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Abstract– The stepper motor converts electrical pulses 
into mechanical movements. The shaft of the motor 
rotates in discrete increments when command pulses 
are applied in the proper sequence. The dynamic 
behavior of this motor is of great importance, since 
instabilities lead to velocity fluctuations that are 
unacceptable in many applications. It is a major 
limitation to development of a high performance open-
loop step motor system. This work represents a careful 
analysis of observed phenomena when this motor is 
operated within the chaotic regime. We report on 
several phenomena that have been observed in the 
experimental system. These phenomena, which include 
the alternating of the dynamics between two 
experimentally observable variables and the existence of 
co-existing attractors, greatly influence the types of 
control schemes that can or should be applied. 

1   Overview 

The stepper motor dynamics have been analysed in 
previous works[1-5]. In this work, we identify some 
unusual behaviors that are not predicted by simulation. 
The step motor is typically operated below 20 Hz 
because the dynamics in that range are known to 
produce a simple stable fixed point. We seek to 
determine the behaviour of the electric step motor over a 
range of high frequency dynamics 
By characterising the high frequency dynamics, one may 
be able to determine the appropriate control schemes 
required in order to create regular, periodic motion 
throughout this frequency range. It is also hoped that we 
will be able to determine how accurately the motor 
dynamics agrees with the predicted dynamics from the 
model. If the agreement is strong, then we will be able to 
use the known dynamics of the model as a predictor for 
the motor, and we can exploit this knowledge in control 
schemes. 
The data consisted of 4,000 data sets over the range 
40.01 to 80.00 Hz, in increments of 0.01 Hz. Each data set 
consisted of 100,352 two dimensional data points, where 
current Iα and current Iβ were acquired and scaled to 
values in the range [-215, +215].  Points were sampled at 
the applied frequency, so that the data represents points 
from a stroboscopic, or Poincare, section. Known noise 
in the system was due to jitter in the sampling and 
quantisation errors (clipping and low bit approximation).  

The dynamics as a function of frequency were studied 
using a variety of methods, of which partial results for 
the following methods are presented within; 

1. Mean values of currents as a function of frequency.  
2. Waveform plots. 
3. Poincare section plots at relevant frequencies. 
4. Detailed analysis of select frequencies. 

Analysis of the mean should isolate frequencies at which 
there is an abrupt change in the dynamics, as well as 
showing a gradual drift in the mean output currents. 
Unfortunately, plots of statistical quantit ies with respect 
to applied frequency do not inspect the individual 
dynamics at each frequency. For instance, this does not 
act as a satisfactory indicator of whether the dynamics 
are chaotic or quasiperiodic. For this we need visual 
analysis where the frequency is constant for each plot.  
Generating and investigating thousands of plots  (for 
each of the 4,000 frequencies) is costly both in terms of 
processing time and in terms of the researcher’s time. 
Thus specialised software was designed to create these 
plots in batch mode. Waveform plots were generated for 
each frequency. Then Poincare section plots were 
created for all frequencies where the waveform plots 
identified unusual or complex behaviour. Where the 
dynamics were still not effectively quantified, these 
frequencies were isolated and investigated individually 
using a variety of methods.  
Due to the very large amount of data (over 800 million 
integer values), many important phenomena may have 
been overlooked. However, the qualitative analysis 
performed should allow us to classify most, if not all, of 
the observed behaviour.  
 

 
Figure 1. Average value as a function of frequency. 



 

 
Figure 2. Waveform plots in a region where unusual behavior has been observed. 

The full extent of the analysis is beyond the scope of this 
work. Here, we present a few examples of the rich and 
varied behaviors exhibited by the stepper motor 
throughout the range 40-80kHz. 

2 Global Behavior 

Figure 1 provides a plot of the average value of each 
current as a function of frequency. At each frequency, the 
average is taken over the entire data set. Discontinuities in 
this plot (i.e., a mean value at a given frequency differs 
greatly from neighboring values) occur at only 23 out of 
4,000 frequency values. Many phenomena might account 
for this behaviour, but it should be noted that this 
behaviour is extremely rare. It should also be noted that 
although there is some symmetry between the Iα and Iβ 
values, they differ greatly. Furthermore, we can notice 
discontinuous behaviour in several places, most notably 
around 58.00. 
Waveform analysis provides a more precise description of 
the dynamics. Most importantly, this can explain the 
unusual behaviour occurring at select frequencies. Typical 
waveforms that demonstrate the phenomena identified as 
being atypical from the mean and standard deviation plots 
are depicted in Figure 2, along with waveforms at nearby 
frequencies which do not exhibit this behaviour. All exhibit 
period 1 behaviour, but there exists occasional flips of Iα 
and Iβ. In addition, an entirely different period 1 orbit is 
observed. This ‘other’ period 1 orbit is observed at the first 
measured frequency, 40.01 Hz. Thus we cannot make the 
assumption that the unusual results observed at the initial 
frequency are a by-product of transient behaviour. 

Analysis of those frequencies where the unusual behavior 
has not yet been explained was achieved through the use 
of Poincare sections??. For this, Iβ was plotted against Iα.  
The main achievement of such a technique, as 
demonstrated in the following sections was to distinguish 
chaotic from quasiperiodic dynamics. Here the distinction 
was made qualitatively, since a proper validation of chaotic 
dynamics is arduous and subject to noise and 
nonstationarity. 

3 Dynamics at 49 Hz 

This data set provides ample opportunity to study how the 
motor can switch between different dynamics. For the 
purposes of control, it is also important to study the 
behavior at this frequency, since we may wish to control 
quasiperiodic behavior and make it periodic. 

 
Figure 3. Waveform plots (current versus point number N) at 49Hz. 



 

 
Figure 4. Poincare section plot of Iβ versus Iα. Initial transients have 

been removed and points 74,700 to 86,700 have been plotted in 
green. 

Frequent transitions between quasiperiodic behavior and 
period 4 behavior are depicted in Figure 3. The length of 
time spent in each regime varies greatly. There is a window 
of at least 12,000 points (74,700 to 86,700), or more than 215 
seconds, where period 4 behavior is maintained. At other 
times, especially towards the beginning of the data set, 
period 4 behaviour is maintained for less than a couple of 
hundred iterations. 
The Poincare section in Figure 4 offers a more descriptive 
view of the dynamics. Points 74,700 to 86,700 are colored 
green in order to distinguish them from the remainder of the 
data. The complex behavior in the waveform is revealed to 
be quasiperiodicity. Within this quasiperiodic orbit is a co-
existing, semi-stable period 4 orbit. The time required to 
leave the orbit can be quite significant, and the rate at 
which points diverge away from the orbit does not appear 
to be exponential.  
The entire range from 48.80 to 49.05Hz exhibits the 
existence of periodic orbits within quasiperiodic orbits. It is 
also repeated at different frequencies, although the period 
of the periodic orbit need not be the same. As the 
frequency is changed, either periodic orbits are becoming 
more stable, or aperiodic orbits are appearing to be low 
period limit cycles. Thus the quasiperiodic motion, with the 
addition of some noise, may remain for long periods of time 
within a periodic orbit. 

4 Dynamics at 55.75 Hz 

One of the most unusual observed dynamics occurs at  
55.75Hz. A period 7 window occurs from about 55.65 Hz to 
55.95Hz. However, the dynamics at 55.75 Hz bears no 
relation to the dynamics at any of the surrounding 
frequencies. A waveform plot (not depicted, since it is just 
straight lines) reveals this to be periodic and stable, with no 
significant transient or intermittent behavior where it might 
revert back to the period 7 orbit. The Poincare section is 
compared with the Poincare section at a nearby frequency, 
55.74Hz, in Figure 5. One can see that a period 7 orbit also 
exists at 55.75Hz, but there is no overlap between the two 
Poincare sections and no obvious symmetry. All other 
frequencies in this period 7 window have data residing in 
the vicinity of the Poincare section at 55.74Hz. This is 
evidence of a co-existing attractor, but the mechanism for 
migration between the attractors is unknown. 

 
Figure 5. Poincare section plots of Iβ versus Iα at nearby  

frequencies with initial transients removed. 

5 Dynamics at 58 Hz 
At 58Hz, we observe three distinguishable forms of 
behavior. An examination of the waveforms (Figure 6) 
reveals not just possibly chaotic and periodic behavior, but 
also intermittent behavior within the periodic regime. For 
instance, there is a clear “burst” that begins shortly after 
6950 and ends shortly before 12850. Bursts are repeated 
several times throughout the data. In other portions after 
the initial regime (up to 6950), there appears to be period 2 
behavior in Iα and period 1 behavior in Iβ.  
This is more clearly depicted in Figure 7, which provides a 
Poincare section plot of Iβ? versus Iα. Different points in time 
are plotted in different colors in order to associate regions 
of the waveform with regions in the section. The initial 
motion is chaotic. The dominant periodic regimes represent 
a period 2 orbit. The less frequent periodic regime is a 
period 12 orbit that surrounds the period 2 orbit. The three 
attractors are near enough to provide an opportunity for 
transition between states due to noise and/or parameter 
drift. The remaining points in the data set represent 
transitions between the periodic orbits. 
This period 12 orbit is only seen again at 57.90Hz. Other 
frequencies from 57.75 to 58.25Hz only show four types of 
behavior; period 1 in Iα and period 2 in  Iβ, period 2 in Iα and 
period 1 in Iβ, chaos and transient chaos. This frequency 
range represents the onset of chaotic motion. Thus this 
unusual behavior may be a sign of instability in the 
dynamics, i.e., an indicator of possible chaos. 

 
Figure 6. Waveform plot at 58Hz. 



 

 

 
Figure 7. Poincare section of Iβ versus Iα. Different times are in 

different colors to associate regions of the waveform with regions of 
the section. 

6 Conclusion 

We are now ready to give a full characterisation of the 
observed dynamics. This is provided by Table 1. The most 
typical behaviour is period 1, but there are also other low 
period co-existing orbits that appear at a large number of 
frequencies. Furthermore, the complex dynamics that are 
observed by a variety of methods are found by the use of 
Poincare sections to be mostly quasiperiodic behaviour. 
Chaotic behaviour occurs only over a narrow range of 
frequencies, and is often observed only as intermittent or 
transient behaviour. In addition, a frequently observed 
transitional phenomenon is the existence of different 
periods for Iα and Iβ. In the region just prior to full chaotic 
motion, 56.51-58.06 Hz, the system frequently alternates 
between Iα maintaining period 1 motion and Iβ having 
period 2 motion, and vice-versa. Perhaps this is a 
mechanism which leads to chaotic behaviour. 
The dynamic behaviour of the step motor has been 
investigated over the range 40.01 to 80.00 Hz. This was 
achieved through the analysis of 4,000 data sets, each 
consisting of over 100,000 Iα and Iβ sampled current 
values. The behaviour can be characterised by 
periodicities, transients, intermittency, quasiperiodicity and 
chaos. Furthermore, the transitions between these 
behaviours was also observed. These transitions are 
gradual, and thus there is no evidence of sudden crises. 
Instead, as the frequency is changed, there is a gradual 
change in the stability of orbits.  
In each of the main dynamic classifications that were 
observed; periodic, chaotic, quasiperiodic, intermittent and 
transient behaviour, there was also evidence of co-existing, 
low period limit cycles. Thus it is our belief that control 
schemes should take advantage of this. The dominant 
control methods for systems that exhibit chaotic motion are 
based on stabilising unstable periodic orbits. Instead, we 
propose that control should be based on entrainment and 
migration – find the coexisting periodic orbit, move there 
and stay there. The difficulty with this proposal is that the 
coexisting attractor may not be observed often. This can be 
solved if the model accurately describes the dynamics. In 

which case we can determine the location of unobserved 
coexisting attractors, and apply a control method in order 
to move the dynamics towards them.  

Table 1. Full characterisation of dynamics  observed in the 
motor. 

Frequency 
(Hz) 

Behavior 

40.01 Atypical period 1 
40.02-41.86 Period 1 
41.87 Period 1 with flip of Iα and Iβ 
41.88-44.65 Period 1 
44.66-70 Two coexisting period 1s, occasional flips 
44.71-44.93 Period 1 
44.94-44.98 Two coexisting period 1s, occasional flips 
44.99-46.13 Period 1 
46.14-46.28 Two coexisting period 1s, occasional flips 
46.29-47.71 Period 1 
47.72-48.00 Transition to quasiperiodic behavior 
48.01-51.15 Quasiperiodic, occasional periodic on same orbit 
48.85-48.92 Period 4, occasional quasiperiodic behavior 
48.93-51.15 Quasiperiodic, rare periodic on same orbit 
49.59-49.74 Period 8 or 9 plus quasiperiodic behavior 
49.75-50.07 Quasiperiodic, occasional periodic on same orbit 
50.08-50.19 High period (8 or 9?) plus quasiperiodic 
50.20-51.15 Quasiperiodic, frequent periodic on same orbit 
51.16-52.75 Period 3, increasing transient 
52.76-54.61 Quasiperiodic, occasional periodic on same orbit 
54.62-54.81 Period 5 
54.82-55.67 Quasiperiodic with period 7 on same orbit.  
55.68-55.74 Period 7 
55.75 Enters different period 7 attractor 
55.76-55.96 Period 7 (sometimes appears period 5 or 6) 
55.97-56.27 Quasiperiodic 
56.28-56.50 Flips between quasiperiodic and periodic 
56.51-58.06 Noisy periodic Iα period 1 or 2, Iβ period 1 or 2, 

Increasing chaotic transient 
58.07-59.63 Chaos 
59.64-60.02 Chaos interspersed with period 2. 
60.03 Period 2  
60.04 Intermittent period 2 and chaos 
60.05-63.61 Period 2  
63.62-64.24 Period 2 in Iα, Period 1or period2 in Iβ 
64.25-65.99 Period 2 
66.00-68.89 Period 2 in Iβ, Period 1 in Iα 
68.90-70.49 Convergence of Iβ  ,  period 2 to period 1 
70.50-72.37 Period 1 
72.38-72.43 Two coexisting period 1s, occasional flips 
72.44-72.94 Period 1 
72.95-78.98 Coexisting period 1s, occasional flips 
72.99-78.78 Period 1 
78.79 Period 1, Iα and Iβ switch 
78.80-80.00 Period 1 
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