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Near neighbor searching in image databases is a multidimensional problem. The 
kd-tree is one of the first methods proposed for indexing multidimensional data. 
We describe optimizations of this method, and determine when they are 
appropriate. We discuss adaptations of the tree to feature extraction and 
indexing problems in multimedia data. Results show increased functionality and 
speed using the kd-tree as the index structure on a multimedia database. 

1. Introduction 

For retrieval of multidimensional data, efficient indexing becomes essential. If no 
sorting is performed, then searching may require that each data vector be 
examined. To find the nearest neighbor of each point in a data set of N vectors 
requires the comparison of N(N-1)/2 distances when using a brute force method. 
Considerable work has been done in devising searching and sorting routines that 
can be run far more efficiently. In many areas of research the kd-tree[1, 2] has 
become accepted as one of the most efficient and versatile methods of searching.  

Recent work has concentrated on multidimensional indexes that are stored in 
external memory, where the index construction time is of little importance.[3] For 
low dimensional data stored in main memory, the kd-tree remains one of the best 
indexing and neighbor searching methods available.[4] The kd-tree is also one of 
the simplest. Each internal node has two children, representing a partition along a 
given dimension of the n-dimensional hyperplane. The terminal nodes contain 
the n-dimensional records, which are typically features extracted from multimedia 
data. The choice of which dimension to choose to partition, and where to place 
the partition, is determined by the distribution of the data. 
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2. Multidimensional searches 

A metric space is defined by the following four properties: for all n-dimensional 
vectors ,x y  and z and integers i such that 1 i n≤ ≤ , 

Positivity: ( , ) 0d x y ≥         (1) 

Definiteness: ( , ) 0d x y x y= ⇒ =      (2) 

Symmetry: ( , ) ( , )d x y d y x=       (3) 

Triangle Inequality: ( , ) ( , ) ( , )d x z d x y d y z≤ +  (4) 

Metrics are often defined through norms on a vector space, ( , ) || ||d x y x y= − . 

Most index structures should operate on the following, commonly used norms, 
 L1( x ) = |x1| + | x2| ... + | xn|  (taxicab norm) 

L2( x ) = 2 2 2
1 2 ... nx x x+ + +  (Euclidean norm)  

1 1( ) max(| |,| |,...| |)nL x x x x∞ = (Chebyshev norm) 

The kd-tree will correctly identify nearest neighbors for any metric space 
where | | ( , )i ix y d x y− ≤ [2]. However, the distance function d does not need to 

be a metric. That is, the triangle inequality is not a necessary condition on the 
distance measure. This implies that we may replace a metric D with a non-metric 
distance measure d as long as ( , ) ( , ) ( , ) ( , )d x y d x z D x y D x z≤ ⇒ ≤ . Formally, 

a kd-tree can be used for indexing vectors provided that, for all n-dimensional 
vectors, x , y  and z , a one dimensional distance di may be defined such that  

( , ) ( , )i i i i i i i i ix y z d x y d x z≤ ≤ ⇒ ≤  (5) 

( , ) ( , )i i i i i id x y d y x=      (6) 

( , ) ( , )d x y d y x=       (7) 

( , ) ( , )i i id x y d x y≤       (8) 

Eq.(5) guarantees that a kd-tree operates on a variety of distance measures, but it 
does not hold for finite commutative rings. Suppose a dimension measures 
hourly time stamps or the data is features from music files, and one feature 
represents position in the 12 tone chromatic scale. A realistic distance measure 
would be mod mod( , ) min(( ) , ( ) )n nd x y x y y x= − − , so 1 o’clock is considered close 

to 12 o’clock, and on the chromatic scale, A is close to G Sharp. Although this 
will produce a metric on n¢ , distance is no longer related to sequential ordering. 

Eq. (8) is the justification for defining partitions along individual dimensions. 
The nature of the relationship between di and d is important in determining how 
to optimize a kd-tree. If ( , ) | |i i i i id x y x y= − , then Eq. (1) and Eq. (2) hold. This 

definition for the 1 dimensional distance was used in [2], but it is not necessary.  
The kd-tree constraints hold for the entire family of L norms. They also hold 

when the one dimensional distances are not equivalent, i.e., ( , ) ( , )i id a b d b a≠ . 
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This is useful in situations where one may wish to perform multidimensional 
searches on a collection of features and give different weights to each feature. 

In a traditional kd-tree nearest neighbour search, this fragment of 
pseudocode performs the recursive searching of internal nodes. 

Search1(Node) 
Dist=Distance1d(QueryPt[Node->CutDim],Node->CutValue); 
if (QueryPt[Node->CutDim]<Node->CutValue) { 
 Search(Node->Low); 
 if (Dist<BestDist) Search(Node->High); } 
else { 
 Search(Node->High);  
 if (Dist<BestDist) Search(Node->Low); } 

Search checks all points in a leaf node, or calls Search1 again for internal 
nodes.  However, this method may be searching unnecessarily many points. 
With the L2 norm, all neighbors closer than a distance r are confined to an area of 
size πr2

 but we search an area of size 4r2. For the L1 norm, we search an area of 
size 4r2, but the area in which nearer neighbors can exist is 2r2. This problem 
becomes exponentially worse with dimension, as seen in Table 1.  

Table 1. Growth of unnecessarily searched space that is considered for searches 
under different dimensions and different norms. 

Search Space Unnecessary Search Space Dimension 
(n) 

Volume 
Searched L1 L2 L1 L2 

2 4r2 p r2 2r2 21.5% 50% 

3 8r3 4p r3/3 4r3/3 47.6% 83.3% 

4 16r4 1p2r4/2 2r4/3 69.2% 95.8% 

5 32r5 8p2r5/15 4r5/15 83.6% 99.2% 

3. Bounding Search 

As one compares successive partitions against the query, one compares against 
cut values further and further away from the search point, and along multiple 
dimensions. This is demonstrated in Figure 1. Assume one has descended the 
tree and found that a query point q resides in region A. In order to find 

neighbors of this  point, one compares against points in that region. Then regions 
B, C and D are searched by searching the other sides of the partitions at Y1, X1 
and Y2  respectively. Yet points in region D are guaranteed to be separated by Y2-
q2 in the second dimension and by X1-q1 in the first dimension.  
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Figure 1.To find neighbors of  a query q , one first compares against points in A. Then B, 
C and D are examined by searching across partitions at Y1, X1 and Y2,  respectively. 

It is more effective to consider the multidimensional distance from the closest 
corner of the hyperrectangle defined by all partitions that have been crossed. 
Thus we replace Search1 with the following search routine.  

Search2(Node,Bounds) 
NewBounds=Bounds;  
NewBounds[Node->CutDim]=Node->CutValue; 
NewMinDist=Distance(QueryPt,NewBounds); 
if (QueryPt[Node->CutDim]<Node->CutValue) { 
 Search(Node->Low,Bounds); 
 if (NewMinDist<BestDist) Search(Node->High,NewBounds); } 
else { 
 Search(Node->High,Bounds); 
 if (NewMinDist<BestDist) Search(Node->Low,NewBounds); } 

The bounds array stores the locations of the closest corners of the bounding 
hyperrectangle to the query point. Initially the array is equal to the query point. 
For Figure 1, when region B is searched the bounds array becomes (0,Y1), then 
(X1,0) for region C, and (X1, Y2) for region D. 

We allocate a new bounds array each time the routine is called. This adds 
computation at each node, and the number of nodes visited may be large so that 
large stacks are created.   However, at most one element of the bounds array is 
changed at each node that is visited. So the bounds array may be made global 
and the stack only needs to incorporate changes to the array. Furthermore, the 
distance computation changed from 1-dimensional to n-dimensional. But many 
distance measures allow a simple computation of the distance between the query 
and the bounds if the previous distance and bounds are known. Assume the 
following holds when y and z are identical except in the ith dimension 

( , ) ( , ) ( , ) ( ( , ), ( , ), ( , ))i i i i i i i i i i i id x y d x z d x z F d x y d x y d x z≤ ⇒ = (9) 

This  is a form of weak separability between the dimensions. The bounds 
array now stores distances to the closest corners of the bounding 
hyperrectangle, and it is  initially set to 1 1 2 2( ( , ), ( , ),.. ( , ))n nd x x d x x d x x . 
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In most cases, ( , ) ( , )i i i i i id x y d x z≤  is not necessary. L∞  is an exception, 

since decreased distance along one dimension requires knowledge of all 1-
dimensional distances to find the new distance. For increase in distance, Eq. (9) 
becomes a function on two variables, ( , ) max( ( , ), ( , ))i i id x z d x y d x z= . If the 

distance measure is the square of the L2 norm then F becomes 
2 2( , ) ( ) ( )i i i id x y x y x z− − + − . This allows us to use a bounds array storing 1-

dimensional distances and reduce the calculations at each node from n to 1. 

Search3(Node,MinDist) 
NewDist1d=SqDist1d(QueryPt[Node->CutDim],Node->CutValue); 
NewMinDist=MinDist-Bounds[Node->CutDim]+NewDist1d; 
if (QueryPt[Node->CutDim]<Node->CutValue) { 
 Search(Node-> Low,MinDist); 
 if (NewMinDist<BestDist)  { 
  tmp=Bounds[Node->CutDim]; 
  Bounds[Node->CutDim]=NewDist1d; 
  Search(Node-> High,NewMinDist); 
  Bounds[Node->CutDim]=tmp; } 
} 
else { 
 Search (Node-> High,MinDist); 
 if (NewMinDist<BestDist)  { 
  tmp=Bounds[Node->CutDim]; 
  Bounds[Node->CutDim]=NewDist1d; 
  Search (Node-> Low,NewMinDist); 
  Bounds[Node->CutDim]=tmp; } } 

Figure 2(a) depicts the average number of Euclidean distance calculations 
required for a nearest neighbor search as a function of dimensionality, where an 
n-dimensional distance calculation is equivalent to n 1-dimensional calculations.  
For 6n ≤ , Search2 increases the number of distance calculations required. This 
is because the full n-dimensional distance is calculated at each node. For n>6 the 
reduced number of nodes visited compensates for the increased number of 
calculations at each node. However, Search3 offers a drastic reduction in the 
number of distance calculations required. Figure 2(b) more clearly demonstrates 
the improvements of a bounding search. Here we consider the average number of 
leaves visited. Search2 and Search3 provide the same results, since the difference 
between these methods only relates to how distances are calculated. Here, the 
bounding search is always an improvement over a traditional kd-tree search, and 
can lead to a five-fold reduction in the number of nodes visited.  

Furthermore, the kd-tree improvements have been implemented on a large 
data set (275,465 60-dimensional vectors) consisting of features extracted from 
aerial images[5], and showed similar improvements. However, this also showed 



 

 

6 

the limits of the kd-tree. Using all 60 feature vectors caused the number of 
distance calculations to approach the N(N-1)/2 limit of a brute force search 
method. The kd-tree was only effective for less than 20 dimensional data, and 
proved less effective when smaller data sets of the same dimension were used.  
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Figure 2. Average number of distance calculations and average number of leaves visited in 
a neighbor search as a function of dimension for 100,000 randomly distributed points. 

4. Conclusion 

It is important to notice that multidimensional indexing schemes often make 
assumptions regarding the distance measure that is used. The kd-tree constraints 
are surprisingly weak, since they do not require the triangle inequality to hold. 
This allows for alternative search methods that may give a significant 
(approximate factor of five) improvement in the speed of neighbor searching.  
This improvement is enough to justify the use of kd-trees on multimedia 
databases consisting of only moderately low dimensional features . 
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