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Abstract!
On-body sensors are used in the application of wearable sensing systems. These 

systems can capture different information such as physiological activities and motion. 

Wearable sensor systems designed specifically for motion capture need to consider the 

wearer’s comfort and wearability criteria. The weight and size of the system need to be 

kept small and the system should not interfere with the user’s movements or actions.  In 

general, body motion sensors are bulky or have large batteries. They are also sensitive 

to positioning. Accurate sensor placement with respect to anatomical landmarks is one 

of the main factors determining the accuracy of motion capture systems. Changes in the 

position of the sensors cause increased variability in the motion data, so isolating the 

characteristic features that represent the most important motion patterns from those 

affected by such kind of changes is our main concern. We consider an automated 

computation approach to address this problem. As accurate sensor placement is time-

consuming and hard to achieve we investigate a signal processing technique that can 

enable salient data to be isolated. Our goal is to permit a more flexible motion capture 

system to be developed whilst compensating for the effect of changes in the position of 

sensors. Furthermore, for the first time we test whether functional data analysis can 

allow the sampling rate to be reduced so we can increase energy efficiency. This would 

permit the use of smaller batteries and thus increase the wearer’s comfort. We use 

functional principal component analysis (fPCA) to compensate for the reduced 

sampling rate and for the effect of random changes in the position of the sensors. More 

precisely, we investigate the use of fPCA for filtering and interpreting motion data 

whilst accounting for variability in the sensor origin. Data are collected through a 

marker-based motion capture system in experiments using human body and robot arm 

movements. The proposed post-processing technique can compensate for uncertainties 

due to sensor positional changes, whilst supporting more energy efficient systems, thus 

enabling a step towards flexibility in on-body sensing. 
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1. Introduction!
 

Human body parameters can be captured by a network of on-body sensors, 

which is used in the application of wearable computing devices. These systems can be 

worn on human body to capture different kinds of information such as motion and 

physiological changes [1]- [2]- [3]. Wearable system design needs to consider the 

wearers’ comfort and fitting requirements while considering measurement performance. 

For example, the weight and the size of the system need to be kept small and the system 

should not interfere with the user’s movements or actions [4]. Recent developments of 

wearable biosensor systems include advances in miniature bio-sensing devices, smart 

textiles, microelectronics, wireless communications and advanced algorithms for signal 

processing [5]- [6]- [7]. 

Sensors are the key components for wearable electronics systems. They gather 

data from the wearer and relay the information to a processing unit.  Wearable systems 

comprise various types of miniature sensors, wearable or implantable. The sensors 

measure physiological parameters like heart rate, blood pressure, body and skin 

temperature, oxygen saturation, respiration rate, electrocardiogram, motion, etc [1]. The 

type, position and number of sensors used depend on the application of the wearable 

systems. One area of development is smart clothing and textiles, for which flexible 

sensors have been developed. Smart textiles are capable of changing properties with the 

environmental conditions, e.g., change in pressure, moisture, temperature, etc [8]- [9]. 
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Sensor technologies in motion capture for rehabilitation have received great 

attention recently. Motion capture is the process of recording movement of body and 

translating that movement onto a digital model [10]. The goal of motor rehabilitation is 

to enable a person with motor function impairment to overcome the impediment and 

recover full motor function [11]. There are several kinds of sensor technologies that 

have been developed in the field of motion capture and tracking to collect movement 

information. In general, a tracking system can be visual-based (marker and marker-less 

based), non-visual, or a combination of both. 

In capturing of human motion via on-body sensors, the motion of a body can be 

thought of as a collection of time series streams describing the joint angles, which is 

called motion data. Motion data can be used in applications such as animation, sports 

biomechanics, rehabilitation, and so on. In many applications, the human body is 

approximated by a collection of articulated limbs that form a kinematic tree. Accurate 

sensor placement with respect to anatomical landmarks plays a vital role in motion 

capture. Special care must be taken to achieve levels of reliability sufficient to justify 

the results of motion capture systems despite measurement variability. 

1.1. Motivation 

In general, on-body sensors are very sensitive to positioning and are bulky due 

to large batteries. In our research the focus is on motion capture using on-body sensors 

as a potential part of smart clothing and thus enable their widespread use for improving 

people’s quality of life for example in home-based rehabilitation, evidence-based 

rehabilitation and sport sciences applications. The disadvantages of such on-body 

systems are being cumbersome, uncomfortable to wear and the sensors are easy to 

displace as shown in figure 1.1.  
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Figure 1.1, An inertial based motion capture system with attached sensors on body [34] 
 

In rehabilitation, costs of medicine and an aging population are driving the need 

for the provision of care and treatments at home [12].  In addition, advances in virtual 

technologies have enabled systems with biofeedback, which enhance motor learning 

and make motor rehabilitation more effective. Recent literature on rehabilitation 

platforms with biofeedback demonstrates how biofeedback can increase the 

effectiveness and improve the outcomes of rehabilitation [11]. However, these systems 

rely on accurate measurements and representation of motion, which are only possible at 

the moment with bulky and expensive optical systems, which rely on expert technical 

support for equipment and platform set-up as well as operation. For these systems to 
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become more widely adopted as home-based rehabilitation platforms, challenges of 

overcoming human errors due to non-expert operation, power efficiency, and size or 

bulkiness need to be overcome. 

In evidence-based medicine the need to control spiralling costs of medical 

treatments has brought about evidence-based decision-making in designing care 

pathways. This requires that treatments, that is, their outcomes are compared in terms of 

their clinical performance and cost-effectiveness. Treatment outcomes need to be 

assessed and compared using objective, quantifiable measures [13].  The effect of this 

trend on rehabilitation means that the measurement of motor function before and after 

the treatment using optical motion capture is increasingly being used to gather clinical 

evidence of rehabilitation treatment effectiveness. 

Motion capture in a lab setting has been criticised as inappropriate for measuring 

the true extent (i.e. limitation) of motor function. Measurements of motor function in 

everyday patients’ settings are becoming more important as the focus of care shifts 

towards the quality of life [14]. For example, measuring gait in the lab is limited to 

level-walking or a few steps on a short staircase at best.  A more valid measurement 

results from capturing patient’s motion across a broader range of scenarios, in a home 

setting or outside. This demand drives the need for portable motion capture devices [1].  

In sports science, motion capture technologies that can be used outside or in a 

field setting are needed to support sport science [15]- [16]. Here, high performance in 

terms of both processing speed and measurement accuracy is particularly critical. 

Motion capture systems need to be able to measure an increased, or broader-than-

normal, range and speed of motion, and do so without hindering movement. 
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Motion artefacts, sensitivity to sensor placement and insufficient battery life are 

among the issues that need to be overcome for wider acceptance of body area sensing 

systems in the aforementioned applications [17]. Recent technological developments 

have enabled sensor miniaturization, power-efficient design and improved 

biocompatibility. In our research we look at signal processing approaches to overcome 

these problems. Our goal is to have a more flexible motion capture system that can 

compensate for the effect of changes in position of sensors as well as have an increasing 

energy efficiency that would enable a reduction in battery size.  

In motion capture, failure to place markers/sensors accurately is probably the 

single greatest contributor to measurement variability. Placing markers accurately with 

respect to specific anatomical landmarks and determining the location of joint centres 

and other anatomical features in relation to these markers is very important in 

determining the anthropometry of the individual subject [13]. Particular care should be 

taken to ensure that sweating, rapid movements and the placement of markers on the 

subject’s body during different motion capture trials and sessions, do not affect 

sensor/marker positioning according to the marker placement guidelines. 

Changes in the position of sensors can be influenced by their fitting on or within 

smart sensing garments, which in turn affects accuracy of measurements.  Tight-fitting 

clothes are frequently perceived uncomfortable, while most sensors and their 

applications benefit from a close textile-body coupling [18]. For less-tight garments, 

selecting appropriate sensor positions is essential and it is often performed empirically 

by expert opinion, which may not be optimal, or generalized to a population 

aggravating measurement variability [19]- [20].  
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Instrumented motion analysis is inherently at risk from both marker placement 

errors and skin motion artefacts – both of which are difficult to correct after the 

measurements have been taken. Our research addresses the context of computer-assisted 

rehabilitation within a home environment, to enhance motor learning or in a setting 

where an objective assessment of motor function improvement over time is required.   

By removing the noise due to placement variation between sessions, the data inherent to 

the movement can be analysed. In a home setting in particular, the potential for 

placement errors is greater, and may affect the way movement is interpreted and 

feedback given to the user.   

1.2. Contribution 

We show how uncertainties in motion data due to mentioned challenges can be 

compensated for by using signal processing techniques. We assess a number of signal 

processing techniques with respect to their ability to eliminate undesired signal 

variability due to random changes in the positioning of sensors. We use functional data 

analysis techniques including a fitting function for data sampled at reduced rate and 

principal component analysis to overcome undesired signal variability and increase 

power efficiency. As discussed increased variability in motion data can be associated 

with arbitrary changes in position of sensors, so discovering the characteristic features 

that represent the main motion pattern is our concern.  

To reflect the true nature of motion data variability, we investigate the use of 

fPCA as a filter not previously reported in the literature and to interpret data while 

accounting for their positional variability. We show how uncertainties due to random 

changes in position of sensors can be compensated for and how energy consumption is 

reduced in order to reduce sensing system size and thus have a more convenient on-

body system. The technique finds the greatest source of variation in the data and allows 
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the effect of these variations to be isolated from other changes. It also can be used to 

remove unwanted sources of variation and thus increasing accuracy. 

By showing the way that this technique can be applied to motion capture, we are 

opening up the possibility of the widespread use of motion capture away from lab 

setting. In summary the contributions of this thesis are: 

- Illustrating and measuring the effect of random changes in position of sensors on 

motion data of human subjects and a robot arm, 

- Separating the effect of random changes in the position of sensors on motion 

data via signal separation techniques and carrying out a comparative analysis 

with respect to their performance in signal separating [21]. This comprises: 

o Using functional PCA in source separation of motion data and showing 

the advantages of functional PCA over other source separation 

techniques such as a priory and adaptive ones, 

o Demonstrating the suitability of a functional PCA based technique to 

enabling greater power efficiency through sample rate reduction without 

loss of salient data, 

- Possibility of applying the approach to other motion capture systems as we 

consider joint angles as variables in our analysis, thus the results are agnostic to 

the technology used to measure the motion, 

- Enabling improved flexibility and usability of on-body sensing systems as the 

proposed post-processing technique can compensate for uncertainties due to 

sensor positional changes, whilst allowing the sensor units to be more energy 

efficient and lighter. 
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1.3. Thesis outline 

Following the introduction, we review the relevant state of the art in Chapter 2. 

After introducing body motion and the human body motion model, techniques for 

motion capture of humans are discussed. We see that motion capture is very sensitive to 

the positioning of sensors. We review the studies using data mining techniques to 

extract variability features in the data in Chapter 3. Research method and proposed 

filtering technique are described in Chapter 4. The experiments carried out in Human 

Performance Lab of Queen Mary University of London are described in Chapter 5. In 

Chapter 6, we describe and compare signal processing techniques. Their ability to 

compensate for variability of the motion data due to positional changes of sensors on 

the collected motion data is examined. We discuss our findings in Chapter 6 and finally, 

we conclude the thesis in Chapter 7. 

1.4. List of publications 
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2. State!of!the!Art!Review!!
 

On-body sensors capture quantitative data from variety of bio-signals on a 

subject’s body with applications in health, sports and entertainment. With the increase 

in health costs, a need has arisen to monitor a patient’s condition out of hospital in a 

cost effective way. In healthcare applications on-body sensing systems can provide 

feedback information about one’s health condition either to the user or to a medical 

centre. They can also be used for managing and monitoring chronic disease, elderly 

people, and rehabilitation patients. In rehabilitation applications, intelligent garments 

can be used to capture patient movement and monitor progress, or provide feedback to 

enhance patients’ motor learning and increase rehabilitation effectiveness. 

One of the major goals of rehabilitation is to make measurable improvements in 

daily motor function in order to improve the quality of life. Virtual environments are a 

powerful tool for various forms of rehabilitation and provide a unique medium suited to 

the achievement of several requirements for effective rehabilitation intervention [22]. 

Both therapists and users benefit from the ability to readily grade and document the 

therapeutic intervention using various systems. The successful integration of virtual 

reality into multiple aspects of rehabilitation has demonstrated the potential for the 

technology to be integrated with motion capture [23], especially in applications 

incorporating biofeedback. 
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Human motion capture systems are expected to generate motion data through 

several techniques that dynamically represent the posture changes of a human body 

based on motion sensor technologies. In motion analysis, the human body is typically 

modelled as a system of rigid links connected by rotary joints. Measurement protocols 

define landmarks on the rigid body model where sensors or markers are placed. 

Movement of sensors is described within a reference coordinate system and from their 

position and orientation motion data are derived in a post processing stage. In this thesis 

we note that most of the motion capture techniques are highly dependent on accurate 

positioning of sensors and require calibration before measurement [24]. 

  There are several sensor technologies and techniques for motion capture. 

Motion sensors involve accurate identification, tracking and post-processing of 

movement. Visual based sensor technologies like optical systems and non-visual based 

sensor technologies like inertial systems use different techniques to capture human body 

motion. In this chapter after describing body models and their approximation by link-

segment models, we introduce kinematics and inverse kinematics problems for 

determining motion. Different sensor technologies and related motion capture systems 

are then discussed. It is shown how motion data is derived from position and orientation 

for the different motion capture technologies. Considering their limitations, we review 

the wearability challenges of these systems. Their drawbacks will be considered in 

terms of portability: portable motion capture systems should be less sensitive in 

accurate positioning of sensors and have more battery life time or less power 

consumption for their wider adoption as an assisted rehabilitation platform. 
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2.1. Human body modelling for motion capture 
 

Motion capture attempts to approximate human motion by a rigid-body model 

with a limited number of rotational degrees of freedom (DOF). A rigid body is an 

idealization of a solid body of finite size in which deformation is neglected.  The degree 

of freedom of a mechanical system is the number of independent parameters that define 

its configuration.  In motion capture, an articulated figure is often modelled as a set of 

rigid segments connected by joints which are constraints on the geometric relationship 

between two adjacent segments. 

 

Figure 2.1, The controlled degree of freedom of human model [29] 

 This relationship is expressed with parameters called joint angles measured in a 

number of planes. With careful selection of joints so that, for example, segments are 

connected to form a tree structure, a collection of the joint angles of all the joints 

corresponds exactly to a configuration of a figure. This correspondence provides an 
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immediate computer representation of an articulated figure as shown in figure 2.1; it is 

straightforward to compute the corresponding configuration [25]. Human motion 

capture techniques may be categorized according to the intended degree of abstraction 

imposed between the subject and the animated figure. Efforts to accurately represent 

human motion depend on limiting the degree of abstraction to a feasible minimum. 

Human body motion modelled by a rigid body model typically is approximated with a 

limited number of rotational degrees of freedom [26]. 

The general name for two rigid bodies is a kinematic pair, which can move with 

respect to each other via a mechanical constraint (joint) between the two bodies, with 

one or more degrees of freedom. A kinematic chain is the assembly of several kinematic 

pairs connecting rigid body segments.  The process of determining the parameters of a 

kinematic chain in order to achieve a desired pose is inverse kinematics. Describing 

body motion without consideration of forces is a branch of classical mechanics.  

In general, a rigid body in d dimensions has d(d + 1)/2 degrees of freedom, i.e. d 

translations and d(d −1)/2 rotations. This comes from the following: that rotational 

freedom is the same as fixing a coordinate frame. The first axis of the new frame is 

unrestricted, except that it has to have the same scale as the original frame, so it has (d-

1) degrees of freedom. The second axis has to be orthogonal to the first, so it has (d-2) 

DOFs. Proceeding in this way, we get d(d-1)/2 rotational DOFs in d dimensions. In one, 

two and three dimensions then, we have one, three, and six degrees of freedom. 

A non-rigid or deformable body may be thought of as a collection of many 

particles (infinite number of DOFs); this is often approximated by a finite DOF system. 

When motion involving large displacements is the main objective of a study, a 

deformable body may be approximated as a rigid body (or even a particle) in order to 

simplify the analysis. In three dimensions, the six DOFs of a rigid body are sometimes 
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described using these nautical names: 1. moving up and down (heaving); 2. moving left 

and right (swaying); 3. moving forward and backward (surging); 4. tilting forward and 

backward (pitching); 6. turning left and right (yawing); 6. tilting side to side (rolling) 

[27]. 

In motion analysis, modelling techniques determine the positions of bones of the 

subject or fitting of the skeleton. Depending on which activities are going to be 

modelled, there are several body segment representations of human motion [28]. Also if 

we assume that nearly all parts in the human body can move, it means that all 

movements of the human body are coordinated movements of the joints, and all 

movements can start independently from any one joint [29]. A local coordinate system 

is established at the ends of the inboard bone centre, which is located near the body 

mass centre, for each joint. The movement of the outboard bone is represented as an 

orientation with respect to this local coordinate system creating a hierarchical structure. 

All the joints are organized in a hierarchical tree structure with the root node located at 

the lower back especially in gait analysis [30]. 

In general, there are two kinds of modelling technique: dependent and 

independent of sensor or marker placement. In modelling techniques that are dependent 

on marker placement, marker placement should be precise. In modelling techniques that 

are independent of marker placement, there is no need for the precise marker set-up, but 

they require a calibration process, which takes time. 

In modelling techniques, which are dependent on marker placement, data may 

be acquired unilaterally or bilaterally for the calculation of internal joint centres, e.g. for 

the hip, knee, and ankle joints in case of modelling gait. Their 3D internal rotations can 

be calculated in addition to the 3D orientations of the pelvis and foot. This process can 

be done by using a special marker set which includes a pelvic frame, thigh wands and 
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shank wands. Additional data is required for the calculation of internal joint centres and 

for the inverse dynamics calculation of joint moments and powers. This can be acquired 

from subject data and includes subject age and weight, joint widths, and leg-segment 

data (segment length, mass-ratio, centre-of-mass position, radius of gyration) [24]. 

Modelling techniques independent from marker placement are decomposed into 

three stages: partitioning the markers into rigid segment sets, estimating the position of 

joints, and deriving the corresponding skeleton dimensions respectively [31]. In the first 

stage it needs to be specified which marker belongs to which segment. This can be done 

manually by reference to the anatomic skeleton and making associations, or 

automatically. In the automatic method, an algorithm computes the distances between 

markers. It selects the biggest sets of markers in which all distance variations between 

all pairs of markers are under a certain threshold. This condition defines a rigid segment 

set [31]. 

 The markers that are attached onto adjacent segments theoretically move in a 

sphere centred on the joint that links the two segments. The position and orientation of a 

segment in space is completely defined by three points because a segment is modelled 

as a surface. Afterwards, we can compute the movement of the markers on adjacent 

segments defined by these markers in the reference model, and we can estimate their 

centres of rotation. The centres of rotations correspond to the joints. From their position 

in space we can compute the lengths of the segments as the distances between them. 

The joint positions are estimated as the centres of rotation weighted by the associated 

marker weight and the radius of the sphere. 

By applying the previously described procedures, the position of a set of joints 

can be estimated. The next step is to compute the length of each bone in the anatomical 

skeleton of the subject. One trivial approach is to estimate the length as the average 
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distance between the estimated joints. A more elaborated one is to compute the length 

that minimizes the square of deviations. A global adjustment of the lengths can be used 

that minimizes the distance between the joints of a model and the estimated joints in 

each frame, adjusting in the same step all the other degrees of freedom of the model.  

 
Figure 2.2,  Marker position and reference points derived from the marker positions [24].  

The geometrical properties of each body segment are derived, generally 

speaking, from three non-collinear points bearing particular anatomical relationships to 

the given segment. Body reference points are rigid model anatomical sites calculated 

from the marker positions in conjunction with information about patient data joint 

information as shown in figure 2.2. The skeleton of the user is obtained automatically 

from centre of joints locations, the measured joints’ range of motion, and using 3 

coordinates of reference points [24]. 

After determining the position of joints in the human body model, joint angles 

should be calculated. The problem of finding a set of joint angles is referred to as the 
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inverse kinematics problem. In solving the inverse kinematics problem, the main 

concern is finding a set of joint angles that corresponds to a given configuration. We 

need the angles which the body segments make relative to each other to quantify the 

movements of the joint which connect them and therefore the human motion of interest. 

In inverse kinematics we know position of body and we attempt to find angles of joints. 

Conversely in forward kinematics, we know joint angles of a body and we try to 

compute the body configuration or position. So motion data is derived from different 

techniques depending on which sensor technologies are used for body sensing.  

2.2. Sensor technologies for motion capture 
 

Body area sensing systems can capture bio-signals like electrocardiogram, blood 

pressure, body temperature, respiration rate, oxygen saturation, heart rate, skin 

conductivity, electromyogram, electroencephalogram, and body movement. The sensors 

can be skin electrodes, temperature probes, piezoelectric sensors, galvanic skin response 

sensors, pulse oximeters, gyroscopes, and accelerometers [1]. A wearable system may 

have a wide variety of components other than sensors like wearable components, smart 

textiles, processing units and advanced algorithms for data extraction and decision 

making. 

There are two categories of sensor technologies for motion capture: visual and 

non-visual. Visual technologies can be marker-based or markerless, while non-visual 

tracking sensors are inertial, magnetic, ultrasonic and electromechanical [32], (see 

figure 2.3). In this section we review these technologies, their advantages and 

disadvantages and we discuss their potential for wider adoption in home-based 

rehabilitation systems.!!
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Figure 2.3, Motion capture systems using different sensor technologies 
 

Two classes of visual tracking systems are visual marker-based and marker-free, 

depending on whether or not sensors or markers need to be attached to body parts. In 

visual marker-based tracking systems, cameras are applied to track human movements 

with markers that act as identifiers of the rigid body model landmarks. Marker-based 

systems are used because of the accuracy of marker position information.  They can be 

active or passive; active marker-based systems use light emitting markers, while passive 

ones use markers made of reflective material that do not require a power supply. One of 

the active visual tracking systems is Codamotion which is for 3 dimensional (3D) 

measurements. Its measurements have been commonly used as ground truth to evaluate 

motion measurements [24]. Although measurements of these systems are highly 

accurate with position resolution of about 0.05 mm, they need to be performed in a 

laboratory and cannot be used in home-based rehabilitation. 

Passive motion capture systems usually consist of 1–16 cameras, each emitting a 

beam of infrared light. Small reflective markers are placed on an object to be tracked. 

Infrared light emitted by the cameras is reflected back and picked up by the cameras. 
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The system then computes a 3D position of the reflective target, by combining 2D data 

from several cameras [32].  The two common widely used passive visual motion 

capture system are Qualisys and VICON. These systems are designed to be used in 

virtual and immersive environments, and in medical science. Marker-based tracking 

systems are more accurate in comparison to other motion capture technologies, although 

they need precise calibration before each motion capture process and it should be 

performed in laboratory. 

Marker-free systems exploit optical sensors to measure movements of the 

human body without any sensor on the human body.  Human body motion can be 

tracked by cameras and is mainly concerned with the boundaries or features of human 

body on the images. Image based systems use computer vision techniques to obtain 

motion parameters directly from video footage without the use of special markers [33]. 

By using a proper camera set-up, including a single camera or a distributed-camera 

configuration, motion capture can be performed. A single camera readily suffers 

occlusion from a human body, due to its fixed viewing angle. Thus, a distributed-

camera strategy is a better option for minimizing such a risk. In comparison to marker-

based tracking systems, which are a less restricted to limited degrees of freedom due to 

mounted markers, marker-less based systems are a less restrictive motion capture 

technology but still the motion capture process are not convenient to be used in home 

based rehabilitation as they need camera set-up in the motion capture environment.  

Non-visual sensors such as inertial and electromechanical sensors are used in 

non-visual tracking systems. They enable motion capture without the need for external 

emitters and cameras. These sensors can be fitted in a garment or attached directly to 

the body. The advantage of non-visual tracking systems over visual tracking systems is 

that there can be ambulatory motion tracking, which means motion tracking by a 
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portable motion tracking system outside the laboratory to capture daily activities, so 

they are applicable in home-based rehabilitation and there is no need for doing the 

experiments in special laboratories. 

Miniature inertial sensors, which are small, relatively cheap and have low 

energy consumption, are categorized into accelerometers and gyroscopes. 

Accelerometers measure acceleration and gyroscopes measure angular velocity. By 

integration and double integration of gyroscope and accelerometer signals, respectively, 

one obtains some measure of orientation and position [14]. By knowing the initial 

position and orientation, we can find sensor orientation and position changes [34]. The 

position and angle of an inertial sensor cannot be correctly determined, due to the 

fluctuation of offsets and measurement noise, which lead to integration drift. Therefore 

designing drift free inertial systems is a challenge. On the other hand, these sensors can 

be used in home-based rehabilitation as there is no need for cameras to be set up.  

Mechanical sensors provide joint angle data to determine body posture. A 

goniometer is a sensor with attachments to the proximal and distal limb segments that 

span a joint to be measured. The sensor operates on the assumption that the attachment 

surfaces move with (track) the midline of the limb segment onto which they are 

attached and thereby measures the actual angular change at the joint. These devices 

provide an output voltage proportional to the angular change between the two 

attachment surfaces. Mechanical sensor accuracy should be carefully evaluated by 

testing them on individuals of various statures. Attachment and positioning of 

goniometers present several problems; in addition alignment of the goniometers with 

body joints is difficult [35] so it needs experts for system set-up in home-based 

rehabilitation. 
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Strain and stress sensors have been developed for fabrics from piezo-electric to 

polyvinylidene fluoride (PVDF) polymer films.  These sensors can be integrated within 

textiles, or securely attached to them. Most are based on the principles that the electrical 

resistance of the flexible sensor changes during stretching. Many of the developed 

flexible strain sensors are based on using coated fabric technology [4]. The limitations 

of these kinds of sensors are their sensitivity to temperature and electromagnetic 

interference, tensile stiffness and transient output signals, which preclude their use in 

wearable garments. 

Motion capture data such as position and orientation of sensors can be generated 

from magnetic sensors as well. Magnetic motion tracking systems have been widely 

used for tracking user movements in virtual reality, due to their size, high sampling rate, 

and lack of occlusion. One of the common motion tracking systems with 

electromagnetic sensors is MotionStar by Ascension Technology Corporation. The 

system detects the position and orientation of the sensors by the magnetic field (either 

the Earth’s magnetic field or the field generated by a large coil). These systems offer 

good accuracy with no line of sight problems, so are more applicable for home-based 

rehabilitation. However, they are expensive, have high power consumption, and are 

sensitive to the presence of metallic objects in the environment [26]. 

Acoustic systems collect signals by transmitting and sensing sound waves, 

where the flight duration of a brief ultrasonic pulse is timed and calculated. These 

systems are used in medical applications, but have not been used in motion tracking. 

This is due to the drawbacks such as; (a) the efficiency of an acoustic transducer is 

proportional to the active surface area, so large devices are desirable; and (b) to improve 

the detected range, the frequency of ultrasonic waves must be low (e.g. 10 Hz), but this 

affects system latency in continuous measurement. In addition, acoustic systems require 
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a line of sight between emitters and receivers [14], which is not suitable in assisted 

home-based rehabilitation. 

For home-based rehabilitation the reviewed sensor technologies have their own 

advantages and disadvantages. Visual marker-based technologies have high accuracy 

but they need camera set up in a motion capture environment which is not suitable for 

home-based rehabilitation. Similarly, magnetic and acoustic systems need transmitters 

and receivers, which should be set up in the environment. On the other hand, inertial 

and mechanical sensors do not need external set up in the environment; however they 

need precise alignment on the subject’s body.    

2.3. Derivation of motion data from sensors’ signals 

As explained in Section 2.2, different sensor technologies are used for motion 

capture. Depending on which of these sensors categories are used, there are different 

techniques to derive angles of joints on the modelled human body. Some sensor 

technologies like visual marker, magnetic and ultrasonic based systems derive the 

position of sensors and other ones like inertial and mechanical systems derive the 

orientation of sensors. Techniques for motion capture try to solve the inverse kinematics 

problem to find the angles of joints from position of sensors or to solve the kinematics 

problem to find the posture of body segments from the position of sensors. In Section 

2.3.1 we explain how angles of joints can be derived from sensors’ position and 

orientation. 

2.3.1.  Deriving motion data from the position of sensors 

Motion capture systems which derive position of sensors in space, like optical, 

magnetic and ultrasound systems use similar techniques to determine the angles of 

joints and therefore kinematic parameters. As explained in Section 2.1, a skeletal model 
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is built or adjusted by using a special calibration motion that highlights all the necessary 

degrees of mobility once per session [36]- [37]. Then the model is used to derive the 

motion trajectories of all the captured motions. Finally angular data are adjusted to 

adapt the motion to a virtual character. The process can be described in the following 

pipeline: calibration and capturing, knowing positions of cameras and markers, skeleton 

estimation, inverse kinematics processing, and determining the angle of joints. 

After installing the cameras, attaching markers to the subject is the second step. 

To obtain accurate results, markers should be positioned on the subject at specific 

anatomical locations. The cameras capture the movement of the markers rather than the 

body to which they are attached. Determining the skeleton of a subject means to find the 

3D positions of joints from the 3D marker locations and therefore determine the 3D 

positions of the bones of the subject.  

After deriving the 3D position of segments and joints from marker placements, 

finding the set of joint angles is the next step. The problem of finding a set of joint 

angles that corresponds to a given configuration is referred to as the inverse kinematics 

problem. We need the angles which the body segments make relative to each other to 

quantify the movements of the joint which connects them. A single marker can 

represent no more than a single point on a body segment as its motion is tracked. A pair 

of markers mounted upon a rigid segment presents sufficient information to describe 

both translational and rotational movement, though not fully, as rotations about axis 

joining the two markers remain undefined. 

The arrangement is typical of a simple stick-figure description of the human 

form where limb segments are indicated as straight lines between markers placed over 

joints. Though not very sophisticated, it is obviously far better than representing each 
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limb segment by a single marker bearing no spatial relationship to markers on adjacent 

segments.  

 
Figure 2.4, Segment embedded coordinate frames for capturing gait [24] 

 

In every case, the dynamic representation of a segment follows from vector 

reconstructions based on a minimum set of three points. For the pelvis the orientation of 

the local co-ordinate frame from the available marker set and its reference points using 

local offsets will be obtained.  For the remaining limb segments the reference points 

will be obtained by vector constructions, then the local co-ordinate frames are derived 



38 
 

from those as shown in figure 2.4. The co-ordinate frames are required for the 

subsequent calculation of Euler angles. The longitudinal axis of a limb segment usually 

becomes the local Z axis, the medio-lateral the Y axis, and the antero-posterior the X 

axis, all mutually orthogonal. 

To calculate the angles which the body segments make relative to each other, a 

rotation matrix is used which describes the orientation of the moving coordinate system 

on each body segment in comparison to a fixed coordinate system. The rotation matrix 

will translate movement from the fixed coordinate systems to the moving local 

coordinate system associated with the signals. This allows the angle between two 

segments to be calculated. So the rotation matrix between the coordinate systems of a 

proximal segment and the coordinate system of distal segment relative to the proximal 

segment can be achieved by producing the corresponding rotation matrix of the two 

segments coordinates [38]. 

To calculate the orientation of a segment and its embedded coordinate frame, 

Euler angles are used. Euler angles are set of angles corresponding to rotations about 

given axes, usually orthogonal axes. The meaning and validity of the derived 

anatomical angles are determined by the choice of axes and rotation sequence. In order 

for limb segment angles to be clinically relevant we can define the orientation of the 

distal segment relative to the proximal segment by comparing the corresponding axes of 

the segment-embedded co-ordinate frames [39]. There are many ways of doing this. 

Euler angles are readily calculated (requiring no joint centre model), and 

correspond to relevant axes which are generally orthogonal and therefore kinetically 

useful. [40]. A single rotation through a given angle about a given (proximal) axis may 

be represented by a rotation matrix. 
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Rotation through θ about X axis: 

!!!!! =
1 0 !0
0 cos! −sin!!
0 sin! cos!

 
(2-1) 

 Rotation through Φ about Y axis:  

!! =
cos! 0 sin!
0 1 0

− sin! 0 cos!
 

(2-2) 

Rotation through Ψ about Z axis: 

!! =
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 
(2-3) 

Non-cummulative matrix multiplication in the order Z,Y,X results in the decomposition 

matrix, 

!!"# = !!!!!!! (2-4) 

!!"# = !
1 0 !0
0 cos! −sin!!
0 sin! cos!

×
cos! 0 sin!
0 1 0

− sin! 0 cos!
×
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 
 

By obtaining the orientation of the local co-ordinate frame, referred to as the 

Embedded Vector Basis (EVB), Euler angles can be derived.  By calculating the Euler 

angles for lower limbs (from the pelvis down), the following relations apply: hip joint 

angles: thigh EVB (distal) relative to pelvis EVB (proximal); knee joint angles: shank 

EVB relative to thigh EVB; ankle joint angles:  foot EVB relative to shank EVB; pelvic 

rotations: pelvis EVB (distal) relative to global laboratory frame (proximal); foot 

rotations: foot EVB relative to the laboratory frame. 
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2.3.2.  Deriving motion data  from the orientation of sensors 

Each body segment’s orientation and position can be estimated by integrating 

the gyroscope data and double integrating the accelerometer data in time. By using the 

calculated orientations of individual body segments and the knowledge of the segment 

lengths, rotations between segments can be estimated and the position of the segments 

can be derived under strict assumptions of a linked kinematic chain [41]. This process 

may have drift because of gyroscope offset, measurement noise, integration and so 

forth. Although these sensors give some measure of orientation, it is stated in [42]- [43] 

that inertial sensing cannot be used on its own to estimate relative position and 

orientation of sensors with respect to each other. The estimation of displacement and 

relative distances between sensors need to be determined using different methods. 

 In [14], relative distances between sensors were measured by acoustic signals. 

In this work each unit consists of inertial sensors and miniature microphones, which are 

used to record distances between pairs of sensors on the body. These distance 

measurements reduce the drift in purely inertial systems. The reconstruction algorithm 

estimates body posture by combining inertial and distance measurements with an 

extended Kalman filter that incorporates estimation of the body’s joint structure and 

poses.  

The filter evaluates the system dynamics to evolve the system state until the next 

observation, and then uses the observation to improve its estimate of system state. The 

body structure provides constraints that aid the recovery of its joint configuration, or 

pose. The pose of an articulated body is specified by the joint angles that describe the 

configuration of the body joints.  By using a single vector to assemble all joint angles in 



41 
 

the body, the forward kinematic equation, which is used to compute the position and 

orientation of each body segment, can be determined. 

Another way of measuring the relative distance between sensors is using 

magnetic sensors. By combining inertial sensors with magnetic sensors, an ambulatory 

6 degrees of freedom human motion tracking system has been designed in [44]. The 

magnetic system consists of three orthogonal coils with a magnetic field source fixed to 

the body and 3D magnetic sensors, which measure the fields generated by the source. 

Based on the measured signals, a processor calculates the relative positions and 

orientations between the source and sensor. Since accelerometers and gyroscopes can 

only measure changes in position and orientation and suffer from integration drift, an 

improved solution for position and orientation estimation is obtainable by combining 

measurements from both systems in a filtering structure [44] - [45]. In this method a 3D 

source of magnetic signals is used which can consist of one [42] or three [46]- [47] 

circular coils that are mounted orthogonally with respect to each other [48]. 

The MVN motion capture system, which is fully ambulatory and consists of 

body worn sensors, was introduced in [34]. Body segment orientation and position 

changes are estimated by integration of gyroscope and accelerometer signals which are 

continually updated by using a biomechanical model of the human body. Using this 

method dynamic motion can be tracked as shown in figure 2.5. By facilitating the 

constraints of the model, the kinematics of body segments is corrected for drift and 

other errors. To correct rotation errors about the vertical axis a magnetic sensor is used 

as a heading-aiding sensor in each accelerometer and gyroscope unit worn on each body 

segment. A patent has been published which shows that heading and, via the calculation 

of the relative orientation of segments, the 3D orientation of the subject segments 
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relative to one another can be estimated [49] without requiring a magnetic field as a 

reference, so there is no need to measure the distance between the sensors. 

 
Figure 2.5, Sensor fusion scheme [34].  

 

Since the sensor signals and the biomechanical model can be described in a 

stochastic manner, in this full ambulatory motion capture system, it can be divided into 

the sensor fusion scheme with a prediction and correction step. In the prediction step, all 

sensor signals are processed using so-called inertial navigation system (INS) 

algorithms. This is followed by the prediction of the segment kinematics using a known 

sensor to align the real body and a biomechanical model of the body. 

 The correction step includes updates based on biomechanical characteristics of 

the human body, notably joints, detection of contact points of the body with an external 

world which constrains the global position and velocity, and, optionally, other aiding 

sensors. Estimated kinematics is fed back to the INS algorithms and the segment 

kinematics step to be used in the next time frame. These kinematics data are translated 

to body segment kinematics using a biomechanical model which assumes that a 

subject’s body includes body segments linked by joints and that the sensors are attached 

to the subject’s body segments. The sensor fusion scheme calculates the position, 

velocity, acceleration, orientation, angular velocity and angular acceleration of each 

body segment with respect to a global (earth-fixed) reference coordinate system.  
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 In a number of other research papers, for example [50] - [51], upper-limb 

orientation estimation using accelerometers and gyroscopes have been proposed. In [50] 

the orientation of an upper-limb has been derived by focusing on a design that 

minimizes the number of sensors. In [51] an upper limb motion estimation method was 

proposed using three types of micro sensors, namely, a 3D accelerometer, a gyroscope, 

and a magnetometer, for elbow joint abduction/adduction distortion free motion.  They 

propose a method to model the upper limb skeleton structure as a link structure with 5 

DOF. Within the framework of the dynamic system, the forward kinematic equations 

are derived as the sensor measurements model.   

2.4. Activity recognition techniques 

In another category of studies, researchers have already prototyped on-body 

sensors systems with application in wearable computer systems that use acceleration, 

audio, video, and other sensors to recognize user activity. Activity recognition aims to 

recognize the actions and goals of a subject from a series of observations of the 

subject’s actions. Sensor-based activity recognition integrates the emerging area of 

sensor networks with novel data mining and machine learning techniques to model a 

wide range of human activities. Several algorithms are developed and evaluated to 

detect physical activities from data acquired using sensors worn simultaneously on 

different parts of the body. 

Accelerometers have been used for gait analysis in [52] to derive gait parameters 

like cadence, speed, asymmetry and irregularity. Activity recognition of assembly tasks 

has been introduced in [53] by using microphones and accelerometers. Classification 

techniques have been used on sound and acceleration signals to perform activity 

recognition. By using classifiers and five small biaxial accelerometers worn 

simultaneously on different parts of the body, everyday activities can be recognized 



44 
 

with an overall accuracy of 84% [54]. Recognition of hand movements has been done in 

[55] using classification techniques and accelerometers worn simultaneously on 

different parts of the hand. 

In [56] a posture recognition system has been introduced as a smart shirt. This 

smart shirt, which is called SMASH, has a hierarchical architecture which allows the 

overall system weight to be improved by minimizing weight at the limbs. At the first 

layer sensor data are acquired and pre-processed by terminals which are distributed in 

the garment. Features are computed by gateways that fuse sensor data at the second 

layer. Recognition tasks are performed at the third layer. Results show that exercise 

postures can be discriminated using acceleration terminals attached to the system. The 

ability to discriminate postures was enabled by classification using acceleration patterns 

recorded by the terminals. 

A miniature heading reference system, named ETHOS, which uses Xsense off-

the-shelf technologies, was introduced in [57]. ETHOS has a unit which contains 

processing resources consisting of inertial sensors and accelerometers to estimate its 

orientation online. A Kalman and a complementary filter are used to estimate 

orientation. Results show that this system functions with sufficient accuracy in 

estimation of human movement in real-life conditions using an arm rehabilitation robot. 

In the paper a therapist performs a series of six rehabilitation exercises by guiding the 

patient’s arms, while the robot records the motion path. Subsequently, the subject 

repeats the motion five times, while the robot supervises and supports the execution.  

  Wearable systems and algorithms for long term monitoring of physical activity 

and gait analysis for the estimation of the 3D joint kinematics and kinetics are covered 

in literature as well. A data logger which holds a 3D accelerometer and gyroscope has 

been introduced in [58]- [59]. In this study a highly sensitive scheme for the detection 
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of basic body postures such as sitting, standing, lying, and walking has been proposed. 

By calculating kinematics features of the body movements during the transitions 

between different postures, and using statistics and fuzzy classifiers, different body 

postures can be determined. 

In [60] a signal processing technique based on data obtained using a new body 

area sensor network has been introduced to improve robustness and feature extraction 

for gait classification.  A sensor node which consists of a 3D gyroscope and 3D 

accelerometer was affixed at the right ankle and subjects were instructed to walk 10 

meters. In the study a precise binary classification was executed using artificial neural 

networks to accurately differentiate between the shuffle gait and normal gait data. 

 A Support Vector Machine (SVM) classifier has been implemented in [61] to 

estimate the severity of some movement diseases by using inertial sensor signals. 

Inertial sensors positioned on the upper and lower limbs were used to gather movement 

data whilst performing of a series of motor tasks. The accelerometer time series were 

segmented using a rectangular window randomly positioned through the recording 

gathered during performance of each motor task. Five different types of features were 

estimated from the accelerometer data. These features were identified because they 

were sensitive to changes in the severity of motor impairment and could capture 

movement characteristics associated with the studied disease. 

2.5. Variability in motion data 

Variability in movement patterns plays a fundamental role in motion analysis. 

Inconsistencies due to placement errors of on-body sensors can come from three 

primary sources: human error in the process of sensor/marker placement, the 
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measurement system, and the! subject under evaluation [62]. Variability is defined by 

the sum of variances from each independent source [63]. Sensor placement variation 

among technicians is the largest source of unwanted variability [13]. Inaccurate sensor 

placement causes measurement variability, which is a key impediment to the wider 

adoption of home-based assistive rehabilitation. Particular care should be taken to 

ensure that sweating, rapid movements and the placement of markers on the subject’s 

body during different trials and sessions do not affect sensor/marker positioning 

specified by the marker placement guidelines. 

This issue arises with intelligent textile technologies for applications in wearable 

computing and health monitoring, smart human–machine interface, and so forth [64]. 

Silicon flexible skins have been introduced to address flexibility in sensing garments 

[65]. While such techniques try to develop a new technology for intelligent sensing, in 

our research we explore techniques that can permit current commercial off-the-shelf 

technologies to be used more effectively. We devise a signal processing technique as an 

alternative to smart sensing. 

The reliability of measurements is directly affected by the sensor placement 

during different sessions. If experimental errors conceal important motion deviations, 

meaningful information will be lost.  On the other hand, if the limitations of the motion 

capture methods are not understood, small deviations may be considered meaningful, 

thereby leading to over interpolation [66]. Every time that a subject tries to carry out the 

same movement, a certain amount of variation may be registered between different 

sessions of marker wearing. Variability between sessions was found to be much higher 

than within-session variability because of the high probability of differences in the 

marker placement that arise [63]. 
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Sensor misplacement and consequent anatomical landmark mislocation have a 

substantial effect on measured joint kinematics and angles. Sensitivity of joint 

kinematics variables to anatomical landmark misplacement has been reviewed in [67]. 

Human movement analysis requires the definition of a system of axes; this can be 

defined from body surface marker positions and anatomical landmark positions [68]- 

[69]- [70]. One of the main concerns in motion capture is identification of anatomical 

landmarks and reconstruction of their position in a selected set of axes. Therefore 

precision and accuracy of determination of landmarks have an influence on joint 

kinematics variables [71]. 

In [72] it was shown that there are substantial differences in determining 

anatomical landmark locations between experts and self-marking operators.  In the 

research they asked the subject under examination to perform anatomical landmark 

identification and calibration on his/her own body. The study estimated the precision of 

anatomical landmark identification performed by experts and subjects under 

experiment. The accuracy of the self-marking procedure provided interesting 

information. The greater trochanter location was more than 20 mm apart between the 

two groups of operators, and all pelvic anatomical landmarks were determined with 

more than 10 mm difference.   

In [73] the problem studied was how the errors in estimating the hip joint centre 

location propagate to the hip and knee kinematics and hence to gait analysis results. It 

was shown that hip joint centre mislocation of 30 mm in the anterior-posterior direction 

generates a mean error on the flexion/extension moment of 22% of its value, and hence 

affects gait analysis results. Angles of hip and knee joints were calculated for five able-

bodied subjects during level walking. Angles were calculated after errors in range of 
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±!30!mm were added to the hip joint centre coordinates. It is shown that angles of both 

hip and knee joints were affected by hip joint centre mislocation.  

It is shown in [74] that anatomical landmark position uncertainties result in the 

observation of physiological knee motions such as the screw-home mechanism even 

when such motion did not occur. In the study, the motions of two different two-segment 

mechanical linkages were examined to study the effect of kinematic cross-talk, that is, 

one joint rotation being interpreted as another. Kinematic cross-talk results from the 

chosen joint coordinate system being misaligned with the axes about which the rotations 

are assumed to occur. These uncertainties in motion capture process can lead to 

erroneous clinical interpretation of the estimation, so they need to be reduced. 

Sensitivity of the knee flexion-extension moment patterns to the variation in the 

estimation of the knee centre location was studied in [75]. Tests were performed on 18 

healthy adults who were asked to walk at five different speeds using three different knee 

centre locations that varied by plus or minus 10 mm in anteropostrerior direction. It is 

shown that when the magnitudes of the knee moments are less than or equal to the knee 

centre location variation effect, it was not possible to confidently interpret them as 

representing either a net flexion or extension of the knee. 

Given the clinical relevance of variability in motion capture measurements, it is 

critical that we summarize and compare motion data in a way that reflects the true 

nature of motion variability [62]- [76]. To measure variability among gait curves, some 

distance based measures have been used in literature, including the mean distance from 

all curves to the mean curve in raw 3-dimensional spatial data [77], the point-by-point 

intercurve ranges averaged across the gait cycle [78], and the norm of the difference 

between coordinate vectors representing upper and lower standard deviation curves in a 

vector space spanned by a polynomial basis [79]. In this thesis to show variability in 
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motion capture measurements, we use variance and variation terms which are 

introduced in Chapter 6. 

2.6. Energy efficiency 

The importance of body sensing systems to monitor patients over a prolonged 

period of time has increased with an advance of home healthcare applications. Wearable 

medical devices could eliminate patients’ dependence on clinical environments and 

allow monitoring at home. Body sensing platforms for monitoring of various biological 

and physiological signals face the challenge of how to achieve low power consumption 

as well as mentioned sensor placement challenge. The overall size of the electronic part 

of wearable systems is generally dominated by the size of the batteries. Hence to have 

less bulky systems, sensors need to operate with low power consumption.   

 Power management in emerging wearable medical devices, intended to 

continuously monitor physiological signals, is one of crucial design issues [80]. Sensor 

nodes need to operate with very low power consumption. In recent years the design 

trade-off of performance versus power consumption has received much attention 

because of the large number of mobile systems being developed that need to provide 

services with the energy releasable by a battery of limited weight and size [81]. Energy-

efficient design requires reducing power dissipation in all parts of the system. Typically, 

an electronic system consists of a hardware platform, and application software.  

When considering the hardware platform, we can distinguish three major 

constituents consuming significant energy: computation units, communication units, 

and storage units. In body sensing systems the computation unit is usually centralized 

and far from the human body and signals can be sent via the communication units to the 

computation unit. Biological and physiological signals are usually saved in the 

centralized unit which can be connected to sources of power with fewer power 
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restrictions in comparison to the sensors’ batteries. Therefore our focus for energy 

efficiency is on the communication units. Energy efficiency of the communication units 

depends on the hardware and the protocols which are used to capture the biological 

signals and send them to the central computing units. 

In the communication units transmission of data in wearable systems can be 

achieved by communicating the collected signals from the biosensors to the system’s 

central node; or sending aggregated measurements from the wearable system to a 

remote station. Short-range transmission can be used either by wires or by multiple 

wireless links. However, the user’s mobility and comfort can be impeded by the use of 

wires, and the risk of system failure in this case is high [5]. 

Optimising the design of the system to achieve low power consumption has been 

studied by several research groups [82]- [83]. Resource management based on runtime 

estimation of memory, storage, hardware, and bandwidth is required to achieve low-

power performance. Techniques in algorithm development, communications, hardware 

architecture and circuit design to achieve the necessary power saving are described in 

[84]. In [85] a low power transceiver has been described for wearable medical 

healthcare systems. A power management microsystem for body sensing composed of a 

rectifier as a regulator has been presented in [86].  

In [87] power reduction is achieved by introducing rest and common mode 

feedback circuit techniques while the system is switched between different operational 

modes like sleep, low power and high resolution. In [88] system level energy power 

optimization techniques have been used on a body sensing system powered by solar 

cells using energy harvesting.  Harvesting of energy from the environment like solar 

power, thermal energy, energy from human movement has been reviewed in [89]. It is 
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important for body sensing systems to achieve both low power consumption and small 

size without jeopardizing performance and reliability. 

Communication technologies have a significant effect on energy efficiency of 

ambulatory body sensing systems [90]. Cooperative communication as a power 

allocation strategy to minimize energy consumption in body area networks has been 

investigated in [91]. A flexible protocol that offers better performance and energy 

saving has been introduced in [92]. Using body channel communication that is using the 

human body as a signal transmission medium, energy consumption can be reduced, 

increasing energy efficiency of body sensing systems [93]. 

Changing the sampling rate has already been used as a technique for reducing 

power consumption.  Adaptive sampling is established as a practical method to reduce 

the sample data volume and thus increase energy efficiency [94]. In [95] a low-power 

analogue system is proposed, which adjusts the converter clock rate to perform a peak-

picking algorithm on the second derivative of the input signal. The presented circuit 

contains only basic circuit blocks, allowing for a low-power and small-size 

implementation that can ultimately be integrated as a part of a body-area network 

sensor. 

A context aware sensing scheme known as episodic sampling for wearable 

sensor technologies was introduced in [96]. It requires a trade-off between energy 

reduction and accuracy of the system. The effect of the reduction in sampling rate for a 

wearable posture recognition system was studied in [97]. The results showed that 

performance of posture classification was insensitive to a reduction in sampling rate 

from 100Hz to 10 Hz for inertial sensors. A power efficient biomedical acquisition 

portable system using variable resolution with a sigma delta modulator for converting 

analogue signals to digital was introduced in [98]. 
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Decreasing the sampling rate combined with decomposition techniques is 

another way of achieving power savings [99]- [100]. Compressive sampling (CS) has 

great potential for low power pulse rate detection, since by reducing data sampling rate, 

less energy is consumed. Compressive sampling is an emerging technology, known as a 

novel sensing paradigm that goes against the common wisdom in data acquisition. It 

asserts that one can recover certain signals from far fewer samples or measurements 

than traditional methods. This technique helps to save more power by reducing the 

power consumption [101]. The CS protocol samples data at a low rate and later uses 

computational power for reconstruction. Obviously the higher the CS rate, the lower the 

power consumption and the greater the measurement inaccuracies.  

 Compressive sampling, also known as compressed sensing, is a simple and 

efficient signal acquisition protocol which samples - in a signal independent fashion - at 

a low rate and uses computational power for reconstruction from what appears to be an 

incomplete set of measurements [102]. CS relies on the two basic principles: sparsity 

and incoherence. Sparsity expresses the idea that the information rate of a continuous 

time signal maybe much smaller than suggested by its bandwidth, or that a discrete time 

signal depends on a number of degrees of freedom which is comparably much smaller 

than its finite-length. Incoherence extends the duality between time and frequency and 

expresses the idea that objects that have a sparse representation must be spread out in 

the domain in which they are acquired. 

Common approaches to sampling signals or images follow Shannon’s theorem. 

The sampling rate must be at least twice the maximum frequency present in the signal, 

which is called Nyquist rate. This principle underlies nearly all signal acquisition 

protocols used in consumer audio and visual electronics, medical imaging devices, radio 

receivers, and so on. For some signals, such as images that are not naturally band-
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limited, the sampling rate is dictated not by the Shannon theorem but by the desired 

temporal or spatial resolution. However, it is common in such systems to use an 

antialiasing low-pass filter to band-limit the signal before sampling, and so Shannon’s 

theorem plays an implicit role [103]- [104]. 

What is most remarkable about these sampling protocols is that they allow a 

sensor to very efficiently capture the information in a sparse signal without trying to 

comprehend that signal. Further, there is a way to use numerical optimization to 

reconstruct the full-length signal from the small amount of collected data [105].  

2.7. Summary 

In this chapter after introducing human body modelling for motion capture, we 

reviewed sensor technologies for motion capture, and techniques to derive motion data. 

Motion capture systems are sensitive to exact positioning of sensors, or alternatively 

need a calibration procedure which is time consuming and requires training. For 

ambulatory motion capture and especially home-based rehabilitation, systems should be 

portable. Two important requirements of portable motion capture systems are tolerance 

to changes in the position of sensors and extended system life. Therefore, we reviewed 

causes and effects of variability in motion pattern, and energy efficiency of on-body 

sensing systems. The focus of the thesis is to solve these two issues. We explore a 

number of signal processing techniques that may lend themselves to overcoming these 

challenges. 
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3. Background!Theory!of!Filtering!Techniques!and!
Signal!Decomposition!

 

Removal of undesirable signals from a superposition of source signals is one of 

the challenges in signal processing. Filtering strategies for suppression of unwanted 

source signals have traditionally involved a linear decomposition of signals. The 

approach is to re-express the original data along a new coordinate system such that the 

signal of interest can be separated from other sources in the original data while 

projecting along different bases. By keeping the bases describing the signal of interest 

and rejecting the rest, filtering can be achieved. Depending on the means by which the 

bases are determined, these methods can be classified into a priori and adaptive 

categories.  

In a priori approaches the bases are defined independently of the data, like 

frequency based finite impulse response (FIR) or infinite impulse response (IIR) filters. 

Discrete Fourier transform (DFT) filtering has been widely used in clutter rejection 

[106]- [107].  Although DFT-based methods have been widely used, they underperform 

when the frequency characteristics of the unwanted signal and the signal of interest 

overlap. To overcome this challenge adaptive frameworks for determining basis 

functions have been introduced. In adaptive approaches the bases are determined 

adaptively from the data. ICA (Independent Component Analysis), PCA (Principal 

Component Analysis) and SVF (Singular Value Filter) based signal separation methods 
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are in the category of adaptive filtering. In these techniques the basis functions are 

determined adaptively from the statistical properties of the data.  

The basic principles of signal decomposition can be described by first 

considering an observed signal, represented discretely as a row vector x (dim 1×N), 

which can be decomposed into a weighted sum of orthonormal basis functions, 

! = !!!!
!

!!!
 

(3-1) 

where !! are weighting coefficients for each of N orthonormal basis functions !!. 

Coefficients can be expressed as the dot product between the observed signal and each 

orthonormal basis vector !! = !. !!! where !!!  is the conjugate transpose of !!. The 

basis functions can be any set of vectors provided that they are mutually orthonormal. 

!! . !!! = 1, for!!!!!!! = !
0, for!!!!!!! ≠ ! 

(3-2) 

The mutually orthonormal basis functions !! used for linear transformation of 

the data can be determined either a priori or adaptively from the signal itself. The 

Fourier Transform is an example of linear signal decomposition where basis functions 

are defined a priori such that !! are a set of complex exponentials of different 

frequencies. In adaptive methods, the set of basis functions can be formed adaptively as 

polynomials. 

In this chapter, we review finite impulse response and infinite impulse response 

filters as a priori signal decomposition methods. Then, we study adaptive signal 

separation methods like principal component analysis, independent component analysis, 

and singular value based filtering techniques. We apply these signal separation 

techniques to captured sets of motion data, and compare them to the one we introduced 

in the next chapter.  
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3.1. A priori signal decomposition 

The most common a priori filtering approach, where the bases are defined 

independently of the data, is discrete Fourier transform-based filters. DFT-based 

filtering has been widely used in signal decomposition literature [108]- [109]- [110]. To 

review the technique briefly, we consider a discrete time system. A discrete time system 

takes an input, x=[x 0 , x 1 ,… , x ! − 1 ]!, and produces an output, 

y=[y 0 , y 1 ,… , y ! − 1 ]!. A general linear filtering operation can be expressed by 

the matrix multiplication, y = Ax where A is an M ×N matrix. With the matrix element 

in row n and column k denoted by!!! !, ! , the elements of output vector are given by 

equation (3-3). 

! ! = ! !, ! ! ! ,!!!!! = 0,… ,! − 1
!!!

!!!
 

(3-3) 

 

The parameters describing the frequency response of a filter are the stop-band 

cut-off frequency, !!, and pass-band cut-off frequency, !!. The deviation from zero in 

the stop-band is given by !!, which should be as small as possible . In the pass-band, all 

of the frequencies should be passed through unaltered, which means that the ripple, !!,  

should be minimized. Finally, the pass-band cut-off frequency, !!!!, should be as close 

as possible to the stop-band cut-off frequency, !!!, to obtain a more ideal filter response. 

Finite impulse response and infinite impulse response filters are two key methods of 

signal separation in the a priori category, discussed next. 

3.1.1. Finite impulse response filters 

Digital filters with a finite duration impulse response (FIR) are also called non-

recursive filters or convolutional filters. These filters are sometimes called moving 
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average filters from the time domain viewpoint. The impulse response duration of these 

filters is finite; therefore the output can be written as a finite convolution.  The output of 

a (! − 1)!!!order FIR filter can be written as the finite convolution sum; 

! ! = ! ℎ ! ! ! − ! = ℎ ! − ! ! ! .
!

!!!!!!!

!!!

!!!
 

  (3-4) 

With input vector size N, and filter order K−1, the number of valid output 

samples is N−K−1. It can be shown that for FIR filters, the frequency response 

becomes!!!! ! = |! ! |!, where ! !  is the Fourier transform of the impulse 

response h(n). FIR filters can be categorised as linear phase and minimum phase filters. 

The frequency response of FIR linear phase filters is written as equation (3-5): 

! ! = ! ! !!(!!!!!!)      (3-5) 

where ! !  is a real function and !! and !! are constants. The advantage of linear 

phase is that in the pass-band, the frequency response is ! ! ≈ ! ! !! !!!!!! .!For a 

signal x(n) consisting only of frequencies in the pass-band of the filter, the spectrum of 

the filtered signal is ! ! ≈ ! ! !!(!!!!!!). This is just a constant phase shift, and the 

time delay of the input signal and the waveform is not distorted. A FIR filter with real 

coefficients has linear phase if the impulse response satisfies the symmetry constraint, 

ℎ ! = !±ℎ!(! − ! − 1). 

Linear phase imposes a symmetry constraint on the impulse response. Without 

any phase constraints, the required order to obtain a specified amplitude response is 

reduced. For the case where only the amplitude response is considered, many filters 

with the optimum amplitude response but different phase responses exist. Among these 

filters, the minimum phase filter has all of the zeros inside the unit circle and has the 

smallest time delay. The minimum phase filter also maximizes the partial energy               
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! ! = ! |ℎ(!)|!!
!!! !of the impulse response and, therefore, has the most asymmetric 

impulse response.  

3.1.2. Infinite impulse response filters 

A  Kth-order IIR filter is described by the difference equation: 

! ! = !− ! !!!!! ! − ! + ! !!!
!

!!!

!

!!!
!(! − !) 

    (3-6) 

where we see that each output sample depends on present and past input samples, as 

well as past output samples. The recursive part of the filter causes the response to an 

impulse input to endure forever and is the reason why such filters are called IIR filters. 

There are many techniques for designing IIR filters based on the steady-state magnitude 

response. The most common IIR filters are Butterworth, Chebyshev type I and II, and 

Elliptic filters. With an input signal of finite length, the transient response becomes 

important. The Butterworth filter has the smallest transient because among the three 

filter types, Butterworth filters have poles with the smallest magnitude. Butterworth 

filters have a wider transition region than the other filters, and there is a trade-off 

between transient duration and magnitude response. 

As discussed in section 3.1.1 a FIR filter can have exactly linear phase. In other 

words, the group delay of the filter can be constant. This linear-phase property results 

from the symmetry of the unit-pulse response of the filter. An IIR filter has an infinite 

duration unit-pulse response that cannot be symmetric if it is causal. Therefore an IIR 

filter cannot have exactly linear phase.  The required filter length N increases when 

sharp transitions between frequency bands are specified and/or large attenuation are 

required in the stop band. High performance linear phase filters with sharp cut-offs and 
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large attenuation are necessarily long and have large, though constant, delays and a 

large number of coefficients to be stored. 

When constant delay is not required for all frequencies, better FIR filters can be 

designed. When the group delay is of little concern, the minimum phase FIR filters may 

be a good choice. An IIR filter can generally achieve a sharper transition between band 

edges than an FIR filter can with the same number of coefficients. Implementation of 

IIR filters with a recursive realization in fixed-point arithmetic is much more difficult 

than the direct, non-recursive implementation of an FIR filter. An IIR filter has an 

advantage over an FIR filter in that it generally has fewer coefficients than an FIR filter 

with similar magnitude characteristics, so less memory is required to store the 

coefficients [111]. 

3.2. Adaptive signal decomposition 

The reviewed filtering techniques in previous part fail to achieve a signal 

separation when there is overlap in the frequency characteristics of the undesirable 

signal and the signal of interest. Moreover, the signals may change through space and 

time, so adaptive frameworks for determining basis functions have been proposed in 

filtering techniques. Common adaptive frameworks for determining basis functions are 

Independent Component Analysis, Principal Component Analysis, and Singular Value 

Filter.  

Blind source separation, BSS, is a method for recovering unobserved signals or 

sources from several realizations of their mixture. No prior information about the 

signals or their combination is employed to separate the sources. Instead, BSS assumes 

statistical relationships between the sources, that is, assuming different physical 

processes generate signals with predictable relationships [112]. 
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As BSS filters employ no prior information regarding the signals themselves, 

they are widely applicable to many signal structures along all dimensions. The assumed 

source signal statistics plays a significant role in the overall ability of BSS to separate 

source signals thoroughly. One approach, known as principal component analysis 

(PCA), assumes that the source signals are orthogonal [113]. Another method, which 

assumes that the source signals are independent and non-Gaussian-distributed, is known 

as independent components analysis (ICA) [112]. 

BSS-based filtering is performed by adaptively selecting either orthogonal or 

independent basis functions corresponding to source signals of interest. If the signal of 

interest is to be removed from the data, the input data matrix is projected onto the 

complement of the predicted signal subspace [114]. If the signal of interest is to be 

retained and extracted from the other signals, the input data matrix is projected onto the 

basis functions selected to span the desired signal subspace [115].  

Independent component analysis, ICA, based filtering techniques separate 

unwanted sources of variation from the desired signal by maximizing the entropy of the 

data transformed linearly into the ICA component axes. In principal component 

analysis, PCA, the basis functions are determined adaptively from the covariance 

properties of the data. PCA finds orthogonal directions of greatest variance in the data, 

whereas ICA component maps may be non-orthogonal. The singular value filter, SVF, 

differs from PCA based approaches by incorporating a weighting function that 

computes non-binary filter coefficients adaptively from information contained in the 

singular value spectrum.  

3.2.1. Independent component analysis for source separation 

Independent component analysis is a linear transformation that captures the 

essential structure of the data in the observed signal. The goal is to find a linear 
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representation of non-Gaussian data so that the components are statistically 

independent. ICA, which is another form of BSS, is based on the assumption that source 

signals are not only uncorrelated but also mutually independent. ICA basis functions are 

extracted by maximizing the entropy in the joint probability density functions (pdf) of 

the basis vectors. The decomposition is then whitened, meaning that each basis function 

is magnitude-normalized. 

ICA can achieve superior signal separation to PCA if the underlying source 

signals are statistically independent and non-Gaussian [112]. If, however, the source 

signals are not independent, ICA may not offer significant advantages over PCA for 

BSS-based adaptive filtering. For example, in noise filtering applications, jitter and 

other noise signal components are likely to be independent of the desired signals; an 

independent decomposition may be appropriate for BSS noise filtering [116]. A non-

independent decomposition may be suitable for separating unwanted and desired signals 

in other cases. 

  Independent Component Analysis can be used to estimate the mixing 

coefficients, !!", based on the information of their independence, which allows 

separation of the original source signals !!(!), … ,!!(!)  from their mixtures !!(!), … , 

!!(!) where parameters !!" are mixing coefficients. 

!! = !!!!!! + !!!!!! +⋯+ !!!"!!!!!!!!!!!!!for!all!! (3-7) 

It is assumed that each mixture  !! , as well as each independent component !!, 

is a random variable. We represent the model by x, a random vector whose elements are 

the mixtures!!!(!), … , !!(!), and likewise by s, a random vector with elements         

!!(!), … ,!!(!) and by A, the matrix with elements !!". Using this vector–matrix 
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notation, the above mixing model is written as x = As.  Sometimes we need the columns 

of matrix A; denoting them by !! the model can also be written as equation (3-8). 

! = ! !!!
!

!!!
s!! 

(3-8) 

For estimating the mixing matrix A, it is assumed that the components !! are 

statistically independent and the independent components must have non-Gaussian 

distributions. Then, after estimating the matrix A, we can compute its inverse, say W, 

and obtain the independent component simply by s = Wx. By using the technique 

sources of variation can be separated, so in filtering application the unwanted source of 

variation can be removed from the signal. 

The meaning of independence can be summarized as follows. Variables !! and 

!!!are said to be independent if information on the value of !! does not give any 

information on the value of!!!, and vice versa. For ICA this is the case with the 

variables !! and !!. Technically, independence can be defined by the probability 

densities. We define that !! and !! are independent if and only if the joint pdf is 

factorizable in the following way:  !! !!,!! = !!! !! !! !!! . This definition extends 

naturally for any number n of random variables, in which case the joint density must be 

a product of n terms. For independent random variables, given two functions, ℎ! and ℎ!, 

we always have  !! ℎ!(!!)ℎ!(!!)  = !! ℎ!(!!) !! ℎ!(!!) . 

A weaker form of independence is uncorrelatedness. Two random variables 

!!!and !! are said to be uncorrelated, if the following quality exists between the 

expected values:!!! !!!! -!! !! !! !! = 0. If the variables are independent, they are 

uncorrelated. On the other hand, uncorrelatedness does not imply independence. Since 

independence indicates uncorrelatedness, many ICA methods constrain the estimation 
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procedure so that it always gives uncorrelated estimates of the independent components. 

This reduces the number of free parameters, and simplifies the problem. 

The important restriction in ICA is that the independent components must be 

non-Gaussian for ICA to be possible. In the Gaussian case the density is completely 

symmetric. Therefore, it does not contain any information on the directions of the 

columns of the mixing matrix A. This is why A cannot be estimated in this case. 

Intuitively speaking, the key to estimating the ICA model is non-Gaussianity. Actually, 

without non-Gaussianity the estimation is not possible at all [117]. 

The Central Limit Theorem, a classical result in probability theory, states that 

the distribution of a sum of independent random variables tends towards a Gaussian 

distribution, under certain conditions. Thus, a sum of two independent random variables 

usually has a distribution that is closer to Gaussian than any of the two original random 

variables. To estimate data vector x using ICA, we assume that it is a mixture of 

independent components, and the components have identical distributions. To estimate 

one of the independent components, a linear combination of the !! is considered; we 

denote this by  ! = !!!!!  = !!!! !!! , where ! is a vector to be determined. If w were 

one of the rows of the inverse of A, this linear combination would actually be equal to 

one of the independent components [118]. 

 
It is possible to find an estimator that gives a good approximation for the ICA 

transform. It stems from the basic principle of ICA estimation by a change of variables, 

defining ! = !!!!!. !Then we have ! = !!!!! = !!!!!" = !!!!!.! Thus, the variable ! 

is a linear combination of!!!, with weights given by !!. Since a sum of even only two 

independent random variables is more Gaussian than any of the original variables, !!!! 

is more Gaussian than any of the !!!  and becomes least Gaussian when it in fact equals 

one of the !!!. In this case, obviously only one of the elements !! of z is non-zero. 
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Therefore, we could take as w a vector that maximizes the non-Gaussianity of!!!!!. 

Such a vector would necessarily correspond (in the transformed coordinate system) to a 

z which has only one non-zero component. This means that !!!! = !!!!! equals one of 

the independent components. 

Another approach for ICA estimation inspired by information theory is 

minimization of mutual information. Using the concept of differential entropy, the 

mutual information I  between m (scalar) random variables, !!, i =!1,…, m  is defined as 

equation (3-9): 

! !!,!!,… ,!! = ! !!(!!)!
!!!  - !(!). (3-9) 

Entropy ! is the basic concept of information theory. The entropy of a random variable 

can be interpreted as the degree of information that an observation of the variable 

provides [119]. The more “random”, i.e. unpredictable and unstructured the variable is, 

the larger its entropy. Entropy H is defined for a discrete random variable Y as follows, 

where the !! are the possible values of Y; 

!!(!) = − ! !! ! = !!!! log!!(! = !! !) (3-10) 

Mutual information is a natural measure of the dependence between random 

variables. In fact, it is equivalent to the divergence between the joint density f(y) and the 

product of its marginal densities; a very natural measure of independence. It is always 

nonnegative, and zero if and only if the variables are statistically independent. Thus, 

mutual information takes into account the whole dependence structure of the variables, 

and not only the covariance, like PCA and related methods. 

To obtain a measure of non-Gaussianity that is zero for a Gaussian variable and 

always non-negative, one often uses a slightly modified version of the definition of 

differential entropy, called negentropy. Negentropy J is defined as                          

! ! = !! !!"#$$ − !(!) where !!"#$$ is a Gaussian random variable of the same 
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covariance matrix as y. In this approach, the ICA of a random vector x is defined as an 

invertible transformation, where the matrix W is determined such that the mutual 

information of the transformed components !! !is minimized. Finding an invertible 

transformation W that minimizes the mutual information is roughly equivalent to 

finding directions in which the negentropy is maximized [120]. 

3.2.2. Principal component analysis for source separation 

Principal component analysis (PCA) and the closely related Karhunen-Loeve 

transform are classic techniques in statistical data analysis and feature extraction. PCA 

is one of the most valuable techniques resulting from applied linear algebra. In 

multivariate measurement analysis the goal is to find a smaller set of variables with less 

redundancy that gives as good a representation of the original set as possible [121]. The 

goal is related to the goal of ICA, that is source separation. However in PCA the 

redundancy is measured by correlation between data elements, unlike in ICA, where a 

much richer concept of independence is used and the reduction in the number of 

variables is given less emphasises. Using only the correlations, as in PCA, has the 

benefit that analysis can be used on second order statistics alone and so it results in less 

complexity.  

To perform PCA, the Karhunen–Loeve (KL) transform can be employed to 

decompose the input data matrix into its orthogonal basis functions with a 

corresponding energy signature. In this manner, the KL transform is to PCA what the 

Fourier transform is to spectral analysis. The KL expansion illustrates that a complex 

random process can be fully described by the eigenvalues and associated orthonormal 

eigenvectors of its autocorrelation matrix [122]. Further, an approximate expansion of 
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the data can be achieved by using only a subset of the eigenvalues and associated 

eigenvectors. 

Although PCA may be useful for certain filtering applications like in [123], its 

general utility for adaptive regression filtering is limited. This limitation arises because 

orthogonality indicates that the basis functions are uncorrelated, but does not 

necessarily imply that the functions are statistically independent. Orthogonal basis 

functions are independent only if the functions are Gaussian or otherwise distributed 

random variables for which the second and higher order moments are zero [113]. If an 

orthogonal decomposition is performed, the resulting basis functions may be orthogonal 

but not mutually statistically independent. As a result, multiple independent source 

signals may project onto the same orthogonal basis vector, leading to incomplete source 

signal separation that makes filtering via projection operations difficult.  

Considering the random vector x with n elements and available samples 

! 1 , … , ! !  from this random vector, there is no explicit assumption on the 

probability density of the vectors in PCA as long as the first and second order statistics 

are known or can be estimated from the samples [124]. In PCA transformation the 

vector x is first centred by subtracting its means. Next, x is linearly transformed to 

another vector y with m elements, where m < n, so that the redundancy induced by 

correlations is removed. This is done by finding a rotated orthogonal coordinate system 

such that the elements of x in the new coordinate system become uncorrelated. At the 

same time, the variances of the projections of x on the new coordinate axes are 

maximized so that the first axis corresponds to the maximum variance, the second axis 

to the maximum variance in the direction orthogonal to the first axis, and so on. The 

PCA transformation can be achieved by either variance maximization or by minimum 

mean-square error compression. 
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Variance maximization: Consider a linear combination !!= !!!!
!!! !!= !!

!!x 

of the elements!!!, … , !!of  the vector x. The !!!, … , !!! are scalar coefficients, or 

weights, of an n-dimensional vector !!  and !!
!!denotes the transpose of !! . The 

factor !! is called the first principal component of x, if the variance of !! is maximally 

large. Because the variance depends on both the norm and orientation of the weight 

vector !!  and grows without limits as the norm grows, it imposes the constraint that 

the norm of !! is constant, in practice equal to 1. Thus we look for a weight vector !!  

maximizing the PCA criterion 

!!!"#(!! ) = E{!!!}= E{(!!
!!)! } = !!

! E{x!! }!!  = !!
! !!! !!   

such that ||!! ||=1 

(3-11) 

The norm of !!  is the usual Euclidean norm defined as ||!! ||= (!!
!!! )!. The matrix 

!! is the n× n covariance matrix of x given for the zero mean vector x by the 

correlation matrix !!  = E{x!! }. 

It is well known from basic linear algebra that the solution to the PCA problem 

is given in terms of the unit length eigenvectors !!!, … , !! of the matrix !! . The 

ordering of the eigenvectors is such that the corresponding eigenvalues !!, … , !!! 

satisfy !!!!≥ … ≥ !!!. The solution for the maximization problem is !! = !!! . 

Following the variance framework, a simpler and widely used approach to 

compute basis functions involves performing eigenvalue decomposition (EVD) on the 

autocorrelation matrix,  

! = !!!!! = !!!!!! (3-12) 

where the matrix ! is a diagonal matrix with the kth entry being the kth eigenvalue. 

Eigenvalues are positive and real, and they are typically arranged in order of descending 
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value. For each eigenvalue, there is an associated eigenvector, which is contained in the 

columns of  !. These eigenvectors correspond to the PCA basis functions. The kth 

associated eigenvalue is proportional to the amount of variance accounted for by the kth 

eigenvector !! = ! !!!!,
!. 

An alternative method to eigenvalue decomposition is to perform a singular 

value decomposition (SVD), which finds the PCA basis functions and avoids 

computation of the autocorrelation matrix [125]. The SVD of  ! = U ∑!! is where 

columns of  U are the singular vectors corresponding to the eigenvectors of !!!!  and ∑ 

is a diagonal matrix of singular values !! with singular values arranged in order of 

descending value [126].  
Minimum mean-square error compression: The principal components are defined 

as weighted sums of the element x with maximal variance, under the constraints that the 

weights are normalized and the principal components are uncorrelated with each other. 

It turns out that this is strongly related to minimum mean-square error compression of x, 

which is another way to pose the PCA problem [127]. In this approach we search for a 

set of m orthonormal basis vectors, spanning an m-dimensional subspace, such that the 

mean square error between x and its projection on the subspace is minimal. The mean 

square error to be minimized by the orthonormal basis!!!, … , !! becomes as 

equation (3-13). 

!!"#!"# = !{|| !!− ! (!!
!!)

!

!!!
!! ||!} 

(3-13) 

Due to orthogonally of the vectors !! , this criterion can be further written as 

!!"#!"# = ! ! !
 – ! (!!

!!)!
!!! !!

!
 = trace (!! ) – !!!!!!

!!! !! .   (3-14) 



69 
 

It can be shown that the minimum of it under the orthonormality condition on 

the !! is given by any orthonormal basis of the PCA subspace spanned by the m first 

eigenvectors  !!!!, … ,!! . 

As the principal component basis vectors !!  are eigenvectors !!  of  !! , it 

follows that  

E{!!! } = E{!!!  x!! !!} = !!! !!! !! = !! .   (3-15) 

The variance of the principal components are thus directly given by the eigenvalues of  

!! . Note that because the principal components have zero means, a small eigenvalue (a 

small variance)  !! indicates that the value of the corresponding principal component is 

mostly close to zero [120]. 

Following decomposition of the signal along a new set of basis functions, PCA-

based filtering can be achieved by assigning weights to each basis function 

! = ! !!!!!!
!

!!!
 

(3-16) 

where y is the filtered output signal with the same dimensions as x. 

In PCA-based filtering approaches, the weights are defined a priori based on the 

assumed relative amount of variance accounted for by the desired source signal. This 

procedure entails rejecting a number of basis functions on the assumption that unwanted 

source of variation has a higher or lower variance in the data. While this a priori 

strategy for defining weighting coefficients parallels standard DFT filtering design, it 

can be inadequate in PCA based methods since PCA basis functions are not known a 

priori as in the DFT.  
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3.2.3.  Singular value filter for source separation 

The singular value filter operates by decomposing the signal along the PCA 

basis functions as computed from their singular value decomposition. Filtering is then 

applied by assigning weights to the basis functions to achieve the filtered output. It is 

possible to achieve consistent filtering results when the weighting coefficients are 

determined adaptively from the singular values, but superior performance can be 

achieved when the filter coefficients are non-binary and determined as a function of the 

singular value spectrum of data.  

In PCA-based filtering, weightings are restricted to binary numbers such that 

each basis function is either completely rejected or completely retained. In contrast, the 

SVF framework for PCA-based filtering that incorporates a weighting function created 

from statistical assumptions and a signal model, which computes non-binary from the 

singular value spectrum. Non-binary filter coefficients are demonstrated to achieve 

consistent and better filtering results as they effectively eliminate undesirable signal 

components whilst avoiding block artefacts that arise from strict thresholding.  

The singular value filter is a PCA-based regression filter where filter 

coefficients are complex, and they are adaptively determined as a function of the 

singular value spectrum of 

!! = !! ! ∑ = !1− ! 1
1+ !!!!!( !!!) 

(3-17) 

where  !  and !  are weighting function parameters that adjust the cut-off threshold and 

weighting function roll-off, respectively. ∑! is a diagonal matrix of singular values !! . 

As displayed in Fig. 3.1, as  ∝!→ 0,!  !! ! ∑ !!flattens, indicating that all basis functions 

are retained at the same level and no filtering is obtained. At the other limit as ∝!→ ∞, 

filtering is reached through strict thresholding where !! ! ∑ !are binary. In this instance, 
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basis functions are rejected if their associated singular values have a value above 

threshold ! and retained if  is below the threshold [128]. 

 

Figure 3.1, The SVF weighting function [128] 

 

  

3.3. Time normalization 

In motion analysis, identifying features during action sequences with different 

speeds or different numbers of samples in each cycle is an important issue. In such 

cases time normalization is necessary before or during the recognition process. Each 

cycle should be normalized so it is represented by the same number of samples. Linear 

time normalization and nonlinear time normalization using dynamic time warping are 

the most common techniques that can be used for this purpose [129]. Linear time 

normalization linearly converts the trajectory’s time axis from the experimentally-

recorded time units to an axis representing the gait cycle [130].  Dynamic time warping 

shifts the time index of each data point in a test trajectory to minimize the distance 

between the test and consensus trajectories [131].  In general, time-warping   can   be 

performed implicitly, i.e. by the resizing along the time axis of patterns that depict the 

evolution of a feature through time. 



72 
 

To become familiar with the principles of time-warping we can imagine two 

signals which can be expressed by appropriate sequence of feature vectors as shown in 

equation (3-18).  

! = !!!!, !!!!,… ! ,!!!!,… ,!! 

! = !!!!, !!!!,… ! , !!!!,… , !! 

(3-18) 

The goal of time-warping is to eliminate timing differences between these two feature 

vectors. Considering an i - j plane, where patterns A and B are developed along the i-

axis and j-axis, respectively, the timing differences between them can be depicted by a 

sequence of points !! = (!!, !):  

! = ! 1 , ! 2 ,… ! , ! ! ,… , !(!) (3-19) 

where  ! ! = (! ! !, !(!)). 

This sequence can be considered to represent a function which approximately 

realizes the mapping from the time axis of pattern A onto that of pattern B. Hereafter, it 

is called a warping function. When there is no timing difference between these patterns, 

the warping function coincides with the diagonal line ! = !. It deviates further from the 

diagonal line as the timing difference grows. 

As a measure of the difference between two feature vectors !!!! and !!!!, a 

distance 

!! ! = !! !, ! = ! !!!! − !!!!!  (3-20) 

is calculated between them. Then, the weighted summation of distances on the warping 

function F becomes 

!(!) = ! ! ! .!!!(!)!
!!!  (3-21) 

where w(k) is a nonnegative weighting coefficient, which is intentionally introduced to 

allow the E(F) measure to be a flexible characteristic and is a reasonable measure for 
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the goodness of warping function F. It reaches its minimum value when warping 

function F is determined so as to optimally adjust the timing difference. This minimum 

residual distance value can be considered to be the distance between patterns A and B, 

still remaining after eliminating the timing differences between them, and is naturally 

expected to be stable against time-axis fluctuations. Based on these considerations the 

time-normalized distance between two patterns A and B  is defined as follows: 

!! !,! = Min ! ! ! .!!!(!)!
!!!

!!(!)!
!!!

 
(3-22) 

where denominator !(!) is employed to compensate for the effect of K (the number 

of points on the warping function F). Equation (3-22) is no more than a fundamental 

definition of time-normalized distance. [129]. 

3.4. Statistical significance 

To show that the results are statistically valid, in this thesis we use a statistical 

significance test. Any hypothesized relationship between two variables can be 

expressed in terms of a probability that the relationship exists; and how strong is the 

relationship. Statistical significance is one of the tools that is used to address existence 

and strength of the relationship [132]. They tell us what the probability is that we would 

be making an error if we assume that we have found an apparent relationship.  

   A statistical significance test is used to show if we select random samples from a 

population, the same relationship would exist between variables in every sample or not. 

The test is also used to show that if we could do a census of the population, the same 

relationship would exist in the population from which the sample was drawn, or 

whether our findings are due to random chance.  Generally, we can never be 100% 

certain that a relationship exists between two variables. There are too many sources of 
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error to be controlled, for example, sampling error, researcher bias, problems with 

reliability and validity, simple mistakes, and so forth.  

     Using probability theory and the Normal curve, the probability of incorrectly 

concluding that a relationship exists can be estimated. If the probability of an incorrect 

conclusion is small, then we say that our observation of the relationship is a statistically 

significant finding. Statistical significance is not the same as practical significance. We 

can have a statistically significant finding, but the implications of that finding may have 

no practical application.  

In testing for statistical significance we need to state the research hypothesis, the 

null hypothesis, then by selecting a probability of error level, we need to compute the 

test for statistical significance, and interpret the result.  A research hypothesis states the 

expected relationship between two variables. It may be stated in general terms, or it may 

include dimensions of direction and magnitude.  A null hypothesis usually states that 

there is no relationship between the two variables. 

Researchers use a null hypothesis in research because it is easier to disprove a 

null hypothesis than it is to prove a research hypothesis. That is, it is easier to show that 

something is false once than to show that something is always true. It is easier to find 

disconfirming evidence against the null hypothesis than to find confirming evidence for 

the research hypothesis [133].  

    Even in the best research project, there is always a possibility (hopefully a small 

one) that the researcher will make a mistake regarding the relationship between the two 

variables. There are two possible types of mistake or error. The first is called a type I 

error. This occurs when the researcher assumes that a relationship exists when in fact 
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the evidence is that it does not. In a type I error, the researcher should accept the null 

hypothesis and reject the research hypothesis, but the opposite occurs.  

     The second is called a type II error. This occurs when the researcher assumes 

that a relationship does not exist when in fact the evidence is that it does. In a type II 

error, the researcher should reject the null hypothesis and accept the research 

hypothesis, but the opposite occurs. Generally, reducing the possibility of committing a 

Type I error increases the possibility of committing a Type II error and vice versa. 

     Researchers generally try to minimize type I errors, because when a researcher 

assumes a relationship exists when one really does not, consequences may be worse 

than before the conclusion was made. In type II errors, the researcher misses an 

opportunity to confirm that a relationship exists, resulting in no change of thinking, i.e. 

no action. Researchers generally specify the probability of committing a type I error that 

they are willing to accept. In social sciences, most researchers select it to be 0.05. This 

means that they are willing to accept a probability of 5% of making a type I error.  

3.5. Summery 

In this chapter we reviewed signal separation, time normalization and statistical 

significance techniques. As a conclusion to the reviewed techniques, we note that there 

are some important differences between PCA and ICA. Principal component analysis is 

not based on a generative model, although it can be derived from one. It is a linear 

transformation that is based either on variance maximization or minimum mean square 

error representation. The PCA model is invertible in the theoretical case of no 

compression i.e., when all principal components are retained. Once the principal 

components !! have been found, the original observations can be readily expressed as 

either linear functions as = ! !!!
!!! !! , and also the principal components are simply 



76 
 

obtained as linear functions of the observations: !! = !!!
!!. ICA is a similar generative 

latent variable model, but now the independent components are assumed to be 

statistically independent and non-Gaussian; that is a much stronger assumption that 

removes the rotational redundancy. 
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4. Research!Method!
 

When considering the applicability of on-body sensing systems for home-based 

rehabilitation, we face the challenges related to wearer’s comfort. As discussed in 

Chapter 2, these systems are bulky due to large batteries and sensitive to sensors 

positioning which need uncomfortable tight-fitting attachments and experts for 

placement/set-up. In this thesis we look at signal processing techniques to overcome the 

mentioned challenges. We show how we overcome these challenges by applying signal 

processing techniques on motion data which is gathered through a set of designed 

experiments,  

To compensate for the effect of the random changes in the position of sensors on 

measured data, and to enable a more energy efficient on-body sensing system, we use 

source separation and filtering techniques. Finding characteristic features that represent 

the main patterns of motion enables on-body sensing systems to reduce variability in 

motion data. Our proposed way of using functional principal component analysis 

(fPCA) is introduced in this chapter with a brief review of its theory along with the 

application of PCA-based techniques reported in literature. To date this technique has 

not been reported as a filtering or source separation method. Its applicability in 

compensating for the effect of random changes in position of sensors is compared with 

other techniques in Chapters 5 and 6 by analysing motion data of experiments on a 

robot arm and human motion. 
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Three experimental scenarios were designed, on human subjects and a robot 

arm. By designing and performing experiments on robot arm we assess the validity of 

applying the technique that we introduce. We study and compensate for the 

uncertainties in the data due to sensor position changes. Experiments are designed for 

motion capture of a robot arm at different frequencies while random changes are 

introduced in position of sensors. 

 The superiority of the approach over the other considered techniques is shown 

in the third experimental scenario of experiments when reducing the sampling rate. As 

the sampling rate decreases, the system becomes more energy efficient. Therefore, by 

decreasing the sampling rate, the battery size can be reduced or there can be increase in 

measurement time and therefore the system lifetime. Although decreasing the sampling 

rate causes more variation in the captured motion data, we can use the proposed data 

analysis technique to compensate for this effect.  

4.1. An introduction to theory 

FPCA is an extension to the traditional PCA, where the principal components 

are represented by functions rather than vectors. It has been shown to be very effective 

for the study of human motion. By examining the entire waveform data, this tool can 

identify embedded patterns of complex movements, and more detailed pattern 

differences can be discriminated [134]. Principal components provide indications for 

identifying potentially important differences in motion curves. 

4.1.1. Functional principal component analysis 

Functional principal component analysis-based technique has been used in 

motion analysis, although it has never been used as a filtering technique in motion data 

analysis. Standard data analysis techniques, which determine the mean and standard 
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deviation of time series data, summarize motion data in single patterns that are the 

average behaviour and show deviations as possible errors by standard deviation bands. 

Such techniques severely reduce the information gleaned from the raw data, and may 

discard much important information.  

 In particular, the results do not account for the information that may be inherent 

in all the variations apparent in the data. When different sessions of marker wearing are 

averaged, information can be lost and the averaged curve does not closely resemble any 

of the individual curves. To facilitate analysis and present only the essential structures 

contained within the data, multivariate statistical analysis has been proved to be a 

powerful tool [135]. However, the extent of information loss when averaging data 

remains a matter of concern.  

The basic philosophy of applying functional data analysis on human motion data 

is the principle that the best unit of information is the entire observed function rather 

than a string of numbers. It is assumed that human motion data are supposed to have an 

underlying functional relationship governing them [136]. A central idea in functional 

data analysis is smoothness which implies that adjacent values in time are linked and it 

is unlikely that these values will differ largely [137]. Since fPCA provides a means of 

identifying and examining the main source of variability of a set of curves, it is useful 

for analysing human movement data where variability plays a key role [138]. 

Among multivariate statistical techniques, linear transformations are 

computationally easier to perform. With linear transformations, the use of functional 

techniques may provide additional insight into differences in motion patterns. Treating 

the data as functions preserves all the information contained in the raw data.  They are 

an effective tool for the study of human motion in modelling motion curves by 

identifying hidden combinations and relationships between variables [15]- [134].  
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We use fPCA as a filtering technique which has not been reported in literature 

to-date; then we test the applicability of it to motion capture data.  In the first step, we 

fit the function to the data. To fit a function to our raw data y, we use a set of functional 

building blocks ∅!, ! = 1, 2,… ,!, called basis functions which are combined linearly 

(4-1). That is, a function x (t) defined in this way is expressed as follows, and called a 

basis function expansion. 

! ! = !!∅!
!

!!!
 

(4-1) 

Parameters !! !!are the coefficients of the expansion. The upper limit of the 

number of principal components in the multivariate case is the number of variables, 

while in fPCA the number of eigenfunctions is equal to the smaller of K and N, where K 

is the number of basis functions, and N is the number of variables [137]. To compute 

coefficients !! there are two strategies [139]. Smoothing by regression analysis, and 

smoothing by roughness penalties. In the first approach, smoothness is achieved by 

defining the data fitting as the minimization of the sum of squared errors, SSE, and 

considering the error as follows, 

!! = ! !! + !! = !!!∅ t + !! = ∅!(!!)!+ !! (4-2) 

Using matrix notation let y, the raw data vector, contains the n values to be 

fitted, vector ! contains the corresponding true residual values, and n by K matrix ∅ 

contains the basis function values!∅!(!!). Then we have!! = ∅!+ !!. The least-square 

estimate of the coefficient vector c is shown in equation (4-3). 

! = (∅!∅)!!∅!! (4-3) 

There is no particular limitation on the number of variables N that we want to fit 

the functions into. The number of basis functions K should be less than or equal to the 

number of sampled data points, n. An exact representation of sampled data is achieved 
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when K=n in the sense that we choose the coefficients !! to yield ! !! = !! !for each j. 

A larger K provides a better fit to the data, but for smaller values the less computation is 

required. However, if we make K too small, we may miss some important aspects of the 

function that we are trying to estimate 

Therefore the degree to which the data !! !are smoothed as opposed to being 

interpolated is determined by the number of K basis functions. Consequently we do not 

view a basis system defined by a fixed number K of parameters, but rather we see K 

itself as a parameter that we choose according to the characteristics of data. Ideally, 

basis functions should have features that match those known to belong to the functions 

being estimated. This makes it easier to achieve a satisfactory approximation using a 

comparatively small number K of basis functions. 

 The trade-off can be expressed in another way. For a larger value of K, the 

bias in estimating x(t), which is defined as Bias !!! ! = ! ! − E[!! ! ], is small. The 

bias will be zero for K = n. The variance of the estimate which is defined as 

Var ! ! = E[ ! ! − E[! ! ] !] for K = n is almost surely going to be 

unacceptably high. Reducing the variance leads us to look for smaller values of K, but 

of course not so small as to make the bias unacceptable. It is appropriate to tolerate a 

little bias if the result is a substantial reduction in the sampling variance. 

 The considerable literature on multiple regressions contains many ideas for 

deciding how many basis functions to use. For example, stepwise variable selection 

would proceed in a step wise fashion by adding basis functions one after another, 

testing whether the added function significantly improves the fit at each step.  

Conversely, variable-pruning methods are often used for high-dimensional models, and 

work by starting with a generous choice of K and dropping a bias function at each step 

that seems to not account for a substantial amount of variance. These methods all have 
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their limitations and there is no “gold standard” for the selection of K. According to the 

nature of human movement there are no rapid changes in the main pattern of motion 

that could be missed when the sampling frequency is high in comparison to movement 

pattern [137]. 

The roughness penalty approach uses a large number of basis functions and at 

the same time imposes smoothness by penalizing some measure of function complexity. 

A measure of roughness of the fitted curves can be the square of the second derivative 

of a function, !!! ! !, at argument value t which is called curvature at t. Thus, a 

measure of a function’s roughness is the integrated squared second derivative or total 

curvature, 

PEN! ! = !!! ! !d!. (4-4) 

      Therefore the roughness penalized fitting criterion can be as in (4-4), where λ is the 

smoothing parameter specifying the emphasis on the second term penalizing curvature 

relative to goodness of fit, quantified in the sum of squared residuals in the first term. 

Adding a penalty to the least-squares criterion, causes the following penalized sum of 

squared errors, !(!),  

!(!) = [!! − ! !! ]!! +!  λ PEN! !(!) . (4-5) 

In equation (4-5), λ represents a continuous tuning parameter. Larger λ causes 

roughness increasingly penalized, and x(t) becomes smooth. Smaller λ causes penalty to 

be reduced. By defining the roughness penalty matrix as R= ∅ t ∅! ! d!, We can 

show the estimate of the coefficient vector c as follows [137], 

! = (∅!∅+ λ!)!!∅!! (4-6) 

In this thesis we chose the regression method for finding the expansion 

coefficients!!!. The roughness penalty approach uses a large number of basis functions 
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and it requires parameter λ to be adjusted in addition to the parameters needed in 

regression method.  In the nature of human movement there are no rapid changes in the 

main pattern of motion that could be missed when the sampling frequency is high in 

comparison to the speed of motion. So in our analysis, there is no need to select a more 

complex way of finding the coefficients, which is roughness penalty approach.  

After calculating the coefficients and deriving the fitted functions into our data, 

we calculate the sample variance-covariance function, !(!, !), which  is defined as 

follows, 

! !, ! = !!! !! !
!

!
!! !  

 (4-7) 

The functional eigenequation is 

! !, ! ! ! !" = !" ! ,  (4-8) 

where !!is eigenvalue and ! s  is an eigenfunction of the variance-covariance function. 

The eigenfunction which is called the principal component weight function, !!(s), can 

be calculated by (4-9). 

                                         Maximize  !!!!!!  

             Subject to !!! ! !" = !!
! = 1, 

 

(4-9) 

where the principal component score !!! is defined as  

!!!= !!(s)!!!(s)ds. (4-10) 

A non-increasing sequence of eigenvalues !! ≥ !! ≥ ⋯ ≥ !! can be constructed 

stepwise by requiring each new eigenfunction computed in (4-11), to be orthogonal to 

those computed in the previous steps, 
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!! ! !! ! !" = 0, ! = 1,… , ! − 1! 

!!! ! !" = 1. 

 

(4-11) 

Solving the eigenequation for extracting functional Principal Components 

essentially reduces to performing Singular Value Decomposition (SVD) as shown in 

equation (4-12). The columns of  Δ contain the eigenfunctions (fPCs) evaluated at time t 

and  Λ contains the corresponding eigenvalues. The notation Δ!(t) is used to identify 

that we are dealing with functions. 

! !, ! = Δ(!)ΛΔ!(t) (4-12) 

In functional PCA, there is an eigenfunction associated with each eigenvalue, 

rather than an eigenvector in PCA. These eigenfuctions describe major variational 

components. It also permits the extraction of loadings and scores. Loadings are the 

correlation coefficients between variables and components. Scores are the contributions 

of the principal components to each individual variable. Motion data can be 

decorrelated by projection onto the eigenfuctions. After projection, stochastic 

components can be separated from deterministic components, by subtracting either one 

or the other from of the signal.  There is a close relation between fPCA and PCA. 

 

4.1.2. Principal component analysis 
 

As discussed, PCA is a multivariate statistical technique that provides an 

orthogonal projection of the data onto a lower dimensional linear space, known as the 

principal subspace. PCA has been widely used for multivariate data analysis and 

dimension reduction. It can be used as a decorrelation technique by computing a new, 

much smaller set of uncorrelated variables, i.e. Principal Components (PCs). Each new 



85 
 

variable is a linear combination of the original ones. All the principal components are 

orthogonal to each other, so there is no redundant information. All remaining principal 

components are defined similarly, so that the lowest order components normally 

account for very little variance and can usually be ignored. In other words, PCA can be 

defined as a linear projection that minimizes the average projection cost, defined as the 

mean squared distance between the data points and their projections. 

In comparison to fPCA, PCA allows for a separation of main and residual 

components within a data set in a vector-based manner rather than as a function. We can 

eliminate the dominant features by subtracting them from the data. For a mathematical 

description of the PCA-based signal processing technique, we consider the multivariate 

motion data in the form of N different real-valued, time dependent motion vectors of 

each joint, for a number of sessions.  

Each motion vector consists of M time samples. So there would be N motion 

vectors for each session comprising M time samples for each joint. We combine these 

M dimensional vectors into a single M-by-N motion matrix. Consequently for each joint 

we create a M-by-N motion matrix, X, which is composed of various motion vectors 

from a specific subject as shown in (4-13). 

! =
!!! 1 ⋯ !!! 1
⋮ ⋱ ⋮

!!! ! ⋯ !!! !
!

 

(4-13) 

The data needs to be standardized, so they have zero mean and unit variance, 

forming a new matrix Y as shown in (4-14). The standardization affects the PCA 

results; the covariance matrix is then equal to the correlation coefficient matrix and the 

eigenvectors are normalized to unity.  The jth column of Y forms the M-dimensional 
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vectors, which are the standardized time sequences of the jth column. M is the number 

of data samples and N is the number of each marker that is worn. 

! =
!!! 1 ⋯ !!! 1
⋮ ⋱ ⋮

!!! ! ⋯ !!! !
 

 

(4-14) 

Principal components (PCs) are those linear combinations of the original 

variables that contain maximum variance. The PCs are obtained from the N eigenvalue-

eigenvector !! , !! !!pairs of data covariance matrix!Cov!" which is defined as                                           

Cov!" = !! ! − !! ! ! !! ! − !! ! ! ! . !!(!)are principal components, also 

often called modes. N is the number of principal components. 

The eigenvectors directly correspond with the principal modes introduced 

previously. Each !! !represents a measure of the variance, deviation or spread of the data 

along the corresponding mode e(!). Usually, the eigenvalues are ordered from the 

highest to lowest:!!!>!!… !!!! > !! . The total population variance is given by the 

sum of all eigenvalues: Total Variance =!!+!! +⋯+ !!!! + !!. The percentage of 

the total variance explained by the !!"!PC is given by (4-15). 

Explained variance (i) = ! !!
!!+!!!⋯!!!!!!!!

 (4-15) 

In terms of computational complexity of the algorithms, we can find the 

coefficients !! and all smooth values at !(!!) in  O(!log!) operations. This efficiency 

is possible because of the Fast Fourier Transform. This is one of the features that has 

made Fourier series a traditional basis of choice for long time series [137]. As the main 

difference between PCA and fPCA based techniques is finding the coefficients and 

smoothing values, the computational complexity of the fPCA based technique is 

2!(!log!) operations larger than the PCA based technique. We multiplied it by 2 
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because we first fit the function to data and smooth it, next we perform PCA on the 

coefficients and then, after applying the filtering technique and transferring the 

trajectories onto the first domain, we fit the function again to the discrete data.  

If we consider the data matrix that we apply PCA on as an n by m matrix (n 

number of samples and m the dimensionality) to compute PCA, we need to compute the 

covariance matrix and then apply SVD to it. The time complexity of computing the 

covariance matrix is !(log !!! ) and then computing SVD is !(!!).  So in the 

procedure of applying the technique for the PCA part, the total time complexity is 

2(! log !!! + !(!!)).  Multiplication by 2 is for a similar reason that we 

explained in previous paragraph. Consequently for applying the fPCA based filtering 

technique the computational complexity is 2(! !log! + ! log !!! + !(!!)).  

Therefore the proposed signal processing approach adds processing complexity to the 

motion capture procedure. As on-body sensing systems usually have a central system 

for analysing the data located far from the body and connected to a powerful processing 

unit with a connection to an abundant electricity supply, processing complexity is not a 

challenge in this case. 

4.2. Application of PCA-based techniques in literature  

 PCA has been shown to be a powerful tool for analysing complex gait data. 

PCA has already been used as an effective tool in motion analysis for extracting 

variation features in motion data [140]. To determine features of variation in motion 

patterns between unloaded and loaded conditions a PCA based technique was applied to 

motion capture data in [141]. In order to quantify the effect of external loads, the first 

principal was needed. Principal Components (PCs) were generated from lower body 
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joint angle data. It was shown that PCA could be used to characterize changes due to 

evenly distributed external loads.  

In [142] a PCA based technique was used on motion data acquired by an optical 

system to yield a reduced dimension space where not only interpolation but also 

extrapolation is possible which is controlled by quantitative speed parameter values. 

Moreover, with proper normalization and time warping methods, walking motions with 

continuously varying human height and speed were presented. 

In [135] the use of PCA in clinical biomechanics as an expedient, unbiased 

means for reducing high-dimensional data sets to a small number of modes or 

structures, as well as for separating invariant and variable components in such data sets 

was presented. The authors explained that PCA allows for a separation of main and 

residual components within a data set; especially when partitioning signals into 

deterministic and stochastic components, and can be seen as filtering the noise or the 

common parts.  

Based on the properties of the PCs, more specifically the eigenvalues and 

eigenvectors of the covariance matrix of motion data, a method to analyse multi-joint 

coordination was proposed in [143]. A comparison between relative phase analysis and 

PCA shows that both provide similar and consistent results, when the latter technique’s 

sensitivity is scored. It provides a method for automatic pattern detection as well as an 

index of performance for each joint within the context of the global coordination 

pattern. 

To determine differences between normal and abnormal features of gait data, 

principal component analysis was used as a data reduction tool, as well as a preliminary 

step for further analysis in [144]. The emphasis was on a comparison with a reference or 
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normal gait pattern and detection of pathological deviations from this reference, as well 

as the pre- and post-operative changes. Principal components were extracted to 

determine features of variation that could be used to quantify differences in gait 

patterns. In this way, the original waveform data for a particular subject is transformed 

into a set of PC scores that measure the degree to which the shape of their waveform 

corresponds to each feature. 

To extract biological and psychological information which is encoded in visual 

motion patterns a new method using PCA was proposed in [140]. From the trajectory of 

the 38 original markers, the locations of 15 virtual markers positioned at major joints of 

body were computed. Because each virtual marker’s position is represented by 3 

coordinates, a body posture is represented by a 45 dimensional vector. By using PCA, 

this high dimensional database was reduced to a low dimensional database in which 

walking was modelled by the temporal behaviour of the first four principal components. 

In [145] principal components and eigenvalues are used to compare the 

similarity between multivariate time series datasets. The authors proposed a similarity 

measure in multivariate time series by comparing how far the principal components are 

apart using the aggregate eigenvalues as weights, taking into account the variance for 

each principal component. They applied their method on a human gait database and 

showed that their similarity measure outperforms other common similarity measures. 

4.3. Proposed filtering strategy 

In this thesis we propose the following pipeline, as shown in figure 4.1, for 

using fPCA as a filtering strategy to address the mentioned challenges in on-body 

sensing systems for home-based rehabilitation motion capture. fPCA can be used as a 

filtering technique, especially when partitioning signals into deterministic and stochastic 

components.  
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This is achieved by subtracting either one or other from the signal and can be 

regarded as filtering the noise or the common parts, respectively. The approach is to re-

express the original data along a new coordinate system such that the signal of interest 

can be separated from other sources of variation in the original data while projecting the 

signal along different bases. Filtering is achieved by keeping the bases describing the 

signal of interest and rejecting the rest. 

 

 

Figure 4.1, The proposed fPCA based filtering technique pipeline 

 

The signal processing pipeline consists of several stages. Motion data needs to 

be normalized in the first step to ensure the same number of samples in each motion 

cycle. The difference in the number of samples per motion cycle is due to the different 

speed of performing a repetitive motion. Then we transfer the data to the fPCA domain 

by using the fPCA transform which is introduced in this chapter. As the effect of 

random changes in the position of sensors introduces a random effect on the motion 

data, to separate this effect from main and coherent component of movement, we 

partition the data into two elements,!!!(!"#$%")and !!(!"#$%&%')as shown in equation       

(4-16); 

!! !!= ! !!!(!"#$%") !!+ !!!!(!"#$%&%')!!!!!!!!!!! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!= !!(t)!!(!)
!!!"

!!!
+ ! !!(t)!!(!)

!"

!!!!!
 

 

(4-16) 
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The sum of the dominant principal components weight functions is given by!!!!(!"#$%")!, 

so the filter characteristic depends on the data. The number of eigenfunctions,!!! t , 

that define the global pattern influences the filtered pattern. The sum of the residual 

components is shown by !!(!"#$%&%').   In equation (4-16), principal component scores 

are shown by !!(!). The number of eigenfunctions is shown by NE and the number of 

selected ones is shown by L. 

After applying fPCA on our data, we filter the main source of variation in the 

data by keeping the signal components containing the most amount of variability or the 

most relevant principal component weight function or eigenfunctions and removing the 

rest from the fPCA domain. After this stage, the data will be returned to the first domain 

by projecting the data of the retained eigenfunctions and removing eigenfunctions with 

less variation. The dominant modes of variation in the data can be kept by considering 

the proportion of corresponding eigenvalues to the total variance.   

To find the dominant modes of variation in the data, and to separate the 

deterministic and stochastic components, fPCA can be used usually after subtracting the 

mean from each observation. Viewing consistent features as coherent components 

implies that the mechanisms generating these common structures follow deterministic 

rules, otherwise they would not be consistent or coherent. In contrast, the residual 

components often contain a degree of randomness or stochasticity. We apply this data-

driven filter to our experimental motion data to separate out the effect of random 

changes in sensor positioning from the main motion pattern. 
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4.4. Summary 
 

In this chapter we proposed a signal processing approach to overcome the 

challenges associated with the development of portable motion capture systems aimed 

at assisted rehabilitation. A novel way of using functional principal component analysis 

(fPCA) was introduced with a brief review of the application of PCA-based techniques 

reported in literature along with the relevant background theory. Functional principal 

component analysis has never been used as a filtering technique in motion data analysis. 

In our approach, the main source of variation in the data is filtered by keeping the most 

relevant principal component weight function and removing the rest from the fPCA 

domain. The data will be returned to the first domain by projecting the data of the 

retained eigenfunctions and removing eigenfunctions with less variation.  
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5. !Data!Acquisition!and!Experiment!Design!

To describe the compensation procedure, we first explain the process of motion 

data acquisition. We carry out three experiments collecting motion data on human 

subjects and on a robot arm. The robot arm motion capture, which utilizes a more 

controlled movement in comparison to a human, is used to validate the experimental 

procedure that is used on human subjects. The motion capture system is introduced in 

Section 5.1.  Next we explain the human motion experiment and the robot arm set-up in 

Section 5.2 and 5.3, respectively. The designed experiments for three motion capture 

scenarios are described in Section 5.4.  

5.1. Motion capture system 

 We use a commercial optical motion capture system named Codamotion [24] 

which is available in the Human Performance Laboratory of Queen Mary University of 

London, shown in figure 5.1. The system is a general-purpose 3D motion tracking 

system. The measurement unit contains three pre-aligned solid-state cameras which 

track the position of a number of active markers, i.e. infra-red light emitting diodes 

(LEDs), in real-time. Sampling rates are selectable from 1Hz up to 200Hz, dependent 

on the numbers of markers in use. Each scanner unit contains three special cameras 

which detect infra-red pulses of light emitted by the markers and locate the marker 

positions with very high resolution. The cameras are rigidly mounted on the scanner 
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units so that the system can be pre-calibrated.   

The calibrated system measures the positions of markers within a three 

dimensional coordinate system that is fixed in relation to the scanner unit. The active 

range of the capturing system is 1.5-5.2m from the scanners and follows a Gaussian 

distribution function so that optimal visibility occurs at a distance of approximately 3m 

from each scanner. The angular resolution of each camera is about 0.002 degrees; this 

results in a lateral position resolution of about 0.05 mm at 3 m distance (horizontally 

and vertically), and a distance resolution of about 0.3 mm [24]. The set-up of the motion 

capture system in the laboratory ensures that all experiments are carried out in this 

range. The process of system alignment is done by defining the X, Y, and Z axes of the 

reference coordinate system before performing each experiment [24].  

The markers are attached to drive boxes which are positioned toward or on the 

mid-section of each rigid body.  Each drive box acts as a battery to supply power to 

associated active markers. The maximum measurement time depends on a combination 

of the sampling rate and the total number of markers being tracked. As the number of 

markers decreases, the maximum measurement time can be increased proportionally for 

a given sampling rate. For example, with 28 markers (sampling rates of 200Hz or 

below), the maximum measurement times are: 100s at 200Hz, 200s at 100Hz, 400s at 

50Hz, 800s at 25Hz, ... to 20000s at 1Hz. Sampling rates are selectable from 1Hz up to 

the upper limits for different numbers of markers in use, 100Hz for up to 56 markers, 

200Hz for up to 28 markers, 400Hz for up to 12 markers, 800Hz for up to 6 markers.  
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Figure 5.1, Human performance lab, and motion capture environment 
 

The markers, small infra-red light emitting diodes, are shown in figure 5.2.  

Their drive boxes are available in two sizes, 2-marker or 8-marker. All the drive boxes 

contain sophisticated circuitry which responds to infra-red synchronizing pulses sent out 

from the Coda scanner units. The circuitry flashes the markers at an appropriate point in 

the time multiplexed sequence which corresponds with the marker number on the box. 

This is how the system maintains intrinsic marker identity.  

When the scanner unit is not acquiring data, very little current is being drawn 

from the batteries in the drive boxes. As soon as the scanner unit starts to send out 

control signals to the marker drive boxes, the rate of current consumption rises to about 

50mA in each of the drive boxes if they have two LED markers attached. This current is 

principally used by the marker LEDs which are being pulsed with current pulses of 40 

microseconds at up to 800Hz repetition rate. The capacity of the batteries in the drive 
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boxes is 30 mA hours. This is sufficient for at least 100 data acquisition runs before the 

batteries need to be recharged. 

 

 

Figure 5.2, Markers and drive boxes of the motion capture system 

 

5.2. Human motion experiment set-up 

For human motion capture experiments, the experiments on human subjects 

have been approved by Queen Mary Research Ethics Committee (Appendix A). 

Subjects are given an information sheet explaining the procedure of the experiments 

before the motion capture session and a consent form was signed by each subject 

(Appendix B). 

 In the experiment the long axis of the measurement unit defines the direction of 

the X axis, normally a horizontal line parallel to the walkway. The perpendicular line 
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from the unit defines the positive Y axis, normally horizontal across the walkway. The 

other perpendicular (vertical) line defines the Z axis (positive up) as is shown in figure 

5.3. The markers’ numbers specified in figure 5.4 are the recommended sets; different 

numbers may be used as long as the appropriate names are assigned to the markers in 

the motion analysis set-up. The geometrical properties of each body segment are 

derived from three non-collinear points bearing particular anatomical relationships to 

the given segment.   

  

Figure 5.3, Segment embedded coordinate frames according to the gait set up of Codamotion marker-set[24] 
 

There are several standard marker-sets for placing markers on the human body 

such as Cleveland Clinic, Saflo, Helen Hayes, Codamotion, and so forth. The Cleveland 

Clinic marker set uses a rigid triad of markers in a plane parallel to the long axis of the 

bone to capture the motion of the thigh and shank in 3 dimensions. The Saflo marker-set 

consists of a total body marker-set with 19 retro-reflective markers fixed on specific 

anatomic landmarks. The Helen Hayes marker set is a relatively simple set of external 

markers developed for time-efficient video analysis of lower extremity kinematics. All 
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of the named marker placement protocols are used for clinical gait analysis. For 

measuring bilateral gait, we use the recommended Codamotion marker-set comprises a 

total of 22 standard markers as shown in figure 5.4 for the right side of the body. 

Markers shown in parentheses () are optional [24]. The marker set determines ankle and 

knee joint centres and segment coordinate systems by means of a marker on a post or 

wand protruding from the anterior aspect of the thigh and shank, and by single markers 

placed over the lateral aspect of the joint flexion/extension axis. 

 

 

 

 

 

 

 
 

Figure 5.4, Position of markers on human body according to the gait set up of Codamotion marker-set [24] 

5.3. Robot arm experiment set-up 

For the purpose of the current investigation, an experiment with precisely 

controlled robotic arm [146] is used to measure the effect of random marker placement 

errors during controlled rotations of one rigid body segment with respect to another. 

The robot has a positional repeatability of ±0.02mm, stemming from its high precision 

when performing repetitive actions. The DENSO 6-axis robots provide great flexibility 

and improved performance [146]. Because of their increased scale of movement, they 

are suited to handle a wide range of applications without compromising either speed or 

precision. The repeatability of the robot is from ±0.02 mm, maximum speed up to 
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11000 mm/s, arm lengths up to 1298 mm, payloads up to 13 kg. Workspace of the robot 

is shown in figure 5.5. The robot includes internal wiring and air piping for maximum 

efficiency in restricted spaces. 

 

Figure 5.5, Work space of the robot arm [146] 
 

The robot coordinate system can be defined according to the base coordinate 

system. The base coordinate system is a Cartesian system with the origin and the centre 

of the robot base. It has components!X!, Y!, and Z! which are identical with X, Y, and 

Z. Work coordinates are three dimensional Cartesian coordinates defined for each 

operation space of work-piece. The origin can be defined anywhere and as much as 

needed. It lies at a corner of the rectangular parallelepiped envelope of an object work-

piece as shown below. Work coordinates are expressed by the coordinate origin (X, Y, 

Z) corresponding to the base coordinates and the angles of rotation (R!, R!, R!) around 

X, Y and Z axes of base coordinates as shown in figure 5.6. If work coordinates are not 

defined, base coordinates go into effect.  
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Figure 5.6, Base coordinates and work coordinates [146] 

 

When defining rigid body segments for three dimensional kinematic analysis, a 

minimum of three markers is required per segment: two markers define the longitudinal 

axis of the segment (in our laboratory, we define the longitudinal axis as the Z axis; 

anterior-posterior axis is the X axis and the medio-lateral axis is the Y axis) and a third 

marker is placed off centre from the Z axis to define the segment as a rigid body, so that 

all three markers are noncolinear. 

 

5.4. Designed experiments  

Three scenarios of experiments are designed and performed in our research. In 

first scenario, human subjects participate in the experiments. Their motion is captured 

as it is explained in Section 5.4.1. In the second scenario, the robot arm movement is 

captured as it is explained in Section 5.4.2. The robot arm motion is captured at 

different sampling frequency as explained in Section 5.4.3. There are inadvertent 

changes in position of sensors in all scenarios to simulate effect of uncertainties in 

sensors positioning. 



101 
 

5.4.1. First scenario, motion capture of human movement 
 

 We use ten human subjects in ten sessions of marker wearing. A full analysis of 

an individuals’ motor behaviour should involve the evaluation of an appropriate number 

of individual repetitions. In [136], 4 subjects are recruited for functional analysis of 

cyclic human motion and in [15] 7 subjects are used for walking analysis using 

functional PCA. Therefore in our experiments we decided to recruit 10 subjects 5 

female and 5 male. Inadvertent changes are emulated in the position of markers for each 

session while following the standard marker set. The process of measurements in each 

session involves instrumenting the legs and pelvis with active markers according to the 

Codamotion marker-set (see figure 5.4 and 5.7). Ten healthy human subject, five male 

(weight  69 ± 7.9 kg, height 170.2 ± 3.4 cm, age 26.6 ± 1.5 years, BMI 23.8 ± 1.9) and 

five female subjects (weight  56.4 ± 6.9 kg, height 167.2±3.2 cm, age 25.6 ± 1.5 years, 

BMI 20.2 ±2.4) are recruited for the instrumented gait analysis. Detailed subjects 

parameters are in table 5.1. 

 

Figure 5.7, Marker wearing on subject's body 
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Table 5.1, The 10 subjects’ parameters who took part in the experiments 

 Gender 
 

Height 
(cm) 

Weight 
(kg) 

Age 
(years) 

BMI 

Subject 1 
 

Male 168 61 26  21.6128 

Subject 2 
 

Male 171 69 25    
23.5970 

Subject 3 
 

Male 166 65 27    
23.5883 

Subject 4 
 

Male 175 82 29    
26.7755 

Subject 5 
 

Male 171 68 26    
23.2550 

Subject 6 
 

Female 169 57 24 19.9573 

Subject 7 
 

Female 165 48 26 17.6309 

Subject 8 
 

Female 163 56 25 21.0772 

Subject 9 
 

Female 168 67 28 23.7387 

Subject 10 
 

Female 171 54 25 18.3597 

Mean 
Values 

 

 168.7 62.7 26.1 21.9592 

 Feigned inadvertent changes in the position of markers within the radius of       

2 cm are made for each of ten sessions of marker wearing. We use a random number 

generator with uniform probability distribution to generate these random position 

displacements. We are aware, in spite of the precision in sensor placement regime, there 

still exists human error in placing markers whilst following the derived random position 

obtained from the random number generator. However, we do not consider this source 

of error further, believing to be relatively small. Each session consisted of six trials. In 

each trial the subject walks from the start point to an end point of the walkway while the 

motion capture system captured the subject’s motion. Each trial lasts for five seconds 

and the sampling frequency of the system is 200 Hz. The subject is asked to walk at 

normal walking speed. This walking speed is maintained as far as possible whilst 

different marker perturbations are made across different sessions of marker wearing. 
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The motion capture system measures the angles of joints and provides a stick figure 

view for the subject under experiment as shown in figure 5.8. 

 

Figure 5.8, Stick figure view for the subject under experiment. 

 

5.4.2. Second scenario, motion capture of robot arm 
 

To test our hypothesis on a more controlled motion and validate the first 

experiment’s results the Denso robotic arm described earlier is used. In this experiment, 

we measure the effect of random marker placement errors and their removal by the 

proposed technique during controlled rotations of one rigid body segment with respect 

to another. This movement is analogous to flexion-extension in the human arm.  All 

other movements are constrained in order to reduce any measured confounding rotation 

from orthogonal planes to the axis of rotation that we measured. 
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Figure 5.9, Placement of markers which are attached to drive boxes positioned toward or on the mid-section of 
each rigid body. 

 

For the motion analysis of the robot arm, it is divided into two rigid bodies: the 

upper segment was defined as rigid body 1 (RB1), and the lower was defined as rigid 

body 2 (RB2).  On RB1, markers were placed at both ends of the segment, 3 cm from 

the end and defined the longitudinal Z axis of RB1.  A marker is placed over the hinge 

joint between RB1 and RB2. This marker serve as the upper marker for the Z axis 

marker for RB2 as well as the third, off-centre, marker require to define RB1 of the 

local coordinate system within the software.  As with RB1, RB2 is defined by two 

markers along the length of the segment and two further markers are used to define the 

RB2 segment local coordinate system as shown in figure 5.9 and 5.10.  
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Figure 5.10, Segment embedded coordinate frames for the robot arm 

The same configuration of markers was used on both sides of each segment and 

the local coordinate axis system for each segment is defined using a set of orthogonal 

axes. The arm is programmed to rotate 130 degrees.  In order to control rotation data as 

much as possible, movement is restricted to one degree of freedom; that is, the only 

movement was rotation of RB1 with respect to RB2 in one fixed plane. Measurements 

are recorded over intervals of fifteen seconds. The motion of the robot arm is recorded 

while the markers are in correct positions to provide reference motion data. As the 

accuracy of motion capture system is high and the robot arm can perform repetitive 

movements with very high precision, we can define the reference motion data as our 

target and we can compare other motion data in this experiment with it. Next, each 

marker is moved in a random direction by 1 cm or 2 cm from the initial reference 

position within the same plane for all segments. The considered displacements are 

significant error within the context of marker placement [67]. A random number 

generator is used to generate these perturbations. 

 Twenty sets of data are collected: ten sets with markers randomly positioned 1 

cm from the initial reference positions and ten sets of data with markers positioned 

randomly at a distance of 2 cm from the initial reference positions. The stick figure 

view of the robot arm and variation in the joint angles in Codamotion software view are 
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shown in figures 5.11 and 5.12. 

 

Figure 5.11, Stick figure, markers position and defined coordinate axes of the robot arm. 

 

 

Figure 5.12, Stick figure of robot arm and the angle variation in motion capture session 
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5.4.3. Third scenario, motion capture of robot arm at different frequencies 
 

To investigate the performance of the proposed signal processing technique with 

sampling frequency reduction, we design the third experiment. The focus of the 

experiment is energy efficiency, achieved by reducing sampling rate, while 

measurements are simultaneously affected by random changes in sensor positions. By 

increasing energy efficiency of the system, smaller batteries can be used in on-body 

sensors. Reduction in battery size is another step towards flexibility in on-body sensing 

systems. On the other hand, decrease in sampling rate cause greater variation in the 

captured motion data. 

In this scenario we capture motion during ten sessions of marker wearing on the 

robot arm to measure the effect on the accuracy of motion capture of simultaneously 

reducing in sampling rate and randomly changing positions of sensors. For each 

perturbation of markers, we capture data in 8 available frequencies: 200, 100, 50, 25, 

10, 5, 2, and 1 Hz. We have 10 random perturbations of marker positions, that is, the 

total of 80 trials. We use random number generator to create random positions. 

The differences between data of different marker wearing sessions are the 

number of samples per session and the variation due to random changes in the positions 

of sensors. First we verify that the variation in motion data is indeed increased by 

decreasing sampling rate. We then apply filtering signal processing techniques to test if 

the variations due to both the reduction in sampling rate and the random changes in the 

positions of sensors can be compensated for in the single filtering step. 
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6. !Results!and!Discussion!

 Kinematics variables are acquired for several motion capture sessions of the 

human body and a robot arm according to the experimental design described in Chapter 

5. The position of sensors in 3D space is measured with reference to the laboratory 

coordinate system. The captured positions differ depending on where the subject starts 

to walk. Since joint angles are descriptive of motion and do not vary with the change of 

the position of the subject with respect to the reference point, we choose to focus on 

changes of derived angles. Therefore all the results of the data processing techniques 

refer to the joint-angle signals derived from the captured motion data. We compare the 

motion data and mean variance of the data before and after applying the techniques. The 

variance is the square of the standard deviation of each angle of motion data.  

6.1. First scenario, motion capture of human movement 

 For experiments with the human body the kinematic variables are the angles 

of pelvis, hip, knee, ankle, and foot in the X, Y, and Z axes. Kinematics variables of 

each marker wearing session are averaged over six trials to eliminate the effect of other 

sources of variation that are irrelevant to differences in position of sensors in each 

session. The cause of these variations could be different walking speed, different ways 

of walking because of the tiredness of the subject and so forth. 

Walking sequences are segmented into cycles. Each cycle comprises two steps. 



109 
 

We ask a subject to walk for a specific time interval and divide the action into cycles. 

Each cycle is identified as the interval from initial contact of the heel with the ground to 

initial contact of the following step. We use consecutive right heel contacts to separate 

each stride which can be determined from right heel marker position in Z direction as 

shown in figure 6.1.  

 

Figure 6.1, Stick figure and captured signals from force plate, left heel in X and right heel in Z direction to 
separate each stride. 

 

Identifying features during action sequences with different numbers of samples 

in each cycle is an important challenge. Each cycle should be normalized so it is 

represented by the same number of samples. We use linear time normalization which 

linearly converts the trajectory’s time axis from the experimentally-recorded time units 

to an axis representing the gait cycle from 0 to 100 percent.   

After time normalization, we perform data standardization so that we can 
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compare results of different angles with each other in terms of percentage of change 

before and after applying the filtering techniques. In this chapter results of applying 

fPCA, ICA, PCA, and SVF adaptive filtering techniques and an a priori FFT based 

filtering mechanism are compared. We show how the results of second set of 

experiments validate the applicability of our proposed technique, and demonstrate its 

advantage over PCA in the results of the third set of experiments. 

6.1.1. Applying fPCA 

The aforementioned 15 kinematic variables for 10 marker wearing sessions are 

shown in figure 6.2 prior to fPCA filtering. Each plot shows one of the joint angles in 

10 sessions of marker wearing, which are shown in different colours. The differences 

between the variables of different sessions are due to inadvertent changes in the position 

of sensors. Data of each session are produced and averaged over 6 trials. The placement 

changes are random in all directions and they were made within a radius of 2 cm from 

the correct position to simulate the effect of human marker placement errors between 

different sessions, while following the standard marker set.  

Results show that random changes in the position of sensors cause additional 

variability in motion pattern, as expected. If the variability is not compensated for, it 

may cause misinterpretation. The aim of applying the filtering techniques is to explore 

if these variations can be compensated for.  To apply fPCA based filtering, first we need 

to fit functions onto the data and then derive eigenfunctions. Then by rejecting the 

eigenfunctions with a smaller amount of variation, we project the data back to the 

original domain. We fit Fourier basis functions into session data considering that each 

matrix of data contains one of the 15 kinematic variables in a cycle for each of the 10 

sessions. 
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Figure 6.2, Kinematic variables of 10 marker wearing sessions. The normalized angles of the pelvis, hip, knee, 

ankle, and foot in X, Y, and Z planes are shown separately from each other before applying the filtering 
techniques. 



112 
 

By applying the proposed filtering technique on data, we obtain the functional 

principal component functions for each kinematic variable. The most dominant mode of 

variation is retained, and the remainder is eliminated, thus preserving the principle 

variations in the data and eliminating the effect of inadvertent changes in the position of 

the sensors. Finally, after deleting the non-dominant mode of variation, the principal 

component functions are returned into initial domain by using the inverse fPCA 

transform. The dominant mode of variation is contained by fPCs which carry 90 

percentage of variation. It can be calculated as a proportion of relevant eigenvalues of 

corresponding fPCs with respect to the sum of all eigenvalues as shown in equation (4-

15).  

 Figure 6.3 shows motion data averaged over 6 trials of 10 sessions for each 

joint angle on a human subject data after fPCA filtering. Using the technique on the 

motion data of ten subjects, with ten sessions of marker wearing for each one, shows the 

mean variance between curves typically decreases by 95.76%. The minimum averaged 

improvement is 88.15% for pelvic angle in Y direction and the maximum is 99.59% for 

knee angle in Y direction. It can be readily determined that fPCA filtering reduces 

variability associated with marker placement error. 

 It could be claimed that these variation can be from other sources such as not 

walking in the same way throughout the session. We therefore apply this technique on a 

robot arm such that we can be sure the variation is only due to random changes in the 

position of sensors. We see that the second set of experiments using robot arm confirms 

the efficacy of the technique.  
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Figure 6.3, Kinematic variables of 10 marker wearing sessions. The normalized angles of the pelvis, hip, knee, 
ankle, and foot in X, Y, and Z planes are shown separately from each other after applying the filtering 

technique. 
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Figure 6.4, Mean variance changes before and after applying the technique for the pelvis, hip, knee, ankle and 

foot in the X direction 

Mean variance changes before and after applying the technique for the pelvis, 

hip, knee, ankle and foot in the X, Y and Z directions are shown in figures 6.4, 6.5, and 

6.6 respectively. We see that the mean variance is decreased in all 3 directions after 

applying the technique. To see if the changes are statistically significant, we use 

analysis of variance. Analysis of variance (ANOVA) provides a statistical test to 

compare the means of two or more data sets, where each data set contains an 

independent sample of mutually independent observations [147]. 

 
Figure 6.5, Mean variance changes before and after applying the technique for the pelvis, hip, knee, ankle and 

foot in the Y direction 
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Figure 6.6, Mean variance changes before and after applying the technique for the pelvis, hip, knee, ankle and 
foot in the Z direction 

 

Analysis of variance (ANOVA) is a procedure for assigning sample variance to 

different sources and deciding whether the variation arises within or among different 

population groups. Samples are described in terms of variation around group means and 

variation of group means around an overall mean [148]. The purpose of ANOVA is to 

determine whether the groups are actually different in the measured characteristic.  

In analysis of variance the null hypothesis is a statement about a population that 

we would like to test. As introduced in Section 3.4, tests for statistical significance tell 

us what the probability is that the relationship we think we have found is due only to 

random chance. The p value of a test is the probability, under the null hypothesis, of 

obtaining a value of the test statistic as extreme or more extreme than the value 

computed from the sample. The p value depends on assumptions about the random 

disturbances in the model equation. For the p value to be valid, these disturbances need 

to be independent, normally distributed, and have constant variance [133].  
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In this experiment our research hypothesis is that there is a significant difference 

between mean variance of angles before and after applying the filtering technique. Thus 

the null hypothesis is that there are no significant differences between the mean 

variance of angles before and after applying the technique. The test for statistical 

significance was computed, using Matlab ANOVA. The p value for each of the angles 

was derived and shows (Figure 6.7) that our null hypothesis has been rejected, i.e. the 

results are statistically significant. 

 When the p value is very small it causes doubt regarding the null hypothesis 

and proposes that at least one mean of one of the samples is significantly different from 

the other sample means. Commonly used significance levels for the p value are less 

than 0.05. The p values for the pelvis, hip, knee, ankle and foot in X, Y and Z directions 

are calculated. They are all of the order smaller than 10^(-9). The p value obtained for 

each variable shows that the null hypothesis is rejected.  

The box-plots of data for analysis of variance of each angle before and after 

applying the technique are shown in figure 6.7. As we compare the mean variance 

before and after applying the filtering technique, we have an individual matrix for each 

15 kinematic variables separately. Therefore we have 15 box-plots, and there are two 

boxes for each kinematic variable before and after applying the technique, respectively. 

On each box, the central mark is the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered outliers, 

and outliers are plotted individually [148]. Results in box-plots give a visualization of 

the statistics of mean variance before and after applying the technique to have a better 

understanding of statistical changes in the data. 
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Figure 6.7, Analysis of variance for the pelvis, hip, knee, Ankle, and foot in the X, Y, and Z planes respectively 
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6.1.2. Applying ICA 
 

Independent component analysis is applied to the data as a signal separation 

technique. We use two algorithms, Independent Component Analysis based on 

Maximum Likelihood (ICA ML) and ICA Molgedy and Schuster (MS). For data 

analysis, the rows of the input matrix x are the joint angles data, the rows of the output 

data matrix ! =!!! are projection of input on the ICA components, and the columns 

of the inverse matrix !!! give the projection strengths of the respective components. 

Corrected motion data can then be derived as!!!! = !!!!!!, where !! is the matrix of 

the activation waveforms with rows representing artefact components set to zero. 

A square mixing matrix is used for ICA ML, which is a self-organizing learning 

algorithm that maximizes the information transferred in a network of nonlinear units. 

The information maximization algorithm does not assume any knowledge of the input 

distributions and is used for true redundancy reduction between units in the output 

representation. This enables the network to separate statistically independent 

components in the inputs as a higher-order generalization of principal components 

analysis [149]- [150].  

ICA MS uses the Molgedey and Schuster de-correlation algorithm, having a 

square mixing matrix [151]- [152]. The source separation problem can be formulated as 

a likelihood formulation. The likelihood approach allows for direct adaptation of the 

plethora of powerful schemes for parameter optimization, regularization, and evaluation 

of supervised learning algorithms.  

Results in figure 6.8 and 6.9 show the signals after applying ICA ML and ICA 

MS filtering algorithms. We can see that these techniques cannot eliminate the random 

patterns in the data. After applying the techniques we see some new ripples in the data 
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that are unrelated to the motion patterns. As ICA works on non-Gaussian distributed 

data [120], we cannot obtain appropriate results after applying this signal separation 

technique on our data. The variation in data is due to random changes in the position of 

sensors. Randomness in the position of sensors is generated using a discrete uniform 

distribution, which has a symmetric probability distribution. It causes Gaussian 

distribution of sampled motion data. 

Mean variance before and after applying the techniques has been calculated for 

each of the angles. Table 6.1 shows the results and percentages of change before and 

after applying the technique. We can see that the mean percentage of change for ICA 

ML is 88.78% and for ICA MS is 86.17%. Although the percentage of change is high in 

both cases, we see new patterns of variation in the signal which shows that independent 

component analysis filtering based techniques are not applicable to this type of data. 

Table 6.1, Mean Variance before and after applying ICA ML and MS filtering 

 Mean 

Variance 

Before 

Mean 

Variance 

After ICA ML 

Percentage 

of change 

Mean 

Variance 

After ICA MS 

Percentage 

of change 

Pelvis X Angle 0.0638 0.0083 87.0156 0.0029 95.4528 
Pelvis Y Angle 0.6291 0.0517 91.781 0.0577 90.8344 
Pelvis Z Angle 0.3253 0.0092 97.1859 0.1179 63.7649 
Hip X Angle 0.0843 0.0093 88.9328 0.0055 93.4869 
Hip Y Angle 0.0896 0.0039 95.667 0.0096 89.279 
Hip Z Angle 0.1475 0.0064 95.6847 0.0112 92.3766 

Knee X Angle 0.0508 0.0034 93.3104 0.0159 68.7341 
Knee Y Angle 0.0135 0.0008 93.7439 0.0023 83.0264 
Knee Z Angle 0.1873 0.0159 91.4962 0.0208 88.8901 
Ankle X Angle 0.2947 0.1143 61.2125 0.035 88.1125 
Ankle Y Angle 0.0201 0.0024 88.0157 0.003 84.9202 
Ankle Z Angle 0.0537 0.0056 89.6315 0.0065 87.8444 
Foot X Angle 0.2249 0.0318 85.8835 0.0098 95.6491 
Foot Y Angle 0.008 0.0015 81.2256 0.0013 84.0055 
Foot Z Angle 0.2748 0.0248 90.9858 0.0214 92.2106 
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Figure 6.8, Kinematic variables of 10 marker wearing sessions. The normalized angles of the pelvis, hip, knee, 
ankle, and foot in the X, Y, and Z planes are shown separately after applying the ICA ML filtering technique. 
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Figure 6.9, Kinematic variables of 10 marker wearing sessions.  The normalized angles of the  pelvis, hip, knee, 
ankle, and foot in the X, Y, and Z planes are shown separately after applying the ICA MS filtering technique. 
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6.1.3. Applying PCA 

Results of applying the PCA-based filtering techniques on experimental motion 

data are shown in figure 6.10. It shows that the technique works properly to reduce 

random patterns in the data. Mean data variance before and after applying the technique 

is shown in table 6.2 as well as the percentage of improvement. The values in this table 

are for normalized data. The mean percentage change in both PCA and fPCA is 94%.   

Results show that the performance of PCA and fPCA is similar in this 

experiment.  This can be explained in terms of sampling frequency. In this experiment 

the sampling rate is 200 Hz while the movement pattern bandwidth is around 10 Hz 

according to the normal walking speed of subjects and movement patterns in data. 

Therefore, the sampling frequency of this experiment is high and fitting the function 

into highly sampled data does not have significant effect. Therefore, in highly sampled 

data it suggest the use of PCA instead of fPCA as it is easier to perform and it needs 

less calculation.   

Table 6.2, Comparison of PCA and fPCA for 200Hz 

 Mean 

Variance 

Before 

Mean 

Variance 

After PCA 

Percentage 

of change 

Mean 

Variance 

After fPCA 

Percentage 

of change 

Pelvis X Angle 0.0886 0.0024 97.19680 0.0025 97.0640 
Pelvis Y Angle 0.7301 0.1827 74.97702 0.1779 74.6841 
Pelvis Z Angle 0.1713 0.0043 97.45896 0.0052 96.8486 
Hip X Angle 0.0808 0.0034 95.72904 0.0032 95.9264 
Hip Y Angle 0.0496 0.0003 99.24085 0.0003 99.2778 
Hip Z Angle 0.0884 0.0004 99.51141 0.0004 99.5557 

Knee X Angle 0.0388 0.0003 99.16443 0.0004 99.0565 
Knee Y Angle 0.0123 0.0004 99.66164 0.0001 99.6883 
Knee Z Angle 0.0787 0.0005 99.31882 0.0005 99.2939 
Ankle X Angle 0.4393 0.0663 84.90152 0.0648 84.6287 
Ankle Y Angle 0.1162 0.0080 93.05514 0.0086 92.0554 
Ankle Z Angle 0.0575 0.0003 99.36345 0.0004 99.3311 
Foot X Angle 0.2817 0.0676 75.99602 0.0657 75.7708 
Foot Y Angle 0.0122 2.4957 99.79646 0 .0001 99.7851 
Foot Z Angle 0.2786 0.0145 94.76457 0.0138 94.7488 
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Figure 6.10, Kinematic variables of 10 marker wearing sessions. The normalized angles of the pelvis, hip, knee, 

ankle and foot in the X, Y, and Z planes are shown separately after applying the PCA filtering technique. 
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6.1.4. Applying SVF 

Singular value filtering is applied on the data to examine its applicability to 

derived motion data. As explained in the background theory, Section 3.2.3, SVF is a 

PCA-based filter where the filter coefficients !! are adaptively determined as a 

function of a singular value spectrum of data. Filter design in SVF involves the 

construction of a weighting function that relates the singular value spectrum to the 

weighting coefficients. In the filter design the goal is to retain the main pattern of 

variation. In comparison to other filtering techniques there is no sharp cut-off threshold 

in SVF filtering. Therefore there is a sigmoid function to determine the selection of the 

PCs which are kept and those which are rejected. Results in figure 6.11 and table 6.3 

show that fPCA outperforms SVF when considering mean variance after applying the 

technique, which in this case is 68.41 % on average. 

Table 6.3, Comparison of SVF and fPCA for 200Hz 

 Mean 

Variance 

Before 

Mean 

Variance 

After SVF 

Percentage 

of change 

Mean 

Variance 

After fPCA 

Percentage 

of change 

Pelvis X Angle 0.0886     0.0190  70.4606 0.0025 97.0640 
Pelvis Y Angle 0.7301     0.2640    58.4483 0.1779 74.6841 
Pelvis Z Angle 0.1713     0.1695    48.4054 0.0052 96.8486 
Hip X Angle 0.0808     0.0244    71.3214 0.0032 95.9264 
Hip Y Angle 0.0496     0.0283    68.7315 0.0003 99.2778 
Hip Z Angle 0.0884     0.0396    73.4604 0.0004 99.5557 

Knee X Angle 0.0388     0.0138    73.0747 0.0004 99.0565 
Knee Y Angle 0.0123     0.0034    74.7318 0.0001 99.6883 
Knee Z Angle 0.0787     0.0521    72.4677 0.0005 99.2939 
Ankle X Angle 0.4393     0.1225    58.8497 0.0648 84.6287 
Ankle Y Angle 0.1162     0.0051    74.9150 0.0086 92.0554 
Ankle Z Angle 0.0575     0.0139    74.3613 0.0004 99.3311 
Foot X Angle 0.2817     0.0773    65.9965 0.0657 75.7708 
Foot Y Angle 0.0122     0.0020    74.8733 0 .0001 99.7851 
Foot Z Angle 0.2786     0.0940    66.1154 0.0138 94.7488 
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Figure 6.11, Kinematic variables of 10 marker wearing sessions.  The normalized angles of the pelvis, hip, 
knee, ankle, and foot in the X, Y, and Z planes are shown separately after applying the SVF filtering 

technique. 
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6.1.5. Applying a priori-based signal separation 

Among a priori based filters, we select the Butterworth IIR filter as a simple 

frequency based filter which is commonly used as a baseline for comparison in 

literature [128]. We use a second order low-pass digital Butterworth filter with 

normalized cut-off frequency of 0.1 Hz. Normalized cut-off frequencies take a variable 

in range of 0 to 1, where 1 corresponds to the Nyquist frequency. 

Results in figure 6.12 show that FFT-based filtering techniques perform poorly 

on the motion data of our experiments, as expected. Frequency-based filtering 

techniques separate frequency components in the signal, which is not our concern. Our 

goal is to use a signal separation technique to separate the main pattern of variation in 

the data from residual components. Since FFT based filtering projects signals onto 

frequency components, then rejects some of them before returning back to the first 

domain, it cannot separate the main pattern of variation in the signal from the random 

variations, which is in the same frequency domain. 

Table 6.4, Comparison of FFT-based and fPCA for 200Hz 

 Mean 

Variance 

Before 

Mean 

Variance 

After FFT 

Percentage 

of change 

Mean 

Variance 

After fPCA 

Percentage 

of change 

Pelvis X Angle 0.0886 0.0507 21.3747 0.0025 97.0640 
Pelvis Y Angle 0.7301 0.5066 20.2806 0.1779 74.6841 
Pelvis Z Angle 0.1713 0.2477 24.6207 0.0052 96.8486 
Hip X Angle 0.0808 0.0731 14.1141 0.0032 95.9264 
Hip Y Angle 0.0496 0.0617 31.8853 0.0003 99.2778 
Hip Z Angle 0.0884 0.1078 27.6577 0.0004 99.5557 

Knee X Angle 0.0388 0.0439 14.4604 0.0004 99.0565 
Knee Y Angle 0.0123 0.0116 14.6224 0.0001 99.6883 
Knee Z Angle 0.0787 0.1393 28.0419 0.0005 99.2939 
Ankle X Angle 0.4393 0.2120 28.0419 0.0648 84.6287 
Ankle Y Angle 0.1162 0.0167 18.0059 0.0086 92.0554 
Ankle Z Angle 0.0575 0.0416 23.4541 0.0004 99.3311 
Foot X Angle 0.2817 0.1540 32.2104 0.0657 75.7708 
Foot Y Angle 0.0122 0.0072 10.3805 0 .0001 99.7851 
Foot Z Angle 0.2786 0.2219 20.0677 0.0138 94.7488 
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Figure 6.12, Kinematic variables of 10 marker wearing sessions.  The normalized angles of the pelvis, hip, 
knee, ankle and foot in the X, Y, and Z planes are shown separately after applying the FFT-based filtering 

technique. 
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As it is shown in table 6.4, the mean percentage of change in motion data 

variance before and after applying the technique is 21.94%. In comparison to the fPCA 

filtering based technique, which has up to 93.85% variance reduction, performance of 

Butterworth IIR filter as one of a priori based techniques is poor. Figure 6.12 shows 

that the frequency based filtering technique removes high frequency components in the 

signal, which does not necessarily mean separating the main pattern of variation in the 

signals.  

6.1.6. Comparison of applied signal separation techniques on the motion data 

The percentage of mean improvement after applying different techniques is 

listed in table 6.5. The values in this table are for normalized data. Our goal is to 

separate out the effect of random changes in position of sensors from the main pattern 

of variation, in order to produce a more robust motion capture system in terms of 

sensors positioning. Results show that as random changes in the position of sensors are 

introduced, variation in motion data increases. Therefore we considered improvement as 

a percentage of variance changes in the data before and after applying the filtering 

techniques. Figure 6.13, 6.14 and 6.15 show the mean percentage of improvement in the 

X, Y and Z direction separately.  

 We can see that the performance of fPCA and PCA is similar. Other techniques 

perform worse, especially FFT-based filtering as it just removes the high frequency 

patterns in the data, and thus is unable to separate stochastic patterns from the 

deterministic one. The ICA based filtering technique causes more ripple in the data so it 

cannot separate the dominant mean of variation in derived angle motion data. The SVF-

based filter perform worse than fPCA since the dominant mode of variance in the data 

in fPCA-based filtering  is reflected in the first few principal components. 
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Table 6.5, Comparison of applied techniques on the data 

 

Percentage 

of change 

fPCA 

Percentage 

of change 

PCA 

Percentage 

of change 

ICA ML 

Percentage 

of change 

ICA MS 

Percentage 

of change 

SVF 

Percentage 

of change 

FFT-based 

Pelvis X 
Angle 97.0640 97.19680 87.0156 95.4528 70.4606 21.3747 

Pelvis Y 
Angle 74.6841 74.97702 91.781 90.8344 58.4483 20.2806 

Pelvis Z 
Angle 96.8486 97.45896 97.1859 63.7649 48.4054 24.6207 

Hip X 
Angle 95.9264 95.72904 88.9328 93.4869 71.3214 14.1141 

Hip Y 
Angle 99.2778 99.24085 95.667 89.279 68.7315 31.8853 

Hip Z 
Angle 99.5557 99.51141 95.6847 92.3766 73.4604 27.6577 

Knee X 
Angle 99.0565 99.16443 93.3104 68.7341 73.0747 14.4604 

Knee Y 
Angle 99.6883 99.66164 93.7439 83.0264 74.7318 14.6224 

Knee Z 
Angle 99.2939 99.31882 91.4962 88.8901 72.4677 28.0419 

Ankle X 
Angle 84.6287 84.90152 61.2125 88.1125 58.8497 28.0419 

Ankle Y 
Angle 92.0554 93.05514 88.0157 84.9202 74.9150 18.0059 

Ankle Z 
Angle 99.3311 99.36345 89.6315 87.8444 74.3613 23.4541 

Foot X 
Angle 75.7708 75.99602 85.8835 95.6491 65.9965 32.2104 

Foot Y 
Angle 99.7851 99.79646 81.2256 84.0055 74.8733 10.3805 

Foot Z 
Angle 94.7488 94.76457 90.9858 92.2106 66.1154 20.0677 
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Figure 6.13, Mean percentage of improvement in the X direction 

 

 

 

Figure 6.14, Mean percentage of improvement in the Y direction 
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Figure 6.15, Mean percentage of improvement in the Z direction 
 

The effect of applying the filtering techniques (fPCA, PCA, ICA ML, ICA MS, 

SVF and FFT based) on the right hip angle in the X direction for 10 subjects is shown 

in Fig 6.16 and Fig 6.17. We can see that for each subject fPCA and PCA schemes are 

better at separating the main pattern of variation in the motion data than other 

techniques. The figures confirm consistency in performance of the proposed signal 

separation technique in compensating for positional uncertainties for the all participants 

in our experiments. Our results indicate that for a 200 Hz sampling rate there is no 

discernible difference between fPCA and PCA. The mean change of variance across all 

joint angles in both cases is 94%. The results of the third experiment show the 

advantage of fPCA over PCA when the sampling rate is reduced. The experiments on 

the robot arm, set in a more controlled environment, are designed in second scenario to 

verify the findings measured in the first experiment. Results of the experiment are 

discussed in Section 6.2.  
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6.2. Second scenario, motion capture of the robot arm 

To validate the applicability of fPCA as a technique for signal separation and 

compensation of the effect of random changes in sensors positioning, a second set of 

experiments was designed with a robot arm. The robot arm motion is captured in ten 

sessions of different marker wearing while randomly changing the position of sensors.  

In this experiment, all joints with the exception of the flexion-extension joint of the 

robot arm are constrained; therefore, our experiment considers a controlled movement 

with one degree of freedom.  

We collect data from the cyclic movement of the robot arm whereby each cycle 

is identified as the interval from maximal flexion to the following maximal flexion of 

the unconstrained joint. Data cycles can be identified by using the Z axis position 

changes of Marker #1 which is the proximal marker to the grabber. Segmenting motion 

data into cycles almost always results in data cycles of different lengths due to 

differences in motion speed. We use a time normalization technique to obtain the same 

number of samples for all sessions. 

In addition to the ten sessions of random marker position changes in a radius of 

1 and 2cm from reference points, a marker wearing session was captured where markers 

are placed correctly on the reference points, exactly at the centre of joint rotation. The 

data collected from this session from target or reference motion data. We compare the 

captured data in the ten other motion wearing sessions to the reference motion data to 

measure the effect of inadvertent changes in the position of sensors on motion data. 

 We use variation from reference data as a comparison. Variation is calculated as 

summation of differences between data of motion capture sessions from the reference 

motion capture data, divided by the number of samples. Results show that the mean 
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variation of data from reference motion data due to random sensor misplacement in a 

radius of 1 and 2 cm are 2.02 and 5.69 degrees, respectively. Because of high accuracy 

of the robot arm we are sure that the variation in data from the reference motion data is 

only due to random changes in the position of sensors. 

Table 6.6, Variation around the reference action with 1 and 2 cm random changes in the position of sensors 
before and after applying the technique. 

 1 cm 
Random 
Changes 

2 cm 
Random 
Changes 

Variation before applying the 
technique(deg.) 

2.02 5.69 

Variation after applying the 
technique(deg.) 

0.76 2.10 

 

Results show that as the radius of the random changes in the position of sensors 

is increased, the variation in motion data from the reference data also increases, both 

before and after filtering, as shown in table 6.6. After applying the fPCA filtering 

technique we can see that the effect of random changes in position of sensors in the 

captured data is significantly reduced. The variation is reduced by 63% to 0.76 and 2.10 

degrees for displacements of 1 and 2 cm, respectively. It is clear that despite the 

benefits of filtering, variation still increases with increased marker displacement, as 

expected.  

6.3. Third scenario, motion capture of the robot arm at different 

frequencies 
The third scenario is designed to examine the performance of functional 

principal component analysis over PCA whilst reducing the sampling rate of motion 

capture sessions. Reduction in the sampling rate has a benefit in lowering energy 

consumption and thus allowing for smaller sensor packaging. In our experiments, the 
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markers tracked by the scanner units are small infra-red light emitting diodes. The 

markers are powered from small drive units that contain sophisticated circuitry and 

respond to infra-red synchronising pulses sent out from the scanner units. When scanner 

unit starts to send out control signals to the marker drive units, the rate of current 

consumption rises to about 50mA in each unit. The capacity of the batteries in each of 

the drive unit is around 30mA hours. 

The maximum measurement time depends on the sampling rate.  For example, 

with 28 markers, the maximum measurement times are: 100s at 200Hz, 200s at 100Hz, 

400s at 50Hz, 800s at 25Hz, ..., to 20000s at 1Hz [24]. That is, as the sampling rate 

reduces, the maximum measurement time increases. It means the marker drive unit 

battery can be used for a longer time by reducing sampling rate.   

The life of a battery can be given either as the number of charge and discharge 

cycles that can be delivered or as the total lifetime in years. Factors which affect the 

battery life are the operating temperature, the discharge depth, and the charging regime. 

When the average current drain on the battery is lower, the discharge time or service life 

to the end of the battery life is longer [153]. The average current (!!"#) can be 

calculated by following equation. 

!!"# =
!!!! + !!!! +⋯+ !!!!
!! + !! +⋯+ !!

 (6-1) 

In this equation !!, !!,… , !! shows the time intervals that the battery provides 

current, !!, !!,… , !!, for the connected circuit.  If the time intervals during which the 

battery provides current to the circuit are of a shorter duration, the battery can provide 

power for motion capture sessions over a longer period. It means that when there is a 

reduction in sampling rate of markers attached to the batteries, the total time during 

which the current will be needed will decrease. The smaller current requirement will 

enable longer motion capture intervals between battery recharging. 
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 We consider different motion capture frequencies by !!, !!,… , !!!where 

!! < !! < ⋯ !< !! where the time period of each frequency is shown by !!,!!,… ,!!. 

A period, !! = !
!!

 , is the time it takes for a signal to complete an on-and-off cycle. The 

duty cycle of each signal, which is the percentage of one period in which a signal is 

active, and where the batteries provide current for the sensor/marker circuit is given by 

!!,!!, … , !!. The time that the signal is active in a period is shown by !!, !!, … , !!. 

Therefore we can write: !! = !!
!!
!∗ 100. Duty cycles can be used to describe the 

percentage time an electrical device is active.  

In a system with different sampling frequencies,!!! < !!! < !… ,< !!, as the 

sampling frequency decreases, the time period,!!!,> !! > !… > !!, increases. 

Considering the time that the signal is active in a period, is equal for all frequencies, 

!! = ! !! != … = !!, increases in the time period reduce duty cycle,!!! < !!< … <!!. 

It means the percentage time of activity decreases. In a motion capture application 

where sensors send pulses to the detectors around them, when the percentage time of 

activity decreases, the total possible time of sending pulses from sensors attached to 

batteries will be increased. Therefore motion capture sessions can be performed for 

longer. 

Assuming a specific time interval for motion capture in different sampling 

rates,!and equal active time in each period for all frequencies, !! = !, the total time that 

each sensor drain current from batteries is calculated by: !!!
!!! . In a specific time 

interval of motion capture, for higher frequencies the number of active time slots, !!, is 

higher. It can be written as !! < !!! < !… < !!, then!!! < !! < !… < !!. Therefore: 

!!!
!!! < !!!

!!!  for  !!! < !!! (6-2) 
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which means the total time that the sensors drain current from batteries is greater in 

higher frequencies. According to equation (6-1) the service life of the battery or 

discharge time, which is dependant on average current drain, will be increased by 

decreasing the sampling rate. 

In our experiment, we have ten sessions of marker wearing on the robot arm. In 

each of the sessions, the positions of sensors are randomly changed within a 2 cm radius 

from the landmarks. Motion data are captured using different frequencies for each 

marker wearing session. The variances of unprocessed and processed captured motion 

data sampled at different frequency rates are shown in table 6.7. 

Table 6.7, Variance changes before and after applying PCA and fPCA 
 

Frequency 

(Hz) 

Before After Percentage of change (%) 

PCA fPCA PCA fPCA 

200 7.6601 6.9826 4.8996 8.84 36.04 

100 6.7113 6.1446 4.1501 8.44 38.16 

50 6.1156 5.5804 3.6543 8.75 40.25 

25 6.0807 5.0608 3.2224 16.77 47.01 

10 10.8290 4.1176 2.6794 61.98 75.26 

5 16.1705 7.8966 5.8977 51.17 63.53 

2 41.5028 6.6151 4.7679 84.06 88.51 

1 273.5735 25.4157 17.7664 90.71 93.51 

 

Data variance of ten marker wearing sessions for each sampling frequency is 

calculated as the square of the standard deviation of each joint angle motion signal. As 

expected, the reduction in sampling rate increases the variance. Results show that above 

the Nyquist frequency the variance of in the same order of magnitude. Although there is 

an increase in the magnitude of variance from 100 Hz to 200 Hz, this is an insignificant 
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amount which could be due to high frequency noise. In motion capture, using a low 

pass filter usually compensates for these kinds of noise. 

Further reduction below the Nyquist frequency causes a significant increase in 

the variance. However, applying the filtering technique compensates for the increase in 

the variance. The results show that fPCA outperforms PCA in terms of data variance 

(see graph in figure 6.17). Clearly, by applying the fPCA and PCA techniques we can 

compensate for the effect of random sensor positioning errors within the measured 

motion data, while achieving greater power efficiency. 

 

Figure 6.18, Percentage of variance change for different frequencies before and after applying PCA and fPCA 
based signal separation techniques. 

 

It is shown in figure 6.17 that as the sampling rate reduces, the achievable 

improvement is increased. But by comparing PCA and fPCA filtering results we see 

that fPCA can better compensate for the variation due to random sensor displacements 

than PCA, and outperforms it. The advantage of fPCA over PCA is more obvious at 

higher frequency sampling rates. Figures 6.18 shows that fPCA works better than PCA, 
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although we see a change in trend of relative improvement below 25 Hz, which is due 

to sampling below the Nyquist frequency. The sampling rate must be at least twice the 

maximum frequency present in the signal (Nyquist rate), which is 20 Hz for motion 

data. This explains the reduction in relative improvement below 25 Hz. Taking all these 

results together, it is clear that the functional PCA-based signal separation techniques 

can be useful in removing unwanted variation in motion data and enable a more flexible 

assisted rehabilitation system for sensor-based motion capture. 
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7. Conclusion!
 

In this thesis our focus is on flexibility of on-body sensing systems. Body 

sensing systems are used in wearable systems to capture different kinds of body 

parameters. Our main concern was on-body sensing systems for motion capture. Motion 

capture is the process of recording joint angles while a subject performs an action. 

Motion capture systems are widely used in animation, sports and rehabilitation. These 

systems are very sensitive to sensor positioning and they have bulky attachments to the 

user’s body because of their large battery size. To have an ambulatory motion capture 

system we need to reduce the sensitivity of sensor positioning and consider wearer’s 

comfort. These kinds of systems can then be used more easily in a home environment 

for the purpose of rehabilitation without expert supervision. 

To reduce the sensitivity of these systems on sensor positioning, we studied the 

motion capture procedure of different on-body sensing systems. Undesirable variability 

challenge in motion data was reviewed as well. Specifically, the variability of kinematic 

measurements due to inadvertent sensor placement changes was discussed in this thesis. 

A literature review reveals that there is measurement variability due to the failure to 

place sensors accurately even when following the same placement protocol for each 

session. The variability can conceal important motion deviations and meaningful 

information can be lost. For the first time, a functional PCA-based technique has been 

applied on data from the designed experiment as a signal separation technique. The goal 
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is to compensate for the effects of sensor position changes and allow for a more robust 

set-up in terms of sensor placement. 

 Results show differences between similar repetitive actions with random marker 

position changes and how these variations can be compensated for by the proposed 

approach. By keeping the most dominant mode of variation, the salient motion pattern 

can be extracted from motion data of several marker-wearing sessions. By using a data 

driven filter, we can realistically derive accurate movement patterns, regardless of 

random errors associated with marker placement. Other signal separation techniques 

such as ICA, PCA, SVF and a priori filtering are applied on the data obtained from the 

experiments.  

We have studied the technical challenges related to the portability of on-body 

sensing systems specifically in regard to motion capture applications. The motion of a 

robot arm was captured whilst “random” changes were made to the position of sensors 

for different sampling frequencies. Results show that despite the inherent accuracy of 

both the motion capture system and the repetitive robot arm movements, significant 

variation in the motion data can be introduced by relatively small random changes in the 

position of sensors as well as by the variation in the sampling frequency. 

The overall size of the electronic component of wearable systems is generally 

dominated by the size of the batteries. Hence to have less bulky systems, sensors need 

to operate with low-power consumption. Reducing the sampling rate has the benefit of 

lowering the power consumption and therefore permits the use of smaller batteries. 

However, as the sampling frequency decreases, the variation in patterns of motion 

increases. Nevertheless we have shown that after applying fPCA signal processing 

techniques these variations as well as the variations due to errors in marker positioning, 
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can be substantially reduced, thus providing a step towards robust and flexible assisted 

rehabilitation. 

In the first set of experiments ten subjects were recruited to take part in ten 

sessions of marker wearing each, during which the position of sensors are randomly 

changed to emulate variability present in the protocol execution. Results demonstrate 

the variation in the motion pattern of different marker wearing sessions due to the 

variation in sensor positioning. Results show the mean variance between curves 

typically decreases by 95.76%. The minimum averaged improvement is 88.15% for 

pelvic angle in the Y direction and the maximum improvement is 99.59% for knee 

angle in the Y direction. It can be readily determined that fPCA reduces variability 

associated with marker placement error. This was confirmed in the second experiment 

using robot arm. After applying the proposed filtering technique we show how these 

uncertainties could be compensated for in the human motion data. 

It is shown that the percentage mean improvement after applying different 

filtering techniques is 93.9.0 %, 94.0%, 88.8%, 86.6%, 68.4%, and 21.9% for fPCA, 

PCA, ICA ML, ICA MS, SVF, FFT based filtering approach, respectively. We consider 

the improvement as a percentage of the variance changes before and after applying 

filtering. In the experiment, it is shown that the performance of fPCA and PCA is 

similar and for other techniques the performance is worse especially FFT based 

filtering. ICA based filtering causes more ripple in the data so it cannot separate out the 

dominant variation in the motion data. 

In the second set of experiments, we validate the results obtained in the 

experiments on human subjects, using a robot arm. Results show that although both the 

motion capture system and the robot arm are very accurate in their operation, variation 
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in motion data exists when random sensor position changes are introduced. By applying 

fPCA based filtering technique we then show how these uncertainties can be 

compensated for. Variability in marker placement error was reduced by 63% in both    1 

cm and 2 cm random marker placement error experiments.  

In the third set of experiments the robot arm motion is captured at different 

frequencies simultaneously with sensor random displacement to investigate the 

advantage of the introduced signal separation technique when lowering the sampling 

frequency. Ten marker wearing sessions of the robot arm were captured at different 

frequencies. Results show that as the sampling frequency decreases, variations in the 

motion pattern increase. However, after applying the signal processing technique, the 

variations are significantly reduced from 30.04% for 200Hz to 93.51% for 1 Hz.    

The proposed signal processing approach adds processing complexity to the 

motion capture procedure of the order of 2(! !log! + ! log !!! + !(!!)) as 

discussed in Chapter4. However, since on-body sensing systems usually have a central 

system for analysing the data that is located far from the body and connected to a 

powerful processing unit with a connection to an abundant electricity supply, processing 

complexity is not a challenge in this case.  

We used a robot arm as well as human subject movements to generate motion 

data, which are captured by an active marker-based motion capture system. The reason 

for selecting them is that both the motion capture system and the fact that the robot arm 

is very accurate in its operation. Marker based motion capture is considered as the “gold 

standard” of motion capture technologies. We consider joint angles as motion data in 

our analysis. It has the benefit of making the results independent from the technology 

used to measure motion. Nevertheless, the proposed approach can be generalized for 
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other motion capture technologies and it can be applied to motion data of other kinds. 

The analysis is also independent from where the reference coordinate system is, so the 

subject can move anywhere within the range of the motion capture system. 

The suggested signal processing approach is used as a post-processing 

technique. It can be used in motion capture laboratories for analysing the data and then 

passing the data filtered of undesirable variations to clinicians to decide about the 

treatment and for their clinical records. It also can be used for motion capture systems at 

home for the purpose of rehabilitation. After applying the technique on captured data, 

results can be sent to the clinicians to assess whether there has been any genuine 

improvement in the patient’s movement. 

This thesis provides a step towards flexibility of body sensing systems by using 

signal processing techniques. Flexible systems can be deployed for ambulatory motion 

capture, such as within a context of home-based rehabilitation where the potential for 

placement errors is greater, which in turn can affect the way that movement is 

interpreted and feedback given to the user.  

7.1. Future work 

As we did not have access to other motion capture systems, our investigations 

are thus limited to the active marker-based Codamotion. Going forward, the next step 

would be to test the introduced technique on other motion capture technologies to 

validate the generality of this filtering approach. 

  The proposed technique is computationally intensive and as such is potentially 

limited to offline processing. This is a limitation for applicability of the proposed 

approach in applications which require real-time feedback to the user, for example, in 
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real-time motor-training applications with biofeedback. Implementing the technique for 

online applications remains another step for the future work. 

In this thesis, the motion capture focus was on human gait and a robot arm 

movement. As the robot arm motion was analogous to flexion-extension of a human 

joint, we can generalize our findings for other human body joints’ motion. We suggest 

applying and investigating the introduced signal processing approach for other 

movements to validate its applicability for these situations. 

The effects of “smoothing” on pathological motion data may require further 

investigation into the technique’s applicability in broader clinical scenarios. This would 

require studies on patients.  The experiments need several participants to validate the 

applicability of the technique. We did not have access to patients to take part in our 

experiments, so the next step could be to validate the approach on patients with known 

pathological characteristics rather than healthy subjects.  

Exploring potential applicability of the proposed approach in other fields where 

the signals are mixed with unwanted sources of variation can be another step for future 

work. For example wireless channel response measurements need to be cleaned from 

effect of unwanted variation in data due to scattering in measurement environment (see 

Appendix C).  The propose approach does not need explicit knowledge of the 

probability density of the data as long as the first and second order statistics are known 

or can be estimated from the samples. Therefore it can be widely used in adaptive 

filtering applications to remove unwanted variation in data or separate different sources 

of variation provided that the sources are uncorrelated. 

In summary, the proposed post-processing technique can compensate for 

uncertainties due to sensor positional changes, whilst allowing greater energy efficiency 
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of the sensors, thus enabling improved flexibility and usability of on-body sensing. The 

results of applying the proposed post-processing technique on the motion data from 

designed experiments validate its benefit and applicability. 
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Appendix!B:!Consent!Form!and!Information!Sheet!

 

Information Sheet 

Research Study: 

Towards Flexibility in Motion Capture Systems 

 

We would like to invite you to be part of this research project. You should only agree to 
take part if you want to-it is entirely up to you. If you choose not to take part, there will 
not be any disadvantages for you and you will hear no more about it. 

Please read the following information carefully before you decide to take part; this will 
tell you why the research is being done and what you will be asked to do if you take 
part. 

Please ask if there is anything that is not clear if you would like more information.  

If you decide to take part, you will be given this information sheet to keep and be asked 
to sign the attached form to say that you agree. You are still free to withdraw at any 
time and without giving a reason. 

 

 

 

 

 

 

 

If you are interested in hearing more about the research after you have taken part, then 
you can always read a more detailed description in debriefing sheet that the 
experimenter will give you afterwards. 

 

 

 

About this study: 

Our subjects take part in a session of gait measurement in the gait lab (the Human 
Performance Lab, on the ground floor of Engineering Building). 

The measurements will involve instrumenting of the legs and pelvis with active 
markers to carry out several sessions of gait motion capture. The subject will need 
to wear shorts or leggings. The purpose of the data capture is to measure and 
quantify inter-session marker placement variability, and gather preliminary data for 
a study. There are no risks involved in taking part in this experiment. 
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Please complete this form after you have read the Information Sheet. 

Title of Study: Towards Flexibility in Motion Capture Systems. 
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Thank you for considering taking part in this research. The person organizing the 
research must explain he project to you before you agree to take part. 
 
If you have any questions arising from the information Sheet or explanation already 
given to you, please ask the researcher before you decide whether to join in. 

• I understand that if decide at any other time during the research that I no longer 

wish to participate in this project, I can notify the researchers involved and be 

withdrawn from it immediately. 

• I consent to the processing of my personal information for the purposes of this 

research study. I understand that such information will be treated as strictly 

confidential and handled in accordance with provisions of data protection act 

1998. 

Participant’s Statements: 

I ___________________________ agree that the research project named above has 

been explained to me to my satisfaction and I agree to take part in the study. I have 

read both the notes written above and the Information Sheet about the project, and 

understand what the research study involves. 

Signed:                                                     Date: 

 Investigator’s Statement: 

I, Roya Haratian, confirm that I have carefully explained the nature, demands and 

any foreseeable risks (where applicable) of the proposed research to volunteer. 
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Appendix!C:!An!Example!of!the!Possible!Applicability!of!
the!Proposed!Approach!within!Wireless!Communication!!

To investigate the applicability of the proposed filtering technique for body-

centric wireless communications, we used the approach to filter ultra wide band (UWB) 

channel response data. Measurement data of UWB radio channels for body-centric 

wireless communication where various units/sensors are scattered on/around the user 

needs to be cleaned from unwanted variations.  

In the UWB frequency range, from 3.1 to 10.6 GHz, the antenna of on-body 

sensing system behaves like a filter in both spatial and frequency domains and tends to 

introduce unpleasant signal distortion and degradation. In addition, the human body 

affects the performance of the UWB on-body antenna. It is shown in [153] that there are 

differences in measured channel impulse response of the received pulses for the various 

designed scenarios performed in the Body-Centric wireless lab.  

 

 

Figure 16, Logarithm magnitude of channel frequency responses for 6 different measurements before applying 
the proposed filtering technique. 
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In general, there should be several measurements of channel frequency response 

to estimate wireless channel parameters. To enhance the repeatability of measurement 

data and hence reduce the need for a larger number of trials and measurements, we can 

apply the filtering technique. This will provide a better methodology for extracting on-

body channel data without the need for longer measurement times and only requires a 

few traces. This can be achieved by deriving functional principal components of the 

data. By keeping the first functional principal component and rejecting the rest and then 

transferring the data back to the first domain by projecting the data of the retained 

components, the filtering can be performed. 

The channel frequency response with different measurements, as explained in 

[153], is presented in figure I.  As we see there is variation in channel frequency 

response between measurements. It is shown in figure II that the variation in data of 

channel frequency response measurements can be compensated for by using the 

proposed approach although it needs further investigation to achieve reliable results. 

 
Figure II, Logarithm magnitude of channel frequency responses for 6 different measurements after applying 

the proposed filtering technique. 

 


