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Abstract 
The electric step motor is an electromechanical device 
which converts electrical pulses into discrete mechanical 
movements. The shaft of the motor rotates in discrete 
increments when command pulses are applied in the 
proper sequence. The dynamic behavior of this motor is 
of great importance, since instabilities lead to velocity 
fluctuations that are unacceptable in many applications. 
It is a major limitation to the development of high 
performance open-loop step motor system. The 
dynamics of a hybrid step motor is studied by using the 
tools of chaos theory and time series analysis. Lyapunov 
exponents, fractal dimension and other empirical 
quantities are determined from experimental data. 
Particular attention is paid to issues of stationarity in the 
system. We show that the electric step motor may 
function as a low-dimensional chaotic system. As such, 
chaotic control techniques may be applied that allow this 
motor to operate effectively within the chaotic regime. 
Keywords: Stepper motor, electric step motor systems, 
chaos, nonlinear dynamics, time series analysis  
 

1. Introduction 
The electric step motor is a type of motor that provides 
incremental motion, or steps, in response to pulses of 
current that alternately change the polarity of the stator 
poles. The main advantage of an electric step motor is its 
open-loop operation. That is the position control can be 
achieved without shaft position feedback. The shaft can 
be stopped in any position with a high degree of 
accuracy, thus producing incremental displacements. It is 
used in numerous applications such as printers, hard 
disks, toys and robots. 

As depicted in Figure 1, the stator has windings, 1 and 3 
in series fed by the voltage Uα, and 2 and 4 in series fed 
by the voltage Uβ. Iα is the current in the windings 1 and 
3 and Iβ is the current in the windings 2 and 4. The rotor 
has permanent magnets. Torque is developed by the 
tendency of the rotor and stator magnetic fields to pull 
into alignment according to the sequential feeding of the 
phases. If phase α (windings 1-3) is fed, stator induction 
is horizontal and the rotor is also horizontal (Figure 1, 
part a). If phase β (windings 2-4) is fed, stator induction 
is vertical and the rotor turns one step (Figure 1, part b). 
If the two phases are fed simultaneously, induction 
produced by the stator has an intermediate position, the 
rotor turns a half step. Phases are switched alternately. 
Consider the following cycle: 
1 ( ,n nI I I Iα β= = − ), 2 ( ,n nI I I Iα β= = ),  

3 ( ,n nI I I Iα β= − = ), 4 ( ,n nI I I Iα β= − = − ) 

The rotor has four stable positions during the switch 
cycle, which are -π/4, π/4, 3π/4, and 5π/4. This is the 
supply mode that is most frequently used and is called 
mode 2.  
The torque has two origins. First, teeth on the stator and 
on the rotor create a variable resistance. Second, the 
magnetization of the rotor creates an interaction between 
the rotor magnets and the stator currents. According to 
the physical phenomenon responsible for the torque, 
motors can be classified as variable reluctance motors, 
permanent magnet motors, or hybrid motors. Variable 
resistance motors have teeth on the stator and on the 
rotor, but no permanent magnet on the rotor. In this case, 
the torque is due to the variable resistance. Permanent 
magnet motors have rotors radially magnetized as 
described in Figure 1. 
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         a) Iα = In, Iβ = 0                 b) Iα = 0, Iβ = In                c) Iα = In, Iβ = In 

Figure 1. Principle of the step mo tor 



  
Figure 2. Bifurcation diagram. 1000 consecutive points 
are plotted vertically for data gathered at 20mHz 
intervals from 50 to 60Hz. 
 
The motor that we consider is a commercial motor, the 
Crouzet 82940 002. It belongs to the third type of 
stepper motor, the hybrid motors. The hybrid motors are 
the most common type. The stator has salient poles, with 
two phases. The rotor includes a cylindrical axial 
permanent magnet, mounted on the shaft and placed 
between two iron disks with teeth. Due to the axial 
magnet, Zr teeth of the same disk have identical polarity, 
that is, one disk bears Zr south poles and the other bears 
Zr north poles. Teeth of the disks are shifted an electric 
angle π, so a stator tooth faces alternately north and 
south poles. 
The studied motor has Zr=12 teeth on each rotor disk, so 
the rotor has 24 poles. It is fed in mode 2. That is, 
Uα and U β  are square voltages with a phase shift of 

π/2. Hence the motor has 48 stable positions. It is a 48 
steps per tour motor, with a stepping angle of 
360/48=7.5o. 
The motor is supposed to operate at synchronous speed. 
The rotation speed is usually proportional to the supply 
frequency. But when the frequency increases, erratic 
behavior occurs, leading to a loss of synchronism. Usual 
studies tend toward elaborate motor control that avoids 
this problem. It is hoped that a nonlinear dynamics 
approach will yield a better understanding and better 
controls. 
We study a hybrid step motor, two-phased, 48 steps/tr. 
The motor is unloaded. The two phases, respectively 
noted α and β, are supplied by Uα and Uβ in mode 2, i.e. 
two square voltages shifted of π/2. The motor is modeled 
as follows 

( ) ( )sine m r mLI U t RI K Zα α α θ= − + Ω&   (1) 

( ) ( )cose m r mLI U t RI K Zβ β β θ= − − Ω&   (2) 

m mθ = Ω&           (3) 

( ) ( )
( )
cos sin

sin 4
m h r m h r m

d r m m c

J K I Z K I Z

K Z F
β αθ θ

θ

Ω = −

− − Ω − Γ

&
(4) 

Iα and Iβ : currents in phases α and β, θm : angular 
position, Ωm : rotation speed, R=45Ω  (phase resistance), 
L =275mH (phase inductance), Zr =12 (teeth number), J= 

18.10-6 kgm2 (inertia), Kh=Ke=0,463 Nm/A (emf constant 
and torque constant), Kd=16 mNm (detent torque), F=10-

4 Nms/rd (friction coefficient), Γc=0 (load torque). 
In previous work it has been shown that this motor might 
exhibit chaotic behavior.[1, 2] We will analyze time 
series from both the model and the experiment. We will 
use a variety of techniques from chaotic time series 
analysis to show that the system is indeed chaotic and 
that there is considerable agreement between the model 
and the experiment. 
The analysis that follows concentrates on the simulation, 
two 100,000 point experimental flow data sets  with drive 
frequencies 50.75 Hz and 59.75Hz, and a series of 
20,000 point Poincare sectioned data sets . Results from 
this  data will be analyzed and compared to show the 
dynamics of the experiment and how these differ from 
the dynamics of the model. Estimates of current were 
gathered through a Hall-effect probe connected to a 
digital oscilloscope. In the results that follow, units are 
not given on the current measurements since they have 
been scaled and transformed by the data acquisition 
system. 
The experimental data sets consist of two columns of 
data, each column corresponding to the current in one 
phase of the motor. The sectioned data consists of 500 
individual data sets ranging from a drive frequency of 
50Hz to 60 Hz, incremented by 20mHz. Figure 2 depicts 
a bifurcation diagram derived from the sectioned data. It 
exhibits band structures  and periodic regimes 
interspersed with complex dynamics. Such a bifurcation 
diagram is typical of many chaotic systems.  

2. Nonstationarity and Long-term dynamics 
A few simple tests were performed that would identify 
strong drifts in the data.  Sliding windows of varying 
length were applied to the sectioned data sets. The mean 
of each window was measured and plotted as a function 
of the window’s position. Results of the drift in the mean 
are depicted in Figure 3. 

 

Figure 3. Nonstationary behavior of the data mean.  
Plotted are estimates of the mean for overlapping 
windows of length 200 from the 50.04Hz Sectioned data.  



 
Figure 4. Two techniques for estimating an embedding 
delay from the 50.75Hz flow data. The first method is to 
choose the first minimum of the mutual information 
function. The second uses the first zero crossing of the 
autocorrelation function. Both methods suggest a delay 
of approximately 13. 

It can be clearly seen that there is long-term cyclic 
behavior in this data. The mean value undergoes a 
fluctuating trend that does not appear to be random.  
This fluctuation is quite small in relation to the full 
extent of the data (~ 1%) but it may affect the results of 
chaotic time series analysis methods.  It is doubtful that 
this is caused by parameter drift since that does not 
account for the cyclical nature. More likely, it is inherent 
to the system and is the result of long-term dynamics that 
must be taken into account.  Similar plots at other 
frequencies also often indicated the presence of long-
term dynamics and possibly parameter drift. This was 
also confirmed by the measurement of other statis tical 
quantities such as standard deviation for windowed data. 

3. Embedding Parameters 
A reasonable value for the delay may be suggested either 
by the first zero crossing of the autocorrelation function 
or by the first minimum of the mutual information 
function[3, 4], as either value is plotted as a function of 
delay.  The mutual information often gives a better value 
because it takes nonlinear correlations into account. 
Mutual information was calculated efficiently using a 
method described in Reiss, et al.[5] However, for the 
step motor data, the mutual information function and the 
autocorrelation function were in perfect agreement.  As 
shown in Figure 4 both values suggested a delay of 
approximately 13. Other estimates of the appropriate 
delay from any of the flow data sets gave values between 
the range of 9 to 16. This was in agreement with visual 
inspection since 2 and 3 dimensional plots revealed the 
most structure near this value of  delay (see Figure 5).  
Structure is clearly evident in these plots.  Unfortunately, 
they also reveal a complexity or noise dependence that 
makes the fine scale structure very difficult to detect. 
The method of false nearest neighbors[6] (FNN) was 
chosen as the primary technique for determining the 
embedding dimension.  The results agreed with what 
was suggested for application with real world data.  As 
shown in Figure 6, the percentage of false neighbors 
dropped dramatically as the embedding dimension 
increases from 5 to 6.  As will be shown later, this is in 
at least rough agreement with what was found to be a 
suitable embedding dimension for determination of 
Lyapunov exponents or fractal dimensions. 

 

Figure 5. A two dimensional plot of the first 50,000 
points from the 50.75Hz flow data with a delay of 11.   

4. Fractal Dimension  
Analysis was attempted on data sets of varying size and 
varying embedding dimension.  Results of estimations of 
the correlation dimension for the 59.75Hz data are 
depicted in Figure 7. A plateau is evident for log(ε) in 
the range –1.7 to –3.0. Here, the correlation dimension 
can be estimated to be between 1.1 and 1.5. This is a 
fairly low dimensional system and thus it should be 
relatively easy to manipulate. Although this value agrees 
roughly with the choice of emb edding dimension, more 
analysis was necessary to confirm the results.   
Figure 8 presents the results of our calculations 
performed on step motor data.  Displayed are estimates 
of the first four generalized entropies for varying box 
size with an embedding dimension of 4.  Additional tests 
were also performed for the embedding dimensions 3-6, 
and for the next four generalized entropies.  The results 
indicated that, for , ( ) ( )p q D p D q> ≤ , which agrees 
with theory.   
For large box size, the box counting dimension varies 
widely from the others, since the box counting 
dimension D(0) is more susceptible to errors.  It is also a  
poor quantity to use since it says nothing about the 
density of the attractor, only about its shape.  However, 
the box counting dimension and all the others converge 
in the mid-region, before diverging slightly and then 
dropping to zero (due to data set size).  It is this mid 
region that parallels the plateau region of the 
Grassberger-Proccacia algorithm[7, 8].   

The estimates for fractal dimension ranged from 1.8 to 
2.2, for all fractal dimensions calculated when 
embedding dimension was greater than or equal to 4.  
With the exception of the box counting dimension, this 
was true for all of the first four generalized dimensions.  
The correlation dimension, for instance, was estimated at 

(2) 2.05 0.2D = ± , where error was estimated based on 
the fluctuation of the slope of the entropy in the mid 
region.  This agrees with our choice of 4 for the 
embedding dimension, and is also in rough agreement 
with the result from the Grassberger-Proccacia 
algorithm.  



 

Figure 6. Results of the FNN routine as applied to the 
50.75Hz flow data. An appropriate embedding 
dimension is found when the percentage of false near 
neighbors drops to a value near zero. This indicates that 
the embedding dimension should be at least 4. 

A fractal dimension of up to 2.5 indicates that an 
embedding dimension as high as 5 may be necessary, but 
as is often the case, a lower embedding dimension may 
be used. 

5. Lyapunov Exponents 
Before determination of Lyapunov exponents was 
attempted, the flow data was embedded with a delay of 
13, as suggested by the false nearest neighbors routine, 
the autocorrelation function and the mutual information 
function.  Fractal dimension was estimated as between 2 
and 4, so a local embedding dimension of 4,5 or 6 was 
chosen, yielding 3, 4, or 5 exponents in the calculation of 
the full spectra.  As shall be seen, this is in agreement 
with the observation that the sum of the exponents must 
be negative.[9] 
 

 

Figure 7. Estimates of the  correlation dimension for the 
59.75Hz flow data. The correlation dimension is 
estimated from the slope of log(C(ε))??vs. log(ε). It can be 
estimated from the plateau region of the plot, where it is 
between 1.1 and 1.5. 

 

Figure 8. The first 4 generalized entropies. The values 
are estimated as (0) 2.08 0.1D = ± , (1) 2.09 0.1D = ± , 

(2) 2.05 0.2D = ± and (0) 2.02 0.2D = ± . Each of these 
was calculated using the 50.75Hz flow data embedded in 
4 dimensions. 

The Eckmann-Ruelle[10] method was used to determine 
Lyapunov spectra. The folding of the attractor brings 
diverging orbits back together.  So any effects of 
nonlinearities will most likely serve to move all 
exponents closer to zero.  Hence a slight underestimate 
of the positive exponents was expected. 
  

# embed dim λ1 λ2 λ3 λ4 
3 3 0.404 0.044 -0.323  
3 4 0.051 -0.033 -0.228  
3 5 -0.005 -0.044 -0.187  
4 4 0.111 0.014 -0.047 -0.306 
4 5 0.021 -0.009 -0.045 -0.266 

Table 1. Estimation of Lyapunov exponents for the 
59.75Hz flow data. The bold faced selection represent 
the best estimates of the exponents , since it has an 
exponent closest to zero and the sum of the exponents is 
negative. 

In Table 1 results of exponent calculations are provided. 
The exponents are given in units of 1/time, where the 
time scale is defined so that the time between samples is 
1.  Many more calculations were performed until a 
reasonable and stable parameter regime was found for 
both methods.  Note that the zero exponent snaps into 
place for  appropriate parameter settings. 
Several of our criteria are determined immediately upon 
inspection.  The zero exponent was identified with a high 
degree of accuracy.  The sum of the exponents is 
negative, while the sum of the first two is positive.  This 
indicates that a fractal dimension between 2 and 3 was a 
reasonable estimate.   
Sectioning the data introduced additional noise and 
measurement of exponents from the section was even 
more uncertain.  Thus it was not possible to get 
agreement between exponent estimates from the section 
and from the flow, nor was it expected.  However, 
Lyapunov spectrum estimates from Poincare section data 
were estimated as λ1=0.466, λ2=-0.056 and λ3=-0.692. 



We note that the estimates here are scaled from the 
estimates provided in Table 1 because the sampling rate 
is different.  

6. Unstable Periodic Orbits and Control 
The identification of unstable periodic orbits (UPOs) 
plays a critical role in many chaos control algorithms . 
Most standard chaos control algorithms attempt to 
control the system onto a UPO while operating within 
the chaotic regime [11, 12]. Small time-dependent 
perturbations applied to an accessible parameter may 
then be used to force the system onto the stable manifold 
and hence enforce stability and periodic behavior. The 
drive frequency is the most preferable candidate to use 
as the varied parameter in a control scheme. This is 
because it is easily adjustable and, as depicted in Figure 
2, a small change in drive frequency yields appropriate 
changes in the dynamics.  
Figure 9 depicts the identification of a period 1 orbit in 
the Poincare sectioned data. The arrow pointing toward 
the fixed point (period 1 orbit) indicate a region which is 
mapped near the fixed point. The arrows pointing away 
show the direction of the unstable manifold. Control 
algorithms simply need to adjust the frequency so as to 
force the dynamics towards the stable manifold that lies 
orthogonal to  these arrows. Furthermore identification 
of such unstable periodic orbits in occasional 
proportional feedback control schemes[13], tracking and 
targeting of  trajectories[14], and in the identification of 
symbolic dynamics[15, 16]. 

7. Coexisting Attractors and Parameter Drift  
When the dynamics change over time in an experimental 
system it is often difficult to determine the cause. 
Consider the dynamics observed in the sectioned data 
file gathered at 58Hz.  In Figure 10 we see what appears 
to be a chaotic attractor. For the first 4000 cycles, the 
motion of the step motor is along this chaotic trajectory. 
However, the last 10,000 points gathered clearly indicate 
that the motion has settled down into period 2 behavior 
(Figure 11).  
 

 

Figure 9. Identification of an unstable periodic orbit 
(period 1) at 58.6Hz. 

 

 

Figure 10. A plot of the first 4,000 data points in the 
20,000 point file of sectioned data gathered at 58Hz. 

The reason for this change is unclear. First, a stable 
periodic orbit may exist in conjunction with a chaotic 
attractor. This orbit resides close to a rarely visited 
portion of the attractor. Noise in the system is enough for 
the dynamics to move off the chaotic attractor and onto 
the periodic orbit.  
A second possibility is that a slight change in the 
parameters has occurred. This change results in a 
completely different dynamic behavior. Alternatively, an 
intermittent chaotic behavior might occur, and we have 
only witnessed one transition in the system. A final more 
speculative option is that Figure 10 depicts a transient 
stage. It doesn’t represent an attractor at all, but simply 
the dynamics before settling onto the stable period 2 
orbit. 
However, parameter drift as the sole cause is an unlikely 
option. This would indicate that one would expect to see 
a continued drift in the dynamics, or possibly a return to 
the initial dynamics. This was not observed. Furthermore 
analysis of nonstationarity of the windowed mean and 
windowed standard deviation indicated a relatively 
sudden change in the dynamics, with little drift before or 
after that change. Intermittent chaotic behavior is 
possible, but no return to chaotic behavior was observed. 
Finally, transient dynamics were observed, but only for 
the first few data points. Figure 10 depicts the dynamics 
after the system had settled from initial conditions to 
confined chaotic dynamics. 
Thus it is likely that this system exhibits coexisting 
attractors. This is further confirmed by the fact that a 
comparison of Figure 10 and Figure 11 reveals that the 
period 2 orbit is indeed near a rarely visited portion of 
the attractor. This provides an explanation for why 
atleast 4,000 iterates were required before the dynamic 
behavior changed. 
Coexisting attractors is  highly advantageous for the 
purposes  of control. Should one wish for the motor to 
exhibit nonchaotic behavior at this frequency, one need 
only push the system onto the stable periodic orbit. 
Further control is only required if the noise in the system 



is large enough that the dynamics is moved beyond the 
attracting region of the nonchaotic orbit. Thus a much 
weaker control may be applied, and applied far less 
frequently, than in the case of stabilization onto unstable 
orbits within a chaotic attractor. Conversely, control 
algorithms may be used to control the system away from 
the periodic orbit and onto the chaotic attractor. This and 
similar schemes are often termed maintenance of 
chaos[17]. 
 

 

Figure 11. A plot of the last 10,000 data points in the 
20,000 point file of sectioned data gathered at 58Hz. 

 
8. Conclusion 

The data from the step motor appears to represent a four 
dimensional (three dimensional when sampled at the 
drive frequency) system with one positive Lyapunov 
exponents.  This system may therefore be considered 
low dimensional and chaotic.  As such, computation of 
fractal dimension and of Lyapunov exponents is possible 
and accurate.  Consistency was achieved between results 
using various methods of analysis.  Although the data 
appeared nonstationary, it is still an excellent system for 
analysis. This is because the system has only minimal 
dependence on external factors such as temperature. 
Furthermore it exhibits a rich range of dynamics, 
including coexisting attractors, band structures and 
periodic windows.  
Control may be applied to allow the step motor to 
operate as desired within the chaotic regime. Tracking 
and maintenance should also be possible, since the 
appropriate dynamics have been found for the 
application of several well-known algorithms .  
 
References 
1. Pera, M.-C., B. Robert, and D. Guegan. Electric 

step motor: nonlinear dynamics and estimation 
of embedding dimension . in 5th Experimental 
Chaos Conference. 1999. Boca Raton, Florida: 
World Scientific.  

2. Pera, M.C., B. Robert, and C. Goeldel. 
Quasiperiodicity and Chaos in a Step Motor. in 

8th European Conference on Power Electronics 
and Applications. 1999. Lausanne, Switzerland.  

3. Fraser, A.M., Reconstructing Attractors from 
Scalar Time Series: A Comparison of Singular 
System and Redundancy Criteria. Physica D, 
1989. 34: p. 391-404.  

4. Fraser, A.M. and H.L. Swinney, Independent 
coordinates for strange attractors from mutual 
information. Phys. Rev. A, 1986. 33(2): p. 
1134-1140.  

5. Reiss, J.D., N. Mitianoudis, and M.B. Sandler. 
Computation of Generalized Mutual 
Information from Multichannel Audio Data. in 
110th Convention of the Audio Engineering 
Society. 2001. Amsterdam, The Netherlands.  

6. Kennel, M.B., R. Brown, and H.D.I. Abarbanel, 
Determining embedding dimension for phase-
space reconstruction using a geometrical 
construction. Phys. Rev. A, 1992. 45: p. 3403-
3411.  

7. Grassberger, P. and I. Procaccia, Measuring the 
strangeness of strange attractors. Physica D, 
1983. 9 : p. 189-208.  

8. Grassberger, P. and I. Procaccia, On the 
characterization of strange attractors. Phys. 
Rev. Lett., 1983. 50: p. 346-349.  

9. Crutchfield, J.P. and N.H. Packard, Symbolic 
dynamics of noisy chaos. Physica D, 1983. 7 : p. 
201.  

10. Eckmann, J.-P., et al., Liapunov Exponents from 
Time Series. Phys. Rev. A, 1986. 34: p. 4971-
4979.  

11. Ott, E., Controlling chaos: Review and some 
recent developments, in LEOS `95. IEEE Lasers 
and Electro-Optics Soc., 8th Annual Meeting 
1995. Conf. Proc. (Cat. No. 95CH35739). 1995, 
IEEE 1995: New York. p. 31-32.  

12. Ott, E., C. Grebogi, and J.A. Yorke, Controlling 
Chaos. Phys. Rev. Lett., 1990. 64: p. 1196-
1199.  

13. Senesac, L.R., et al., Controlling chaotic 
systems with occasional proportional feedback. 
Rev. Sci. Instr., 1999. 70(3): p. 1719-1724.  

14. Shinbrot, T., et al., Using the sensitive 
dependence of chaos (the "butterfly effect") to 
direct trajectories in an experimental chaotic 
system. Phys. Rev. Lett., 1992. 68: p. 2863-
2866.  

15. Lathrop, D.P. and E.J. Kostelich, 
Characterization of an experimental strange 
attractor by periodic orbits. Phys. Rev. A, 
1989. 40: p. 4028-4031.  

16. Mischaikow, K., et al. , Construction of 
symbolic dynamics from experimental time 
series. Phys. Rev. Lett., 1999. 82(6): p. 1144-
1147.  

17. In, V., et al., Experimental maintenance of 
chaos. Phys. Rev. Lett., 1995. 74(22): p. 4420-
4423.  

 


