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ABSTRACT 

One of the greatest unsolved problems in the theory of sigma delta modulation concerns the ability to analytically 
derive the stability, or boundedness, of a high order sigma delta modulator (SDM). In this work, we describe the 
existing literature and try to clarify the issues involved. We fully derive the stability of first order sigma delta 
modulators, and derive some important results for the basic second order sigma delta modulator. For third order 
sigma delta modulators, we describe interesting simulated results as well as sketch a proof of instability, based on 
linear programming, for one particular SDM. Finally, we present two theoretical results concerning stability of 
general high order SDMs that point towards promising directions of future research. 

 
Our goal is to derive an analytical method of 
determining the stability of sigma delta modulators. 
That is, we wish to present a mathematical framework, 
based on state space modeling and symbolic dynamics, 
for deriving the stability of 1-bit Sigma Delta 
Modulators (SDMs). We will focus on DC inputs, since 
this represents the most relevant (and easiest) practical 
condition. We wish to determine the maximum value of 
the constant applied input which will produce stable 
output indefinitely. 

1. INTRODUCTION 

The stability question may be phrased in many different 
ways. At its core, we would like to derive the value of 
constant input such that, for initial conditions set to 
zero, the magnitude of the state space variables will 
diverge towards infinity. A similar question is, given 
initial conditions and a constant input value, we should 
be able to determine if this leads to stable behavior. 
Other important problems are the determination of the 
invariant set, trapping region, or basin of attraction. 
These are related concepts which all, in some sense, 
refer to the set of state space values which lead to a 
bounded solution. The size and location of this set 
should give some indication of the stability as well. 

We are further concerned with the dependence of 
stability on initial conditions of the state variables. For 
unstable input values, the time until instability is 
reached, and the effect of clipping to enforce stability, 
are both of primary concern. Understanding of the 
effects of dithering, small disturbances of the state space 
variables, and the use of nonconstant input, is also 
necessary. A justification for the use of resonator 
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sections to improve stability is also unknown. Finally, 
examples using high quality, high order feedback and 
feedforward designs are necessary to demonstrate any  
theoretical results.  

2.3. Analytical approaches to SDM stability 

To the best of our knowledge, there is no successful 
analytical approach to stability in high order SDMs 
(greater than 3). There are several alternative 
approaches to stability in second order SDMs, some 
preliminary work on third order designs, and only 
‘sketched’ approaches to stability in higher order SDMs. 
Thus the question becomes, “Can any existing 
approaches be extended to higher order SDMs,?” Of 
course, there is the related question of whether existing 
approaches are correct. 

This work does not claim to have achieved any of the 
above mentioned tasks. Rather, we feel it was necessary 
to describe the issues thoroughly and formally, as well 
as the existing approaches and results on low order 
SDMs, and to indicate the most promising directions of 
future research. 

Hein and Zakhor’s approach[7] is to use the limit cycles 
as a measure of stability. Their method is not rigorous 
(and in some sense not analytical) in that it postulates 
that the limit cycles have a convergent bound on the 
state space variables, and that this is also the bound for 
non-limit cycle behaviour. Our own research has found 
limit cycles which contradict this[8]. However, the 
method seems to work and the results agree well with 
those of Farrell and Feely[9]. 

2. PRIOR WORK 

2.1. Traditional stability analysis 

Almost all SDM designs may be characterized as 
piecewise linear maps (piecewise affine maps, to be 
exact). This would imply that a first approach would be 
to use standard Lyapunov stability theory, except as 
applied to maps rather than piecewise continuous 
systems. Unfortunately, most seemingly related work 
has dealt with a different definition of stability. Feng’s 
recent work[1] on “Stability Analysis of Piecewise 
Discrete-Time Linear Systems” was concerned with a 
global exponential stability. That is, all solutions will 
tend to the origin eventually. This is the typical problem 
in Lyapunov stability theory and thus not directly 
applicable to the stability issues we are concerned with. 
Kantner[2], though working on similar asymptotic 
stability problems, also made the observation that linear 
programming techniques can be applied to related 
stability issues.  

Wang[10] used an interesting approach. He converted a 
third order modulator to a continuous time system by 
looking at the vector field equations. Then, by 
considering only boundary points, he is able to convert 
the 3 dimensional flow into a 2 dimensional return map. 
Fixed points of this map then yield insight into stability 
of the SDM. This is a very complicated method 
(although the math does not become intractable) and it 
is unclear if it may be extended to higher order 
modulators and if it is fully justified. 
Zhang[11, 12] uses a model of the quantiser to estimate 
stability of a third order SDM. Though this seems to 
work, the linearization implies that important 
phenomena have been omitted. Furthermore, there is 
little comparison of their results with simulation. 
Another work by Zhang[13] bears a strong resemblance 
to the linear programming approach of Feely, though it 
seems oversimplistic. 

2.2.  Computational approaches to SDM 
stability 

Researchers experienced with sigma delta modulation 
have, in general, avoided the Lyapunov stability 
approach. Risbo[3] discussed stability of SDMs in 
detail, primarily from a nonlinear dynamics perspective. 
But, with the exception of first order SDMs, he did not 
attempt a method for its determination. However, he 
introduced some important concepts such as boundary 
crises and escape routes. Much  

Steiner and Yang[14, 15] use a transformation which 
decouples the state space variables except through their 
interaction in the quantization function. They suggest 
how this may be used to tackle stability but there is little 
actual analysis. This approach has been expanded by 
Wong[16] to deal with practical high order SDMs. 
However, the analysis appears nearly intractable. Wong 
provides simulated results for many high order SDMs, 
but his analysis does not seem to confirm simulation. 

A computational approach to finding the invariant sets 
is derived by Schreier[4-6]. Although neither analytical 
nor rigorous, it is significant because source code is 
available, and because results are provided which may 
be confirmed or denied by other methods. A straight linear programming approach is used by 

Farrell and Feely[9]. This successfully finds the bounds 
on the second order SDM and may be extended to 
second order SDMs with leaky or chaotic integrators. 
The math appears correct and tractable, and their results 
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bear stronger agreement with simulation than the results 
of Hein and Zakhor.  

3.2. Maximum # of consecutive equal output 
bits for a first order SDM  

The remainder of this document is concerned with some 
initial results on stability. Section 3 provides some easy 
proofs for first order modulators. Section 4 outlines 
Farrell and Feely’s method for computing the stability 
and bounds of a second order SDM and puts this 
technique into a form such that it may be applied to 
more general SDM designs. Section 5 provides several 
interesting simulated results of the stability of generic 
third order feedforward and feedback SDM designs, as 
well as a sketched proof of the instability of the basic 
third order SDM. Section 6 provides 2 results for 
arbitrary 1 bit SDMs; that they will always be unstable 
for input magnitude greater than 1, and that the output 
oscillates between positive and negative values, even 
when unstable, for input less than 1. Notably, Figure 4 
demonstrates this phenomenon by using a log-log plot 
to depict the output of an unstable SDM. This section 
concludes with a description of how linear 
programming may be applied to the stability of high 
order SDMs. 

Eq. (1) can be iterated to give, when all output bits are 
assumed positive, 
 ( ) ( ) ( 1)n N ns s N u+ = + −         (4) 
We know that the maximum value of s(n) is u+1, so from 
Eq. (4), the maximum number of positive output bits, 

, is given by the smallest N such that maxN +

 1 1
1 1

uN
u u

+
≤ + =

2
− −

         (5) 

Note that, this also gives the stability limits, since 
         (6) max1u N +→ + ⇒ →∞
Furthermore, negative input results in only isolated 
positive output bits. 
 max1 0u N + 1− < < ⇒ =         (7) 
Similarly, the maximum number of negative output bits, 

, is given by the smallest N such that maxN −

 2
1

N
u

≤
+

            (8) 

and 
max

max

1

0 1

u N

u N

−

−

→ − ⇒ →∞

1< < ⇒ =
 (9) 

3. FIRST ORDER SDMS 

3.1. Proof that the output is bounded for a 
first order SDM with -1<U<1 

3.3. Derivation of the stability range for a 
chaotic or leaky 1st order SDM  A first order SDM is given by 

 ( 1) ( ) ( )n n ns s u y+ = + −  (1) A first order SDM with a chaotic or leaky integrator is 
given by We assume that the input is bounded by -1<u<1 (this 

assumption is justified in the following section, 3.2). 
Then the following 2 relationships show that a negative 
initial s will increase until it is positive, and a positive s 
will decrease until it is negative. 

 ( 1) ( ) ( )n n ns cs u y+ = + −        (10) 
where c is positive (typically close to 1). This can be 
iterated to give, when the output bits all have the same 
sign, 

 
( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

0
0 1

n n n

n n n

1 n

n

s s s u s
s s s u s

+

+

< ⇒ = + + >

≥ ⇒ = + − <
     (2)  ( ) ( ) 1

1
( )[

N
n N N n i

i
]s c s u y c+ −

=

= + − ∑     (11) 
Thus it is oscillating between positive and negative 
values. The boundaries are the same as for the ideal 1st order 

SDM, We want to know, assuming that atleast one bit flip has 
occurred (i.e., the transient behavior has passed and we 
are not starting from arbitrary initial conditions), what 
is the range of values which s can take. 

 
(0) (1) (1)

(0) (1) (1)

1, 1 0 1
1, 1 1 0

y y s u
y y u s

= − = + → < < +

= + = − → − < <
   (12) 

The change in value of s between iterations is given by 
Note from (2) that the maximum value of s occurs when 
the previous value is just below zero and the minimum 
value occurs when the previous value is equal to zero 

( 1) ( )

( ) ( )( 1)

n n

n

s s s
c s u y

+∆ = −

= − + − n
       (13) 

 
( ) ( 1)

( ) ( 1)

0 1

0 1

n n

n n

s s u

s s u

+

<

+

→ ⇒ +

= ⇒ = −

∼
        (3) 

For the input to be stable, the minimum change must be 
negative when there is a positive output bit, and the 
maximum change must be positive when there is a 
negative output bit. Thus s is limited to the range [-1+u;1+u]. 
From (12), 
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We suppose there are exactly N- consecutive -1 bits. 
That is, the bitstream is          (14) 

( 1)( 1) 1 0
( 1)( 1) 1 0
c u u
c u u
− + + − <
− − + + >

by solving for u, we obtain the maximum and minimum 
inputs for stability 
         (15) 1 2 / 2 / 1c u c− < < −

4. DERIVATION OF THE BOUNDS FOR A 
SECOND ORDER FEEDBACK SDM 

4.1. Method 
This proof of the stability of a standard second order 
SDM is based on the method outlined in [9]. Here, we 
have rephrased the results into the preferred 
terminology and elaborated and commented on several 
parts. 
This proof has several steps. First we assume that there 
have been some number N- iterations with negative 
output. We can then identify the maximum values of the 
state space variables for the first positive output bit. We 
use this value to identify the maximum number of 
positive output bits which results, N+. We can then find 
the maximum number of negative output bits which 
result from the N+ positive bits. This new value of N- is 
strictly less than N+ and hence the oscillations are 
bounded. 
Note that N here refers to the number of iterations, not 
SDM order, and that the equations for the SDM, though 
standard, are not the same as those used in some other 
sources.  
The equations of the standard 2nd order FB design are 
given by 

 
( 1) ( ) ( )
1 1
( 1) ( ) ( 1) ( )
2 2 1

n n n

n n n

s s u y
ns s s y

+

+ +

= + −

= + −
       (16) 

where and we assume constant input ( ) ( )
2sgn( )ny = ns

y

4.2. Maximum values of the state space 
variables after N- negative iterations  

If there are N iterations without the quantiser changing 
sign,  then the following 
equations give the resultant dynamics 

( ) ( 1)...n n Ny y + −= = =

( ) ( )
1 1

( ) ( ) ( )
2 2 1

( )
( 1) ( ) (

2

n N n

n N n n

s s N u y
N N )s s u y N s

+

+

= + −
+

= + − + − y
  (17) 

Since we use them later, the inversion of this is 
( ) ( )
1 1

( ) ( ) ( )
2 2 1

( )
( 1) ( ) (

2

n n N

n n N n N

s s N u y
N N )s s u y N s

+

+

= − −
−

= + − − − y+

)

 (18) 

 
(0) ( 1(1),... ( )

1 , 1, 1,... 1, 1, 1
Q Q NQ Q N

−
− +

+ − − − − +       (19) 

This gives N-+2 constraints on the state space variables. 

           (20)  

(1) (1)
2 1
(1)
2
(2)
2

( )
2

( 1)
2

1

0

0
...

0

0

N

N

s s

s

s

s

s

−

− +

≥ −

<

<

<

≥
where the first condition is derived from 
   (21) (0) (1) (0) (1) (0) (1)

2 2 2 1 10 1s s s s y s≥ ⇒ = + − ≥ −

We wish to find the maximum value of ( 1
1

Ns
− )+ . That is, 

given N- consecutive -1 output bits, what is an upper 
bound on where the first state space variable will be 
located for a +1 output bit.  
Rewriting each of these as a constraint on the N+1 state, 
we have, from (18), 

( 1) ( 1)
2 1

( 1) ( 1)
2 1

( 1) ( 1)
2 1

( 1) ( 1)
2 1

( 1)
2

[ 1] 1 ( 1) ( 1) / 2

( 1) ( 1)( 1) / 2

[ 1]( 1) ( 1)( 2)( 1) /
...

1

0

N N

N N

N N

N N

N

s N s N N N u

s N s N N u

s N s N N u

s s

s

− −

− −

− −

− −

−

+ − + − − −

+ − + − −

+ − + − −

+ +

+

≥ + + − − + +

< + − − +

< − + − − − +

< +

≥

2

 (22)  
This is a linear programming problem, except that the 
number of constraints is unknown. If we consider just a 
subset of these conditions and ignore the importance of 
other constraints, 

( 1) ( 1)
2 1

( 1) ( 1)
2 1

( 1)
2

) [ 1] 1 ( 1) ( 1) / 2

) 1

) 0

N N

N N

N

a s N s N N N u

b s s

c s

− −

− −

−

+ − + − − −

+ +

+

≥ + + − − + +

< +

≥
 (23)  
The inequalities in Eq. (23) are depicted in Figure 1, for 
N-=3 and u=0. One can see that an upper bound on s1 
occurs when both the first two conditions in (23) 
become equalities. Solving for s1 then gives  
    (24)  1max 2 / 1 ( 1)( 1) / 2s N N u− −= − + + +
Of course, it is conceivable that the other constraints 
will create an even stricter upper bound, especially for 
unusual values of the parameters. But for now, we will 
use just this constraint. 
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From the second condition in Eq. (23), we also have an 
upper bound on s2, 

[ 1][2 / 1 ( 1)( 1) /
( 1)1 ( 1) 0

2

N N N u
N NN u

+ − −

+ +
+

+ − + + +

+
− + + − <

2]
    (31) 

     (25)  2 max 2 / ( 1)( 1) / 2s N N u− −= + + +

-8

-6

-4

-2

0

2

4

6

8

s2

3210-1 s1

 A
 B
 C

 

For u=0, Table 1 gives the value of the left hand side of 
(30) for different values of N- and N+ between 1 and 7. 
From this, we can derive Table 2, which gives the 
maximum number of resultant positive iterations for a 
given number of negative iterations. 

Table 1. Values of the condition for the upper bound 
on N+, from (30) as a function of N- and N+. 

 N+ 
 1 2 3 4 5 6 7 
1 3 2 0 -3 -7 -12 -18 
2 2 1/2 -2 -11/2 -10 -31/2 -22 
3 7/3 1 -4/3 -14/3 -9 -43/3 -62/3
4 3 2 0 -3 -7 -12 -18 
5 19/5 16/5 8/5 -1 -23/5 -46/5 -74/5
6 14/3 9/2 10/3 7/6 -2 -37/6 -34/3

N-

7 39/7 41/7 36/7 24/7 5/7 -3 -54/7

Figure 1. The inequalities of Eq. (23). The shaded 
region represents the allowable solutions. 

 
 
We can see that for N->4, the resulting N+ must be 
strictly less than N-. An identical proof shows that, if we 
consider positive output preceding negative output, then 
for N+>4, the resulting N- is strictly less than N+. Thus 
u=0 gives a globally stable solution. 

4.3. Maximum number of resultant iterations 
with positive output  

Now we suppose there are exactly N- consecutive -1 
bits, followed by N+ consecutive +1 bits. That is, the 
bitstream is  

Table 2. The upper bound on N+ as a function of N- .      (26) 
(0)

(1),... ( ) ( 1),... ( )

1 , 1, 1,... 1, 1, 1, 1,... 1, 1
y

y y N y N y N N− − −+ +

+ − − − − + + + +
N- N+

max 
1 4 
2 3 
3 3 
4 4 
5 4 
6 5 
7 6 

+

To find the maximum number of iterations that will then 
occur with positive output, we need to find the smallest 
integer value of N+ such that 

          (27)  ( 1)
2 0N Ns

− ++ + <
where, we choose the largest values of the state space 
variables, given by (24) and (25), since this value is 
furthest from negative output. 
        (28)  ( 1)

2 2max 1max 1Ns s s
− + = = +

5. THIRD ORDER SDMS from (17) and (28), for y=1, 
( 1)
2 1max 1max

( 1)1 ( 1) (
2

N N N Ns s u N s
− +

+ +
+ + ++

= + + − + −1)

 (29) 

5.1. Simulated Results 
Consider the system  

 

( 1) ( ) ( )
1 1 1 1
( 1) ( ) ( ) ( )
2 2 1 2
( 1) ( ) ( ) ( )
3 3 2

n n

n n n

n n n n

n

n

s s c u c y

s s s c y

s s s y

+

+

+

= + −

= + −

= + −

      (32) 
So, an upper bound on the number of positive iterations 
following N- negative iterations is given by N+ where N+ 
is the smallest integer such that, 

1max
( 1)[ 1] 1 ( 1)

2
N NN s N u

+ +
+ + +
+ − + + − < 0   (30) and the system 

 

( 1) ( ) ( )
1 1 1 1
( 1) ( ) ( 1) ( )
2 2 1 2
( 1) ( ) ( 1) ( )
3 3 2

n n n

n n n

n n n n

s s c u c y
ns s s c y

s s s y

+

+ +

+ +

= + −

= + −

= + −

      (33) 
or 
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Both Eq. (32) and (33) represent third order SDMs with 
only 2 coefficients, c1 and c2. We are concerned with 
finding values of the coefficients which yield stable 
behavior. Via simulation, the stable region was found to 
be given by the shaded regions in Figure 2(a) and Figure 
2(b) for Eq. (32) and (33) respectively.  

1.0

0.8

0.6

0.4

0.2

0.0

c1

1.00.80.60.40.20.0 c2

1.0

0.8

0.6

0.4

0.2

0.0

c1

1.00.80.60.40.20.0 c2  

We note that this gives simple constraints for the 
coefficients in both cases. For Eq. (32), we have 

            (34) 2 1

2 1

2
1

c c
c c
≤
≤ −

and for Eq. (33), we have the simple constraint, 
            (35) 1 1/ 2c ≤
It should be possible to verify both of these 
relationships, and this is a current direction of research. 
If we consider a third order feedforward design, then the 
dynamics are somewhat different. This design is given 
by 

 

( 1) ( ) ( )
1 1
( 1) ( ) ( )
2 2 1
( 1) ( ) ( )
3 3 2

n n

n n n

n n n

ns s u y

s s s

s s s

+

+

+

= + −

= +

= +

        (36) 

where  
      (37) ( ) ( ) ( ) ( )

1 2 2 3 3(n n ny Q s c s c s= + + )n

Figure 2. (a) Stable region of a 3rd order SDM from 
Eq. (32), as a function of the coefficients, for zero 
input and initial conditions. (b) Stable region, under 
the same constraints, for an SDM given by Eq. (33). 

The stable region is depicted in Figure 3, for zero initial 
conditions, and for inputs 0 (a) and 0.5 (b). One can see 
that the region is more complicated than the simple 
regions given for the feedback designs. However, there 
still appears to be some relationships between 
coefficients and stability. For instance, in Figure 3(a), 
the line  
 2 2c c3≤            (38) 
Determines most stable solutions for . 30 0.c≤ ≤ 75

5.2. Proof of unboundedness of a certain 3rd 
feedback order SDM  

This is the standard 3rd order FB design. We assume no 
input, and we wish to show that this yields unstable 
behavior 
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So, for a given sequence, , we have 
the set of constraints 

(0), (1),... ( 1)y y y N −

 
Figure 3. (a) Stable region of a 3rd order SDM from 
Eq. (36), as a function of the coefficients, for zero 
input and zero initial conditions. (b) Stable regions 
for the same SDM, but with constant 0.5 input. 

The equations are given by 

 

(1) (0) (0)
1 1
(1) (0) (1) (0)
2 2 1
(1) (0) (1) (0)
3 3 2

s s u y

s s s y

s s s y

= + −

= + −

= + −

        (39) 

where . This yields ( ) ( )
3sgn( )ny = ns

1

)

( ) ( )
3 0 0...i iy s i n≥ = −         (41) 

We would like to maximize u such that these constraints 
hold. This is a linear programming problem. In this 
case, using linear programming (Numerical Recipes 
implementation), we find that, for u  there is no 
feasible solution for the sequence 

0≥

(0) ( 1(1),... ( ) ( 1),... ( )

1 , 1, 1,... 1, 1, 1, 1,... 1, 1, 1
y y N Ny y N y N y N N

− +
+ + − + + ++ +

− + + + + − − − − +   (42) 

where N N+ −≤  except where N+ is 1 or 2. However, if 
we consider, 

(0) ( 1(1),... ( ) ( 1),... ( )

1 , 1, 1,... 1, 1, 1, 1,... 1, 1, 1
y y N Ny y N y N y N N

− +
− − − + + ++ + )

+ − − − − + + + + −   (43) 

and N- is 1 or 2, then there are no solutions for 
N N− +≤ . This implies that the length of a sequence of 
+1s or -1s is growing. We can thus conclude that this 
system is unbounded.  

6. RESULTS FOR ARBITRARY ORDER SDMS 

An arbitrary order feedforward SDM may be 
represented as, 

 

( 1) ( ) ( )
1 1
( 1) ( ) ( )
2 1 2

( 1) ( ) ( )
1

...

n n

n n n

n n n
N N N

ns s u y

s s s

s s s

+

+

+
−

= + −

= +

= +

        (44) 

where ( ) sgn( )ny = ⋅c s and we have assumed constant 
input u. 
Here, we will show that the state space variables are 
always unbounded for |u|>1, and that the state space 
variables oscillate between positive and negative values 
for |u|<1. Note that this oscillation does not guarantee 
stable behavior, but an understanding of the oscillations 
may lead to an understanding of stability. 

6.1. Proof that the output is unbounded for 
any FF SDM with constant input >1. 

From (44), it is easy to see that 
1

( ) (0) ( )
1 1

0
1

( ) (0) (0) ( )
2 2 1

0
( ) (0) (0) (0)
3 3 2 1

1
( )

0

( 1) / 2 ( 1 )

( 1) / 2

( 1)( 2) / 6 ( 1 )( 2 ) / 2

n
n i

i
n

n

i
n

n
i

i

s s nu y

s s ns n n u n i y

s s ns n n s

n n n u n i n i y

−

=

−

=

−

=

= + −

= + + + − + −

= + + +

+ + + − + − + −

∑

∑

∑

(40) 
i

 
( ) ( 1) ( )

1

( ) ( 1) ( )
1 1

0

0

n n
i i

n n
i i

1
n

i

n
i

s s s

s s s

+
+ +

+
+ +

> ⇒ >

< ⇒ <
       (45) 

Assume u>1. So u y ( ) 0n− > , regardless of c. 
Therefore, 
 ( 1) ( )

1
n

1
ns s+ >           (46) 

e.g., s1 always increases. Hence, for some k, .  ( )
1 0ks >
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At which point s2 will increase, and at some point it will 
become positive, and so on. This implies that, at some 
point all state space variables will increase. 

Thus, the state at any time may be given in terms of an 
initial state, 

Similarly, if u<1, at some point, all state space variables 
will decrease. 
Thus, for any feedforward SDM in Jordan form, the 
bounds are always <=1. 

6.2. Proof that the output oscillates for SDMs 
with -1<U<1. 

Assume 0<u<1, and y(n)>0 
So  
 ( 1) ( ) ( )

1 1 1n n
1

ns s u s+ = + − <        (47) 
So s1 decreases. s2 may still increase, but eventually s1 
becomes less than 0. Then  s2 starts to decrease, and so 
on. Eventually , and y( ) 0n

Ns < (n) flips to -1. Now, the 
same procedure happens again, but with each variable 
increasing. 
This gives oscillation. The problem comes when each 
oscillation takes longer than the previous one. 
An example of this oscillation is depicted in Figure 4. 
Here, the system is unstable but still oscillating between 
-1 and +1 output. The system is unstable since the 
oscillations are exponentially increasing in both 
amplitude and period.  
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Figure 4. The absolute magnitude of the state space 
variables of an unstable third order sigma delta 
modulator with zero input. The results are presented 
on a log-log plot in order to show that the oscillations 
are exponentially increasing in period and 
amplitude. 

6.3. Towards a linear programming approach 
for feedforward SDMs  

Eq. (44) may be rewritten as 
       (48) ( 1) ( ) ( )(n n nu y+ = + −s As )d

d

1n −

     (49) 
1

( ) (0) ( ) 1

0
[ ( ) ]

n
n n i n i

i
u y

−
− −

=

= + −∑s A s A

So, for a given sequence, , we have 
the set of constraints 

(0), (1),... ( 1)y y y N −

       (50) ( ) ( ) 0 0...k T ky k≥ =c s
In order to have a given output y(k), 
           (51) ( ) ( ) 0k T ky ≥c s
Substitution of (49) into (51) gives 

 
1

( ) (0) ( ) ( ) 1

0

[ ( ) ] 0
k

k T k k T i k i

i

y y u y
−

− −

=

+ − ≥∑c A s c A d  (52) 

or 
1 1

( ) (0) ( ) 1 ( ) ( ) 1

0 0

k k
k T k k T k i k T i k i

i i

y y u y y
− −

− − − −

= =

+ ≥∑ ∑c A s c A d c A d

 (53) 
and the linear programming problem is to maximize u 
such that Eq. (52) holds. Linear programming problems 
are usually phrased such that all variables are restricted 
to positive values, so this can be accounted for by 
replacing s with s1- s2 where s1,s2 are positive. 

   (54) 

( ) (0) ( ) (0)
1 2
1 1

( ) 1 ( ) ( ) 1

0 0

k T k k T k

k k
k T k i k T i k i

i i

y y

y u y y
− −

− − − −

= =

−

+ ≥∑ ∑

c A s c A s

c A d c A d

This has been simulated using numerical recipes. 
Unfortunately, for typical high order SDMs, and any 
given bit sequence, the solution is unbounded. Further 
investigation is necessary. 

7. CONCLUSION 
The work described herein is concerned with the 
stability, or boundedness of SDMs. Ignoring more 
subtle questions such as the effect of dither, we have 
identified the following ten questions as fundamental 
issues in SDM stability theory. 
 
1. For initial conditions set to zero, can one derive the 

value of constant input such that the magnitude of the 
state space variables will diverge towards infinity?  

2. Given initial conditions and a constant input value, 
can one determine if this leads to bounded behavior? 

3. Is there equivalence between bounded state variables 
and bounded bit sequences? 

4. When is there initial condition dependence in the 
boundedness properties? 

5. For a given SDM with given input, what are the 
bounds on the state variables? 
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6. If there is initial condition dependence for a given 
SDM with given initial conditions, what are the set of 
initial conditions which yield bounded behavior? 

8. REFERENCES 

[1] G. Feng, "Stability Analysis of Piecewise Discrete-
Time Linear Systems," IEEE Transactions on 
Automatic Control, vol. 47, pp. 1108-1115, 2002. 7. Can we characterize the stability (boundedness) 

properties of different SDM designs? [2] M. Kantner, "Robust Stability of Piecewise Linear 
Discrete Time Systems," Proceedings of the 
American Control Conference, Evanston, Il, USA, 
pp. 1241-1245, 1997. 

8. What is the relationship between the coefficients of an 
SDM and its boundedness? 

9. What is the relationship between the order 
(dimensionality) of an SDM and its boundedness? [3] L. Risbo, "Sigma-Delta Modulators - Stability 

Analysis and Optimization," PhD Thesis, 
Electronics Institute. Lyngby: Technical University 
of Denmark, 1994, pp. 179. 
eivind.imm.dtu.dk/publications/phdthesis.html 

10. What can we say for all of the above when we don’t 
assume constant input (we may assume input 
restricted to a certain range and/or bandlimited)? 

 
Our approach has been to start with the simplest SDMs 
and work towards general results for more arbitrary and 
higher order designs. Though not fully described herein, 
this approach has been problematic since initial 
condition dependence is not significant in low order 
designs. 

[4] R. Schreier, M. Goodson, and B. Zhang, "An 
algorithm for computing convex positively 
invariant sets for delta-sigma modulators," IEEE 
Transactions on Circuits and Systems I: 
Fundamental Theory and Applications, vol. 44, pp. 
38-44, 1997. It is clear from Section 3 that the stability of first order 

SDMs may be easily derived. Second order SDMs are 
also tractable, based on existing literature and the 
derivations in this paper. However, some further results 
are necessary in order to add rigor to proofs of 
boundedness, derivation of the bounds, and applications 
to more general second order designs.  

[5] B. Zhang, M. Goodson, and R. Schreier, "Invariant 
Sets for General Second-Order Lowpaws Delta-
Sigma Modulators with DC Inputs," Proceedings of 
the ISCAS, pp. 1-4, 1994. 

[6] M. Goodson, B. Zhang, and R. Schreier, "Proving 
Stability of Delta-Sigma Modulator Using Invariant 
Sets," Proceedings of the ISCAS, pp. 633-636, 
1995. The analysis becomes more difficult when one 

considers third order designs, yet simulations indicate 
that simple relationships may exist between the SDM 
coefficients, the input and the boundedness of solutions. 
Furthermore, instability can be shown, using linear 
programming, for atleast one 3rd order SDM. Whether 
such techniques can be adapted more generally is as of 
yet unknown. 

[7] S. Hein and A. Zakhor, "On the stability of sigma-
delta modulators," IEEE Trans. Signal Processing, 
vol. 41, pp. 2322–2348, 1993. 

[8] D. Reefman, J. D. Reiss, E. Janssen, and M. 
Sandler, "Description of limit cycles in Sigma Delta 
Modulators," accepted for IEEE Transactions on 
Circuits and Systems 1, pp. 30, 2004. In general, unbounded solutions often fall into 2 

categories. The less interesting of which exists for 
extremely high input |u|>1, where the state space 
variables diverge to infinity. More interesting are 
unstable solutions where |u|<1, and the state space 
variables continue to oscillate, but with exponentially 
increasing amplitude and period. This indicates a clear 
relationship between boundedness of the state space 
variables, and boundedness of the output bit sequences. 
Proving such an equivalence would go a long way 
towards improving the theory of SDM stability, and is a 
major goal of current research. 

[9] R. Farrell and O. Feely, "Bounding the integrator 
outputs of second order sigma-delta modulators," 
IEEE Transactions on Circuits and Systems, Part 
II: Analog and Digital Signal Processing, vol. 45, 
1998. 

[10] H. Wang, "On the Stability of Third-Order Sigma-
Delta Modulation," Proceedings of the ISCAS, 
Chicago, Illinois, USA, pp. 1377-1380, 1993. 

[11] J. Zhang, P. V. Brennan, D. Jiang, E. Vinogradova, 
and P. D. Smith, "Stable boundaries of a third-order 
sigma-delta modulator," Proceedings of the 
Southwest Symposium on Mixed-Signal Design, 
pp. 259 - 262, 2003.  

[12] J. Zhang, P. V. Brennan, D. Jiang, E. Vinogradova, 
and P. D. Smith, "Stability analysis of a sigma delta 
modulator," Proceedings of the International 
Symposium on Circuits and Systems ISCAS, pp. I-
961 - I-964, 2003. 

AES 119th Convention, New York, New York, 2005 October 7–10 
Page 9 of 10 



Reiss Stability analysis of SDMs
 

AES 119th Convention, New York, New York, 2005 October 7–10 
Page 10 of 10 

[13] J. Zhang, P. V. Brennan, P. D. Smith, and E. 
Vinogradova, "Bounding attraction areas of a third-
order sigma-delta modulator," Proceedings of the 
International Conference on Communications, 
Circuits and Systems, ICCCAS, pp. 1377 - 1381, 
2004. 

[14] P. Steiner and W. Yang, "A framework for analysis 
of high-order sigma-delta modulators," Circuits and 
Systems II: Analog and Digital Signal Processing, 
IEEE Transactions on, pp. 1-10, 1997. 

[15] P. Steiner and W. Yang, "Stability of high order 
sigma-delta modulators," Proceedings of the 1996 
IEEE International Symposium on Circuits and 
Systems, ISCAS '96, pp. 52 - 55, 1996. 

[16] N. Wong and T.-S. Tung-Sang Ng, "DC Stability 
Analysis of High-Order, Lowpass Sigma Delta 
Modulators With Distinct Unit Circle NTF Zeros," 
IEEE Transactions On Circuits And Systems-Ii: 
Analog And Digital Signal Processing, vol. 50, 
2003. 

 


	INTRODUCTION
	PRIOR WORK
	Traditional stability analysis
	Computational approaches to SDM stability
	Analytical approaches to SDM stability

	FIRST ORDER SDMS
	Proof that the output is bounded for a first order SDM with -1<U<1
	Maximum # of consecutive equal output bits for a first order SDM
	Derivation of the stability range for a chaotic or leaky 1st order SDM

	DERIVATION OF THE BOUNDS FOR A SECOND ORDER FEEDBACK SDM
	Method
	Maximum values of the state space variables after N- negative iterations
	Maximum number of resultant iterations with positive output

	THIRD ORDER SDMS
	Simulated Results
	Proof of unboundedness of a certain 3rd feedback order SDM

	RESULTS FOR ARBITRARY ORDER SDMS
	Proof that the output is unbounded for any FF SDM with constant input >1.
	Proof that the output oscillates for SDMs with -1<U<1.
	Towards a linear programming approach for feedforward SDMs

	CONCLUSION
	REFERENCES

