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Abstract

Simulation is a technique of growing importance and is becoming an in-

dispensable tool applied in various academic industries, including packet net-

works.

Simulation provides an alternative research approach to implementing

a real environment, owing to its features of scalability, flexibility and ease

of setup. However, simulating large-scale networks can be very time and

resource consuming. It can take several days to run one long simulation ex-

periment, which may be expensive or even una↵ordable. Therefore, planning

simulation is important.

This research proposes to plan simulation run length through predicting

the required shortest run length that approximates steady-state, in the form

of mathematical and logical expressions, i.e. building an analytical model.

Previously related research always focused on classical models, such as the

M/M/1 queue model, M/G/1 queue model, and so on. This research expands

the research base to include a packet multiplexing model of homogenous

sources which is widely accepted and used. This thesis investigates di↵erent

tra�c types (Markovian/Pareto) and di↵erent QoS parameter (delay/losses),

as well as applying them to end-to-end networks.

These scenarios are analysed and expressed, in terms of di↵erent desired

precision level. Final results show that run length time is well predicted

using the developed analytical model, which can be a guide for simulation

planning in packet networks of the present and the future. This can be of

great significance for performance evaluation studies.
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Chapter 1

Introduction

1.1 Research Motivation

Simulation is a technique of great importance in many fields, both theoretical

and applied [31] [16]. It is becoming an indispensable tool used in various

knowledge industries, such as weather forecasting, and manufacturing, as

well as packet networking.

Simulation provides an alternative research approach to implementing a

real environment, since a real testbed requires a large amount of investment

on equipment [2]. Moreover, an inexpensive and flexible real test-bed for

networks cannot get an equivalent scale and complexity to a real network [97].

Compared to a test-bed, simulation is much more economical and flexible.

A network can be modelled at any scale for any research requirement.

Recently, the focus has been on large-scale networks [95][86][14], and sim-

ulating large-scale networks can be very time and resource consuming. It can

take several days [53] to run one long replication of simulation experiment,

which may be una↵ordable. Large-scale network often have complex topol-

ogy, combine various tra�c pattern, multiple protocols, and applications, etc.

Also, dimensioning and of large-scale network can be di�cult, particularly

in the presence of disparate tra�c mixes. Under this circumstance, tra�c

partitioning [95] is of great importance, since this will improve corresponding
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network performance and QoS. Also, the new age of 4G technology is coming,

which provides greater bandwidth, higher data rates, e�cient spectrum use,

etc [39]. Dimensioning 4G mobile will be even more challenging.

Because of all these factors, simulation to assist network dimensioning is

more important than ever. Therefore, planning simulation is required. This

is to “design the experiments, i.e., to determine what cases to consider, what

statistical precision to aim for, and what experimental budget is appropriate,

and whether to conduct the experiment at all” [89]. Moreover, when to stop

the simulation is another problem involved in the simulation planning stages.

Simulation stopped too late will result in a waste of time and computer re-

sources with unnecessary high precision level achieved, while those stopped

too early will lead to inaccurate results. In conclusion, all the issues men-

tioned above require simulation run length planning before the simulation is

run.

1.1.1 Shortest Run Length Approximating Steady State

Network simulation is a numerical technique for conducting experiments on a

digital computer [31], which involve statistical models that describe network

behaviour, and finally outputs a series of results called ‘metrics of interest’

in our research. A simulation is implemented by setting up input parame-

ters and running computer codes, until enough output metric is collected to

achieve the desired precision level.

Any simulated output metric changes significantly over time1 before it

reaches steady state (detailed definition of steady state is in Section 2.1.1).

For example, Figure 1.1 illustrates how a time series for an output metric

changes over time. The blue line illustrates the collected output metric at the

1In Figure 1.1, The output metric looks like starting from a large value, rather than 0.
This is judged by the naked eye. Actually, it starts from 0, and after a short simulation
time, it grows largely since some events appear early, e.g. packet losses appear early when
collecting PLP data. This phenomenon is normal, also in [20].
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Figure 1.1: Illustration of SRLASS of steady state simulation

corresponding time instant. It is clear that the metric varies largely at the

early stage of this replication (a single simulation run), and after a period,

asymptotically converges to the so called steady state. This convergence

period is defined as the shortest run length that approximates steady-state

(SRLASS) in this thesis, represented as �T as illustrated in Figure 1.1.

Planning simulation run length is to predict the required SRLASS, �T . As

shown in Figure 1.1, the SRLASS is in the units of simulation time. This

is di↵erent from wall clock time. Simulation time is used for the purpose

of setting the run length for the simulation, while the wall clock time is

the actual time consumed by one simulation run. This thesis will show the

SRLASS results in the units of simulation time, and further maps this into

wall clock time, with details given in Chapter 7.

Simulation run length planning can be studied by analysis and procedure

design. The former always involves corresponding modelling of network be-

haviour, and approximates it as a stochastic process by a reflected brownian

14



motion process [89], di↵usion process [90], or a birth-and-death process [91].

Network behaviour is modelled by these processes through corresponding pa-

rameterisation and the SRLASS is further represented by mathematical or

logical expressions. An alternative approach is to address this problem by

designing procedures. Chen et al [13] designed a quasi-independent (QI) pro-

cedure, which increases the simulation run length until the number of sam-

ples satisfies the required precision level. Lada et al [43] designed a procedure

called WASSP, focused on the M/M/1 waiting-time process, to determine a

truncation point, i.e. the end of the warm-up period. The authors further

compared the e�ciency of three di↵erent procedures dealing with di�cult

test processes in [44].

1.2 Objectives of this research

This research proposes to plan simulation, i.e. to forecast the SRLASS, �T ,

using mathematical and logical expression in the early planning stages of the

simulation, targeting queue models for packet bu↵ering.

The objectives of this research are:

• To propose a more realistic queue model, packet multiplexing model

(PMM), than classical queue models.

• To develop an analytical model for the SRLASS,�T , which will predict

an accurate simulation run length before the simulation is run.

• To map the SRLASS into required wall clock time, which will give a

guide how long the simulation will last, i.e. the real time.

• To focus on both Markovian tra�c and Pareto tra�c.

• To use UDP as a basic internet protocol.
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• To use QoS parameters, packet loss probability (PLP) and network

delay, as the targets of the simulation.

• Starting from a single access queue model, expand the research to an

end-to-end network model.

1.3 Contribution of this thesis

Previous research in simulation planning is mainly focused on more general,

classical queue models, e.g. the M/M/1 queue. This thesis expands the

research into a more realistic queue model, a packet multiplexing model,

which is a more realistic representation of packet queueing.

Besides, this research plans simulation SRLASS of PLP in Chapter 5.

Previous work done by Whitt [89] concentrated on queue length or waiting

time, but there is no research about PLP simulation planning.

Moreover, the research is expanded into an end-to-end network, which is

a more complex network topology than a single bu↵er. Based on results for

single access, the simulation planning in an end-to-end network is resolved.

Nowadays, some data tra�c has been shown to be statistically self-

similar [49], which is better modelled as a Pareto distribution, rather than a

Markovian distribution (Voice tra�c). However, the Pareto tra�c is much

more variable, which means it is harder (or impossible) for a simulation to

reach steady state [20], as the Pareto has very large or even infinite variance.

This makes simulation planning harder.

1.4 Thesis Outline

In chapter 2, previous work on simulation planning is reviewed. A standard

statistical analysis is presented as a general analysis tool for simulation plan-

ning. The squared coe�cient of variation (SCV) of the metric of interest
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(with more detailed explanation in Section 2.3.3) is proposed as a simulation

planning estimator in this thesis. An introduction to run length indicators

is discussed in detail.

Chapter 3 gives a brief introduction to simulation and the simulation

models that will be used in this thesis. Tra�c models are introduced, includ-

ing both Markovian tra�c and Pareto tra�c. The main queue model that

will be used in this thesis, the packet multiplexing model, is presented after-

wards. The basic end-to-end network model is introduced in this chapter.

In chapter 4, simulation planning of mean delay for the packet multiplex-

ing queue model with Markovian tra�c is developed. Packet-scale/burst-

scale (PSBS) characteristics are reviewed in chapter 4, and the formula for

SRLASS for the mean delay is developed based on PSBS features. Results

are shown for both single access and end-to-end networks. This result is then

compared with previous work (by Ward Whitt [89]), which shows that the

formula we developed is more accurate for run length prediction.

Chapter 5 further expands the research into the simulation planning of

the PLP in the PPM queue model. PLP is an important QoS parame-

ter. However, there is no previous work on planning simulation for PLP.

The mathematical and logical expressions for SRLASS in this scenario is de-

veloped through finding the required sample size of Overflow/Non-Overflow

(OvFl/NOF) cycles2 for the PLP to reach steady state. Validation is achieved

using Exponential bestfit. Results are shown with detailed discussions.

Chapter 6 investigates a more highly variable tra�c type - Pareto tra�c.

The PLP is regarded as the parameter of interests in this chapter. Results

show that the Pareto tra�c is much more variable and requires much longer

time for the simulation to reach the steady state.

2The PMM can be viewed into an aggregation OvFl/NOF two-state model (detailed
introduction in Section 5.2). And one OvFl period, followed by an NOF period, is called
one cycle. Number of cycles, or cycle number required for PLP to reach steady state is
denoted as N

cycle

in Section 5.3.
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Chapter 7 A guideline of mapping from simulation run length (in the

units of packet arrivals or simulation time) into a wall clock time is presented.

Results show that in the simulation of the packet multiplexing model, number

of packets simulated is the key parameter that will a↵ect the wall clock time.

Therefore, with some short experimental runs, real time consumed for longer

replicates can be predicted.

Chapter 8 consists of a discussion and conclusion, as well as possible

further work.
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Chapter 2

Methodology

This Chapter will mainly review the methodology used in this thesis for

planning simulation run length, which is a standard statistical analysis. A

precision criteria - the standard coe�cient of variation (SCV) is given as

the estimator for SRLASS. Error, classified into absolute width and relative

width, will also be discussed and this research mostly employs the latter.

Finally, this chapter will review variance and bias, which are very important

in statistical analysis.

2.1 Introduction

There are some important considerations before a simulation is designed and

run. How to set the input parameters? When to stop the simulation? Will

the output be accurate and reliable when the simulation is stopped? These

issues need to be resolved when planning a simulation. The accuracy, preci-

sion and reliability of output results is defined for steady state simulations

in this thesis.

As already discussed in Chapter 1, planning simulation run length is to

predict the SRLASS. Therefore, the definition of steady state is very impor-

tant.
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2.1.1 Definition of Steady State

It is very important to get an accurate definition of steady state. The concept

of steady state is used to describe the ‘precision’ and ‘steadiness’ of the

simulation results.

As already introduced in Chapter 1, simulation uses models to describe

network behaviour, reads in the input data, and finally outputs a series of

results. The final result is usually obtained from the estimator of output data.

Sample mean is a popular point estimator. However, sample mean is not ideal

to define the ‘steadiness’, or ‘steady state’, as illustrated in Figure 2.1.
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Figure 2.1: M/M/1 queue model - mean waiting time against packet arrivals

To generate the results shown in Figure 2.1, a simulation is run for an

M/M/1 queue model, and the waiting time is collected as the output data

for every packet arrival. The sample mean of each packet’s waiting time is
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usually regarded as the estimated mean delay for the queue model. Figure 2.1

plots the mean waiting time against packet arrivals, and illustrates how the

mean waiting time changes when more packets are generated.

As shown in Figure 2.1, the mean waiting time seems toe have already

reached a state of ‘steadiness’, which is just varying slightly. However, when

we zoom in, the data might still be changing significantly, as shown in the

popping bubble. Therefore, whether or not the output data reaches the

‘steadiness’ (i.e. precision criterion) can not be judged by the naked-eye, or

evaluated by a point estimator (e.g. the sample mean). Under this circum-

stance, steady state needs to be defined using an objective criterion.

In this thesis, such ‘steadiness’ is termed using ‘steady state’, and defined

using a Confidence Interval (CI). The simulation is regarded to have reached

steady state when the targeted CI has reached a desired smallness. CI is

an interval estimator, which is composed of a sample mean with upper and

lower bounds. Steady state, in this research, is defined as being when the

output data’s CI reach a preset target. A more formal and detailed definition

of CI will be presented in Section 2.3.2.

2.2 Importance of Simulation Planning

In the early 1960’s, Baran invented the concept of packet switching [7] [8] and

Donald W. Davies researched similar ideas in 1967 [21]. Today, there is still

a lot of work focusing on packet networks and related applications/protocols

research [48] [10] [71] [96]. Networks possess features of large scale, and a high

degree of complexity, and extend worldwide [53]. Research aiming at higher

transmission speed, wider broadband and larger coverage normally requires

a large amount of testing before being o�cially adopted. Testing in a real

environment gives an equivalent performance, but requires a large amount of

investment, which can be a barrier for the majority of researchers [2]. On the
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other hand, an inexpensive and flexible real test-bed for networks cannot get

equivalent scale and complexity as a real network [97]. Therefore, simulation

is used and plays a nontrivial role in the study of packet networks.

As introduced in Chapter 1, Simulation, compared to a real test-bed, is

cheaper and it is easier to use it to build flexible and scalable network. How-

ever, it also has drawbacks, e.g. the time and computer resources consumed

by one simulation can be very large, and the simulation may not reach steady

state yet when stopped.

Therefore, planning simulation is of great importance. Planning sim-

ulation normally requires analysis against targeted scenario and metric of

interest before the simulation is run.

2.2.1 Previous Work on Simulation Run Length Planning

There are two main methods in simulation run length planning research:

analysis and procedure design. Since research on steady-state is a generic

topic, the majority of previous papers are focused on classic queue models,

and M/M/1 is one frequently used classical queue model, e.g. in [89] [90]

[92] [91] [43] [44] [85] [13]. The M/M/1 is very widely used as it is both

completely random, and yet simple to analyse, and therefore provides a well

known model against which simulation run length planning techniques can

be tested.

Analysis

In 1989, Ward Whitt first proposed to plan queuing simulations. He provided

a formula for the required simulation run lengths in the early planning stages,

and proposed to use this “to design the experiments, i.e., to determine what

cases to consider, what statistical precision to aim for, and what experimental

budget is appropriate, and whether to conduct the experiment at all”[89]. In

[89], he researched the queue length long run behaviour of a GI/G/1 model,
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and approximated the stochastic process by a reflected Brownian motion

process. He continued to approximate the model into a di↵usion process [90]

and a birth-and death process [91]. More recently, he examined simulation

planning work in 2005 [92] again, proposing to use SCV as metric of interest

(e.g. delay/ bu↵er length) as the general indicator for planning simulations.

Procedure design

An alternative approach is to address run length planning problem based on

simulation methods. Ref. [13] designed a quasi-independent (QI) procedure,

which increases the simulation run length until the number of samples is such

that the estimator reaches the required precision level. Ref. [43] designed a

procedure called WASSP, which focused on the M/M/1 waiting-time process,

to determine a truncation point, i.e. the end of the SRLASS. The authors

of [43] further compared the e�ciency of three di↵erent procedures dealing

with di�cult test processes in [44]. In [85], the authors are also interested

in the steady-state waiting time of the M/M/1 model. They argued that

a sequential procedure is more e�cient than fixed-interval designs1. They

designed their procedure based on input/output behaviour, and use boot-

strapping2 to predict the variance. The variance is then used as the main

estimator to find the required run length in [85].

1The sequential design procedure controls events in the simulation. It is well known
that the sequential design procedure is more e�cient than fixed-interval simulation.

2Bootstrapping is a computer-based technique used to estimate properties of an esti-
mator (e.g. its variance) from an approximating distribution. One standard way is to
use the empirical distribution as the approximating distribution. Simplicity is one main
advantage of bootstrapping.
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2.3 Statistical Analysis

There is no lack of research in modelling a simulation replication process into

a statistical process, [89] [90] [91] which use existing mathematical models

to solve related problems. In this section, a standard statistical analysis is

introduced, and this will be further explained for how it can be applied to

simulation planning research.

In this thesis, the discrete-time method is used for the following reasons:

1) NS2 is the simulator tool used, which is a discrete event-driven simulator.

Therefore, all the data collected are in a discrete pattern; 2) PLP and delays

are the output parameters of interest in this thesis, and they will be analysed

also in a discrete way. The PLP will be collected by cycles3, and delay will be

collected for each individual packet arrival (The discrete-time waiting time

is also used in 3.2 and 5.2 in [89]). The number of cycles and the number of

packet arrivals are all discrete.

2.3.1 A Discrete-Time Process

Applied to a statistical analysis, the metric of interest of a simulation is

usually regarded as a stochastic process, {X
i

} where i = 1, ..., N , with mean

X̄ and variance �2. Assumption of strict stationarity is usually made on the

condition that �2 < 1. Let X̄ represent the true value of the metric of

interest while X̂
N

represent the estimator of the true mean, calculated by

the sample mean from the simulation results, where

X̂
N

=
1

N

NX

i=1

X
i

, (2.1)

3The PMM can be viewed into an Overflow/ Non-Overflow cycles (with detailed in-
troduction in Section 5.2). When it is in Overflow state, packets losses occur. Therefore,
PLP is collected by cycles. Section 5.3 will also explain how PLP is collected by cycles.
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Based on the Central Limits Theorem (CLT), the sample mean converges as

p
N(X̂

N

� X̄) ⇠ N(0, �2) (2.2)

where the process is uncorrelated, and �2 is called the asymptotic variance

of the process {X
i

}. From Equation (2.2), we use the approximation

X̂
N

⇡ N(X̄,
�2

N
) (2.3)

for su�ciently large N , which means that the sample mean is asymptotically

Normally distributed with mean X̄ and variance �2/N .

This approximation of Equation(2.3) is valid based on four assumptions:

• The distribution of the sample mean X̂
N

is Normal

• The mean is X̄ with no bias (detailed discussion about bias, see Sec-

tion 2.3.4)

• The variance of the sample mean is approximated by V ar(X̂
N

) = �2/N ,

which also provides a method to calculate the variance of the sample

mean through the variance of the sample population.

• The run length is su�ciently large.

In conclusion, a simulation is run in order to estimate the stochastic metric

of interest. The sample mean of interest is conventionally regarded as the

estimator, to simulate the true value. For a stationary process, the sample

mean will converge to the true mean, which is also the steady-state value. The

sample size, N , is required to be large enough so that the sample mean could

be used to represent the true mean, while Equation (2.3) to be a reasonable

approximation. So, the required sample size, N , is also an important factor

in this research.
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2.3.2 Confidence Intervals (CIs)

Confidence intervals (CIs) are used in relevant research, e.g. simulation plan-

ning [84] [89][90] [91] and sample size analysis [29] [77]. In our research, CIs

are applied in describing the ‘steadiness’, or the desired precision level.

The CI, as a kind of interval estimator of a sample population, is used

to express the precision. Assume that N observations are independent and

identically distributed (i.i.d.) , denoted asX1, X2, . . . , XN

, with a finite mean

X̄ and a finite variance �2, where sample mean X̂
N

is given by

X̂
N

=

P
N

i=1 Xi

N
(2.4)

and variance �2 given by

�2 =

P
N

i=1(Xi

� X̂
N

)2

N(N � 1)
(2.5)

A CI is a range between an upper bound C1 and a lower bound C2, where

Pr{C1  µ  C2} = 1� �

so that the probability of the estimated mean lying within the range (C1, C2)

is 100(1 � �)%. (C1, C2) is called CI , where � represents the significance

level, 100(1��)% the confidence level, and 1�� confidence coe�cient. Usu-

ally, a CI is represented using a percentage, normally 90% or 95%. Thus, CIs

are used to indicate the steadiness and precision of the sampled mean. How

likely the interval is to contain the estimator is determined by the confidence

level or confidence coe�cient.

In order to find �, define a random variable z
n

, where

z
n

=
X̂

N

� X̄p
�2/N

(2.6)

26



Based on the CLT [11], if N is su�ciently large, the random variable z
n

will usually have a standard Normal distribution with mean 0 and variance

1, regardless of the underlying distribution of X
i

. Define �(z) to be the

distribution function of a standard normal random variable, given by

�(z) =
1p
2⇡

Z
z

�1
e�y

2
/2dy (2.7)

Then, the sample mean X̂
N

for su�ciently large samples is approximately

Normally distributed with mean X̄ and standard deviation �/
p
N :

X̂
N

⇠ N(X̄,�/
p
N) (2.8)

Therefore, z
n

follows

P (�z1��/2 
X̂

N

� X̄p
�2/N

 z1��/2) = P (X̂
N

�z1��/2
�p
N

 X̄  X̂
N

+z1��/2
�p
N
) = 1��

Thus, for a sample population X1, X2, . . . , Xn

, given that n is su�ciently

large, an approximated (1��)(100)% confidence interval for X̄ can be written

as:

(X̂
N

� z1��/2
�p
N
, X̂

N

+ z1��/2
�p
N
)

By setting the confidence level, z1��/2 can be calculated. The confidence

level can be set as required. Normally, the confidence level is 90% or 95%.

In this research, a 95% confidence interval (where z=1.96) is generally used

since it is widely used in [45] [28] [89] [43] [44].

Assume that the sample mean of an i.i.d. discrete-time process {X
i

} is

X̂
N

and its variance is �2. From Equation (2.3), a (1� �)(100)% CI for true

value X̄ is

(X̂
N

� z1��/2
�p
N
, X̂

N

+ z1��/2
�p
N
)
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where

P (�z1��/2  N(0, 1)  z1��/2) = 1� �

Take Figure 2.2 for example, a CI is constructed from the critical value

(which can be any metric of interest). The blue zone is the constructed CI

with the upper limit bound and lower limit bound. The interval gives as an

interval estimator which means that the probability that the critical value

lies within the blue zone is 95%.
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Figure 2.2: Illustration of Confidence Interval

In this research, the CI is used in an alternative way, when CI is used to

describe the steadiness of the simulation output metric of interest. The simu-

lation is regarded to reach the steady state when the targeted CI has reached

a desired smallness (which is set according to the simulation requirement).

The mathematical formula will show how it works in Section 2.3.3.
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2.3.3 Squared Coe�cient of Variation (SCV)

Absolute Error and Relative Error

We consider two kinds of error, the absolute error and relative error (also

called absolute width and relative width for CIs). Relative error is defined

as the ratio of the simulation standard error to the simulation estimator of

the mean. Relative error is preferred to be a better practical measure of

statistical precision for evaluating approximations [89] as it is independent

of the measuring units, which can be chosen arbitrarily.

However, there often is a measuring unit that is naturally meaningful in

an application, so that independence of the measuring unit is not always

desirable. For example, the queue length could be in units within the range

from units of 0 to 106 customers. Thus, if a mean bu↵er length is 0.01, then

we might prefer to measure precision of an estimate by the absolute error

instead of the relative error.

In conclusion, it is believed that relative error is usually a better measure

of statistical precision, but not always. In this research, relative error is used

as it is independent of the units and more suitable for planning simulation

run lengths for the PMM model [89].

Continuing with the analysis in section 2.3.2, we define the absolute

width, "
a

, of the confidence interval, given by

"
a

= 2z1��/2 ·
�p
N

(2.9)

and the relative width, "
r

, of the confidence interval, given by

"
r

= 2z1��/2 ·
�

X̄
p
N

(2.10)

Thus, for specified absolute width "
a

and specified level of precision �, the
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required sample size correspondingly, N
a

, is given by

N
a

=
4�2z21��/2

"2
a

(2.11)

Applying the same to a specified relative width "
r

and specified level of

precision �, the required sample size correspondingly, N
r

is given by

N
r

=
4�2z21��/2

"2
r

(X̄)2
= 4 ·

z21��/2

"2
r

· �
2

X̄2
(2.12)

Define squared coe�cient of variation (SCV) as

c2 =
�2

X̄2
(2.13)

Therefore, the required sample size for relative width is finally given by

N
r

= 4 ·
z21��/2

"2
r

· c2 (2.14)

In the above equation, z21��/2 is the confidence parameter, usually set to

be 1.96 with 95% confidence level. "
r

is the precision width, which is defined

according to the precision requirements (In this thesis, set to 10%, 20% and

50% respectively). From the Equation (2.14), if the analytical model of SCV

is known, then the required sample size N
r

can be obtained. Therefore, the

SCV is regarded as the standard simulation planning estimator in this thesis.

In this thesis, relative error is also used to validate the accuracy of the

developed models, which will be discussed in detail in section 3.1.4.

2.3.4 Variance and Bias

Variance and bias are two important aspects in evaluating the precision and

accuracy of simulation output data. In this section, both of them are re-
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viewed, and their relationship with the research objectives are addressed.

Since this research studies the transient behaviour (how long does it take to

reach steady state) for a single simulation replication, variance is much more

relevant than bias. Although not in a research objective, bias is still of great

importance in evaluating the simulation performance.

Bias

The objective of this research is to predict the SRLASS, �T , which is more

relevant to variance (indicating precision), rather than bias (indicating ac-

curacy). However, this is not to say bias is not important when analysing

output results. In this section, we will first define bias, and analyse bias

using both analysis and simulation to show bias is negligible when planning

simulation.

In statistics, bias is systematic favouritism that is presented in the data

collection process resulting in misleading results [90]. There are several types

of statistical bias. The bias of an estimator is defined as the di↵erence be-

tween an estimator’s expectation and the true mean value of the parameter

being estimated.

In [90], Whitt analysed bias using mathematical expressions to show that

bias is asymptotically negligible compared to the relative width of the con-

fidence interval, when simulation time t is su�ciently large. Because bias

is approximately in the order of t�1, where t is the time required. And the

relative width of confidence interval is proportional to t�
1
2 .

In [68], in order to analyse the e↵ects of the bias, the author imple-

mented M/D/1 experiments and collected the waiting time as the metric

of interest. He implemented di↵erent experiments by using di↵erent start-

ing points, including starting the simulation experiments from empty, from a

random point, and from a point chosen using the distribution. Results of [68]

show that di↵erent starting points produced no significant di↵erent means of
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waiting time, which proves that the bias is negligible.

In conclusion, both analysis of [90] and experimental results of [68] show

that initial condition bias can be assumed to be negligible.

Since the objective of this research is about predicting SRLASS, �T ,

which is mainly related to variance, rather than bias, as illustrated by Equa-

tion (2.11) and (2.12). In this research, simulations are all set to start from

empty, with slight initial condition bias, which is assumed to be negligible.

Variance

The variance of a random variable or distribution, on the other hand, is

the expectation, or mean, of the squared deviation of that variable from

its expected value or mean. It is used as one of several descriptors of a

distribution [32]. It describes how far values lie from the mean.

Assume that the sample mean of random variables {X1, X2, X3, . . . , XN

}
are µ where

µ =
1

N

NX

i=1

X
i

and the variance is the expectation of the standard squared deviation, given

by

V ar(X) = E[(X � µ)2]

In our simulation, an unbiased variance is calculated using

V ar(X) =
1

N � 1

NX

i=1

(X
i

� µ)2

2.4 Discussion of SRLASS indicators

The objective of this thesis is to find the �T , which is the SRLASS for the

parameter of interest to reach the steady state. As already argued in sec-

tion 1.1, there are two main motivations for this research: 1) The requirement
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of knowing how to set the run length parameter for each simulation experi-

ments. Stopping too early will get inaccurate results, while stopping too late

will waste unnecessary time and resources. In this case, the SRLASS need

to be represented using the simulation time, which is the setup parameter

for the simulation. 2) The requirement of knowing how actual time will be

consumed for the simulation, so that it can be judged whether or not the

time consumed can be a↵ordable. This is about the wall clock time, which

is also the real time that it takes for the simulator to run.

In this thesis, the SRLASS is measured in the units of simulation time.

Finding the relationships between the simulation time and the wall clock

time will also be an objectives of this research.

2.4.1 Simulation Time and Packet Arrivals

There are a couple of things in queuing systems, for which we may wish to

find the SRLASS, including simulation time and packet arrivals.

simulation time

Simulation time, compared to wall clock time, is the virtual time unit main-

tained by the simulator [40]. This time is used to schedule the events in

the simulator. It is not necessarily the same as, or in any easy sense to be

related to, the wall clock time. The simulation time is used to keep track of

the simulation progress. For example, one wants to simulate packets arriving

at one specific time point. This time point is controlled by the simulation

time.

As all the simulation in this thesis, is run on NS2. In NS2, all the events

are advanced and controlled by the simulation time. Therefore, simulation

time in NS2 is one important setup parameter. This will control how long

a simulation will last. Also, the simulation time is very important to other
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simulation software, e.g. MatLab. The results generated in the units of

simulation time can be also used by other simulation softwares.

Packet Arrivals

In queueing systems, packets are generated at a source, sent to the server to

be queued, and wait until served, and then to be received at the destination,

as shown in Figure 2.3. The customers (packets in network) arrive and queue

to be served in the bu↵er, with the mean arrival rate �. In the bu↵er, time

consumed for waiting here is called the waiting time, which is represented

by T
w

. When the server is ready, the packet will be served by the server,

and the service time is represented by s. After service, the packet leaves the

queueing system, for which the service rate is µ.

Data can be collected for each individual packet, so that the sample mean

of them can be regarded as a proper estimator.

buffer server
customers
  leaving

customers
   arriving
with rate

Tq, system time

s, service timeTw, waiting time

   w, number of
customers waiting , utilisation

q, number of customers in system

Figure 2.3: Illustration of Queuing Systems

Data can be collected for each individual packet, so that the sample mean

of them can be regarded as a proper estimator. For example, Roughan [77]

collected the delay and queue length data for each individual packet. In this

way, the SRLASS can be described in the units of packet arrivals. In other
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words, we plan simulation by finding x so that a simulation run lasts for

x packet arrivals, when the mean delay or queue length reaches the steady

state.

2.4.2 Wall Clock Time

Wall clock time is the real time consumed by the processor when the simula-

tion is running. This parameter will not only depend on how the simulation

models are designed, but also depends on the speed of the computer.

The design of the simulation models is important. Simulation can be at

an arbitrary level of complexity, according to di↵erent system requirements.

Therefore, when the requirements are satisfied, using more e↵ective modelling

of simulator models means less time is consumed for the simulator to run.

However, with the increasing requirements of simulating complex networks,

the design of the simulation models is getting more complex, and therefore,

a powerful computer is required.

The speed of the computer processor is an essential factor a↵ecting the

wall clock time. With powerful computer processor and more memory al-

located to the simulator, the simulation should run faster. However, as de-

signing the computer processor is not in the scope of this research, how the

computer processor a↵ects the wall clock time consumed for the simulator

will be discussed later in this thesis.

2.4.3 Summary

In this thesis, the methodology used is statistical, so the most direct ana-

lytical model developed is related to simulation time. Also, with the setup

parameters for each queuing system, the packet arrivals are equivalent to

simulation time.

Wall clock time, on the other hand, not only depends on the network
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model, but also relies essentially on the computer hardware parameters. In

chapter 7, the simulation time will be mapped into the wall clock time, so

that both of them can be planned before the simulation is run.

2.5 Conclusion

This chapter introduced the methodology used in this research to plan the

simulation run length, which is a standard statistical analysis. Precision

criteria, the confidence interval is crucial to this analysis. Relative and ab-

solute errors were discussed, and relative error will be generally used in this

research. The SCV is introduced and regarded as the standard estimator for

planning simulation run length. Variance and bias were also reviewed.

From the standard statistical analysis, it can be concluded that, given the

desired precision level, confidence level, and the SCV model of the parameter

of interest, SRLASS, �T , can be analysed and predicted.

Also, a discussion about the indicators for the SRLASS is also given in

this chapter. This mainly consists of two parts: the virtual simulation time

and wall clock time.

In the following chapters, the standard statistical analysis will be further

developed and applied to specific network scenarios and models.
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Chapter 3

Simulation and System Models

This chapter addresses the definition of simulation, di↵erent types of sim-

ulation models, validation methods, as well as the chosen simulation tool,

NS2. Also, this chapter gives an introduction to the relevant simulation

models, including the network scenario used in this research, the packet mul-

tiplexing model, and the tra�c models. Finally, an end-to-end simulation

model is reviewed.

3.1 Simulation

3.1.1 Definition

Simulation modelling is a technique for using computers to imitate, or simu-

late, the operations of various kinds of real-world facilities or processes [47].

The studies on those facilities or processes are usually based on assumptions,

which take the form of mathematical or logical relationships.

The most basic concepts for simulation consists of ‘system’, ‘state’ and

‘events’. ‘System’ can be defined as the collection of hardware, software and

firmware components [40]. The ‘state’ are the variable’s values, describing

the state of the system components at a particular time. An ‘event’ is defined

as an instantaneous occurrence that may change the state of the system [47].

Take a queuing system for example. The whole queuing system, with
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packets injected into the input port, being served, and then leaving the queue

at the output port, can be viewed as a system, as shown in Figure 2.3. The

‘number of packets in queue’ can be regarded as the queue state, and the

state probability distribution is one of the most useful characteristic. Similar

state variables are ‘delay’ of a packet, and if the packet is dropped or served,

etc. The ‘event’ can be the arrival of a packet, or a departure of a packet

after being served, or a packet loss event.

Simulation is designed using various models, representing the real sys-

tems. For example, for the queuing system, packets can be designed as

objects, which are generated when a packet arrives in a queue, and killed

when the packet leaves the queue. And the queue can be modelled using

other objects, with the state variables of the bu↵er capacity and service rate.

In this way, a simple queuing system can be characterised using simulation

models/computer code.

3.1.2 Types of Simulation Models

Static vs. dynamic simulation model

A static simulation model is a representation of a system at a particular

time, where such a representation does not change over time [47]. All of the

model elements do not change during the execution of the model and remain

constant. The elements of the model may be fixed in the simulation imple-

mentation, or be read in during the initialisation phase of the simulation,

but will remain the same during the entire execution.

On the contrary, a dynamic simulation model represents a system as it

evolves over time. The elements of a model of this type may change their

properties or attributes during the model execution. One form of simulation

based on dynamic simulation model is an interactive simulation1, where users

1This approach could be useful for simulation of wireless networks, which is beyond the
scope of this thesis.

38

Xu Ling


Xu Ling


Xu Ling




can make modifications during runtime.

Deterministic vs. stochastic simulation modelling

A system may be regarded either as deterministic or stochastic, depending

upon the relationship between input and output. The output of a determin-

istic system can be predicted completely if the input and the initial state of

the system are known [31]. In other words, the model is not described by

random variables and the same input always leads to the same output. The

main characteristic of this type is that the inputs of the system determine the

output as soon as they are fed in to the simulator, even though the process

might not calculate the results immediately. A typical example is a communi-

cation system entirely represented by analytical models in which appropriate

mathematical or logical expressions are used, and the corresponding outputs

are calculated once the input parameters are given.

For a stochastic system, given the input and the state of the system it

is possible to predict only the range within which the output will fall and

the frequency with which various particular outputs will be obtained over

observations. As the output produced by a stochastic simulation is random,

statistical methods are often necessary to analyse the output data.

Continuous vs. discrete simulation models

A simulation model is classified as a continuous or as a discrete-event model,

based on how the state variables in the model are updated throughout the

simulation. A discrete system is one for which the state variables change

instantaneously at discrete clock ticks, separated by a constant period of

time. While a continuous system is one for which the state variables change

continuously with respect to time [47].

It is worthwhile to distinguish the means of simulation modelling from the

properties of real-world systems. Either continuous models or discrete-event
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models can model a continuous system; discrete systems such as transaction

systems in a financial market or transportation systems are not restricted to

discrete-event simulation models, appropriate continuous simulation models

can also characterise them.

3.1.3 Simulation Clock

The simulation clock is used in a dynamic simulation. As for a dynamic

simulation, state and variables of simulators are changed in an interactive way

with the system. So, it is important to trace the simulation time throughout

the whole simulation. Simulation time, di↵erent from the real time (a.k.a wall

clock time), is always used to control when specific events happen. There are

mainly two methods for advancing the simulation clock: constant simulation

time advances and next-event advances.

0 e1 e2 e3e0 e4

Time

Scheduler

h h h

Figure 3.1: Constant Time-driven Advancement [53]

In simulation time advance method, the time clock is advanced to the

next unit of simulation time. The time duration controlling the simulation

advance is always constant. Figure 3.1 illustrates the concept of the con-

stant simulation time advancement, where e
i

is the time points when events

happen, and the simulation clock is advanced regularly at a constant time

interval h.

In the other technique, the clock is advanced event by event, as shown in

Figure 3.2. When the next event happens, the simulation time will be incre-
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Figure 3.2: Event-driven Advancement [53]

mented correspondingly at the time point e
i

. This is called the event-driven

advancement. This method is currently mainly used by most simulation

software, including NS2, which is used in this research. Events in the real

system won’t occur at a constant rate, and this will save computer resources

and wall clock time by avoiding simulating unnecessary periods. A simulator

designed using next-event time advance is called an event-driven simulator.

3.1.4 Validation of simulation results

Validation is the process of comparing the model’s output with the behavior

of the phenomenon, in other words, comparing model execution to known

reality (physical or otherwise). Validation needs to be di↵erentiated from

verification which is the process of comparing the computer code with the

model to ensure that the code is a correct implementation of the model [5].

Validation is of great importance in simulation since it is a measure of

the extent to which it satisfies its design objectives [31]. This can be a

di�cult task, since a very general program that is capable of analysing a

large number of scenarios will be impossible to test in all of them, especially

as it would probably have been developed to solve systems that have no

analytical solution to check against. However, even for the most general

simulators it will be possible to test certain simple models that do have

analytical solutions [72].
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In this section, two methods of validation will be introduced, and will be

used in Chapter 4, Chapter 5 and Chapter 6: Exponential Bestfit, and the

Relative Width.

Exponential Bestfit

As in much research, the analysis in this research is frequently based on the

assumptions of certain types of distribution of related variables. Therefore,

a validation of such distributions is important. The Exponential Bestfit

concept is introduced for this purpose.

Exponential bestfit is used because the overflow period and cycle time

(to be introduced in Section 5.2) are both assumed to be exponentially dis-

tributed in this research. The assumption is reasonable, and is also used

in [35]. The assumption is validated using Exponential bestfit.

The probability density function (p.d.f.) of an exponential distribution

appears to be a straight line in log-linear scale [24] [72] [6]. However, since

the raw data obtained from simulation results can not be judged by the naked

eye, the bestfit of line is introduced to facilitate the validation [57].

For the exponential distribution, the p.d.f. is f(x) = �e��x. Figure 3.3 is

an validation example of how the exponential distribution is validated. The

figure shows the comparison between raw data and exponential bestfit of line.

The raw data is obtained from random variables of an exponential distribu-

tion. The blue line plots the p.d.f. of the raw data. The blue line shows an

approximately straight line in the log-linear scale. A line is fitted and plotted

in red triangles, using exponential bestfit algorithm (see Appendix B.2).

As shown in Figure 3.3, the line is best fitted to the raw data. There are

some ‘noisy’ tails which is usual because those are rare events, which require

longer runs to obtain steadiness.
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Figure 3.3: Exponential bestfit of line with raw data

Relative Width

Relative Width is introduced already in section 2.3.3. It can also be used to

validate whether the developed analytical model is accurate.

Recall that the equation for the required sample size is related to the

relative width according to the relationship:

N
r

= 4 ·
z21��/2

"2
r

· c2 (3.1)

From this equation, we can know that if the analytical model of SCV, c2 is

known, the required sample size for the target parameter to reach the steady

state can be obtained from them. And the equation of the relative width is:

"
r

= 2z1��/2 ·
�

X̄
p
N

(3.2)

Therefore, plotting the relative errors against the sample size, as supplied in
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Equation (3.2) can be a way to validate the accuracy of the analytical model.
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Figure 3.4: An example of comparison between simulated and analytical
relative width

As shown in Figure 3.4, an M/M/1 queue is simulated and the interval

between packet arrivals is collected. The blue line plots the simulated values,

while the red line is the relative error comparing to the analytical model. The

closeness between these two lines show how accurate the model will be. Using

this method, this research will be validated well before the main results are

given.

3.1.5 Simulation Tools: Network Simulator 2

In this research, Network Simulator 2 (NS2) [17] is employed since it is widely

accepted, and is open source software. NS2 is a discrete event network sim-

ulator that derived from the REAL network simulator.
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Figure 3.5: Functional Layout of NS2

As shown in Figure 3.5, NS2’s source code is split into two parts: OTcl, an

object oriented version of Tcl9 for configuration and simulation scripts2, and

C++ for its core engine. The combination of the two languages achieve both

performance and ease of use. OTcl scripts, as a user language, can be edited

directly by users to call the corresponding models in the NS2 library. These

two parts are linked using OTcl linkage, which is all edited and contained in

an xml file.

After running the codes through OTcl script, there are two kinds of simu-

lation results: NAM and trace file. Network AniMator (NAM) is a graphical

tool used to represent a visual topology of networks and animation of events,

e.g. packet flows and packets drops. An alternative choice is the trace file

which is appropriate for statistical analysis. A standard trace file traces all

events and all relevant information in a well defined format, on which can

be further carried out post-scripting, e.g. MatLab, Awk and Perl etc. This

2A user language used in NS2.
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standard trace file records all detailed events, but for the majority of occa-

sions is a waste of memory. Thus, for di↵erent simulation requirements, users

can define their own trace file using existing functions, or further edit models

inside C++ codes. Furthermore, a new protocol can be implemented in NS2

by adding C++ code and updating OTcl configuration files in order for NS2

to recognise the new parameters and methods for the new protocol. The

C++ code also defines those parameters and methods which are available

for OTcl scripts.

Because of the open source nature of NS2, all the models can be simply

read, edited, and upgraded for new research requirements. Users can modify

the essential codes, and output their self-regulated trace file as the simulation

results.

In conclusion, there always are 5 steps to implement and simulate in NS2:

• Analysing the research requirement and implementing it by updating

C++ code for new functionalities.

• Describing the simulation scenario in an OTcl script, and calling func-

tions defined in NS2 library (C++ source codes) using OTcl linkage;

• Running the simulation;

• Carrying out post-scripting using Awk, Perl, or MatLab, etc.

• Analysing the generated trace files.

Some disadvantages of NS2 come from its open source nature. For exam-

ple, documentation is often limited and out of date w.r.t the current release

of the simulator. Fortunately consulting the highly active newsgroups and

browsing the source code directly solves most problems. Another disad-

vantage is the lack of tools to describe simulation scenarios and analyse or

visualise simulation trace files.
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In this research, NS2 is employed as the simulation tool, and C++ codes

are modified for self-regulated trace files. New added parameters are defined

in the OTcl linkage, as well as within C++ codes. Post-scripting and results

generation is carried out using MatLab.

3.2 Tra�c Models

In network simulation, accurate tra�c models are very important. A model

can be based on real network trace samples, or created using analytical

models, where the tra�c models are described using mathematical tools,

to mimic the real network tra�c features. In this thesis, analytical tra�c

models are used because they are most commonly used in most simulation

studies [38][3][53][57].

Analytical tra�c models generate pseudo random data, which follows

some pattern, defined using mathematical tools. This will make the data

maintain statistical features of the real network tra�c. However, it is uni-

versal that di↵erent types of tra�c follow di↵erent tra�c patterns. For ex-

ample, it is well known that the voice tra�c follows a largely Markovian pat-

tern, while the data-dominant tra�c is often self similar with heavy-tailed

features[49][69][62][67], which is usually described by the Pareto distribu-

tion [49][19][30].

A good tra�c model plays an important role in capturing the key features

of the real queuing system. If the arrival process is not modelled accurately,

the network performance may be overestimated or underestimated [74]. In

this section, the tra�c models to be used in this thesis will be introduced,

mainly focusing on the ON/OFF tra�c model [4], since it is widely accepted

and used [55][56][80][59][60][22][98].
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3.2.1 Short-Range Dependent Tra�c Model

The first performance models for telecommunication systems were based on

the assumption that aggregate packet arrival processes follow a Poisson pro-

cess [9][34][72], while sources are always modelled as an ON/OFF model, as

this captures the talkspurt feature of voice for example.

ON/OFF sources

There is no lack of research using the ON/OFF model, and the bursty prop-

erty of network tra�c can be captured by the ON/OFF tra�c model [4][38]

[73][78][93][22][60][59][87][15]. The ON/OFF model captures the network fea-

ture using the two state: ON state and OFF state. Figure 3.6 illustrates how

it works.

ON OFF

a

b

1-b1-a

Figure 3.6: ON/OFF state

In this model, when the source is in the ON state, the packets are gener-

ated at a constant rate3. On the other hand, when the source is in the OFF

state, there will be no packets generated. In a time slotted time base, the

probability that the state changes at the end of each time slot from ON to

OFF is ‘a’, otherwise from ON to ON is ‘1-a’. Similarly, the probability that

3Alternatively, this rate could be variable, e.g. a Poisson process.
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the state changes from OFF to ON is ‘b’, otherwise from OFF to OFF is

‘1-b’.

ON

OFF

Ton Toff

Figure 3.7: Illustration of a single ON/OFF source model

The switch between the ON and OFF state can also be viewed in another

way, shown in Figure 3.7. In this figure, the time duration of the state keeping

in the ON state and OFF state are tagged as T
on

and T
off

respectively,

and they are all modelled as exponentially distributed4 for the Markovian

modulated arrival process. This is widely used to model the voice tra�c.

3.2.2 Long-Range Dependent Tra�c Model

Significant research shows that some data tra�c in networks has features

that do not follow the exponential distribution, but features heavy-tailed

distributions. It is better to use the Pareto distribution to capture this heavy-

tailed feature [49] [67] [30] [62] [19]. And the LRD tra�c models are highly

variable, and hard to predict, sometimes, very di�cult to reach steady state

in simulation, which makes this research di�cult. In the ON/OFF model,

the sojourn times of LRD tra�c are all modelled as the Pareto distribution.

4Exponential distribution is formed for the continuous time view of this model. This
is the continuos version of a Geometric distribution when the time slot duration ! 0.

49



Pareto Model

A random variable x is defined as being Pareto distributed if

Pr{X > x} = 1� F (x) ⇡ 1

x↵

(3.3)

as x ! 1 and 0 < ↵ < 2. The formula shows the probability that the

random variable X is larger than x. The shape of it is heavy-tailed, and this

can have a high or even infinite variance.

The cumulative distribution function (cdf) is

F (x) = 1� (
�

x
)↵ (3.4)

and the probability density function (pdf) is given by

f(x) =
↵

�
· (�
x
)↵+1 (3.5)

and the mean value of the Pareto distribution is

E(x) = � · ↵

↵� 1
, when ↵ > 1 (3.6)

the variance of Pareto distribution is given by

V ar(x) =

8
<

:
1 for ↵ 2 (1,2]

�

2
↵

(↵�1)2(↵�2) for ↵ > 2
(3.7)

Figure 3.8 shows the comparison between the Pareto distribution and the

Exponential distribution.
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Figure 3.8: Comparison between Exponential and Pareto distribution

Figure 3.8 plots the probability that the random variable X is larger

than x, with di↵erent mean value of di↵erent distribution type. The solid

lines represent the Pareto lines, while the mean value of the blue line equals

10, while the red one equals two. Similarly, the dotted lines represent the

Exponential distribution. With the same mean value, the Pareto distribution

gives a much larger probability of rare events (i.e. the tail in Figure 3.8),

compared to the Exponential distribution, and falls with a large portion of

random variables in the tail. Those extremely large values can not be ignored.

With this pattern, tra�c with Pareto features will have heavy tails, which

means high or even infinite variance.
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3.3 Packet Multiplexing Model Used in This

Research

This thesis expands research into simulation run length planning for classical

queue models, into a more realistic model, the Packet Multiplexing Model

(PMM). In this section, the PMM will be introduced in detail. It is based

on the single ON/OFF tra�c source, as already introduced in section 3.2,

by multiplexing N of them into a FIFO bu↵er.

The packet multiplexing model used in this research is shown in Figure

3.9 [72][3][37][57][22][74][33][54].

source 1

source 2

source N FIFO queue

Service Rate C
mean load
       Ap

Figure 3.9: Packet multiplexing model

N homogenous ON/OFF VoIP packet sources are multiplexed into a FIFO

queue, with service rate C (in pps). Each ON/OFF packet source generates

packets with rate h (in pps) when active (the ON state), and sends no packets

when it is idle (the OFF state). The duration in the ON state and OFF state

are denoted as T
on

and T
off

respectively. The sojourn times in the states can

be modelled as an Exponential distribution for Markovian tra�c source, or

the Pareto distribution for the LRD tra�c source in this thesis. When the

instantaneous overall arrival rate exceeds the service rate C for an amount

of time until the bu↵er is overflowed, packet losses occur.

52



3.4 End-to-End Network Model

3.4.1 FG/BG Network Model

It is well-accepted to research an end-to-end network using Foreground Traf-

fic (FT)/ Background Tra�c (BT) model [82] [79] [50] [57] [35] [46] [42],

and has been proven to be a reliable modelling method. This method gives

the possibility of treating (when coding) the foreground tra�c (with more

detailed description since it is the focus of research) and background tra�c

separately. In [46], this network model is used in a FIFO scheduling queue,

while in [42], the FG/BF method is proven to be a successful and reliable

model, even for Fair Queueing Scheduling(FQS).

Figure 3.10 illustrates how this model works.

Buffer 1

N N N

FT

BT
end-to-end path

BT BT

Buffer 2 Buffer n

Figure 3.10: End-to-end FG/BG network model

As shown in Figure 3.10, the tra�c is divided into FT and BT. The FT

is the tra�c flow of interest, which is injected into the network, and passed

through every bu↵er in series in the network. BT flows are all independent

tra�c sources, which are multiplexed with the FT at each bu↵er, and routed

elsewhere in the network.

As shown in Figure 3.10, FT flow traverses n identical bu↵ers throughout

the network.
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3.5 Conclusion

Simulation techniques and simulation models are introduced in this chapter,

including all relevant tools, e.g. the validation methods, simulation tools, as

well as simulation clock.

Also, the system models, which will be used throughout this thesis are

reviewed. Tra�c models are introduced, followed by the network scenario,

and the PMM. This model is widely accepted, and it is a good start to begin

the simulation planning research into a more realistic network model. End-

to-end network model is discussed finally in this chapter, and an FG/BG

model is used.
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Chapter 4

Simulation Planning for Delay
in Markovian Source PMM

4.1 Overview of simulation planning for delay

Delay is a very important QoS parameter in network research. There is

no lack of such research about delay, see [60][83]. This chapter investigates

simulation planning for delay in a Markovian source PMM. This chapter

provides an analytical model for the SCV, which directly gives how to plan

simulation for delay in the PMM.

The PMM model is adopted here mainly due to its wide acceptance,

application in the area of packet networks research [61] [22] [98] [74] [33] [3]

[37] [72]. This chapter uses the PMM introduced in section 3.3, and applies

statistical analysis, as introduced in section 2.3, to the PMM scenario.

This chapter uses the packet-scale/burst-scale queue length characteris-

tics (detailed introduced in Section 4.2). Delay is collected from each in-

dividual packet arrival. If packet i su↵ers a long waiting time, it is more

probable that also packet i + 1 will experience a long waiting time. In this

case, there are correlations between adjacent packets [77]. Therefore, the

data needs to be sampled. This research uses a formula (to be introduced in

Section 4.3) to define the sampling interval, in the units of packet numbers,
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i.e. how many packets between samples is used. In this way, the correlation

between adjacent packets is removed.

The required sample size for the delay to reach steady state, is then in

the units of the sampled data. Using the calculated required sample size and

the sample interval, finding a formula for the SRLASS �T is achievable.

4.2 Packet-scale/ Burst-scale Queuing Behaviour

The PMM has two specific queue length characteristics [41] [72] [75] [76] ,

which are as shown in Figure 4.1. This figure gives a log-linear plot, which

shows the distribution of the queue length state probability. The x-axis shows

the number of packets in the bu↵er, which is also called the state of the queue

length. While the y-axis gives the corresponding probability of the specific

state.

knee-point

packet-scale decay rate

Burst-scale decay 

0.1
0.01

0.001

10 20 30 40 50
Number of packets, x

Pr{ x in the buffer}, p(x)

Figure 4.1: Packet and burst-scale queuing

This state probability distribution is composed of two components, packet-

scale and burst-scale. As shown in Figure 4.1, queues have ‘exponential’ type

decay rate. In the packet-scale region, if the overall arrival rate is less than
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the service rate [76], then the average queue length will be in the order of

tens of packets [72]. The slope of this part coincides with corresponding dis-

tribution of the M/D/1 queue if the packet sizes are fixed. Therefore, the

so called decay-rate (the slope) for this part can be obtained using only the

utilisation ⇢. The packet-scale component is often referred to as the ‘smooth

tra�c’ component [61].

It is widely accepted that Internet tra�c cannot be modelled just using

the ‘smooth tra�c’ component. It has its inherent feature of ‘burstiness’ [70].

The second parts in Figure 4.1 shows the result of non-negligible burst-scale

components in the tra�c. Burst-scale queuing occurs when the instantaneous

overall arrival rate exceeds the service rate over a substantial time duration1.

This will make the queue grow at a higher rate, and the average queue length

of this part may be in the order of hundreds of packets [72]. The decay rate

for this part is called burst-scale decay rate and denoted as ⌘. ⌘ has an

accurate analytical model given in [3], and details are given in Appendix A.

The intersection of the two parts is called the ‘knee point’, as shown in

Figure 4.1, where just enough sources are active to use all the service rate [61].

Since the queue length has a direct relationship with the delay, therefore,

the distribution of delay always has the same pattern as the distribution of

queue length [50].

4.2.1 SCV Model of Delay

As the two separate parts of the queue length distribution all follow a Geo-

metric distribution, the combination of two di↵erent Geometric distributions

can be used so that the SCV model of the delay is obtained.

For any Geometric distribution with parameter p, the following formulas

apply:

1This tends to happen more regularly in the PMM as ⇢ gets larger (typically > 0.5)
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Mean of the Geometric distribution is
1� p

p

Variance of the Geometric distribution is
1� p

p2

Mean square for the Geometric distribution
1� p

p2
+(

1� p

p
)2 =

(p� 1)(p� 2)

p2

Let P
B

be the probability that the queue is experiencing burst-scale

queueing, using the above Geometric distribution formula, the expectation

of the queue length, E[Q] can be obtained from:

E[Q] = (1� P
B

) · ⇢

1� ⇢
+ P

B

· ⌘

1� ⌘
(4.1)

where parameter ⌘ and burst probability P
B

are shown in [76] (also reviewed

in Appendix A)

⌘ =
1� [ln(h/C)/ln(⇢) + (h2Ton⇢)/(C(1� ⇢)2)]�1

1� [⇢(1� ⇢)2/(h/C) · Ton · [(1� ⇢)C + h · ⇢]] (4.2)

and

P
B

=
1

(1� ⇢)2 · (C/h) ·
⇢ · (C/h)(C/h)

(C/h)!
e�⇢·(C/h) (4.3)

Also, from the Geometric distribution, the mean square for queue length

E[Q2] is:

E[Q2] = (1� P
B

) · ⇢+ ⇢2

(1� ⇢)2
+ P

B

· ⌘ + ⌘2

(1� ⌘)2
(4.4)

from which the variance of queue length can be obtained by

V ar[Q] = E[Q2]� (E[Q])2 (4.5)

Since the delay E[WT ] has the following relationship with the queue
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length:

E[WT ] =
E[Q]

A
p

(4.6)

and

V ar[WT ] =
V ar[Q]

A2
p

(4.7)

And the SCV of delay, c2(WT ) can be found from:

c2(WT ) =
V ar(WT )

E[WT ]2
(4.8)

From the model of SCV, the required sample size for the delay to reach

steady state can be found, as already introduced in section 2.3.3 using Equa-

tion (4.9), with the pre-defined relative width "
r

, and preset confidence level,

described using z21��/2.

N
r

(WT ) = 4 ·
z21��/2

"2
r

· c2(WT ) (4.9)

The data collected for the delay of each adjacent individual packet arrival

has correlations. Therefore, sampling is required in this stage, so that the

SRLASS period �T can be known through the required sample size N
r

(WT )

times the sampling interval (explained in Section 4.3).

4.3 Sample Interval

Statistical analysis is based on the samples being identically distributed and

independent to each other. However, data collected by each packet arrival

will be correlated. For example, if the delay is the parameter of interest,

if packet i su↵ers a long waiting time, it is more probable that also packet

i+ 1 experience a long waiting time [77]. Therefore, correlations need to be

accounted for when proceeding to other analysis work in this thesis.

Correlation between adjacent samples can be reduced and eliminated by
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increasing the sampling interval, the time duration between two consecutive

samples. Therefore, we aim to find the minimum sample interval to remove

correlation between adjacent samples.

In [81], an idea for the minimum time interval for two samples from

di↵erent regeneration cycle2 is given, which can be used as a guide to choosing

the sampling interval in this model. In [1], the c.d.f. of busy period3 is

given, which is the probability of time t is less than a busy period. If we

set the probability of t less than a busy period to approach 0, it means the

probability that two adjacent samples from the same busy period will be

approximately 0. This will ensure that two consecutive samples are from

di↵erent regeneration cycles. In conclusion, we inversely use the c.d.f. in [1]

and find the minimum sample interval t to satisfy that the c.d.f to approach

0.

Define the c.d.f. of the busy period duration Bc(t), to be the probability

that t is less than a busy period, Pr(t<a busy period). The formula of Bc(t)

is given in [1] as:

Bc(t) = 2↵t�1�(t/�) (4.10)

where

↵ = (1� ⇢)�1(1 + (1� ⇢)(1� ⇠) +O((1� ⇢)2)) (4.11)

⇠ = m3/3m
2
2 = 0.074 (4.12)

� =
(1 + ⇢1/2)2

4
(4.13)

�(t) = (2⇡t)1/2e�t/2 (4.14)

2Regeneration cycle is time cycle over which the queue is alternatively busy then idle.
3The busy period is the time duration when the queue is in the busy state, when

normally the overall arrival rate is larger than the service rate.
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Bc(t) is required to be close to 0, since Bc(t) is the probability that

sampling interval t is less than a busy period (meaning two adjacent samples

are coming from the same regeneration cycle). Therefore, the minimum

sample interval t is determined by taking Bc(t)<0.0001 (which is assumed to

be su�ciently small, but a smaller value could be used if desired).

In conclusion, sample interval t is determined by finding minimum t which

makes Bc(t)<0.0001.

4.4 Extending Analysis to an End-to-End Network

The previous sections aim to predict the SRLASS, �T of the mean delay

based on the PMM for a single access link. This section extends the analy-

sis to an end-to-end network, using the FG/BG end-to-end network model

(already introduced in Section 3.4.1).

Let n represent the number of nodes. If all the nodes are assumed to be

identical [35], the delay for the end-to-end E
e2e[WT ], can be obtained from

the individual bu↵er case:

E
e2e[WT ] = n · E[WT ] (4.15)

Since the variance of summation has the general rules:

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ) (4.16)

for two random variables X and Y .

Then, the variance of the end-to-end network can be obtained from

V ar
e2e(WT ) = V ar(WT1 +WT2 + · · ·+WT

n

)

= V ar(WT1) + V ar(WT2) + · · ·+ V ar(WT
n

)

= n · V ar(WT )

(4.17)
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by assuming all the nodes are independent [25] [26] [51] [23] [35] to each

other. And the c2
e2e(WT ) = V ar

e2e(WT )/E
e2e[WT ]2.

4.5 Previous Work by Whitt to Use for Validation

As already reviewed in Chapter 2, Ward Whitt was first to plan queueing sim-

ulations. In [92], Whitt proposed to approximate queue models to Di↵usion

Process and shows applications of this method, including M/M/1, M/M/1,

and G/G/1. However, they are too general to be compared for PMM. For-

tunately, Whitt plans simulation for a packet queue in his earlier paper [89].

In this case, planning simulation run length for our PMM can be also done

using his formula. His formula will be compared with our analytical model

through numerical examples in Section 4.6.3.

4.5.1 Overview

In [89], Whitt proposed to plan a simulation before the simulation is run. He

focused on the classical queue models, including the M/M/1 queue, G/G/1

queue, etc. He used a statistical analysis (also used in this research, as

introduced in section 2.3). In [89], the general formula for the simulation run

length is given by

t
a

(✏, �) =
4�2z2

�/2

✏2
(4.18)

t
r

(✏, �) =
4�2z2

�/2

✏2(X̄)2
(4.19)

corresponding to absolute width and relative width of CI, respectively. The

notations are:

• t
a

: required run length using absolute width
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• t
r

: required run length using relative width

• ✏: the target error width defined according to targeted precision level

• �: confidence interval parameter, which defines the level of precision.

• �2: variance of metrics, e.g. waiting time or queue length.

• X̄: mean of the metric, e.g. true mean of waiting time or queue length.

He approximates the general queue models into a Regulated Brownian

Motion (RBM) process, and finds the SCV of the waiting time to be

�2
W

(E[W0])2
=

2(c2
A

+ c2
S

� 2c2
AS

)

(1� ⇢)2
(4.20)

This formula is suitable for comparing results with our results from Chap-

ter 4, since it also uses the mean waiting time as the metric of interest. As a

general formula, Equation 4.20 can be applied to di↵erent queue models by

finding the values for c2
A

, c2
S

and c2
AS

. Finding these values for the PMM is

described in subsection 4.5.2.

4.5.2 Methodology for Planning Simulation of PMM

Whitt discusses a packet queue model in [89] in Section 5.3, which can be

applied to our PMM. This section will review the methodology used in [89]

in detail.

The packet queue model is a single server queue, with unlimited waiting

room, using first-come first-served (FCFS) discipline.

The model described in Whitt’s paper has k customer classes. For each

class i, the customers arrive in batches. Each batch consists of independent

adjacent packets. Therefore, each batch can be interpreted as the ‘ON’ state

in our research, and the idle period is the ‘OFF’ state. This is all shown in

Figure 4.2.
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SCV:c2

wi
SCV:cIi2

bi

ON state

OFF state

Figure 4.2: Illustration of Parameters in the Packet Queue Model

The batch size, service times, space between customer arrivals in one

batch, and the idle period are all described in Table 4.1.

Mean SCV Description

Batch Size m
i

c2
bi

Each batch consists of a random
number of customers.

Service Times ⌧
i

c2
si

Service time is the time used to
serve one customer.

Space between arrivals ⇠
i

c2
xi

The spaces between the arrivals
of the customers in one batch.
No spacing in PMM, since the
customers coming in one group
where the spaces can be ignored.

idle period w
i

c2
Ii

The sojourn time in the ‘OFF’
state, as shown in FIgure 4.2.

Table 4.1: Parameter Description in the Packet Queue Model

For each class i, let �p
i

be the arrival rate of batches, where p1 + p2 +

· · ·+ p
k

= 1. Therefore, the arrival rate of customers for each class i is

�̄q
i

= �p
i

m
i

(4.21)
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where q
i

is the proportion of all customers of class i, given by

q
i

=
p
i

m
iP

k

i=1 pimi

(4.22)

and �̄ is the total mean arrival rate of customers.

Let r
i

be the proportion of service time of class i, given by

r
i

=
⌧
i

⌧
(4.23)

where ⌧ is the service time for all customers, and ⌧
i

is the service time for

customers of class i.

Let �
i

be the proportion of busy time in each cycle, given by

�
i

=
m

i

⇠
i

m
i

⇠
i

+ w
i

(4.24)

Let c2
Ai

be the SCV for the ith arrival process, given by

c2
Ai

= m
i

(1� �
i

)2(c2
bi

+ c2
Ii

) + �2
i

c2
xi

(4.25)

Based on the above parameters, c2
A

, c2
S

and c2
AS

are given by

c2
A

=
kX

i=1

q
i

c2
Ai

(4.26)

c2
S

=
kX

i=1

q
i

[r2
i

c2
si

+ (r
i

� 1)2c2
Ai

] (4.27)

c2
AS

=
kX

i=1

q
i

(1� r
i

)c2
Ai

(4.28)
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4.5.3 Application of Whitt’s Formula to PMM

In the previous subsection, planning run length simulation of waiting time

for a k-class packet queue model is introduced. The values of the parameters

all depend on the queue model. Therefore, in this section, the formula will

be applied to our PMM (with detailed introduction in Section 3.3).

The PMM is with deterministic service pattern (constant service rate).

So, there is no variation of service time, which means c2
si

= 0.

There is approximately no spacing between the packets (customers) when

in the ‘ON’ state, since the packets are coming consecutively. So ⇠
i

= �
i

= 0

according to [89].

Since there is only one customer class, it is obvious that r
i

= 1 and

q
i

= m
i

= m (mean batch size).

In Section 5.4.2, Batch Size (µ
p

in section 5.4.2) and Idle Period are both

approximately exponentially distributed, which with the feature of SCV=1.

So, c2
bi

= c2
Ii

= 1.

In this case, c2
S

=
P

k

i=1 qi[r
2
i

c2
si

+(r
i

�1)2c2
Ai

] = 0, since r
i

= 1 and c2
si

= 0.

c2
AS

=
P

k

i=1 qi(1� r
i

)c2
Ai

= 0, because r
i

= 0.

And

c2
Ai

= m
i

(1� �
i

)2(c2
bi

+ c2
Ii

) + �2
i

c2
xi

= 2m (4.29)

where m is the batch size.

In this case,

c2
A

=
kX

i=1

q
i

c2
Ai

= m · c2
Ai

= 2 ·m2 (4.30)

Taking values of c2
A

, c2
S

and c2
AS

into Equation 4.20, the corresponding

run length will be obtained, which can be compared with our results.
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4.6 Numerical Examples

4.6.1 Simulation Set-up Parameters

In this section, numerical examples are provided by using the widely used

PMM parameters [88] as follows:

• T
on

=0.96s, T
off

=1.69s,

• ON rate h=170packets/s,

• packet size=100 bytes,

• utilisation ranging from 0.6 to 0.9 4.

• Number of sources ranging from 50, 70, 100 and 120.

• Unlimited bu↵er capacity to remove the e↵ects of the lost packets

• model type including single access, and end-to-end (Foreground Tra�c

and Backgroud Tra�c are set to be same as shown in Table 4.2).

And these parameters are listed in Table 4.2.

N T
on

T
off

h a

50 0.96s 1.69s 170pps 0.3623
70 0.96s 1.69s 170pps 0.3623
100 0.96s 1.69s 170pps 0.3623
120 0.96s 1.69s 170pps 0.3623

Table 4.2: Set-up Parameters for Markovian Tra�c Source in Delay Evalua-
tion

4Use of utilisation in the range [0.6, 0.9] is because: 1) This is a typical load range on
an access node; 2) If utilisation is under 0.6, the arrival process will approximately tend
to a Poisson process, i.e. it won’t exhibit burst scale queueing, and standard classical
simulation run length planning techniques [89] can be used instead.
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4.6.2 Validation

The validation is done using the methodology introduced in Section 3.1.4.

A comparison between the simulated relative width (the solid lines) and

the analytical relative width (the dotted lines), is shown from Figure 4.3

to Figure 4.10. The x-axis is the sample size corresponding to the number

of samples collected. And the relative width is in the units of percentage,

representing the respective precision level. The analytical relative width is

calculated using Equation 3.2, 4.1, 4.4, 4.5 and 4.9.

Relative width is set to 10% in the validation part, and a 95% confidence

level is used, as this is most commonly chosen in the literature, although any

value could be chosen.

For validation of the single access node, as the utilisation ⇢ increases, the

developed model works better, i.e. the gap between the simulated relative

width and analytical relative width is smaller.

The working range of the analytical model is for utilisation to be from

0.6 to 0.9. We are not targeting ⇢ < 0.6 as when load is lower than 0.6, the

aggregated tra�c is not bursty, therefore looks a lot like Poisson. In ref [89],

there are good simulation planning analytical models for classical queue and

Poisson arrival process, therefore when the utilisation is lower than 0.6, we

can use [89] to plan simulation.

For the end-to-end network, although the model is not as perfect as for

the single access, for the high utilisation, e.g. ⇢ = 0.9, it still provides a better

guide to simulation planning than existing methods (comparison results are

given in Section 4.6.3). Therefore the best working range of our analytical

model for the end-to-end network is for utilisation from 0.8 to 0.9, and it

overestimate the case when load is 0.6 and 0.7, which is acceptable5.

5Overestimation of SRLASS is always preferred than underestimation. Since if we
underestimate SRLASS, the output results will be unreliable. Overestimation will lead to
waste time and computer resources. However, if it is within tolerable range, the results
are acceptable.
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In conclusion, the results are all well validated.
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(c) ⇢=0.8
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(d) ⇢=0.9

Figure 4.3: Delay error v.s. Required Sample Size (N=50)
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(c) ⇢=0.8
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(d) ⇢=0.9

Figure 4.4: Delay error v.s. Required Sample Size (N=70)
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(c) ⇢=0.8
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Figure 4.5: Delay error v.s. Required Sample Size (N=100)
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Figure 4.6: Delay error v.s. Required Sample Size (N=120)
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Figure 4.7: Delay error v.s. Required Sample Size (node=3; N=50)
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Figure 4.8: Delay error v.s. Required Sample Size (node=3; N=70)
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Figure 4.9: Delay error v.s. Required Sample Size (node=3; N=100)
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Figure 4.10: Delay error v.s. Required Sample Size node3 (node=3; N=120)
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4.6.3 Results and Comparison with Whitt’s Work

Results

In this section, results are shown by plotting the SRLASS period �T , in

the units of simulation time against di↵erent utilisation ⇢ = 0.6, 0.7, 0.8 and

0.9 by changing the number of sources among N = 50, 70, 100, and 150 to

acheive the required utilisation.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Load

∆
 T

 (
in

 s
e
c
s
)

Single Access Results

 

 

N=50;error=10%; single access

N=50;error=20%; single access

N=50;error=50%; single access
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N=100;error=50%; single access
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N=120;error=20%; single access

N=120;error=50%; single access

Figure 4.11: Plotting simulation time with di↵erent parameters

As shown in Figure 4.11, as the utilisation increases, the required SRLASS

period for the delay to reach steady state also increases. With the increase

of the number of sources, the required SRLASS period decreases generally,

as shown in Figure 4.11. This is because more sources means larger service

rate ‘C’, which leads to less net burstiness, so the tra�c looks more Poisson

(‘Poisson Limit’). Larger service rate with more sources will make the process

less variable, as the results show.
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Figure 4.12: Comparison of simulation time between single access and end-
to-end network

Figure 4.12 compares SRLASS results between single access and an end-

to-end network. As shown in Figure 4.12, it takes less time for the end-to-end

network to reach steady state than for single access node. We look back at

Equation 4.15 and Equation 4.17, both mean delay and variance of delay

increases for an end-to-end network. However, when calculating SCV of

delay, mean delay is squared, while variance kept the same. As a result, SCV

of delay decreases, which leads to a smaller SRLASS being required.

Comparison Results with Previous Work

In this section, the results of [89] and our analytical model are compared, as

shown in Figure 4.13 (Varying Number of sources N) with parameters given

in Table 4.3 and Figure 4.14 (Varying tra�c parameters, as also used in [3])

with parameters given in Table 4.4.
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N T
on

T
off

h error

50 0.96s 1.69s 170pps 10%
70 0.96s 1.69s 170pps 10%
100 0.96s 1.69s 170pps 10%
120 0.96s 1.69s 170pps 10%

Table 4.3: Set-up Parameters for Markovian Source - Varying N

N T
on

T
off

h error

100 0.96s 1.69s 170pps 10%
100 2.4s 5.39s 200pps 10%
100 4.8s 12.35s 220pps 10%
100 9.6s 16.9s 250pps 10%

Table 4.4: Set-up Parameters for Markovian Source - Varying T
on

The simulation results (methods of obtaining simulated results are shown

in Appendix D) are represented by solid triangles, while the results from

Chapter 4 is plotted using circles. Whitt’s results are plotted in squares, as

shown in Figure 4.13 and Figure 4.14.

Figure 4.13 and Figure 4.14 both illustrates that, for the whole group of

parameters, Whitt’s formula overestimates the required SRLASS, while our

results are much closer to the simulated one. The is mainly because Whitt’s

method is a general method, which approximates the queue behaviour to a

RMB processes. And our approach uses the analytical modelling especially

focused on the PMM.
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Figure 4.13: Comparison of Simulated and Analytical SRLASS - Varying N

80



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Load

R
e

q
u

ir
e

d
 S

R
L

A
S

S
 (

s
e

c
s

)

 

 
Simulated
Chapter 5 Results
Ward Whitt Result

10
0

10
2

10
4

10
6

10
8

10
10

R
e

q
u

ire
d

 W
a

ll C
lo

c
k

 T
im

e
 (s

e
c

s
)

(a) T
on

=0.96s; T
off

=1.69s; h = 170pps

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Load
R

e
q

u
ir

e
d

 S
R

L
A

S
S

 (
s

e
c

s
)

 

 
Simulated
Chapter 5 Results
Ward Whitt Result

10
0

10
2

10
4

10
6

10
8

10
10

R
e

q
u

ire
d

 W
a

ll C
lo

c
k

 T
im

e
 (s

e
c

s
)

(b) T
on

=2.4; T
off

=5.39s; h = 200pps

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Load

R
e

q
u

ir
e

d
 S

R
L

A
S

S
 (

s
e

c
s

)

 

 
Simulated
Chapter 5 Results
Ward Whitt Result

10
0

10
2

10
4

10
6

10
8

10
10

10
12

R
e

q
u

ire
d

 W
a

ll C
lo

c
k

 T
im

e
 (s

e
c

s
)

(c) T
on

=4.8; T
off

=12.35s; h = 220pps

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Load

R
e

q
u

ir
e

d
 S

R
L

A
S

S
 (

s
e

c
s

)

 

 
Simulated
Chapter 5 Results
Ward Whitt Result

10
0

10
2

10
4

10
6

10
8

10
10

10
12

R
e

q
u

ire
d

 W
a

ll C
lo

c
k

 T
im

e
 (s

e
c

s
)

(d) T
on

=9.6; T
off

=16.9s; h = 250pps

Figure 4.14: Comparison of Simulated and Analytical SRLASS - Varying T
on

4.7 Conclusion

In this chapter, run length simulation planning is done for delay in Multiple

Markovian ON/OFF multiplexing model, using analytical modelling. Re-

sults show that the developed analytical model can be used to predicted the

required run length, as a guide when to stop the simulation. Run length sim-

81



ulation planning is very model dependent. SCV can be used as a standard

estimator for any model to predict the simulation run length.

This chapter also reviews Whitt’s work, and applies it to the PMM used

in this research. In this case, the required run length of waiting time for

planning simulation for PMM can be obtained using Whitt’s formula. This

is further compared with our formula.

Our results are much closer to the simulated result, as shown in Sec-

tion 4.6.3 with numerical results comparison.
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Chapter 5

Planning Simulation of PLP in
the Markovian Source PMM

This Chapter plans simulation of PLP for the PMM, which is consistent

with the delay simulation planning done in Chapter 4. Previous work by

Ward Whitt on simulation planning [89] concentrates on queue length or

mean waiting time, and there is no research about PLP simulation planning.

Since there is no direct SCV model for PLP, this chapter proposes to plan

simulation of PLP by how many cycles for the PLP to reach the steady state.

The cycle concept is based on the Overflow/Non-Overflow (OvFl/NOF) cycle

analysis of the PMM (to be introduced in section 5.2). Finally, validation

and results are given in this chapter.

5.1 Overview of Simulation Plan in PMM

As introduced in section 3.3, the PMM multiplexes multiple packet sources

(Markovian sources in this chapter), into one finite bu↵er. All the multi-

plexed sources are identical and independent of each other. In this chapter,

Packet Loss Probability (PLP), as the parameter of interest, is the key param-

eter. This chapter proposes to plan simulation for PLP in PMM. In realistic

networks, the PLP is targeted in the magnitude of 10�4 [64][58] (as a value

widely set in Service-Level Agreements (SLAs) [35] [27]), and is viewed in
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OvFl/NOF cycles. The OvFl/NOF cycle is introduced and defined later in

section 5.2. Simulation planning for PLP in PMM is solved by proposing how

many cycles are required for the PLP to reach steady state. Therefore, the

sample size is in the units of cycle number, when applying standard analysis

to PMM scenario. Number of cycles is then translated to number of packet

arrivals and in Chapter 7 into wall clock time.

5.2 Overflow Analysis of PMM

The basic PMM introduced in section 3.3, as shown in Figure 3.9, can be

simplified to a single aggregate OvFl/NOF process, as first used in [37].

This is as shown in Figure 5.1: the aggregate process is either in the overflow

(OvFl) state, bu↵er is overflowing, and packet losses occur, or in the non-

overflow (NOF) state, where there are no packet losses.

Non-Overflow Period
        (Tnof secs)

Overflow Period
     (Tovfl secs)

Time

Queue Length

Buffer Size

Tcycle

Figure 5.1: Overflow/ non-oveflow analysis

The mean duration of an OvFl period is denoted as T
ovfl

, while the duration

of a NOF period is denoted as T
nof

. The duration of OvFl periods is mod-

elled as an exponential distribution, which has successfully been shown to be

accurate for Markovian tra�c in [36]. This thesis employs the same idea for

T
ovfl

and T
nof

, as well as T
cycle

, which is validated in Section 5.4.2.
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One OvFl period, followed by another NOF period is called one cycle,

the mean time for which is denoted T
cycle

. It is intuitive that

T
cycle

= T
ovfl

+ T
nof

. (5.1)

5.2.1 Parameterisation

In this section, related variables of the overflow analysis are parameterised

through relating to an aggregate ON/OFF model, since this aggregated

ON/OFF analysis has an existing, well-developed analytical model.

5.2.2 An Introduction to the Aggregate ON/OFF Model

In many papers [61] [9] [34], the packet multiplexing model is simplified into

an aggregate ON/OFF model, reducing the number of possible states from

2N to just 2 states. As shown in Figure 5.2, the aggregate process is either

in the ON state, when the overall input rate exceeds the service rate, C, or

in the OFF state when the overall input rate is less than the service rate,

but not normally zero.

In the ON state, the overall mean rate is denoted as R
on

, and the expected

time spent in the ON state denoted as T (on). Since the overall input rate is

larger than service rate C, the bu↵er will fill in the rate of R
on

� C.

Similarly, in the OFF state, the overall mean rate is denoted as R
off

, and

the expected time spent in the OFF state denoted as T (off). In the OFF

state, the queue length decreased at a rate of C �R
off

.

From [72], the analytical models of these parameters1 are given by

R
on

= C + h · A
p

C � A
p

(5.2)

1h is the sending rate of a single ON/OFF tra�c source, when the source is in the
‘ON’ state; A

p

is the aggregate overall arrival rate of the whole access node/queue. For
for information about PMM, please refer to Section 3.3.
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Figure 5.2: Aggregated ON/OFF Model for the Packet Multiplexing
Model [72]

T (on) =
h · T

on

C � A
p

(5.3)

T (on) can be used as an approximation for the expected OvFl period, T
ovfl

[36],

given by

T
ovfl

⇡ T (on) (5.4)

5.2.3 Analytical Models for Overflow Analysis

Let N
p/cycle

be the mean number of packets in one cycle, and µ
p

be the

expected number of packets lost per OvFl period. The PLP can be obtained
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from

PLP =
µ
p

N
p/cycle

(5.5)

The expected number of packet lost per OvFl period, µ
p

, can be obtained

from the time period T
ovfl

multiplied by the loss rate. Since when the system

is in the OvFl state, it’s necessarily in the ON state (overall input rate exceeds

the service rate), the packet loss rate is given by R
on

� C. Thus µ
p

is

µ
p

= (R
on

� C) · T
ovfl

⇡ (R
on

� C) · T (on) (5.6)

It is intuitive that

T
cycle

=
N

p/cycle

A
p

(5.7)

since the mean arrival rate times the cycle time give the total number of

packet arrivals in one cycle.

Therefore,

T
cycle

=
µ
p

A
p

· PLP
=

(R
on

� C) · T (on)
A

p

· PLP
(5.8)

Taking Equation (5.2) and (5.3) into Equation (5.8), T
cycle

is given by

T
cycle

=
h2 · T

on

PLP · C2 · (1� ⇢)2
(5.9)

5.3 Packet Loss Probability in the Overflow

Analysis

Since the objective of this research is to find the SRLASS, �T , for the PLP

to reach steady state, the PLP should be applied to the discrete-time process

analysis. This research proposes to address this: how many OvFl/NOF cycles

required, denoted as N
cycle

, for the PLP to reach steady state? In this way,

the raw sample size is viewed in the units of number of cycles.

In order to get N
cycle

, the SCV c2 of the PLP is needed. However, it
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is still hard to find the analytical model of the variance of the PLP since

c2 = �2/PLP . Therefore, this research proposes to find the c2 of µ
p

and

T
cycle

, since they are related according to (as already discussed in Section

5.2.3)

PLP =
µ
p

N
p/cycle

=
µ
p

A
p

· T
cycle

(5.10)

based on the existing distribution type of µ
p

and T
cycle

, as well as the con-

stant value of A
p

for each group of parameters. In other words, the PLP

is regarded as reaching steady state when both µ
p

and T
cycle

reach steady

state. Therefore, N
cycle

is achieved by finding the maximum value of N
µp

and N
Tcycle

, given by

N
cycle

= max (N
µp , NTcycle

) (5.11)

where N
µp is the sample size required for µ

p

to reach steady state, and N
Tcycle

for T
cycle

. As a result, SRLASS, �T , is obtained by

�T = N
cycle

⇥ T
cycle

. (5.12)

Therefore, the objective problem is to find the required sample size for

N
cycle

(to be discussed in section 5.3.1) and the analytical model of variance

for T
cycle

and µ
p

(to be discussed in section 5.3.2).

5.3.1 Sample Size Analysis

In this section, statistical analysis (as already discussed in Section 2.3) is

applied to find the required sample size, in the units of cycle number.

Recall from Section 2.3, assume the expected packets lost per OvFl pe-

riod µ
p

and cycle time T
cycle

collected from each cycle are the samples of a

population {X
i

} , measured from the simulator for i = 1, 2, . . . , N .

As discussed in Section 2.3.3, relative width is used in this research. De-
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fine relative width to be

" = 2 · z1��/2 ·
�

X̄
p
N

(5.13)

Thus, for specified relative width " and specified precision level of �, the

required sample size, N , is given by

N =
4�2z21��/2

"2(X̄)2
= 4 ·

z21��/2

"2
· c2 (5.14)

Applying µ
p

and T
cycle

to this analysis, the required sample sizes are given

by

N
µp = 4 ·

z21��/2

"2
· c2(µ

p

) (5.15)

N
Tcycle

= 4 ·
z21��/2

"2
· c2(T

cycle

) (5.16)

5.3.2 SCV Model of µp and Tcycle

The OvFl and NOF periods are modelled as approximately an exponential

distribution, as already discussed in Section 5.2. Furthermore, the expected

packets lost per OvFl period are regarded as following a Geometric distribu-

tion, an approximation which has been used successfully [37][35], and further

tested in Section 5.4. Further validation of this is illustrated in numerical

examples, as shown in Figure 5.4 - 5.7.

In fact, the expected duration of NOF period, T
nof

, is much larger than

the expected duration of OvFl period, T
ovfl

[35]:

T
nof

>> T
ovfl

,

therefore, the e↵ect of T
ovfl

on the distribution of T
cycle

is negligible. A more

substantial evaluation of this is given in Table 5.1, where at e.g. 60% load,

the mean duration of NOF period, T
nof

is 850 times the mean duration of
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OvFl period, T
ovfl

.

Load T
ovfl

T
nof

0.1 0.036266667 13.70074074
0.2 0.0408 17.34
0.3 0.046628571 22.64816327
0.4 0.0544 30.82666667
0.5 0.06528 44.3904
0.6 0.0816 69.36
0.7 0.1088 123.3066667
0.8 0.1632 277.44
0.9 0.3264 1109.76

Table 5.1: Calculation and comparison between T
ovfl

and T
nof

Because of this, the assumption is made that the cycle time, T
cycle

, is

exponentially distributed. Further detailed validation will be presented in

numerical examples in section 5.4, as shown in Figure 5.4 and 5.6.

Since for any Geometric distribution:

Mean of the Geometric distribution =
1

p

Variance of the Geometric distribution =
1� p

p2

where p is a parameter of the Geometric distribution.

Similarly, for any Exponential distribution:

Mean of the Exponential distribution =
1

µ

Variance of the Exponential distribution =
1

µ2

where µ is the parameter of an Exponential distribution.
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Therefore,

c2(µ
p

) = V ar(µ
p

)/µ2
p

= (µ2
p

� µ
p

)/µ2
p

= 1� 1/µ
p

(5.17)

and

c2(T
cycle

) = V ar(T
cycle

)/T 2
cycle

= T 2
cycle

/T 2
cycle

= 1 (5.18)

Take them into Equation (5.15) and (5.16), N
µp andN

Tcycle

can be written

as:

N
µp = 4z2

�/2 ·
µ2
p

� µ
p

(" · µ
p

)2
=

4z2
�/2

"2
· (1� 1

µ
p

) (5.19)

N
Tcycle

= 4z2
�/2 ·

T 2
cycle

(" · T
cycle

)2
=

4z2
�/2

"2
(5.20)

N
Tcycle

will always be much larger than N
µp , therefore, the approximation

N
cycle

⇡ N
Tcycle

is used in this analysis.

Based on the above analysis, SRLASS is given by

�T = N
cycle

⇥ T
cycle

⇡ N
Tcycle

⇥ T
cycle

=
4z2

�/2

"2
· h2 · T

on

PLP · C2 · (1� ⇢)2
(5.21)

which is the required analytical model for SRLASS, with a preset PLP and

the desired precision level.

5.3.3 Extending the Analysis to an End-to-End Network

The previous sections aim to predict SRLASS, �T , for the PLP based on a

packet multiplexing model for a single access link. This section extends the

analysis to an end-to-end network. Unlike the single access link, the overall

PLP for an end-to-end network is governed by multiple bu↵ers throughout

the network. The PLP at each bu↵er across the entire link is called the
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individual PLP, which contributes to the overall PLP. In this research, all

the individual bu↵ers are assumed to be identical [35], as already introduced

in Section 3.4.1.

Buffer 1

N N N

FT

BT
end-to-end path

BT BT

Buffer 2 Buffer n

Figure 5.3: End-to-end FG/BG network model

As discussed in section 3.4.1, this research employs the FG/BG end-to-

end network model. In Figure 5.3, FT is the tra�c flow of interest, which

is injected into the network, and passed through every bu↵er in series. BT

flows are all from independent tra�c sources, which are multiplexed with

the FT at each bu↵er, and routed elsewhere in the network. The FT flow

traverses n identical bu↵ers throughout the network. In order to di↵erentiate

the PLP for every individual bu↵er from the overall PLP, we denote them as

IPLP and TPLP , respectively. Therefore,

TPLP = 1�
nY

i=1

(1� IPLP
i

)

when the nodes are independent of each other [25] [26] [51] [23] [35]. For

small and identical IPLP
i

, we can use the approximation that

1�
nY

i=1

(1� IPLP
i

) ⇡
nX

i=1

IPIP
i

⇡ n · IPLP,
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therefore, the relationship between TPLP and IPLP is shown as

TPLP ⇡ n · IPLP (5.22)

Applying this to cycle time T
cycle

, we get

T
cycle

=
h2 · T

on

· n
TPLP · C2 · (1� ⇢)2

(5.23)

In this case, the SRLASS, �T
e2e, for an end-to-end network is given by

�T
e2e =

4z2
�/2

"2
· h2 · T

on

· n
TPLP · C2 · (1� ⇢)2

(5.24)

5.4 Numerical Examples

5.4.1 Simulation Set-up Parameters

In this section, we provide the validation results, and evaluate the SRLASS,

of the �T needed for the PLP to reach steady state.

A standard multiplexing model of N homogenous Markovian ON/OFF

VoIP packet sources, is used in this thesis. Some popularly used parameters

[88] for voice over packet are:

• T
on

=0.96s,

• T
off

=1.69s,

• ON rate h=170packets/s,

• packet size=100 bytes,

• N is adjusted to give di↵erent loads. Bu↵er size is set to target PLP

approximately equal to 10�4 (as a proper value according to Service-

Level Agreements (SLAs) [35] [27]).
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To maintain a target PLP to be 10�4, a larger bu↵er size is needed as

tra�c utilisation ⇢ increases. This is due to the fact that the service rate

is set constant, where high utilisation ⇢ makes tra�c sources more bursty

and requires a longer bu↵er to keep the same PLP. It is widely accepted

that the bu↵er overflow probability Q(x) for an infinite bu↵er is an excellent

approximation for the PLP. And Q(x) always in the form of

Q(x) = P
B

⌘x, (5.25)

where P
B

is the probability of experiencing burst-scale queuing (with detailed

explanation in Appendix A). Equation (5.25) reveals that the PLP and bu↵er

size, x, to be a log-linear relationship [72] [75] [76].

This research employs the analytical model for P
B

and ⌘ as shown in

Equation (5.26) [76] and (5.27) [3]

P
B

⇡ 1

(1� ⇢)2 · (C/h) ·
(⇢ · (C/h))b(C/h)c

b(C/h)c! · e�⇢(C/h) (5.26)

⌘ ! 1� [ln(h/C)/ln(⇢) + (h2T
on

⇢)/(C(1� ⇢)2)]�1

1� [⇢(1� ⇢)2/(h/C) · T
on

· [(1� ⇢)C + h · ⇢]] (5.27)

Equation (5.25) - (5.27) will be used for the calculation of the bu↵er

size for the packet multiplexing model reported in this section, so that bu↵er

length is changed to adjust PLP to be 10�4. Full derivation of these equations

are given in Appendix A.

Table 5.2 shows the bu↵er size and number of sources for di↵erent load

(varying from 0.6 - 0.9), single access and di↵erent service rate 2Mbps and

4Mbps.
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C=4Mbps C=2Mbps
Load N Bu↵er Size Load N Bu↵er Size
0.6 49 59.65 0.6 24 219.36
0.7 57 234.67 0.7 28 570.43
0.8 65 834.32 0.8 32 1.78E+03
0.9 73 5.12E+03 0.9 37 1.82E+04

Table 5.2: Parameter Table of Markovian Source for Single Access Link

C=4Mbps C=2Mbps
Load N Bu↵er Size Load N Bu↵er Size
0.6 49 94.04 0.6 24 275.55
0.7 57 302.87 0.7 28 685.6
0.8 65 1.01E+03 0.8 32 2.08E+03
0.9 73 5.92E+03 0.9 37 2.06E+04

Table 5.3: Parameter Table of Markovian Source for End-to-end (n=3)

5.4.2 Validation of Distribution of Tcycle and µp

As already discussed in section 5.3.2, the analysis is based on the assumption

that T
cycle

is exponentially distributed and µ
p

is geometrically distributed.

Therefore, the validation of these distributions is crucial. Validation is done

using parameters from Table 5.2 for T
cycle

and µ
p

. Exponential bestfit is

used to validate the distribution, which was discussed in Section 3.1.4 and

the detailed algorithm given in Appendix B.

Figure 5.4 - 5.7 are all plotted log-linear, in which a straight line indicates

an exponential or geometric distribution. Figure 5.4 shows the distribution

of T
cycle

for di↵erent loads from 0.6 to 0.9 when service rate C is 2Mbps by

applying bestfit technique to its pdf. The same applies to µ
p

in Figure 5.5.

Similarly, when the service rate C is 4Mbps, bestfit of T
cycle

and µ
p

distribu-

tion are shown in Figure 5.6 and Figure 5.7, respectively.
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Figure 5.4: Validate Distribution of Cycle Time, T
cycle

, with C=2Mbps
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Figure 5.5: Validate Distribution of expected packets lost per OvFl period,
µ
p

, with C=2Mbps
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Figure 5.6: Validate Distribution of Cycle Time, T
cycle

, with C=4Mbps
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Figure 5.7: Validate Distribution of expected packets lost per OvFl period,
µ
p

, with C=4Mbps

From Figure 5.4 - Figure 5.7, results show approximately straight lines

for the majority of cases, from which it can be concluded that cycle time

T
cycle

is well modelled as being exponentially distributed and the number

of the expected packets lost per OvFl period µ
p

is well modelled as being

geometrically distributed.

For some cases, there are distorted tails in those distributions caused by
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rare occurrence of events, which is usual. These tails of the distributions can

be found more accurately by using longer simulation runs.

5.4.3 Results

In this section, the required SRLASS, �T , will be shown in two groups. All

the results are plotted log-linear and are shown by varying di↵erent target

relative width, 10%, 20% and 50%. The utilisation ⇢ ranges between 0.6 to

0.9 since they are typical loads on an access node2. In Figure 5.8, results

for a single access link are shown, with comparison between di↵erent service

rate, 4Mbps and 2Mbps. In Figure 5.9, results are compared between single

access and an end-to-end network. The plotted points in both Figures have

all been validated as falling within the relative error C.I.’s, for the �T limit,

as defined in this thesis.

As shown in Figure 5.8, �T are plotted with preset precision target, 10%,

20% and 50%, for a single queue model for PMM, over load ranging from

0.6 to 0.9 and service rate of 4Mbps and 2Mbps. Results are also shown

with respect to di↵erent relative width, where smaller width requires longer

SRLASS, �T .

As shown in Figure 5.8, the required �T increases at least exponentially

as the load increases. High load, compared to low load, requires larger bu↵er

length in order to achieve the same PLP target, so it takes more time to fill

up the bu↵er, and so longer simulation runs are required.

Low service rate also requires longer SRLASS, compared to high service

rate, because the required bu↵er length for 2Mbps link to achieve a target

PLP of 10�4 is larger than that of 4Mbps. Reduced service rate means that

for a unit of time, the number of packets that the bu↵er can serve reduces,

2Compared to access node, core node has the feature of high bandwidth, and low
utilisation, where can be approximated by M/D/1 queue. Therefore, the classical model
(Work by Whitt) can be used.
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Figure 5.8: SRLASS Results - varying service rate

which requires a longer bu↵er to keep those waited packets. Therefore, a

longer bu↵er takes more time to fill up, which leads to longer SRLASS.

In Figure 5.9, results are compared between single access link and an

end-to-end network, when service rate is 4Mbps. Similarly to Figure 5.8, the

required �T increases at least exponentially as the load increases. It also

increases if the preset relative width reduces.

For the end-to-end network, a longer SRLASS is required to reach steady

state, since the overall PLP is targeted to 10�4, which is the same as the

overall PLP in a single access link. However, the overall PLP in the end-

to-end network is controlled by multiple bu↵ers, where each individual PLP

reduces significantly. In this case, each bu↵er requires longer bu↵er length

in order to obtain less packet losses, where it takes more time to fill up each

bu↵er than that of the single access link. Therefore, a longer �T is required
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Figure 5.9: SRLASS Results - comparison between single access and end-to-
end network (C=4Mbps)

for an end-to-end network simulation.

5.5 Conclusion

In this section, an analytical model for SRLASS, �T , is developed to indi-

cate the required time for PLP to reach steady state in a packet multiplexing

model. Validation results show that the assumption of memoryless distribu-

tions is valid, and the desired precision level is achieved in the time predicted

by our approach. Results illustrate that simulation studies may consume a

lot of time to reach steady state, i.e. long SRLASS, especially for high load,

small target relative width in the end-to-end network.
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Chapter 6

Simulation Planning of PLP in
the Pareto Source PMM

This chapter examines simulation planning of PLP when the multiplexed

sources follow a Pareto distribution. Pareto sources have been introduced

already in Section 3.2.2. The Pareto tra�c source is much more bursty, and

better captures the burstiness of data tra�c on networks than the Markovian

source model.

However, the analysis of the Pareto distribution is di�cult in simula-

tion planning because the variance of PLP is crucial to finding the required

SRLASS, and with Pareto tra�c this is usually quite large, or even infinite.

In this chapter, we endeavour to fit the Overflow analysis (also used in

Chapter 5) into the Pareto tra�c source, and therefore find a way to plan

simulation of the PLP for the Pareto source model.

6.1 Overview of Previous Pareto Tra�c Source

Research

Since the 1990s, there has been no lack of research [67] claiming that the

feature of self similarity exists in data tra�c, including ATM networks [62],

Ethernet tra�c [49], World Wide Web tra�c [18] [19] and video tra�c[30],
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etc.

Self similarity is commonly described using the Pareto distribution [52]

[12] [66]. PLP, as one main QoS parameters, is also the focus of Pareto

source research [65] [94]. There are also some papers looking at the aggrega-

tion/multiplexing of Pareto sources [54] [98]. Some research studies Pareto

sources in the PMM: [55] gives the bu↵er overflow probability of a single

Pareto source model, and [56] expands it into a Pareto source PMM. [80]

also gives an analytical model for bu↵er overflow probability in the scenario

of PMM, which can be a good approximation for the PLP.

Therefore, for consistency with Chapter 5, this chapter also examines the

PLP as the metric of interest, and plans simulation of PLP for Pareto tra�c

source in the PMM1.

6.2 Fitting the Pareto Source Model into the

Overflow Analysis

6.2.1 Review of Planning Simulation for PLP

Recall that in Chapter 5, we proposed to plan simulation of the PLP by find-

ing how many cycles it requires for the PLP to reach steady state. SRLASS

can be calculated from the number of cycles by multiplying by the cycle time

T
cycle

.

The required number of cycles can be determined using statistical analysis

introduced in Section 2.3. Equation 2.14 shows that by targeting a specific

precision requirement, the number of cycles can be calculated using the ana-

lytical model of SCV for PLP. However, the SCV for PLP is very di�cult to

find. Therefore, an alternative method is proposed in Chapter 5 by finding

the SCV of expected packets lost per OvFl period, c2(µ
p

) and the SCV of

1Pareto is the tra�c model of non-real time, for which delay is less relevant than loss.
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the cycle time, c2(T
cycle

). In conclusion, planning simulation for PLP can be

done by using the analytical model of cycle time, as well as the analytical

model of SCV for µ
p

and T
cycle

.

The SCV model for µ
p

and T
cycle

is found by validating that µ
p

follows

a Geometric distribution and T
cycle

follows an Exponential distribution in

Chapter 5.

For a Pareto source model, T
cycle

will be much larger than that for Marko-

vian model, because Pareto source tra�c has the feature of heavy tails, which

will lead to longer overflow periods and cycle times. The distribution for µ
p

and T
cycle

will also be di↵erent, which leads us to di↵erent results.

6.2.2 Model of Cycle Time for Pareto Source Model

Recall that the cycle time model is given for the Markovian source model in

Equation (5.8) by

T
cycle

=
(R

on

� C) · T (on)
A

p

· PLP
(6.1)

For Pareto sources, in order to achieve the same PLP, the bu↵er must be

set much larger. In this case, the time for filling up the bu↵er can not be

neglected, and contributes a large value to the aggregate ON period, T (on).

Denote the new aggregated ‘ON’ period for Pareto source as T
prt

(on), given

by

T
prt

(on) = T (on) +
BS

R
on

� C
(6.2)

where BS is the bu↵er size, and R
on

�C is the excess rate2, given by Equation

(5.2) [72].

In this case, the model for cycle time is given by

T
cycle

=
(R

on

� C)

A
p

· PLP
· (T (on) + BS

R
on

� C
) (6.3)

2R
on

is aggregated ON rate, and the part it exceeds to the service rate C is the rate
for the bu↵er filling up, which is called excess rate.
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6.2.3 Discussion of SCV Model for µp and Tcycle

For a Markovian source model, the expected packets lost per OvFl period

has been validated to follow the Geometric distribution, while the cycle time

follows the Exponential distribution, with results shown in Section 5.4.2.

However, for Pareto tra�c source, this might not be the same. Figure 6.1

to Figure 6.4 show the validation results from numerical examples in Sec-

tion 6.3.2, that µ
p

follows approximately the Geometric distribution, while

the cycle time T
cycle

follows the Pareto distribution (approximately straight

line in log-log plot).

Finding the SCV model for Pareto distributed random variables is very

di�cult, because the variance of such variables are infinite when ↵ 2 (1, 2],

as shown in Equation (3.7).

Therefore, this chapter proposes to plan simulation of PLP for Pareto

source just using the SCV model for µ
p

, which still follows Geometric distri-

bution, and will be validated in Section 6.3.2 by Figure 6.1 and Figure 6.2,

as was done for the Markovian source model in Chapter 5.

Recall that for the expected packets lost per OvFl period, µ
p

, the required

sample size for µ
p

to reach the steady state is given by (also see Section 5.3.1)

N
µp = 4 ·

z21��/2

"2
· c2(µ

p

) (6.4)

and c2(µ
p

) is given by

c2(µ
p

) = V ar(µ
p

)/µ2
p

= (µ2
p

� µ
p

)/µ2
p

= 1� 1/µ
p

(6.5)

since µ
p

follows approximately Geometric distribution.

Therefore, SRLASS for Pareto sources multiplexing model is given by

�T = N
µp · Tcycle

=
4z2

�/2

"2
· (1� 1

µ
p

) · (Ron

� C)

A
p

· PLP
· (T (on) + BS

R
on

� C
) (6.6)

106



6.2.4 Extending the Analysis to an End-to-End Network

It is very important to consider an end-to-end network for simulation plan-

ning research. This section keeps the consistency with Section 5.3.3 to use

the same network model, the FG/BG network model.

Recall that Foreground Tra�c (FT) traverses n identical bu↵er through-

out the network, and each individual bu↵er is denoted as IPLP while the

overall PLP for the end-to-end network is denoted as TPLP .

In this case, similar to Equation 5.22, the relationship between TPLP

and IPLP is:

TPLP ⇡ n · IPLP (6.7)

And the cycle time of the Pareto source in an end-to-end network is:

T
cycle

= n · (R
on

� C)

A
p

· TPLP
· (T (on) + BS

R
on

� C
) (6.8)

Therefore, the SRLASS, �T
e2e for Pareto tra�c source in an end-to-end

network is given by

�T
e2e = n ·

4z2
�/2

"2
· (1� 1

µ
p

) · (R
on

� C)

A
p

· TPLP
· (T (on) + BS

R
on

� C
) (6.9)

6.3 Numerical Examples

6.3.1 Simulation Set-up Parameters

Recent literature has no lack of Pareto source research, which we followed to

set up the parameters used in this research. The ON sojourn time, T
on

, is

ranging from the magnitude of 102 ms [12] [66], 101s [57] [65] and 10s [94]

[37], where the sending rate h is around 10 packets/s [66] [63].

In this research, T
on

and T
off

are used following ref.[57], while T
on

is

ranging from 3s to 10s, and T
off

is 10s. And the sending rate for each Pareto

107



source is set to be 10 packets/s, which is reasonable and supported by recent

literature [66][63].

In conclusion, numerical examples are given using parameters as follows:

• T
on

set to be 3s, 5s, 8s and 10s,

• T
off

=10s,

• ON rate h=10packets/s,

• packet size=1000 bytes,

• utilisation ranging from 0.6 to 0.9 3.

• Bu↵er Size is changed to make the PLP keep 10�4.

And these parameters are listed in Table 6.1 and Table 6.2.

N=10 N=20
Load T

on

Bu↵er Size Load T
on

Bu↵er Size
0.6 3s 1770 0.6 3s 240
0.7 5s 3000 0.7 5s 550
0.8 8s 8500 0.8 8s 1800
0.9 10s 1E+05 0.9 10s 2.2E+04

Table 6.1: Set-up Parameters for Pareto Source - Single Access Link

3Use of utilisation in the range [0.6, 0.9] is because: 1) This is a typical load range on
an access node; 2) If utilisation is under 0.6, the arrival process will approximately tend
to a Poisson process, i.e. it won’t exhibit burst scale queueing, and standard classical
simulation run length planning techniques [89] can be used instead.
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N=10 N=20
Load T

on

Bu↵er Size Load T
on

Bu↵er Size
0.6 3s 3800 0.6 3s 450
0.7 5s 6800 0.7 5s 950
0.8 8s 18000 0.8 8s 3200
0.9 10s 2.5E+05 0.9 10s 5E+04

Table 6.2: Set-up Parameters for Pareto Source - End-to-end (n=3)

6.3.2 Validation of Results

Validation Results for µ
p

This section aims to validate the assumption of Geometric distribution for

the expected packets lost per OvFl period, µ
p

. Validation is done against

Table 6.1.

Figure 6.1 and Figure 6.2 are all plotted log-linear, where a straight line

indicates the Geometric distribution. Figure 6.1 shows the distribution of µ
p

with the load ranging from 0.6 to 0.9, when the number of sources N = 10 by

applying bestfit technique to its pdf. The same applies to µ
p

when N = 20

in Figure 6.2.
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Figure 6.1: Validate Distribution of expected packets lost per OvFl period,
µ
p

with N=10
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Figure 6.2: Validate Distribution of expected packets lost per OvFl period,
µ
p

with N=20

From Figure 6.1 and Figure 6.2, results indicate an approximately straight

lines for the majority of cases, from which it can be concluded that the ex-

pected packets lost per OvFl period, µ
p

, is well modelled as being Geomet-

rically distributed.

For some cases, there are distorted tails in the distribution, which is

mainly caused by rare occurrence of events, which is usual. This distorted
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tails can be found more accurately by running longer simulations.

Validation Results for T
cycle

Di↵erent from Markovian source multiplexing model, the cycle time, T
cycle

of Pareto source multiplexing model follows Pareto distribution, rather than

Exponential distribution. Figure 6.3 and Figure 6.4 are all plotted in log-log

scale, where straight line indicates a Pareto distribution. Figure 6.3 shows the

distribution of T
cycle

with the load ranging from 0.6 to 0.9, when the number

of sources N = 10 by applying bestfit technique to its pdf. The same applies

to T
cycle

when N = 20 in Figure 6.4. Simulated T
cycle

distribution is plotted

in red dots, while the bestfit is plotted in blue dotted lines. From Figure 6.3

and Figure 6.4, cycle time T
cycle

is well modelled as Pareto distribution.

Again, similar to µ
p

, the distorted tails in those distributions are all caused

by rare occurrence of events (pretty long cycle time), which can be removed

by running much longer simulation runs.
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Figure 6.3: Validate Distribution of Cycle Time, T
cycle

with N=10
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Figure 6.4: Validate Distribution of Cycle Time, T
cycle

with N=20

6.3.3 Results

This section gives the results, required SRLASS, �T , for the parameters in

Table 6.1 and Table 6.2. It will be shown in two groups: 1) single access

scenario, with di↵erent number of sources N=10 and N=20 (see Figure 6.5);

2) comparison between single access and end-to-end network (see Figure 6.6).
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Results are plotted log-linear for di↵erent target relative width, 10%, 20%

and 50%. The utilisation ⇢ ranges between 0.6 to 0.9 since they are typical

loads on an access node. All plotted points in both Figure 6.5 and Figure 6.6

have all been validated as falling within the relative error C.I.’s, as defined

in this thesis.
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Figure 6.5: SRLASS Results for Single Access

As shown in Figure 6.5, �T increases exponentially as the load increases.

It requires longer SRLASS for high load scenario to reach the steady state

than that of low load.

Moreover, when the number of sources increases, the capacity of the bu↵er

also increases (service rate is larger). In this case, tra�c (when N=20) is less

bursty than fewer number of sources (when N=10). This results is consistent

with the results in Section 4.6.3.

What’s more, the required SRLASS for Pareto sources is much longer
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than that of Markovian source. This is intuitive since Pareto tra�c source

is more bursty and requires a longer time to reach steady state.
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Figure 6.6: SRLASS Results when N=10

Figure 6.6 gives results, comparing the single access scenario and end-

to-end network when N=10. Similarly, the required �T increases at least

exponentially as the load increases. It also increases if the preset relative

width reduces, because higher precision level requires longer run.

From the developed formula, end-to-end network requires longer time to

reach the steady state than single access. This is consistent with results in

Section 5.4.3 for Markovian sources.
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6.4 Conclusion

In this section, an analytical model for the SRLASS is developed for the

Pareto source PMM. Pareto sources are more variable than Markovian sources.

Models are designed for Pareto tra�c source PMM by modifying the math-

ematical model, T
cycle

. Validation results show that the assumption of Ge-

ometric distribution of µ
p

is valid and the proposed run length planning

technique is accurate.
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Chapter 7

Mapping SRLASS into Wall
Clock Time

7.1 Overview of Wall Clock Time Taken by

Simulations

As the main objective for this research, the SRLASS�T is the key parameter

to be found. In the previous chapters, SRLASS �T is given in the units

of simulation time, or the number of packet arrivals, which gives a good

indication of how to set the run length of the simulation. However, the wall

clock time (real time used by the computer processor) consumed for such

simulations can not be predicted using our previous research in Chapter 4 to

Chapter 6.

Therefore, in this chapter, the aim is to find a method to map the SRLASS

�T into corresponding wall clock time, which gives an idea before a long

replication is run. If the time consumed for the simulation is so long, a

redesign and recode of the simulator might be required.
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7.1.1 Analysing Factors A↵ecting Wall Clock Time

In this research, NS2 is used as the simulation tool. NS2, as already intro-

duced in section 3.1.5. NS2 is a discrete-event simulator, which uses C++

as the core language. C++ is an object oriented language.

There are several factors a↵ecting the wall clock time, including

• The load, ⇢

• Number of flows

• Network Topology, e.g. number of links/number of nodes

• Tra�c type, e.g. Poisson, or Markovian/Pareto ON/OFF

• Hardware configuration, e.g. CPU processor, memory usage

7.2 Finding Indicator - Packet Arrivals

Instead of finding how those factors a↵ect the wall clock time, this thesis

investigates how the wall clock time increases in proportion to the packet

arrivals. Because, in NS2, all the events in the simulation process of a queuing

system are related to the object of packet. Packets are generated, packets

are sent, queued to be served, either drop or received. Through this analysis,

it is intuitive to believe that number of packets processed are an essential

parameter a↵ecting the wall clock time consumed by the computer processors.

In this chapter, a standard indicator for predicting the wall clock time is

proposed - packet arrivals.

Also, another essential is the hardware parameters, i.e. the speed of the

computer processors. A powerful computer is very important to the sim-

ulation. A more powerful computer will make the simulation run faster.

Hardware parameters are usually represented using the computer processor,
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processor speed, and the memory allocated to the program, i.e. NS2. How-

ever, as this research is not focused on the design of computer processor, the

results will show the di↵erences between di↵erent computer hardware.

Therefore, the number of packets processed is regarded as the standard

indicator for the wall clock time.

7.3 Numerical Examples

This section shows the numerical examples. The parameter settings are all

obtained from the previous section, i.e. di↵erent types of tra�c source,

di↵erent utilisation, di↵erent numbers of sources, and di↵erent numbers of

links. And the results are run using two di↵erent machines, one is using 8GB

RAM,2.4GHz Intel Core 2 Duo while the other is using 48GB RAM,1333MHz

CPU.

The results comprise of four groups, all plotted as a cross on the figures.

The blue crosses represent the short runs, with the packet arrivals only in

the magnitude of 105 - 107, for which simulations usually consume only tens

of seconds to finish. Using these data, a fitted line is plotted as a solid blue

line. This line is trying to predict the wall clock time consumed by the long

run replications. As shown in the Figure 7.1 and Figure 7.2, the red crosses

represent the simulation runs with packet arrivals in the magnitude of 107

- 108, and green crosses for 108 - 109. As the simulation runs longer, the

wall clock time consumed to finish the simulation increases linearly with the

number of packets processed.

As shown in Figure 7.1 and Figure 7.2, for the longer runs (represented

by the red, green, black crosses), wall clock time lies within the prediction

range using the solid blue line. So, from the results from a short run, the

wall clock time of a much longer run can be predicted.
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Figure 7.2: Mapping packet arrivals into Wall Clock Time - 48GB
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Also, these two figures use two di↵erent sets of hardware, running the

same simulation. Results show that a more powerful computer will run the

same simulation quicker, as would be expected.

7.4 Conclusion

In this chapter, all factors a↵ecting the wall clock time consumed to run a

simulation are considered, and the number of packet arrivals are proposed

122



as a standard indicator. Results show that the wall clock time increases

linearly with the number of packet processed, and this is illustrated also

using di↵erent sets of hardware parameters.

From the figures, for the number of packets processed which is larger

than 109 magnitude, it can take many hours to finish such simulation runs.

Using the method introduced in this chapter, this long wall clock time can

be predicted using short runs, i.e. just tens of seconds. Since it is not in

the scope to analyse the computer processors, it is hard to give a back-of-

envelope formula to calculate the wall clock time. It is still useful to use

short runs to predict long run simulation time.
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Chapter 8

Conclusions and Further Work

8.1 Conclusions

Simulation plays a nontrivial role in networks research, and provides an al-

ternative approach to implementing a real environment, owing to its features

of scalability, flexibility and ease of setup. Simulating large-scale networks

can be expensive and this research proposes to plan simulations by providing

mathematical and logical expressions for SRLASS, �T , which is the time

consumed for the metric of interest to reach steady state.

Analytical models are developed for the SRLASS, �T , in a packet multi-

plexing model. Results show that simulation planning is very model depen-

dent, and it can be solved using statistical analysis. Before the simulation

is run, SRLASS can be found by analysing the SCV model of the metric of

interest.

In Chapter 4, simulation is planned for the delay in a multiplex of Marko-

vian sources. We used the packet-scale/burst-scale characteristics of PMM

to develop the corresponding analytical model of SRLASS, for time taken

for the delay to reach the steady state. A direct analytical model of SCV

of delay in the PMM is developed, from which the SRLASS can be calcu-
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lated. Sample interval is obtained by finding the minimum time duration to

get two consecutive samples from di↵erent regeneration cycle, which can be

used to reduce correlation. This used the c.d.f. of the busy period. Numer-

ical results are provided and further compared with previous results in [89],

showing that our results are much closer to simulated ones, while Whitt’s

formula overestimates the SRLASS significantly.

Chapter 5 provide simulation planning for PLP of a multiplex of Marko-

vian sources. Simulation planning has never been done for the PLP before.

The direct analytical model of SCV for PLP is di�cult to find, therefore,

we provide an alternative method. We find the SCV model for packet losses

during Overflow period, and cycle time, and using this we plan the simulation

for PLP. Also, instead of viewing queue behaviour in a packet basis, we view

the queue behaviour in a cycle basis. We propose to see how many cycles it

requires for PLP to reach steady state. Cycle analysis will not only provide a

new methodology/technique to plan simulation, but also remove correlation

naturally. Results show that simulation requires a long time to reach steady

state, especially for high load with small target error. Our approach provides

an accurate prediction of the time this will require.

Chapter 6 extends the research to explore the simulation planning for

Pareto tra�c sources. A Pareto tra�c source is a heavy-tailed distribution,

which makes the variance very large and it may be infinite. A new analytical

model of the cycle time is developed for Pareto sources in the PMM. Results

show that this required much longer SRLASS for the PLP to reach steady

state than for the Markovian source model.

As SRLASS is in the units of simulation time, it also is meaningful to

show how much wall clock time (actual time used by the computer) is re-

quired for the simulation to reach steady state. We use the number of packets

processed to map the SRLASS to wall clock time. Di↵erent computers will

have di↵erent processing speed, therefore, with small test runs on each com-
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puter, the mapping relationship between SRLASS and wall clock time can

be found. This can be used to predict wall clock time for very long runs,

using SRLASS required.

8.2 Further Work

Simulation planning is a generic topic, and it is an important step when sim-

ulating networks. It arouses the awareness of ensuring the accuracy of the

simulation results, as well as knowing useful information before the simula-

tion is run. There are many ways to further extend this research.

This thesis examines simulation planning in an end-to-end network for

every metric of interest, based on assuming that the nodes along the routes

are independent and identically distributed. However, in real networks, when

the nodes are not identical, the results might change significantly. In that

case, the network might be controlled by the bottleneck node, which can be

used as a proper point to plan simulation for a non-identical node end-to-end

network.

Moreover, the methodology used in Chapter 6 is suitable for Pareto tra�c

source, while the methodology used in Chapter 5 is for Markovian tra�c

source. It would be interesting to explore which technique should be used

when the tra�c is the combination of Pareto and Markovian tra�c source,

or even unknown tra�c type.

Furthermore, this thesis all deals with UDP packets in PMM. However,

there are also TCP packets existing in network being researched. TCP pro-

tocol needs feedback from the receiver ends, which will make the scenario

more complicated to analyse.

Another valuable aspect to look at is wireless networks. Since in the wire-

less network, there are more parameters a↵ecting/controlling the simulator,

it is much more variable simulating a wireless network than a wired network.
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The complicated topology and many parameters might lead to longer times

for the simulation to reach steady state. Therefore, simulation planning for

wireless networks is also important.

Finally, it is meaningful to find a general methodology to plan simula-

tions. Because simulation planning is model dependent, the methodology for

planning di↵erent network scenarios may be di↵erent. Ward Whitt intended

to use general methodology to plan simulations by approximating metric

of interest into a statistical processes. This works well for classical queue

models, as shown in his work [89][92], but it overestimates for very specific

scenarios, as shown in Section 4.6.3. Therefore, a new general methodology

is required.
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Appendix A

Bu↵er size dimensioning for
packet multiplexing model

Evidence reports that the distribution of state probability1 of a Markovian

queuing system is in the form shown in Figure A.1 [72].

q(k), Pr{k in buffer}

buffer state, k
10 20 30 40

0.1

0.01

0.001

burst-scale decay rate (BSDR)

packet-scale decay rate (PSDR)

Figure A.1: Packet and burst-scale queuing

Figure A.1 shows the relationship between state probability, denoted as

q(k), and bu↵er state2 k. A bu↵er overflow probability, Q(X), in an infinite

bu↵er is usually used as a reasonable approximation for the PLP in a finite

1State probability: the probability of a bu↵er state or queue state. State corresponds
to the number of packets in the bu↵er.

2Bu↵er state: the number of packets in a bu↵er at some instant.
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bu↵er with X as the bu↵er size3, where

Q(X) = 1� q(0)� q(1)� · · ·� q(X). (A.1)

It is known that the both packet scale and burst scale follow separate

Geometric distribution which can be written as

q(k) =

8
><

>:

(
a

s
)k · q(0), for 0 < k < X; (A.2)

(
s

1� a
) · (a

s
)k · q(0), for k = X. (A.3)

where a and s are the parameters [72].

Since the summation of the state probability must be 1 as:

XX

k=0

q(k) = 1 (A.4)

After some rearrangement, q(0) is given by

q(0) =
1� a

s

1� (
1� s

1� a
) · (a

s
)X

(A.5)

Assume X ! 1, and thus [1 � (
1� s

1� a
) · (a

s
)X ] ! 1, the state probability

can be written as

q(k) = (1� a

s
) · (a

s
)k (A.6)

3Bu↵er size: the capacity of the bu↵er, maximum number of packets a bu↵er can
contain.
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Similarly, the probability of queue exceeds k packets, Q(k) is

Q(k) = (
a

s
)k+1 (A.7)

a
s is the decay rate [72], where a

s is often denoted as ⌘. The queue

overflow probability Q(X) is the probability the queue exceeds k packets

conditioned on the probability of experiencing burst-scale queuing, denoted

as P
B

. Therefore, Q(X) is given by

Q(X) = P
B

⌘X+1 (A.8)

In this research, a more accurate burst-scale decay rate is employed [3]

⌘ ! 1� [ln(h/C)/ln(⇢) + (h2T
on

⇢)/(C(1� ⇢)2)]�1

1� [⇢(1� ⇢)2/(h/C) · T
on

· [(1� ⇢)C + h · ⇢]] (A.9)

P
B

can be obtained as [76]

P
B

⇡ 1

(1� ⇢)2 · (C/h) ·
(⇢ · (C/h))b(C/h)c

b(C/h)c! · e�⇢(C/h) (A.10)

Based on Equation (A.8), (A.9) and (A.10), the PLP can be calculated

accordingly.
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Appendix B

Bestfit Algorithm for
Exponential Distribution

In this research, the exponential distribution is important, so the val-

idation of such distributions is important too. This chapter gives a brief

overview about the exponential distribution first, followed by the bestfit al-

gorithm for fitting raw data into exponential curves.

B.1 Exponential Distribution

The probability density function (pdf) of an exponential distribution is

f(x) =

(
�e��x, for x � 0, (B.1)

0, for x < 0. (B.2)

where the mean is 1/� and the variance is 1/�2.

In Figure B.1, the exponential distribution is plotted in linear-linear scale

and log-linear scale, respectively, with parameter � set to be 0.5, 1, and 1.5.

The Exponential distribution shows a curve when plotting in linear-linear

scale, as shown in Figure B.1(a), and shows a straight line in a log-linear

scale, as shown in Figure B.1(b). Therefore, a straight line when plotting the

pdf of raw data in log-linear shows an approximate exponential distribution.
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In order to ensure this, a bestfit of line is used to fit the exponential curve

and is introduced in section B.2.
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Figure B.1: pdf of exponential distribution in di↵erent scale
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B.2 Bestfit algorithm

In this research, raw data is obtained from simulation results and fitted into

an Exponential curve using the bestfit algorithm.

Algorithm 1 Bestfit Algorithm
Input: xdata, ydata
Output: �

� ( 0
FittedCurve=� · e��·xdata

sse=sum[(FittedCurve-ydata)2]
while sse is not minimum do
� ( �+ 0.01
FittedCurve=� · e��·xdata

sse=sum[(FittedCurve-ydata)2]
end while
return �

As shown in Algorithm 1, there are two inputs, xdata and ydata, which

are the raw data. Initialize � to be 0, and calculate FittedCurve using pdf of

exponential distribution, as shown in Equation (B.1). And then the standard

error is calculated through summing up the square of the di↵erence between

the FittedCurve and ydata. If this standard error is the minimum, then this

is the required parameter �, else we continue to increase � by 0.01 until we

find the � which makes the standard error minimum.

Example

Figure B.2 shows an example of a bestfit for raw data. Raw data is generated

using an Exponential random generator. The pdf of the raw data is plotted

in the blue line as shown in Figure B.2. The fitted curve is generated using

Algorithm 1, and plotted in red stars. As shown in Figure B.2, the fitted line

bestfits the raw data.
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Figure B.2: A example of a bestfit for raw data
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Appendix C

Measurement Correlation in
Queuing Systems

It is reported that all measurements are correlated in queuing systems, which

leads to inaccurate measurements, even for quite simple queue models [77].

It is intuitive that measurements are correlated in some pattern. Take the

waiting time in M/M/1 queue for example, if packet i su↵ers a long waiting

time, it is more probable that also packet i+1 will experience a long waiting

time.

C.1 Background

C.1.1 Uncorrelated measurements

Define {X
i

} to be a set of i.i.d. measurements, with true mean X̄ and

variance �2
X

< 1. An estimator is calculated using the sample mean, defined

as

X̂
N

=
1

N

NX

i=1

X
i

. (C.1)

Based on CLT, when the measurements are uncorrelated, the sample mean

converges as
p
N(X̂

N

� X̄) ⇠ N(0, �2
x

), (C.2)
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where �2
x

represents the variance of uncorrelated samples.

C.1.2 Correlated measurements

What happens if the samples are correlated in some pattern? In this case, a

new version of the CLT applies [77] as

p
N(X̂

N

� X̄) ⇠ N(0, s2
N

), (C.3)

where s2
N

is the asymptotic variance1[89] of the correlated measurements,

defined as

s2
N

⌘ lim
N!1

N V ar(X̂
N

) (C.4)

s2
N

can be calculated by the following relationship [29]

s2
N

= �2
x

+ 2
1X

i=1

R(i), (C.5)

where R(i) is the auto-covariance, defined as

R(i) = E[X
j

X
j+1]� E[X

j

]2. (C.6)

C.1.3 Discussion of measurement rate

The degree of correlation can be defined by the measurement rate, �
s

, since

faster measurement will lead to a higher degree of correlation. In order to

discuss the correlation, a continuous version of s2
t

is defined as

s2
t

= lim
t!1

t V ar(X̂
t

) = 2

Z 1

o

R(u)du. (C.7)

1Asymptotic describes limiting behavior, thus asymptotic variance gives variance with
a su�ciently large sample size.
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[77] proved that

s2
N

= lim
N!1

N V ar(X̂
N

) = �2
X

+ 2�
s

Z 1

o

R(u)du (C.8)

where the integral is finite.

Now, consider two extreme cases: very high measurement rate (�
s

! 1),

and very low measurements rate(�
s

! 0).

When �
s

! 1, since t and N is related by N = �
s

t, Equation(C.8) can

be written as

s2
N

= lim
t!1

t V ar(X̂
N

) =
�2
X

�
s

+ 2

Z 1

o

R(u)du (C.9)

where s2
N

tends to the continuous version as shown in Equation(C.7).

When �
s

! 0, from Equation(C.8), s2
N

can be obtained by

s2
N

= lim
N!1

lim
�s!0

N V ar(X̂
N

) ! �2
X

, (C.10)

which is the uncorrelated variance. This makes sense since the measurement

rate is so low that it will be at least several multiples of the correlation scale

apart, where the correlations will be negligible.

C.2 Discussion for the correlation of the PLP

measurements in packet multiplexing model

Figure C.1 shows how queue length changes over time in the packet multi-

plexing model in continuous time scale. It is intuitive that this process is

correlated. For example, point A measures a relatively large queue state.

Point B, which is close to point A, also experiences a relatively large queue

state.
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Queue Length

Time

A
B

Figure C.1: Correlation Illustration of Queue Length

However, on one hand, the metric of interest in this research is the PLP,

which is calculated by accumulated packet losses and accumulated packet

arrivals. Therefore, the measurement of PLP always focuses on the overall

queue behaviour.

On the other hand, this research is based on an aggregate OvFl/NOF

analysis, as introduced in Section 5.2, shown in Figure C.2.

Non-Overflow Period
        (Tnof secs)

Overflow Period
     (Tovfl secs)

Time

Queue Length

Buffer Size

Tcycle

Figure C.2: OvFl/NOF analysis for packet multiplexing model

As shown in C.2, OvFl periods are separated by relatively long NOF pe-

riods, which are generally much larger than the correlation scale. Therefore,
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Equation (C.10) applies to our analysis.

In conclusion, the correlation in this research is negligible and we assume

that the process of the PLP is uncorrelated.
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Appendix D

Method of Obtaining the
Simulated SRLASS from
Simulation Raw Data

This Appendix will show how the simulated SRLASS is obtained from

simulation raw data for waiting time.

Suppose that a simulation of the PMM is run, and the waiting time raw

data is collected. Once data of waiting time is collected, the relative width
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Figure D.1: The way to obtain SRLASS from simulation raw data
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can be obtained as a function of number of packets received N through

Equation (D.1) (which is first introduced in Section 2.3.3 in this thesis)

"
r

= 2z1��/2 ·
�

X̄
p
N

(D.1)

and this relative width "
r

can be plotted against the number of packets that

arrived, as shown in Figure D.1, where the relative width is in the unit of 1.

In this case, with a targeted precision level, the required sample size can

be obtained. For example, if 10% is targeted, as plotting in the pink line in

the figure, then the corresponding number of packets required for the metric

to reach steady state (with targeted 10% relative width) is obtained. With

the number of packets required, we can easily get the SRLASS in the units

of simulation time(method introduced in Section 2.4), as well as in the units

of wall clock time (method introduced in Chapter 7).
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