proceedings INET’99, San Jose, USA, June 1999

[74] Choe, Myongsu, Wybenga, Jack, Kang, Byung Chang & Boukerche,
Azzendine “A Routing Coordination Protocol in a Loosely-Coupled Massively
Parallel Router”, Proceedings of IEEE HPSR 2002, Tokyo, May 2002

[75] Fortz, B. & Thorup. M. “Optimizing OSPF/IS-IS Weights in a Changing
World”, IEEE Journal on Selected Areas in Communications, Vol. 20, No. 4,
May 2002

[76] Basu, Anindya & Riecke, Jon G. “Stability Issues in OSPF Routing”,
Proceedings SIGCOMM 2001, San Diego, USA, August 2001

[77] Devel, Manasai et al “Distributed Control Plane Architecture for Network
Elements”, Intel Technology Journal, Volume 7, Issue 4, November 2003

[78] Katz, D. & Ward, D. “BFD for IPv4 and IPv6 (single hop)”, draft-ietf-bfd-
v4v6-1hop-00.txt, July 2004

 153

[79] Dubrovsky, Alex, Gerla, Mario, Lee, Scott S. & Cavendish, Dirceu “Internet

QoS Routing with IP Telephony and TCP Traffic”, ICC 2000, New Orlean,
USA, June 2000

[80] Spitler, Stephen L. & Lee, Daniel C. “Integrating Effective-Bandwidth-Based
QoS Routing and Best Effort Routing”, Proceedings INFOCOM 2003, San
Francisco, April 2003

[81] Coltun, R. “The OSPF Opaque LSA Option”, RFC 2370, July 1998

[82] Katz, D., Kompella, K. & Yeung, D. “Traffic Engineering (TE) Extensions to
OSPF Version 2”, RFC 3630, September 2003

[83] Alnuweiri, Hussein M., Wong, Lai-Yat Kelvin & Al-Khasib, Tariq
“Performance of New Link State Advertisement Mechanism in Routing
Protocols with Traffic Engineering Extensions”, IEEE Communications
Magazine, Vol. 42, No. 5, May 2004

[84] Sibal, S. & Desimone, A. “Controlling Alternate Routing in General-Mesh
Packet Flow Networks”, Proceedings of ACM SIGCOMM, 1994, London

[85] Russell, Stuart J. & Norvig, Peter “Artificial Intelligence: a Modern
Approach”, 2nd Edition, Pearson Education Inc, 2003, ISBN 0-13-080302-2

[86] Hayzelden, Alex, L.G. & Bigham John (Eds) “Software Agents for Future
Communication Systems”, Spring-Verlag, 1999, ISBN 3-540-65578-6

[87] Franklin, Stan & Graesser, Art “Is it an Agent, or just a Program? A
Taxonomy for Autonomous Agents”, Intelligent Agents III: Agent Theories,
Architectures, and Languages (eds. Muller, J.P., Wooldridge, M. & Jennings,
N.R.) LNAI 1193, Springer-Verlag, Berlin, 1997, ISBN 3-540-62507-0

[88] Turing, A. “Computing Machinery and Intelligence”, Mind, Vol. 59, No. 236,
October 1950

[89] Muller, Jorg P. “The Design of Intelligent Agents – A Layered Approach”,
LNAI 1177, Springer 1996, ISBN 3-540-62003-6

[90] Weiss, Gerhard (ed) “Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence”, MIT Press, 1999, ISBN 0-262-232-3-0

[91] Sutton, Richard S. & Barto, Andrew, G. “Reinforcement Learning: An
Introduction”, MIT Press, Cambridge, USA, 1998, ISBN 0-262-19398-1

[92] Keshava, S. & Sharma, R. “Achieving Quality of Service through Network
Performance Management”, Proceedings of NOSSDAV'98, Cambridge,
UK, July 1998

[93] Jennings, B. et al “FIPA-compliant Agents for Real-time Control of Intelligent
Network Traffic”, Computer Networks 31, pp 2017-2036, 1999

[94] Luck, Michael, McBurney, Peter & Priest, Chris “Agent Technology:
Enabling Next Generation Computing”, AgentLink, 2003, ISBN 0854 327886

 154

[95] Biezczad, A., White, T. & Pagurek, B. “Mobile Agents for Network

Management”, IEEE Communications Surveys, Vol. 1, No. 1, September
1998

[96] Wooldrige, M. & Jennings, N. “Intelligent Agents: Theory and Practice”,
Knowledge Engineering Review, Vol. 10, No. 2, January 1995

[97] Wooldridge, Michael “An Introduction to Multiagent Systems”, John Wiley &
Sons Ltd, 2003, ISBN 0-471-49691-X

[98] Brooks, R.A. “A Robust Layered Control System for a Mobile Robot”, IEEE
Journal of Robotics and Automation, Vol. 2, 1986

[99] Jennings, Nicholas R. & Bussmann, Stefan “Agent-Based Control Systems:
why are they suited to engineering complex systems?”, IEEE Control Systems
Magazine, Vol. 23, No. 3, June 2003

[100] Wooldridge, Michael & Jennings, Nicholas R. “Pitfalls of Agent-Oriented
Development”, Proceedings 2nd International Conference on Autonomous
Agents (Agents – 98), Minneapolis, USA, 1998

[101] Wooldridge, Michael J. & Jennings, Nicholas R. “Software Engineering with
Agents: Pitfalls and Pratfalls”, IEEE Internet Computing, 3 (3), May-June
1999

[102] Perkins, C. (ed) “IP Mobility Support”, RFC 2002, October 1996

[103] Poslad, Stefan & Charlton, Patricia “Standardizing Agent Interoperability: The
FIPA Approach”, in Multi-Agent Systems and Applications, LNAI 2086, April
2001, ISBN 3-540-42312-5

[104] Case, J., Mundy, R. Partain, D. & B. Stewart “Introduction and Applicability
Statements for Internet Standard Management Framework”, RFC 3410,
December 2002

[105] Pavlou, George, Flegkas, Paris, Gouveris, Stelios & Liotta, Antonio “On
Management Technologies and the Potential of Web Services”, IEEE
Communications Magazine, Vol. 42, No. 7, July 2004

[106] Comer, Douglas E. “Internetworking with TCP/IP Vol 1: Principles, Protocols
and Architecture” 4th Edition, Prentice Hall, ISBN 0-13-018380-6, 2000

[107] Muller, Nathan J. “Improving Network Operations With Intelligent Agents”,
International Journal of Network Management, Vol. 7, No. 3, May/June 1997

[108] Nichols, K., Jacobson, V. & Zhang, L. “A Two-bit Differentiated Services
Architecture for the Internet”, RFC 2638, July 1999

[109] Shelén, Olov, Nilsson, Andreas, Norrgard, Joakim & Pink, Stephen
“Performance of QoS Agents for Provisioning Network Resources”,
Proceedings of IFIP 7th International Workshop on QoS (IWQoS’99), London,
1999

[110] Schelén, Olov “Quality of Service Agents in the Internet”, PhD Thesis, Luleå
University of Technology, Sweden, August 1998

 155

[111] Border, J., Kojo, M., Griner, J., Montenegro, G. & Shelby, Z. “Performance

Enhancing Proxies Intende to Mitigate Link-Related Degredations”, RFC
3135, June 2001

[112] Galloway, Alexander R. “Protocol: How Control Exists After
Decentralization”, MIT Press, 2004, ISBN 0-262-07247-5

[113] Durfee, E.H “Practically Coordinating” AI Magazine, Vol. 20, Issue 1, 1999

[114] Bourne, Rachel, Shoop, Karen & Jennings, Nicholas “Dynamic Evaluation of
Coordination Mechanisms for Autonomous Agents” in Progress in Artificial
Intelligence, LNAI 2258, Dec 2001, ISBN 3-540-43030-X

[115] Faratin, P., Sierra, C. & Jennings, N.R. “Using Similarity Criteria to Make
Negotiation Trade-Offs”, Proceedings of 4th International Conference on
Multiagent Systems, Boston, USA, July 2000

[116] Bodanese, E.L. & Cuthbert, L. “A Multi-Agent Channel Allocation Scheme
for Cellular Mobile Networks”, Proceedings of 4th International Conference on
Multiagent Systems, Boston, USA, July 2000

[117] Hayzelden, Alex & Bigham, J. “Heterogeneous Multi-Agent Architecture for
ATM Virtual Path Network Resource Configuration”, in “Intelligent Agents
for Telecommunications Applications (IATA ’98)”, LNAI 1437, Albayrak, S
& Garijo, F.J (eds), Springer-Verlag, 1998, ISBN 3-540-64720-1

[118] Vayia, E., Soldatos, J., Bigham, J., Cuthbert L. & Luo, Z. “Intelligent Agents
for ATM Network Control and Resource Management: Experiences and
Results from an Implementation on a Network Testbed”, Journal of Network
and Systems Management, Vol. 8, No. 3, September 2000

[119] Hayzelden, Alex, Bigham, John & Luo, Zhiyuan “Multi-Agent Interactions for
a Network Management System (Tele-MACS Approach)” in Hayzelden, Alex,
L.G & Bigham, John (eds)

[120] Ryan, Damian, Bigham, John, Cuthbert, Laurie & Tokarchuk, Laurissa
“Intelligent Agents for Resource Management in Third Generation Networks”,
Proceedings of Twenty-first SGES International Conference on Knowledge
Based Systems and Applied Artificial Intelligence (ES2001), Cambridge, UK,
Dec 2001

[121] Vilà, Pere, Marzo, José L. & Calle, Eusebi “Dynamic Bandwidth Management
as Part of an Integrated Network Management System Based on Distributed
Agents”, Proceedings of GLOBECOM 2002, Taipei, Taiwan, November 2002

[122] Monteiro, Paulo & Correia, Luís “Adaptive Telecommunication Network
Traffic Control - A Multi-Agent System Approach”, 2nd Ibero-American
Workshop on DAI and MultiAgent Systems, Toledo, Spain, October 1998

[123] Willmott, Steven & Faltings, Boi “The Benefits of Environment Adaptive
Organisations for Agent Coordination and Network Routing Problems”,
Proceedings IEEE ICMAS, Boston, USA, July 2000

 156

[124] ATM Forum Technical Committee “Private Network-Network Interface

Specification, Version 1.0 (PNNI 1.0)”, March 1996

[125] Vidal, José M. & Durfee, Edmund H. “Learning Nested Agent Models in an
Information Economy”, Journal of Experimental and Theoretical Artificial
Intelligence (special issue on learning in distributed artificial intelligence
systems), Vol. 10, No.3, 1998

[126] Willmott, Steven et al, “Agentcities: A Worldwide Open Agent Network”,
URL: http://www-lsi.upc.es/~ia/aia/agentcities.pdf

[127] Wolpert, David, Kirshener, Sergey, Merz, Chris J & Tumer, Kagan
“Adaptivity in Agent-Based Routing for Data Networks”, Proceedings of 4th
International Conference on Autonomous Agents, Barcelona, Spain, June
2000

[128] Korilis, Y.A, Lazar, A.A & Orda, A “Achieving network optima using
Stackelberg routing strategies”, IEEE/ACM Transactions on Networking, Vol.
5, No. 1, Feb 1997

[129] Peshkin, Leonid & Savona, Virginia “Reinforcement Learning for Adaptive
Routing”, Proceedings of 2002 International Joint Conference on Neural
Networks, Honolulu, Hawaii, May 2002

[130] Nowé, A, Steenhaut, K., Fakir, M. & Verbeeck, K. “Q-learning for Adaptive,
Load Based Routing”, IEEE International Conference on Systems, Man and
Cybernetics, San Diego, USA, October1998

[131] Tillotson, P.R.J, Wu, Q.H. & Hughes, P.M. “Multi-Agent Learning for
Control of Internet Traffic Routing”, IEE Seminar: Learning Systems for
Control (Ref. No. 2000/069), Birmingham, UK, May 2000

[132] Papaioannou, T.G., Sartzetakis, S. & Stamoulis, G.D. “Efficient Agent-Based
Selection of DiffServ SLAs over MPLS Networks within the ASP Service
Model”, Journal of Network and Systems Management, Special Issue on
Management of Converged Networks, Vol. 10, Issue 1, March 2002

[133] Gibney, M.A., Jennings, N.R., Vriend, N.J. & Griffiths, J.M. “Market-based
call routing in telecommunications networks using adaptive pricing and real
bidding”, In A.L.G.Hayzelden & R.A.Bourne “Agent Technology for
Communication Infrastructures” p234-248, John Wiley & Sons, UK, 2001,
ISBN0-471-49815-7

[134] Prouskas, K., Patel, A., Pitt, J. & Barria, J. “A Multi-agent System for
Intelligent Network Load Control Using a Market-based Approach”, 2000,
IEEE Proceedings of 4th International Conference on MultiAgent Systems,
2000, 10-12 July 2000, Boston, USA

[135] Arvidsson A., Jennings B., Angelin L. & Svensson, M. “On the use of agent
technology for IN load control”, Proceedings of 16th International Teletraffic
Congress (ITC-16), Edinburgh, UK, June 1999

 157

[136] Bourne, Rachel A. & Zaidi, Rehan “A Quote-Driven Automated Market”,

Symposium on Information Agents for e-Commerce at the AISB’01
Convention, March 2001, York, UK,

[137] Gibney, M.A. & Jennings, N.R. “Dynamic Resource Allocation by Market-
Based Routing in Telecommunications Networks”, Proceedings IATA’98,
LNAI 1437, ISBN 3-540-64720-1

[138] Prouskas, K., Patel, A., Pitt, J. & Barria, J. “A Multi-agent System for
Intelligent Network Load Control Using a Market-based Approach”, 2000,
IEEE Proceedings of 4th International Conference on MultiAgent Systems,
2000, 10-12 July 2000, Boston, USA

[139] Wellman, M.P. “A Market-Oriented Programming Environment and its
Application to Distributed Multicommodity Flow Problems”, Journal of
Artificial Intelligence Research, Vol. 1, No.1,1993

[140] URL: www.fipa.org

[141] Dorigo, Marco, Di Caro, Gianni & Gambardella, Luca M. “Ant Algorithms for
Discrete Optimization”, Artificial Life, Vol.5, no.2, 1999

[142] Schoonderwoerd, R., Holland, O.E. & Bruten, J.L. “Ant-like agents for load
balancing in telcommunications networks” Proceedings of the 1st International
Conference on Autonomous Agents, Marina Del Ray, USA, 1997

[143] Liang, Suihong, Zincir-Heywood, A.Nur & Heywood, Malcolm I. “Intelligent
Packets for Dynamic Network Routing Using Distributed Genetic Algorithm”,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002), New York, USA, 9-13 July 2002

[144] Legge, David & Baxendale, Peter “The Strategic Control of an Ant-Based
Routing System using Neural Net Q-Learning Agents”, AISB’04, Leeds, UK,
March 2004

[145] Di Caro, G. & Dorigo, M. “AntNet: Distributed stigmergic control for
communications networks”, Journal of Artificial Intelligence Research (JAIR),
9, pp 317-365, December 1998

[146] Wu, Jin & Djemame, Karim “An Expert-System-Based Structure for Active
Queue Management”, Proceedings of 2nd International Conference on
Machine Learning and Cybernetics, Xi’an, China, 2-5 November 2003

[147] Flegkas, Paris, Trimintzios, Panos & Pavlou, George “A Policy-Based Quality
of Service Management System for IP DiffServ Networks”, IEEE Network,
Vol. 16, Issue 2, March/April 2002

[148] Rajan, Raju et al “A Policy Framework for Integrated and Differentiated
Services in the Internet”, IEEE Network, Vol. 13, Issue 5, September/October
1999

[149] Law, K.L.E. & Saxena, A. “Scalable Design Of A Policy-Based Management
System And Its Performance”, IEEE Communications Magazine, Vol. 41, No.
6, June 2003

 158

[150] Dugeon, Olivier & Diaconescu, Ada “From SLA to SLS up to QoS Control:

The CADENUS framework”, Proceedings of WTC 2002, Paris, September
2002

[151] Trimintzios, Panos et al “Service-Driven Traffic Engineering for Intradomain
Quality of Service Management”, IEEE Network, Vol. 17, Issue 3, May/June
2003

[152] Trimintzios, P et al “Quality of Service Provisioning for Supporting Premium
Services in IP Networks”, Proceedings of IEEE GLOBECOM 2002, Taipei,
Taiwan, November 2002

[153] EURESCOM “Inter-operator interfaces for ensuring end to end QoS”, P1008,
May 2001

[154] Boyle, J. et al “The COPS (Comment Open Policy Service) Protocol”, RFC
2748, Jan 2000

[155] Chieng, David, Ho, Ivan Marshall, Alan & Parr, Gerard “An Architecture for
Agent-Enhanced Network Service Provisioning through SLA Negotiation”,
Proceedings of Soft-Ware 2002: Computing in an Imperfect World, Belfast,
April 2002, LNCS 2311, Springer Verlag, ISBN 3-540-43481-X

[156] Vilà, Pere “Dynamic Management and Restoration of Virtual Paths in
Broadband Networks Based on Distributed Software Agents”, PhD Thesis,
University of Girona, 2004

[157] Liu, Nelson X. & Baras, John S. “Modelling Multi-Dimensional QoS: Some
Fundamental Constraints”, International Journal of Communication Systems,
Vol. 17, Issue 3, April 2004

[158] Guerin, R., Orda, A. & Williams, D. “QoS Routing Mechanisms and OSPF
Extensions”, Proceedings IEEE Globecom 1997, Phoenix, USA, Nov 1997

[159] Orda, Ariel & Sprintson, Alexander “QoS Routing: The Precomputation
Perspective”, Proceedings IEEE INFOCOM 2000, Tel Aviv, Israel, March
2000

[160] Gopalan, Kartik, Chiueh, Tzi-cker & Lin, Yow-Jian “Load Balancing Routing
with Bandwidth-Delay Guarantees”, IEEE Communications Magazine, Vol.
42, No. 6, June 2004

[161] Jia, Yanxia, Nikolaidia, Ioani & Gburzynski, Pawel “On the Effectiveness of
Alternative Paths in QoS Routing”, International Journal of Communication
Systems, Vol. 17, Issue 1, February 2004

[162] Awduche, D et al “Overview and Principles of Internet Traffic Engineering”,
RFC 3272, May 2002

[163] Kaya, Mehmet & Alhajj, Reda “Modular Fuzzy-Reinforcement Learning
Approach with Internal Model Capabilities for Multiagent Systems”, IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol.
34, Issue 2, April 2004

 159

[164] Watkins, Christopher J.C.H & Dayan, Peter “(Technical Note) Q-Learning”,

Machine Learning, Vol. 8, No. 4, May 1992

[165] Singh, Satinder, Jaakkola, Tomit, Littman, Michael L. & Szepesvari, Csabla
“Convergence Results for Single-Step On-Policy Reinforcement-Learning
Algorithms”, Machine Learning, Vol. 38, Issue 3, March 2000

[166] Tokarchuk, L., Bigham, J. & Cuthbert, L. “Fuzzy Sarsa: An Approach to
Fuzzifying Sarsa Learning”, Proceedings of the International Conference on
Computational Intelligence for Modelling, Control and Automation, Gold
Coast, Australia, July 2004

[167] Jantzen, Jan "Fuzzy Control", Lecture notes in On-Line Process Control
(5354), Publication No. 9109, Electric Power Engineering Department,
Technical University of Denmark, October 1991 (revision 4, 1994)

[168] Verbruggen, H.B. & Babuska, R. (Eds) “Fuzzy Logic Control Advances in
Applications”, World Scientific, 1999, ISBN 981-02-3825-8

[169] Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A. &
Ploycarpou, M. “Fuzzy Logic Congestion Control in TCP/IP Best-Effort
Networks”, ATNAC 2003, Melbourne, Australia, December 2003

[170] Sivaramakrishna Mopati & Dilip Sarkar “Call Admission Control in Mobile
Cellular Systems Using Fuzzy Associative Memory”, Proceedings of
IC3N’03, Dallas, USA, October 2003

[171] Aboelela, E. & Douligeris, C. “Routing in Multimetric Networks Using a
Fuzzy Link Cost”, Proceedings of 2nd IEEE Symposium on Computers and
Communications, July 1997

[172] Chemouil, Prosper, Khalfet, Jelila & Lebourges, Marc “A Fuzzy Control
Approach for Adaptive Traffic Routing”, IEEE Communications Magazine,
Vol. 3, No. 7, July 1995

[173] Qiu,Bin “Intelligent Algorithms for QoS Management in Modern
Communication Networks”, Proceedings of ICT2003, French Polynesia,
February 2003

[174] He, Minghua & Jennings, Nicholas R. “Designing a Successful Trading
Agent: A Fuzzy Set Approach”, IEEE Transactions on Fuzzy Systems, Vol.
12, No. 3, June 2004

[175] Negnevitsky, Michael “Artificial Intelligence: a guide to intelligent systems”,
2nd Edition, Addison Wesley, 2005, ISBN 0-321-20466-2

[176] Mamdani, E.H. & Assilian, S. “An Experiment in Linguistic Synthesis with a
Fuzzy Logic Controller”, International Journal of Man-Machine Studies, Vol.
7, No. 1, January 1975

[177] Bonarini, A., Bonacina, C., & Matteucci,M. (2000) “Fuzzy And Crisp
Representation of Real-Valued Input for Learning Classifier Systems” in
Lanzi, P.L., Stolzmann, W. & Wilson, S. W. (eds) “Learning Classifier

 160

System: from foundations to applications”, LNAI 1813, Springer-Verlag,
2000, ISBN 3-540-67729-1

[178] Anderson, Charles W. “Learning to Control an Inverted Pendulum Using
Neural Networks”, IEEE Control Systems Magazine, Vol. 9, No. 3, April
1989

[179] Carlström, Jakob & Nordström, Ernst “Reinforcement Learning for Control of
Self-Similar Call Traffic in Broadband Networks”, Proceedings of 16th
International Teletraffic Congress (ITC’16), Edinburgh, UK, June 1999

[180] Bonarini, Andrea “Reinforcement Distribution for Fuzzy Classifiers: a
Methodology to Extend Crisp Algorithms”, Proceedings IEEE International
Conference on Evolutionary Computation, Anchorage, USA, May 1998

[181] Ariza, A., Casilari, E. & Sandoval, F. “Strategies for Updating Link States in
QoS Routers”, Electronics Letters, Vol. 36, No. 20, 28 September 2000

[182] Ariza, A., Casilari, E. & Sandoval, F. “QoS Routing With Adaptive Updating
of Link States”, Electronics Letters, Vol. 37, No. 9, 26 April 2001

[183] OPNET Modeler documentation, OPNET Technologies, Inc., Bethesda, USA

[184] Qui, Lili, Yang, Yang Richard, Zhang, Yin & Shenker, Scott “On Selfish
Routing in Internet-Like Environments”, Proceedings ACM Sigcomm ’03,
Karlsruhe, Germany, August 2003

[185] URL: http://www.juniper.net/techpubs/hardware/m160/m160-hwguide/m160-
hwguide-TOC.html

[186] Cisco “Understanding the Transmit Queue Limit With IP to ATM CoS”
Document ID: 6190, updated May 2004

[187] URL:
http://www.cisco.com/en/US/tech/tk827/tk831/technologies_tech_note09186a
00800946f7.shtml

[188] Floyd, Sally & Paxson, Vern “Difficulties in Simulating the Internet”,
IEEE/ACM Transactions on Networking, Vol. 9, No. 4, August 2001

[189] Leland, Will E., Taqqu, Murad S., Willinger, Walter & Wilson, Daniel V. “On
the Self-Similar Nature of Ethernet Traffic (Extended Version)”, IEEE/ACM
Transactions on Networking, Vol. 2, Issue 1, February 1994

[190] Karagiannis, T., Molle, M. & Faloutsos, M. “Long-Range Dependence: Ten
Years of Internet Modelling”, IEEE Internet Computing, Vol. 8, Issue 5,
September/October 2004

[191] Li, Guang-Liang & Li, Viktor O.K. “Networks of Queues: Myths and Reality”
Proceedings of IEEE 18th Workshop on Computer Communications, Dana
Point, USA, October 2003

[192] Xu, Ying & Guerin, Roch “Individual QoS versus Aggregate QoS: A Loss
Performance Study”, Proceedings IEEE INFOCOM 2002, New York, USA,
June 2002

 161

[193] Geogoulas, Stylianos, Triminitzios, Panos & Pavlou, George “Joint

Measurement- and Traffic Descriptor-based Admission Control at Real-Time
Traffic Aggregation Points” Proceedings ICC 2004, Paris, France, June 2004

[194] Carpenter, Brian & Nichols, Kathleen “Differentiated Services in the
Internet”, IBM Research Report, RZ3395, November 2002

[195] URL: http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/emt.html

[196] Pawlikowski, Krzysztof, Jeong, Hae-Duck Joshua & Lee, Jong-Suk Ruth “On
Credibility of Simulation Studies of Telecommunication Networks”, IEEE
Communications Magazine, Vol. 40, No. 1, January 2002

[197] Claffy, K. & Miller, Greg “The Nature of the Beast: Recent Traffic
Measurement from an Internet Backbone”, Proceedings inet98, Geneva,
Switzerland, July 1998

[198] Heidemann, John, Mills, Kevin & Kumar, Sri “Expanding Confidence in
Network Simulations”, IEEE Network, Vol. 15, Issue 5, September/October
2001

[199] Brooks, Frederick P. Jnr “The Mythical Man-Month”, Addison-Wesley, 1995,
ISBN 0-201-83595-9

[200] Luck, Michael, McBurney, Peter, Shehory, Onn & Willmott, Steve “Agent
Technology Roadmap draft: agent based computing”, DRAFT to be published
by the University of Southampton, UK, 2005

[201] Kolodner, Janet L. “Case-Based Reasoning”, Morgan Kauffmann, 1993, ISBN
1-558-60237-2

[202] Jennings, N.R. “Agent-Based Computing: Promises and Perils”, Proceedings
16th IJCAI, Stockholm, Sweden, August 1999

