

1

OPTIMISED KD-TREE INDEXING OF MULTIMEDIA DATA

J. D. REISS1, J. SELBIE2 AND M. B. SANDLER1

1Department of Electronic Engineering,
Queen Mary University of London

Mile End Road, London, N52LL, United Kingdom
E-mail: josh.reiss,mark.sandler@elec.qmul.ac.uk

2Microsoft Corp.
One Microsoft Way,

Redmond, WA 98052, USA
E-mail: jselbie@microsoft.com

Near neighbor searching in image databases is a multidimensional problem. The
kd-tree is one of the first methods proposed for indexing multidimensional data.
We describe optimizations of this method, and determine when they are
appropriate. We discuss adaptations of the tree to feature extraction and
indexing problems in multimedia data. Results show increased functionality and
speed using the kd-tree as the index structure on a multimedia database.

1. Introduction

For retrieval of multidimensional data, efficient indexing becomes essential. If no
sorting is performed, then searching may require that each data vector be
examined. To find the nearest neighbor of each point in a data set of N vectors
requires the comparison of N(N-1)/2 distances when using a brute force method.
Considerable work has been done in devising searching and sorting routines that
can be run far more efficiently. In many areas of research the kd-tree[1, 2] has
become accepted as one of the most efficient and versatile methods of searching.

Recent work has concentrated on multidimensional indexes that are stored in
external memory, where the index construction time is of little importance.[3] For
low dimensional data stored in main memory, the kd-tree remains one of the best
indexing and neighbor searching methods available.[4] The kd-tree is also one of
the simplest. Each internal node has two children, representing a partition along a
given dimension of the n-dimensional hyperplane. The terminal nodes contain
the n-dimensional records, which are typically features extracted from multimedia
data. The choice of which dimension to choose to partition, and where to place
the partition, is determined by the distribution of the data.

2

2. Multidimensional searches

A metric space is defined by the following four properties: for all n-dimensional
vectors ,x y and z and integers i such that 1 i n≤ ≤ ,

Positivity: (,) 0d x y ≥ (1)

Definiteness: (,) 0d x y x y= ⇒ = (2)

Symmetry: (,) (,)d x y d y x= (3)

Triangle Inequality: (,) (,) (,)d x z d x y d y z≤ + (4)

Metrics are often defined through norms on a vector space, (,) || ||d x y x y= − .

Most index structures should operate on the following, commonly used norms,
 L1(x) = |x1| + | x2| ... + | xn| (taxicab norm)

L2(x) = 2 2 2
1 2 ... nx x x+ + + (Euclidean norm)

1 1() max(| |,| |,...| |)nL x x x x∞ = (Chebyshev norm)

The kd-tree will correctly identify nearest neighbors for any metric space
where | | (,)i ix y d x y− ≤ [2]. However, the distance function d does not need to

be a metric. That is, the triangle inequality is not a necessary condition on the
distance measure. This implies that we may replace a metric D with a non-metric
distance measure d as long as (,) (,) (,) (,)d x y d x z D x y D x z≤ ⇒ ≤ . Formally,

a kd-tree can be used for indexing vectors provided that, for all n-dimensional
vectors, x , y and z , a one dimensional distance di may be defined such that

(,) (,)i i i i i i i i ix y z d x y d x z≤ ≤ ⇒ ≤ (5)

(,) (,)i i i i i id x y d y x= (6)

(,) (,)d x y d y x= (7)

(,) (,)i i id x y d x y≤ (8)

Eq.(5) guarantees that a kd-tree operates on a variety of distance measures, but it
does not hold for finite commutative rings. Suppose a dimension measures
hourly time stamps or the data is features from music files, and one feature
represents position in the 12 tone chromatic scale. A realistic distance measure
would be mod mod(,) min(() , ())n nd x y x y y x= − − , so 1 o’clock is considered close

to 12 o’clock, and on the chromatic scale, A is close to G Sharp. Although this
will produce a metric on n¢ , distance is no longer related to sequential ordering.

Eq. (8) is the justification for defining partitions along individual dimensions.
The nature of the relationship between di and d is important in determining how
to optimize a kd-tree. If (,) | |i i i i id x y x y= − , then Eq. (1) and Eq. (2) hold. This

definition for the 1 dimensional distance was used in [2], but it is not necessary.
The kd-tree constraints hold for the entire family of L norms. They also hold

when the one dimensional distances are not equivalent, i.e., (,) (,)i id a b d b a≠ .

3

This is useful in situations where one may wish to perform multidimensional
searches on a collection of features and give different weights to each feature.

In a traditional kd-tree nearest neighbour search, this fragment of
pseudocode performs the recursive searching of internal nodes.

Search1(Node)
Dist=Distance1d(QueryPt[Node->CutDim],Node->CutValue);
if (QueryPt[Node->CutDim]<Node->CutValue) {
 Search(Node->Low);
 if (Dist<BestDist) Search(Node->High); }
else {
 Search(Node->High);
 if (Dist<BestDist) Search(Node->Low); }

Search checks all points in a leaf node, or calls Search1 again for internal
nodes. However, this method may be searching unnecessarily many points.
With the L2 norm, all neighbors closer than a distance r are confined to an area of
size πr2

 but we search an area of size 4r2. For the L1 norm, we search an area of
size 4r2, but the area in which nearer neighbors can exist is 2r2. This problem
becomes exponentially worse with dimension, as seen in Table 1.

Table 1. Growth of unnecessarily searched space that is considered for searches
under different dimensions and different norms.

Search Space Unnecessary Search Space Dimension
(n)

Volume
Searched L1 L2 L1 L2

2 4r2 p r2 2r2 21.5% 50%

3 8r3 4p r3/3 4r3/3 47.6% 83.3%

4 16r4 1p2r4/2 2r4/3 69.2% 95.8%

5 32r5 8p2r5/15 4r5/15 83.6% 99.2%

3. Bounding Search

As one compares successive partitions against the query, one compares against
cut values further and further away from the search point, and along multiple
dimensions. This is demonstrated in Figure 1. Assume one has descended the
tree and found that a query point q resides in region A. In order to find

neighbors of this point, one compares against points in that region. Then regions
B, C and D are searched by searching the other sides of the partitions at Y1, X1
and Y2 respectively. Yet points in region D are guaranteed to be separated by Y2-
q2 in the second dimension and by X1-q1 in the first dimension.

4

Figure 1.To find neighbors of a query q , one first compares against points in A. Then B,
C and D are examined by searching across partitions at Y1, X1 and Y2, respectively.

It is more effective to consider the multidimensional distance from the closest
corner of the hyperrectangle defined by all partitions that have been crossed.
Thus we replace Search1 with the following search routine.

Search2(Node,Bounds)
NewBounds=Bounds;
NewBounds[Node->CutDim]=Node->CutValue;
NewMinDist=Distance(QueryPt,NewBounds);
if (QueryPt[Node->CutDim]<Node->CutValue) {
 Search(Node->Low,Bounds);
 if (NewMinDist<BestDist) Search(Node->High,NewBounds); }
else {
 Search(Node->High,Bounds);
 if (NewMinDist<BestDist) Search(Node->Low,NewBounds); }

The bounds array stores the locations of the closest corners of the bounding
hyperrectangle to the query point. Initially the array is equal to the query point.
For Figure 1, when region B is searched the bounds array becomes (0,Y1), then
(X1,0) for region C, and (X1, Y2) for region D.

We allocate a new bounds array each time the routine is called. This adds
computation at each node, and the number of nodes visited may be large so that
large stacks are created. However, at most one element of the bounds array is
changed at each node that is visited. So the bounds array may be made global
and the stack only needs to incorporate changes to the array. Furthermore, the
distance computation changed from 1-dimensional to n-dimensional. But many
distance measures allow a simple computation of the distance between the query
and the bounds if the previous distance and bounds are known. Assume the
following holds when y and z are identical except in the ith dimension

(,) (,) (,) ((,), (,), (,))i i i i i i i i i i i id x y d x z d x z F d x y d x y d x z≤ ⇒ = (9)

This is a form of weak separability between the dimensions. The bounds
array now stores distances to the closest corners of the bounding
hyperrectangle, and it is initially set to 1 1 2 2((,), (,),.. (,))n nd x x d x x d x x .

5

In most cases, (,) (,)i i i i i id x y d x z≤ is not necessary. L∞ is an exception,

since decreased distance along one dimension requires knowledge of all 1-
dimensional distances to find the new distance. For increase in distance, Eq. (9)
becomes a function on two variables, (,) max((,), (,))i i id x z d x y d x z= . If the

distance measure is the square of the L2 norm then F becomes
2 2(,) () ()i i i id x y x y x z− − + − . This allows us to use a bounds array storing 1-

dimensional distances and reduce the calculations at each node from n to 1.

Search3(Node,MinDist)
NewDist1d=SqDist1d(QueryPt[Node->CutDim],Node->CutValue);
NewMinDist=MinDist-Bounds[Node->CutDim]+NewDist1d;
if (QueryPt[Node->CutDim]<Node->CutValue) {
 Search(Node-> Low,MinDist);
 if (NewMinDist<BestDist) {
 tmp=Bounds[Node->CutDim];
 Bounds[Node->CutDim]=NewDist1d;
 Search(Node-> High,NewMinDist);
 Bounds[Node->CutDim]=tmp; }
}
else {
 Search (Node-> High,MinDist);
 if (NewMinDist<BestDist) {
 tmp=Bounds[Node->CutDim];
 Bounds[Node->CutDim]=NewDist1d;
 Search (Node-> Low,NewMinDist);
 Bounds[Node->CutDim]=tmp; } }

Figure 2(a) depicts the average number of Euclidean distance calculations
required for a nearest neighbor search as a function of dimensionality, where an
n-dimensional distance calculation is equivalent to n 1-dimensional calculations.
For 6n ≤ , Search2 increases the number of distance calculations required. This
is because the full n-dimensional distance is calculated at each node. For n>6 the
reduced number of nodes visited compensates for the increased number of
calculations at each node. However, Search3 offers a drastic reduction in the
number of distance calculations required. Figure 2(b) more clearly demonstrates
the improvements of a bounding search. Here we consider the average number of
leaves visited. Search2 and Search3 provide the same results, since the difference
between these methods only relates to how distances are calculated. Here, the
bounding search is always an improvement over a traditional kd-tree search, and
can lead to a five-fold reduction in the number of nodes visited.

Furthermore, the kd-tree improvements have been implemented on a large
data set (275,465 60-dimensional vectors) consisting of features extracted from
aerial images[5], and showed similar improvements. However, this also showed

6

the limits of the kd-tree. Using all 60 feature vectors caused the number of
distance calculations to approach the N(N-1)/2 limit of a brute force search
method. The kd-tree was only effective for less than 20 dimensional data, and
proved less effective when smaller data sets of the same dimension were used.

214

212

210

28

26

A
ve

ra
ge

 N
um

be
r o

f D
is

ta
nc

e
C

al
cu

la
tio

ns

108642
Dimension

 Search1
 Search2
 Search3

(a)

212

210

28

26

24

22A
ve

ra
ge

 N
um

be
r

of
 L

ea
ve

s
V

is
ite

d

108642 Dimension

 Search1
 Search2

(b)

Figure 2. Average number of distance calculations and average number of leaves visited in
a neighbor search as a function of dimension for 100,000 randomly distributed points.

4. Conclusion

It is important to notice that multidimensional indexing schemes often make
assumptions regarding the distance measure that is used. The kd-tree constraints
are surprisingly weak, since they do not require the triangle inequality to hold.
This allows for alternative search methods that may give a significant
(approximate factor of five) improvement in the speed of neighbor searching.
This improvement is enough to justify the use of kd-trees on multimedia
databases consisting of only moderately low dimensional features .

References

1. Bentley, J.H., IEEE Trans. on Software Engineering, 1979. SE-5: p. 333-340.
2. Bentley, J. Sixth ACM Symposium on Comp. Geometry. 1990. San Francisco.
3. Chakrabarti, K. and S. Mehrotra. 15th IEEE International Conference on

Data Engineering (ICDE) . 1999. Sydney, Australia.
4. Reiss, J.D., J.-J. Aucouturier, and M.B. Sandler. 2nd Annual International

Symposium on Music Information Retrieval. 2001. Bloomington, Indiana USA.
5. Manjunath, B.S. and W.Y. Ma, IEEE Trans. Pattern Analysis and Machine

Intelligence, 1996. 18(8): p. 837-842.

