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ABSTRACT 

In this paper, an initial condition of a sigma-delta modulator is estimated based on quantizer output bit streams and 
an input signal. The set of initial conditions that generate a stable trajectory is characterized. It is found that this set, 
as well as the set of initial conditions corresponding to the quantizer output bit streams, are convex. Also, it is found 
that the mapping from the set of initial conditions to the stable admissible set of quantizer output bit streams is 
invertible if the loop filter is unstable. Hence, the initial condition corresponding to given stable admissible 
quantizer output streams and an input signal is uniquely defined when the loop filter is unstable, and a projection 
onto convex set approach is employed for approximating the initial condition. 

 

1. INTRODUCTION 

Since some sigma-delta modulators (SDM) consist of a 
feedback loop, an unstable or a marginally stable loop 
filter (Actually, a marginally stable loop filter is 
bounded-input bounded-output unstable because 
resonance may occur for certain bounded inputs.) and a 
quantizer which is characterized by a discontinuous 

nonlinear function, the dynamics of an SDM could be 
very complicated. Chaotic and fractal behaviors may 
occur [1], [4], [6]. As chaotic behaviors are highly 
dependent on initial conditions [6], the dynamics of an 
SDM would be very different if there is a very small 
change in its initial conditions. When there is a sudden 
change of a supply voltage or a mechanical shaking, the 
content in the register containing an initial condition of 
an SDM may be corrupted. Since signals in SDMs are 
reconstructed based on an initial condition and an input 
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signal, in this case, the reconstructed signal will be very 
different from the original one and a serious 
reconstruction error would be encountered. 

In order to minimize the reconstruction error, it is 
necessary to estimate an initial condition of an SDM 
based on quantizer output bit streams and a given input 
signal. However, some fundamental questions have not 
been explored yet. For example, for a certain type of 
SDMs, such as SDMs with unstable loop filter and 
bounded loop filter output, does there exist a unique 
initial condition that corresponding to given quantizer 
output bit streams and input signal? If yes, how can we 
find an approximate initial condition which is closed to 
the actual one, and what are the significance of the error 
between the approximate initial condition and the actual 
one? 

One of the most common methods for estimating an 
initial condition is to formulate the problem as an 
optimization problem. In [7], constraints were imposed 
so that the estimated initial condition is guaranteed to 
generate the corresponding quantizer output bit streams. 
However, the obtained solution does not guaranteed to 
generate a bounded trajectory. In this paper, necessary 
and sufficient bounded conditions are characterized and 
constraints based on these bounded conditions are 
imposed so that a bounded trajectory is also guaranteed. 

The outline of this paper is as follows. In Section 2, 
notations used throughout this paper are introduced. In 
Section 3, necessary and sufficient bounded conditions 
of state variables are derived and it is shown that the set 
of initial conditions generating bounded trajectories is 
actually convex (A convex set is the set that all the 
points between any two points in the set are still in the 
set. [2], [5], [9]). In Section 4, it is shown that the set of 
initial conditions corresponding to given quantizer 
output bit streams and an input signal is also convex. 
Moreover, it is shown that the mapping from the set of 
initial conditions to the stable admissible set of 
quantizer bit streams is invertible if the loop filter is 
unstable. Hence, by projection onto these two convex 
sets, an initial condition of an SDM can be estimated. In 
Section 5, computer simulation results are presented to 
illustrate the effectiveness of the proposed method. 
Finally, a conclusion is summarized in Section 6. 

2. NOTATIONS 

Since an interpolative SDM with a single-input single-
output strictly causal rational loop filter and a single bit 

quantizer having the decision boundary at zero are 
widely employed in industries, an interpolative SDM 
with this type of loop filter and quantizer is considered 
in this paper. The state space matrices of the loop filter 
are denoted as A , Β , C  and D . Due to the negative 
feedback configuration and the strictly causal condition, 

0=D . Denote the input of the interpolative SDM, the 
output of the loop filter, the output of the quantizer and 
the state vector of the loop filter as ( )ku , ( )ky , ( )ks  
and ( )kx , respectively. Then the dynamics of the 
interpolative SDM can be characterized by the 
following state space equations: 

( ) ( ) ( ) ( )( )kskukk −+=+ BAxx 1 , (1a) 

( ) ( )kky Cx≡ , (1b) 

and 

( ) ( )( )kyQks ≡ , (1c) 

where 

( )( ) ( )
( )




<−
≥

≡
01
01

ky
ky

kyQ . (1d) 

3. BOUNDED CONDITIONS OF STATE 
VARIABLES AND CONVEXITY OF THE 
CORRESPONDING SET OF INITIAL 
CONDITIONS 

3.1. Bounded conditions of state variables 

In some circuits and systems, such as audio systems [3], 
some eigenvalues of A  are outside the unit circle. 
Hence, state variables of the interpolative SDM may be 
unbounded for any bounded inputs and initial 
conditions. To guarantee the state variables being 
bounded, define Γ  as the set of initial conditions such 
that ( )kx  is bounded. Since 

( ) ( ) ( ) ( )( )∑
−

=

−− −+=
1

0

10
k

n

nkk nsnuk BAxAx  for 1≥k , 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzk
zk

−+−−= −−−−

→+∞→
BxAIx 1111

1
01limlim , 
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where ( )zU  and ( )zS  are denoted as z-transform of 
( )nu  and ( )ns , respectively. ( )kx  is bounded if and 

only if the region of convergence of each element in 
( )( ) ( ) ( ) ( )( )( )zSzUzzz −+−− −−−− BxAI 1111 01  includes the 
point 1=z . Hence, the necessary and sufficient 
bounded conditions for any bounded inputs and initial 
conditions become the existence of a stable transfer 
function ( )zP , where 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzz −+−−= −−−− BxAIP 1111 01 .(2) 

The importance of this result is on the characterization 
of the set of initial conditions generating bounded 
trajectories for any bounded inputs and quantizer output 
bit streams. This result will be employed in our 
algorithm for estimating an initial condition of the 
interpolative SDM. 

If A  contains some unstable eigenvalues, then ( )zP  is 
stable if and only if ( ) ( ) ( )( )zSzUz −+ − Bx 10  contains 
unstable zeros which cancel exactly the unstable poles 
of A  and ( ) ( ) ( )( )zSzUz −+ − Bx 10  has no unstable 
pole. To illustrate this result, we consider the loop filter 
with the following state space matrices because this type 
of interpolative SDMs is employed in audio systems [3]: 













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
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[ ]T00001≡B , (3b) 

and 

[ ]54321 ccccc≡C , (3c) 

where ∈21, ff R+ and ∈ic R for 5,,2,1 L=i  are filter 
coefficients, in which 21 ff ≠ , R and R+ denote the sets 
of real numbers and positive real numbers, respectively. 

∈∀ 2,41,44,23,25,1 ,,,, ttttt C\{0}, denote 
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and 

( )1,1,1,1,1 1122 fjfjfjfj −+−+≡D , (4b) 

where 1−≡j  and C denotes the set of complex 
numbers. Then, 1−= TDTA , in which 
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By expanding (2) based on the interpolative SDMs 
described by (3a)-(3c), we have: 

( )kx1  is bounded if and only if ∈∃B R such that 

 ( ) ( )( ) BzSzU
z

=−
→1

lim , (5a) 

( )kx2  is bounded if and only if there exists a stable 
transfer function ( )zP  such that 

( ) ( ) ( ) ( )

( )( )φθφ
θ

θ

−−−

=−

− coscos2
sin

sin

1
2

1

1

2
1

rzR
r

zf

zPzC
r

zf
zSzU

, (5b) 

( )kx3  is bounded if and only if there exists a stable 
transfer function ( )zP′  such that 



Ho et al.  Estimation of initial states of SDMs
 

AES 120th Convention, Paris, France, 2006 May 20–23 
Page 4 of 10 
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( )kx4  is bounded if and only if there exists a stable 
transfer function ( )zP ′′′  such that 
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( )kx5  is bounded if and only if there exists a stable 
transfer function ( )zP '''''  such that 
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where 

( ) ( ) ( ) ( ) ( ) ( )[ ]Tkxkxkxkxkxk 54321≡x , (5f) 

11 fr +≡ , (5g) 

21 fr +≡′ , (5h) 
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If ( ) ( ) ( ) 0000 321 === xxx , then ( )kx2  is bounded if 
and only if there exist two zeros of ( ) ( )zSzU −  located 
at θjre  and θjre−  , respectively, and ( )kx3  is bounded if 
and only if both ( )kx1  and ( )kx2  are bounded. If 
( ) 0x =0 , then ( )kx4  is bounded if and only if there 

exist four zeros of ( ) ( )zSzU −  located at θjre , θjre− , 
θ′′ jer  and θ ′′−′ jer , respectively, and ( )kx5  is bounded if 

and only both ( )kx1  and ( )kx4  are bounded. It is worth 
noting that the zeros of ( ) ( )zSzU −  for a bounded 

trajectory are in general not located at θjre , θjre− , 
θ′′ jer  and θ ′′−′ jer , and this is true only when ( ) 0x =0 . 

However, ( )kx1  is bounded if and only if the average 
value of quantizer output bit streams is equal to that of 

the input signal, that is, ( ) ( )∑∑
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This result does not directly depend on ( )01x . Figure 1a 
and Figure 1b plot ( ) ( )zSzU −  against ωjrez =  and 

ωjerz ′= , respectively, where [ ]θθω ,′∈ , ( ) 0x =0 , 
001801 .f = , 00068502 .f = , 863756618201 .c = , 
361381473802 .c = , 09000370903 .c = , 
013209157004 .c = , 000908375005 .c =  and a random 

input signal with the amplitude bounded by 1.0 , that is, 
( ) 1.0<ku  for 0≥k . We choose this interpolative 

SDM with this random input for an illustration because 
this set of coefficients is employed in audio systems [3] 
and a random input with small amplitude can guarantee 
a bounded trajectory. Also, random inputs have wide 
frequency spectra, so it is a more general input signal 
compared to step or sinusoidal inputs. According to the 
simulation, it can be seen from the figure that the values 
of ( ) ( )θθ jj reSreU −  and ( ) ( )θθ ′′ ′−′ jj erSerU are closed 

to zero, which implies that there are two zeros located at 
θjre  and θ′′ jer , respectively. 

3.2. Interesting behaviors of SDMs 

If the input is a rational step signal, then we can denote 
( ) uku ≡  for 0≥k , where ∈u Q, in which Q denotes 

the set of rational numbers. For the interpolative SDMs 

defined by (3a)-(3c), as ( ) ( ) ( )( )∑
−

=

−+=
1

0
11 0

k

n
nyQukxkx  

for 1≥k , ∈∃ 1q Z and ∈∃ 2q Z+ such that 

( ) ( )
2

1
11 0

q
qxkx =−  for 1≥k , where Z and Z+ denote the 

sets of integers and positive integers, respectively. As a 
result, ( ) ( )011 xkx −  can only be an integer multiple of 
the reciprocal of the denominator of the input step size. 

3.3. Convexity of the set of initial conditions 
corresponding to bound trajectories 

If ( ) Γ∈0x , then ( ) Γ∈kx  for 0≥k . Hence, the 
trajectory is confined within Γ . Suppose 
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( ) ( ) Γ∈0,0 21 xx , then there exist two stable transfer 
functions ( )z1P  and ( )z2P  where 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzz −+−−= −−−− BxAIP 111111 01  

and 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzz −+−−= −−−− BxAIP 121112 01 . 

Since [ ]1,0∈∀λ , 

( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )( )( )zSzUzzz

zz

−+−+−−

=−+
−−−− BxxAI

PP
121111

21

0101

1

λλ

λλ

 

and ( ) ( ) ( )zz 21 1 PP λλ −+  is a stable transfer function, 
this implies that ( ) ( ) ( ) Γ∈−+ 010 21 xx λλ . Hence, Γ  is 
a convex set. This result is useful because we can 
estimate ( )0x  via a projection onto convex set 
approach. 

 

Figure 1. Plot of ( ) ( )zSzU −  against (a) ωjrez =  and 

(b) ωjerz ′= , where [ ]θθω ,′∈ . 

4. CONVEXITY OF ADMISSIBLE SET OF 
INITAIL CONDITONS AND INVERTIBILITY 
OF A MAPPING 

4.1. Convexity of the set of initial conditions 
corresponding to quantizer output bit 
streams 

Denote an infinite length binary sequence with each 
element in the sequence being either 1 or 1−  and their 
corresponding set as ( ) ( )( )L,1,0 ss=s  and Ψ , 
respectively. Define the mapping from Γ  to Ψ  as Λ  
such that (1a)-(1d) are satisfied. The set of quantizer 
output bit streams is said to be stable and admissible if 

Ψ∈∀s , ( ) Γ∈∃ 0x  such that ( )( ) sx =Λ 0 . It is worth 
noting that Ψ  is not necessary a stable admissible set 
because there may not exist ( ) Γ∈0x  such that (1a)-(1d) 
are satisfied. To characterize the admissible condition, 
the approach in [7] is employed and summarized below. 
Since ( ) 1=ks  if ( ) 0≥ky  and ( ) 1−=ks  if ( ) 0<ky  for 

0≥k , we have ( ) ( ) 0≥kyks  for 0≥k , that is, 
( ) ( ) 000 ≥Cxs  and 

( ) ( ) ( ) ( )( ) 00
1

0

1 ≥







−+ ∑

−

=

−−
k

n

nkk nsnuks BACxCA  (6a) 
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for 1≥k . Denote the set of initial conditions that 
satisfies (6a) as Φ . Then the stable admissible set of 
quantizer output bit streams is 

( ) ( )( )
( )

( ) ( ) ( )( )

( ) 

























Γ∈≥









−+

=
=

=Ψ
∑
−

=

−−

0 and 1for 

0

,00:

1

0

1

x

BACxCA

Cxs

k

nsnuQ

ks
Qs

k

n

nkkb
. (6b) 

Hence, 

( ) Φ∈0x  if and only if 

( )
( )

( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( )
0

BAC

CB
x

CA

CA
C

≥





















−

−
+



















∑
−

=

−−
1

0

1

001
0

0
1
0

k

n

nkk nsnuks

sus

ks

s
s

MM

 (6c) 

for 1≥k . The importance of this result is that the set of 
initial conditions generating a given quantizer output bit 
streams for a given input can be characterized. This 
result will be employed in our proposed algorithm. 

Besides, if ( ) ( ) Φ∈0,0 21 xx , then [ ]1,0∈∀λ , 
( ) ( ) 000 1 ≥Cxsλ , ( ) ( ) ( ) 0001 2 ≥− Cxsλ , 

( ) ( ) ( ) ( )( ) 00
1

0

11 ≥







−+ ∑

−

=

−−
k

n

nkk nsnuks BACxCAλ  and 

( ) ( ) ( ) ( ) ( )( ) 001
1

0

12 ≥







−+− ∑

−

=

−−
k

n

nkk nsnuks BACxCAλ  for 

1≥k . Hence, ( ) ( ) ( ) ( )( ) 00100 21 ≥−+ xxC λλs  and 

( ) ( ) ( ) ( )( ) ( ) ( )( )

0

010
1

0

121

≥









−+−+ ∑

−

=

−−
k

n

nkk nsnuks BACxxCA λλ

for 1≥k . This implies that ( ) ( ) ( ) Φ∈−+ 010 21 xx λλ  and 
Φ  is a convex set. 

This result is useful because we can estimate an initial 
condition based on a projection onto convex set 
approach. However, it is worth noting that ( ) Φ∈0x  
does not imply that ( ) Γ∈0x , that means initial 
conditions corresponding to quantizer output bit streams 
may cause the output of the loop filter unbounded. 

4.2. Invertibility of the mapping from Γ∩Φ to 
Ψb 

It is worth to know whether there is a unique initial 
condition corresponding to a bounded loop filter output, 
given quantizer output bit streams and input signal. To 
address this problem, define a mapping bΛ  from the set 
of initial conditions to the stable admissible set of 
quantizer output bit streams, that is bb Ψ→ΦΓΛ I: . 
Suppose ( ) ( ) ΦΓ∈ I0,0 21 xx  and ( ) ( )00 21 xx ≠  such 
that ( )( ) ( )( ) sxx =Λ=Λ 00 21

bb , then 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )∑

∑
−

=

−−

−

=

−−

−+=

−+=

1

0

122

1

0

111

0

0

k

n

nkk

k

n

nkk

nsnuk

nsnuk

BAxAx

BAxAx
 for 1≥k , 

which implies that ( ) ( )( ) ( ) ( )kkk 2121 00 xxxxA −=−  for 
1≥k . Since ( ) ( ) Γ∈0,0 21 xx , ( )k1x  and ( )k2x  are 

bounded. If A  is unstable, since ( ) ( )00 21 xx ≠ , then 
( ) ( )kk 21 xx −  will be unbounded, which is a 

contradiction because a subtraction of any two bounded 
sequences must be bounded. Hence, ( ) ( )00 21 xx = , 
which implies that if A  is unstable, then bΛ  is 
invertible. 

The importance of this result is to guarantee that the 
initial condition corresponding to a bounded loop filter 
output, given quantizer output bit streams and input 
signal is uniquely defined if A  is unstable. 

4.3. Algorithm for estimating the initial 
condition 

To estimate the initial condition, a projection onto 
convex set approach is employed. The algorithm is as 
follows: 

Algorithm 

Step 1: Initialize ( ) Φ∈0ˆ 0x  and 0=k . 

Step 2: Solve the following optimization problem: 

( )
( ) ( )

20
0ˆ0min kk

k
xx

x
−

Γ∈
. (7a) 
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This optimization problem is equivalent to the following 
optimization problem: 

( )
( ) ( )

20
0ˆ0min kk

k
xx

x
− , (7b) 

subject to 

( )( ) ( )( ) ( ) ( )( )( )zSzUzzz k −+−− −−−− BxAI 1111 01  is stable.(7c) 

This problem is a standard convex control problem and 
a standard control technique [8] can be applied for 
solving the problem. Denote the solution as ( )0kx . 

Step 3: Solve the following optimization problem: 

( )
( ) ( )

2

1

0ˆ
00ˆmin

1

kk
k

xx
x

−+

Φ∈+
. (7d) 

This optimization problem is equivalent to the following 
optimization problem: 

( )
( ) ( )

2

1

0ˆ
00ˆmin

1

kk
k

xx
x

−+
+

, (7e) 

subject to 

( )
( )

( )

( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
0

BAC

CB
x

CA

CA
C

≥





















−

−
+



















∑
−

=

−−

+

1

0

1

1
001

0

0ˆ
1
0

k

n

nk

k

k nsnuks

sus

ks

s
s

MM

 (7f) 

for 1≥k . This problem is a standard quadratic 
programming problem with LMI constraints and has a 
unique solution. There are many existing optimization 
solvers for solving this problem. Denote the solution as 

( )0ˆ 1+kx . 

Step 4: Iterative Steps 2 and 3 until 
( ) ( ) ε≤−+

2

1 0ˆ0ˆ kk xx , where ε  is a prescribed 

acceptable error. 

It is worth noting that the proposed Algorithm 
guarantees to converge to the actual initial condition if 

≠ΦΓI Ø, where Ø denotes the empty set, because 
both Γ  and Φ  are convex sets and the initial condition 
corresponding to a bounded loop filter output, given 
quantizer output bit streams and input signal is uniquely 
defined when A  is unstable. 

5. COMPUTER SIMULATION RESULTS 

In order to verify the effectiveness of the proposed 
algorithm, the same filter and same type of random 
input in Section 3.1 are used for an illustration. An 
initial condition is generated randomly with the first 
state variable being uniformly distributed between 1.0−  
and 1.0  and the other state variables being uniformly 
distributed between 0001.0−  and 0001.0 . The first 
state variable has a larger variance than the others 
because it has larger stability margin. In our proposed 
algorithm, we choose 1210−=ε  because it is small 
enough for most circuits and systems. Also, a random 
vector with the same distribution as the initial condition 
is generated and employed as the initialized vector for 
our proposed algorithm. First, it is tested to see if it 
satisfied (6c) or not. If it is not satisfied, a new random 
vector is re-generated until (6c) is satisfied. Second, run 
Steps 2 to 4 of our proposed algorithm. Figures 2a-2e 
plot the original state responses and Figure 2f plots the 
original quantizer output bit streams. Figures 3a-3e plot 
the differences between the original and new state 
responses using the estimated initial condition, while 
Figure 3f plots the difference between the original and 
the reconstructed quantizer output bit streams. It can be 
seen from Figure 3c and Figure 3d that the differences 
diverge transiently. This is because as A  is unstable, 
the SDM is chaotic. Although the 2-norm error between 
the original and the estimated initial condition is 
guaranteed to be bounded by ε , 0≠ε  and the small 
deviation from the actual initial condition would cause 
very different state responses. However, there is no 
difference between the original and the reconstructed 
quantizer output bit streams as shown in Figure 3f. 
Figure 4a-4e plot the difference between the original 
and new state responses using a random initial condition 
with zero mean and variance 0.0001. It can be seen from 
Figure 4a-4e that the transient differences are much 
more than that of using the estimated initial condition. 
Also, there is a great difference between the original and 
the new quantizer output bit streams, as shown in Figure 
4f. 
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Figure 2. (a)-(e) Original state responses. (f) Original 
quantizer output bit streams. 

 

Figure 3. (a)-(e) Differences between the original and 
new state responses using the estimated initial 

condition. (f) Difference between the original and the 
new quantizer output bit streams. 

 

Figure 4. (a)-(e) Differences between the original and 
new state responses using a random initial condition. (f) 
Difference between the original and the new quantizer 

output bit streams. 

6. CONCLUSION 

In this paper, an initial condition of the interpolative 
SDM is estimated based on projection onto convex set 
approach. The set of initial conditions that generating a 
bounded trajectory is characterized and it is shown that 
the set is convex. Also, we show that the set of initial 
conditions corresponding to quantizer output bit streams 
is convex too. Moreover, the mapping from the set of 
initial conditions to the stable admissible set of 
quantizer output bit streams is invertible if the loop 
filter is unstable. Hence, by using a projection onto 
convex set approach, the initial condition can be 
estimated. One of the advantages of the proposed 
method is the guarantee of the convergence of the 
unique solution if the intersection of these two convex 
sets is non-empty. 
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