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Abstract: Sigma delta modulation is a popular form of A/D and D/A conversion. 
This nonlinear device exhibits a high degree of complex nonlinear behaviour, 
including chaotic dynamics. One of the main unsolved problems in the theory of 
sigma delta modulation concerns the ability to analytically derive conditions for  the 
boundedness of solutions of a high order sigma delta modulator (SDM). In this 
work, we describe how a sigma delta modulator may be rephrased within the context 
of systems theory. We present several theoretical results concerning bounded 
solutions of general high order SDMs, including necessary and sufficient conditions 
for the lack of a finite escape time, necessary conditions for bounded solutions based 
on the nature of the output sequences, and topological properties of the solutions, 
which are a precursor to the study of chaotic solutions of SDMs. Copyright © 2005 
IFAC 
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1. INTRODUCTION 
 
1.1. Background 
 
Sigma delta modulation is a popular form of A/D 
and D/A conversion. The technique has provided 
powerful means for converting analog to digital 
signals and vice versa with low circuit complexity 
and large robustness against circuit imperfections. 
As a result of this, 1-bit sigma–delta based analog-
to-digital (A/D) and digital-to-analog (D/A) 
converters are widely used in audio applications, 
such as cellular phone technology and high-end 
stereo systems.  
Sigma–delta modulation, originally conceived by 
De Jager (1952), is a well-established technique. 
However, theoretical understanding of the concept 
is very limited (Norsworthy, et al., 1997). 
Important progress in the understanding of the 
dynamical systems properties of SDMs has lead to 
a description of their chaotic behaviours (Feely, 
1997; Dunn and Sandler, 1996; Reiss and Sandler, 
2001), a useful linearization technique (Ardalan and 
Paulos, 1987) and a framework for describing their 
periodic behaviour (Reefman, et al., 2005). Yet in 
all these developments, there is no unified 

description of SDMs. Instead, several models are 
provided, each of which describes some aspects of 
an SDM to a certain accuracy.  
In this work, we frame the dynamic behaviour of 
sigma delta modulators within the context of 
systems theory. The focus is on the characterization 
of the boundedness and aperiodicity of solutions. 
The analysis is intended to describe a large number 
of feedforward or interpolative SDM topologies 
(Norsworthy, et al., 1997), as used in the design of 
commercial SDMs.  
 
1.2. Motivation 
  
Figure 1 depicts a 5th order, feedforward SDM. It 
may be implemented in either digital or analog 
circuitry. An input signal u is fed into the system, 
and passed through 5 discrete-time integrators. The 
output of each integrator is multipled by a 
coefficient ci, the results are summed, and then 
quantised depending on the sign of the sum. This 
quantised output is fed back to the input. The 
coefficient vector C=(c1,…,c5) serves to shape the 
noise of quantisation away from the frequency band 
of interest. Thus the SDM acts as a filter, but with 



   

the quantiser introducing a high degree of 
nonlinearity. 
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Figure 1. Implementation of a commercial fifth 
order SDM. 
 
It is well-established that a first order SDM will 
produce bounded behaviour for input magnitudes 
less than 1, and similar results can be shown for 
some 2nd order SDM designs (Farrell and Feely, 
1998). However, higher order SDMs may produce 
divergent behaviour, such that the magnitude of the 
input to the quantiser becomes exceedingly large 
and the output no longer tracks the input. To 
illustrate this, Figure 2 depicts the magnitude of the 
quantiser input for the implementation of a 5th order 
feedforward SDM (Reefman, et al., 2005), intended 
to be used for analog to digital conversion in audio 
applications. The SDM is lowpass, and has a corner 
frequency of 80kHz, for a sample rate of 64x44.1 
kHz. We have assumed constant input u with all 
initial conditions set to zero. It can easily be 
verified that the dynamics are bounded for an input 
of 0.7, unbounded for input 0.9, and unbounded 
with finite escape time (in a sense defined later in 
the paper) for an input of 1.1. 
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Figure 2. The magnitude of the quantiser input 
for different values of input signal u. 
 
Besides boundedness of solutions, the avoidance of 
low-period solutions is also an important design 
consideration for commercial SDMs, primarily 
because they represent high frequency tones in the 
output bitstream that were not present in the input 
signal. It is therefore important to be able to 
identify initial conditions that will lead to aperiodic, 
preferably chaotic, behaviour. Our goal in this 
paper is to present a mathematical framework, 
based on systems theory, to describe the 
boundedness and aperiodicity of solutions of 
SDMs. We will focus on DC inputs, since this 
represents the most relevant practical situation. 
The organisation of the rest of this paper is as 
follows. Section 2 introduces concepts from control 

theory, as applied to the general class of maps to 
which most SDMs belong. Such an introductory 
section is necessary in order to bridge the gap in 
terminology and understanding between the SDM 
designers and the systems theorists. It also 
introduces the concepts of finite escape time and 
well-posedness for SDMs and gives a canonical 
description of the type of SDMs that are studied in 
this paper. Section 3 provides several interesting 
results concerning the boundedness properties of 
solutions of arbitrary SDMs. Notably, we derive a 
proof that the dynamics of an SDM are bounded 
only if the output bitstream is also bounded. This 
allows the boundedness properties to be rephrased 
in terms of the constraints on the dynamics imposed 
by output sequences. Section 4 provides further 
results which lead to a topological understanding of 
the nature of bounded solutions and an indication of 
the existence of aperiodic and chaotic solutions. 
Finally, Section 5 provides conclusions and 
discussion of directions for future research. 
 
2. SYSTEM THEORETIC PROPERTIES AND 

NORMAL FORM FOR SDMS  
 
In this section we describe some system theoretic 
properties of SDMs which will be of importance 
when studying the boundedness of solutions of 
SDMs. For further system theoretic background we 
refer the reader to (Bernstein, 2005; Chen, 1998). 
Consider an n-dimensional SDM of the form 

 
( sgn( ))s As B u y

y Cs
σ = + −⎧

⎨ =⎩
 (1) 

where u denotes the input which is assumed to be 
constant with |u| < 1, y denotes the quantiser input, 
and σs denotes the forward shift of s, i.e., 

( ) ( 1)s k s kσ = +  for all k ∈] . We assume that A is 
a lower triangular matrix with diagonal elements 
equal to 1 and B,C are matrices of appropriate 
dimensions. Recall that the matrix pair (A,B) is 
called controllable if it satisfies one of the 
following equivalent conditions: 
 1rank( ... ... )nB AB A B n− =  (2) 
or 

( )rank I A B nλ − =  for all eigenvalues λ of A (3) 
Further, recall that the matrix pair (C,A) is called 
observable if the matrix pair (AT,CT) is controllable. 
With a slight abuse of terminology, we will call the 
SDM (1) controllable if (A,B) is controllable while 
we will call it observable if (C,A) is observable. 
Write B= col(b1,… , bn), C= (c1,… ,cn), and let ai,j 
(i,j=1,…,n) denote the entries of A. By employing 
the condition (3) and using the properties of A, the 
following result on controllability and observability 
is almost immediate. 
 
Proposition 2.1. The SDM (1) is controllable if and 
only if 1

1 1,1
0n

i ii
b a−

+=
≠∏ , and it is observable if and 

only if 1
1,1

0n
n i ii

c a−

+=
≠∏ . 

In the rest of the paper we will assume that the 
SDM (1) is observable. This assumption can be 
made without loss of generality, because non-



   

observability would imply the presence of internal 
dynamics that do not contribute to the behavior of 
the quantiser input y. 
Define the transfer function of the SDM (1) by 

1( ) ( )G z C zI A B−= −  and recall that when (1) is 
observable we have that ( ) ( ) / ( )G z q z p z=  where 
p(z)=det(zI-A)= (z−1)n and deg(p)> deg(q). If we 
then write 1

0
( ) n m

mm
q z q z−

=
= ∑ , we have that the 

quantiser input y satisfies the following difference 
equation: 

1 1

0 0
( 1) ( ) ( sgn( ( ))

n n
n m

m
m m

n
y k m q u y k m

m

− −
−

= =

⎛ ⎞
− + = − +⎜ ⎟

⎝ ⎠
∑ ∑ (4) 

We will say that a solution of (1) has finite escape 
time if there exists a *k ∈`  such that 
sgn(y(k))=sgn(y( *k )) for all *k k≥ . Further, we 
will call the SDM (1) well-posed if it has no 
solutions with finite escape time. We then have the 
following result on well-posedness.  
 
Proposition 2.2. The SDM (1) is well-posed if and 
only if 1

0
: 0n

mm
qβ −

=
= >∑ . 

Proof. (Sketch) Assume that 0β ≤ . Consider a 
solution of (4) with y(k)>0 for k=0,...,N, N>n. 
Define yk:=y(k) for k=0,...,n-1. Define 

: ( 1) 0uε β= − ≥ . It may then be shown that 

 
1

0
( ) ( ) ( ) ( ,..., )

n

m m
m

y k P k y Q k k n Nε
−

=

= + =∑  (5) 

 where 

 

1

1

1

0

( 1)( ) ( ),
!( 1)!

1( ) ( )
!

n m n

m
r

r n m

n

r

P k k r
m n m

Q k k r
n

− +

=
≠ −

−

=

−
= +

− −

= +

∏

∏
 (6) 

Thus we see that the solution is polynomial in k 
with coefficients of k0,…,kn-1 depending linearly on 
y0,…,yn-1 and coefficient of kn equal to 0ε ≥ . This 
means that we can choose y0,...,yn-1 in such a way 
that all coefficients of y(k) are positive. This gives 
that y(k)>0 for all 0k ≥ , and hence y(k) has finite 
escape time. This establishes our claim.          � 
To check well-posedness, the following result can 
be used. 
 
Lemma 2.3. If (1) is observable, we have that 

1

1 1,
1

n

n i i
i

b c aβ
−

+
=

= ∏ . 

Proof. Recall that if (1) is observable, it follows 
from Cramer’s Rule that  ( ) adj( )q z C zI A B= −  
where adj(M) denotes the adjoint (see, e.g. 
(Bernstein, 2005)) of the square matrix M. This 
then gives that (1) adj( )q C I A Bβ = = − . Using the 
properties of A, it is straightforwardly checked 
that 1

1 1,1
adj( - ) n

n i ii
I A a−

+=
= ∏ , while all other entries 

of adj( - )I A  are zero. This immediately establishes 
our claim.            � 
 

As a consequence of Proposition 2.1 and Lemma 
2.3 we have that the SDM (1) is well-posed only if 
it is controllable. 
In studying general properties of systems, it is often 
useful to consider canonical forms that are 
equivalent to a whole class of systems up to a 
coordinate transformation. In linear systems theory 
two of the most well-known canonical forms are 
the so-called controller canonical form and the 
observer canonical form. However, for SDMs these 
canonical forms are perhaps not the most insightful 
canonical forms in terms of the physical 
interpretation of the SDM. We therefore define a 
controller canonical SDM form as 

 
( sgn( ))c c c c c

c c c

s A s B u y
y C s

σ = + −⎧
⎨ =⎩

 (7) 

where Ac is a matrix with diagonal elements equal 
to 1, (Ac)i+1,i=1 (i=1,…, n-1) and all other entries 
zero, Bc = col(1,0,…,0), and Cc is arbitrary. 
 
Proposition 2.4. Every controllable SDM (1) 
admits a controller canonical SDM form in the 
sense that there exists an invertible matrix V such 
that sc :=V-1 s satisfies (7). 
Proof. Assume that (A,B) is controllable and define 
the matrix V=(v1,…,vn) where vi=(A-I)i-1B(i=1,…,n). 
By performing elementary column operations, it is 
straightforwardly shown that rank(V) = rank(B 
…An-1B), which implies that V is invertible. Note 
that v1=B, which implies that 1

cV B B− = . It is 
further straightforwardly shown that Avi= vi+1+vi (i 
= 1,…, n-1). Also, it follows from the Cayley-
Hamilton Theorem (see, e.g. (Bernstein, 2005)) that 
(A-I)n-1 = 0, which allows one to show that Avn=vn. 
All identities obtained above then straightforwardly 
imply that  V-1AV = Ac and hence that sc := V-1s 
satisfies (7).   
 

3. RESULTS ON BOUNDEDNESS OF 
SOLUTIONS OF SDMS 

 
Assuming y(1)>0, for a well-posed SDM it follows 
from Section 2 that there are infinite sequences 

,m mN N+ −  such that sgn(y(k))=1 for 

1{ 1,..., }r r rk P P N +
+∈ + +  and sgn(y(k))=-1 for 

1 1{ 1,..., }r r rk P N P+
+ +∈ + + , where r ∈`  and 

1
: ( )r

r m mm
P N N+ −

=
= +∑ . Similar sequences can be 

defined for y(1)<0. In this section we will give 
necessary conditions for boundedness of solutions 
in terms of these sequences. 
 
Theorem 3.1. Assume that the SDM (1) is well-
posed. Then a solution of (1) is bounded only if the 
lengths of bit streams associated with the solution 
are bounded. 
 
Proof. Consider a solution of (4) with y(k)>0 for 
k=0,...,N, N>n. Define yk:=y(k) for k=0,...,n-1. 
Consider the expression for the solution given in 
(5) and (6), and define the polynomial 

1

0
( ) | ( ) |n

mm
P k P k−

=
= ∑ . Note that for all 0k ≥  we 



   

have that ( ) | ( ) |mP k P k> . Then the fact that y(N)>0 
implies by (5) that 

 

1

0

1 1

0 0

( ) | | ( )

| ( ) || | ( ) | |

n

m m
m

n n

m m m
m m

Q N P N y

P N y P N y

ε
−

=

− −

= =

< ≤

<

∑

∑ ∑
 (8) 

which gives that 

 
1

0

( )| | | |
( )

n

m
m

Q Ny
P N

ε
−

=

>∑  (9) 

Since deg(Q)=N, deg(P)=n-1, this gives that 
1

0
| |n

mm
y−

=
→ ∞∑  as N → ∞ . In a similar way it 

may be shown that solutions become unbounded if 
the lengths of negative bit streams become 
unbounded. Thus our claim is established. � 
 
The following result and its related corollaries 
provide more stringent necessary conditions for 
bounded solutions. 
 
Theorem 3.2 Consider a solution of a well-posed 
SDM with |u|<1. Define 

 
1

: ( 1) ( 1)
r

r m m
m

M u N u N+ −

=

= − + +∑  (10) 

Then the solution is bounded only if the sequence 
Mk ( k ∈` ) is bounded. Moreover, for a one-
dimensional SDM, this condition is also a sufficient 
condition for boundedness. 
 
Proof. Consider a bounded solution s(k) of the 
SDM. Then obviously we have that s1(k) is 
bounded. It is straightforwardly checked that 

 
1

1

1
1

( )

(0) ( 1) ( 1)

r

m m
m

r

m m
m

s N N

s u N u N

+ −

=

+ −

=

⎛ ⎞+⎜ ⎟
⎝ ⎠

= + − + +

∑

∑
 (11) 

which establishes our claim. Since for a one-
dimensional SDM s1(k) is the only state space 
variable, sufficiency for one-dimensional SDMs is 
immediate.    � 
 
Corollary 3.2. Consider a solution of a well-posed 
SDM with |u|<1. If the solution is bounded and 
u ∈_ , we have that 

 2

1

1 2 1 2( )( , : )

( 1) ( 1) 0
r

m m
m r

r r r r r r

u N u N+ −

=

∀ ∈ ∃ ∈ < <

⎛ ⎞
− + + =⎜ ⎟

⎝ ⎠
∑

` `
 (12) 

 
Proof. From the Bolzano-Weierstrass Theorem it 
follows that the bounded sequence Mr has a 
convergent subsequence, i.e., there exists a 
sequence ( )l lρ ∈`  with lρ → ∞  as l → ∞  such that 
lim

ll M ρ→∞  exists. As a consequence, we have that 
* *( 0)( )( , )(| | )l l M M

σ τρ ρε σ τ ε∀ > ∃ ∈ ∀ > − <`  (13) 
Assume that u ∈_ , and write u = a/b , where 

,a b∈ ∈] `  and |a| < b. Choose ε< 1/b and let 
r ∈`  be given. Then according to (13) there exist 
r<r1:=ρσ<r2:=ρτ such that 

1 2
| |r rM M ε− < , which 

gives that 
1 2

| | 1r rbM bM bε− < < . Noting that 

1 2
,r rbM bM ∈] , this implies that in fact 

1 2
| | 0r rbM bM− = , which establishes (12). � 
 
Corollary 3.3. Consider a bounded  solution of a 
well-posed SDM with |u|<1 and u ∈_ . Define 
σ0:= 0, and define ρk, σk recursively in the 
following way: 

 

{

( )}
{

}
1

1

1 1

: min | ( : )

( 1) ( 1) 0

: min |

( 1) ( 1) 0
k

k k

r
m mm r

k k

r
m mm

r r r r

u N u N

r

u N u N
ρ

ρ σ

σ ρ

+

+

+ −
=

+ +

+ −
=

= > ∃ < < +∞

− + + =

= >

− + + =

∑

∑

 (14) 

Note that from Corollary 4.2 the sequences ρk, σk 
are well-defined and infinite. Then there exists a 

*k ∈`  such that for all *k k≥  we have that 
ρk+1=σk+1. 
Proof. Define the index sets : { ,..., },k k

k

ρ σ
∈

= ∪̀I  

:= −`J I . Due to the boundedness of the 
sequence ( )r rM ∈` , the sequence ( )j jM ∈J  is also 
bounded. Assume that our claim does not hold. 
This implies that the index set J is infinite. Using a 
similar argument as in the proof of Corollary 3.2, 
this implies that there exist j1,j2 with 1 2j j< < +∞ , 

such that 2

1
( 1) ( 1) 0j

m mm j
u N u N+ −

=
− + + =∑ . Since 

the sequences ρk, σk are infinite, we have that there 
exists a k ∈` such that σk<j1< ρk+1. However, this 
contradicts the definition of ρk+1. This establishes 
our result.                                                           � 
 
4. TOPOLOGICAL RESULTS CONCERNING 

THE BOUNDEDNESS OF SDMS 
 
Throughout this section, we consider an SDM in 
the controller canonical form (7). For brevity’s 
sake, we will omit the c subscripts in the 
description of the sigma delta modulator. We 
denote the vector col(0,0,...,1)  by en. 
 
Theorem 4.1 Let ( ), 0s k k ≥  be a bounded 
solution of the SDM and ( ) : sgn( ( )), 0b k Cs k k= ≥  
be the corresponding bit sequence. Then for any 
other bounded solution ( )s k�  with the same bit 
sequence, there exists α ∈\  such that 

( ) ( ) ns k s k eα− =�  for all 0k ≥ . 
Proof: By the conditions of the theorem, ( )s k and 

( )s k�  satisfy 

 
( )
( )

s As B u b
s As B u b

σ
σ

= + −
= + −� �

 (15) 

Therefore, the difference s sξ = − �  satisfies the 
difference equation Aσξ ξ= , which gives that 

( ) (0)kk Aξ ξ= . It can be verified (Reefman, et al., 

2005) that for k ≥ n,  1

1
( )nk

r rr
A I k Tβ−

=
= + ∑  where 



   

!
!( )!( ) k

r r k rkβ −=  and the matrices Tr satisfy 

(Tr)ij=δi,j+r (i,j = 1,…n) with δij denoting the 
Kronecker delta. Thus the second component of the 
vector ξ (k) is given by, 2 1 1 2( ) ( ) (0) (0)k kξ β ξ ξ= + . 
Notice that ( )i kβ → ∞  as k → ∞ , for i=1,…,n-1. 
Therefore, if 1(0) 0ξ ≠ , then 2 ( )kξ  is unbounded. 
At the same time, ξ (k) is bounded because by the 
conditions of the theorem both ( )s k and ( )s k�  are 
bounded. Hence, we conclude that 1(0) 0ξ = . 
Repeating this reasoning for the remaining 
components, we conclude that (0) 0iξ =  for 
i=1,…,n-1, while the last component (0)nξ  can be 
arbitrary. Hence, (0) neξ α=  for some α ∈\ . 
Since k

n nA e e= , we obtain ( ) nk eξ α=  for all 
0k ≥ . This completes the proof.   

   � 
Theorem 4.2 Consider an SDM in the controller 
canonical form. Let s(k), 0k ≥  be a bounded 
solution of the SDM and b(k) := sgn(Cs(k)), be the 
corresponding bit sequence. Suppose there is δ> 0 
such that |Cs(k)|>δ for all 0k ≥ . Then there exists 
ε>0 such that for all |α|<ε the sequence 

( ) : ( ) ns k s k eα= +�  is a solution of the SDM and the 
corresponding bit sequence equals b(k). 
Proof: We will show that ( )s k�  satisfies (7). First 
note that due to the fact that Aen=en we have that 
 ( ( ) ) ( )n nA s k e As k eα α+ = +  (16) 
Next, assume that y(k) = Cs(k)>0. It then follows 
from the condition of the theorem that y(k)>δ. 
Therefore, it follows from the choice of α and ε 
that ( ( ) ) | || | | | 0n n nC s k e Ce Ceα δ α δ ε+ > − > − > . 
Thus, 
 sgn( ( ( ) )) sgn( ( ))nC s k e y kα+ =  (17) 
Combining (16) and (17) we then obtain 

 
( ) ( sgn( ( )))

( ) ( sgn( ( )))
( 1) ( 1)

n

n

As k B u Cs k
As k e B u y k
s k e s k

α
α

+ −
= + + −
= + + = +

� �

�
 (18) 

for all 0k ≥ . Hence, ( )s k�  is a solution of (7) and it 
has the bit sequence b(k).    � 
 
The conditions of Theorem 2 are satisfied, for 
example, for periodic solutions s that satisfy 
Cs(k) ≠ 0, 0k ≥ . Thus, we can formulate the 
following corollary. 
 
Corollary 4.1 Let s(k) be a periodic solution of an 
SDM such that Cs(k) ≠ 0, 0k ≥  . Then for all 
sufficiently small α, s(k) + αen is a periodic 
solution of the SDM with the same bit sequence. 
 
We note that a different proof of this corollary was 
provided in (Reefman, et al., 2005), but that work 
only considered periodic solutions.  
Next we present results on generic boundedness 
properties of solutions of SDMs. 

Theorem 4.3 Consider an SDM with 2n ≥ . The set 
of all bounded solutions is isomorphic1 to a subset 
of 2\ . 
Proof: We first introduce some notations. By bold 
font letters we will denote sequences. For example, 
a solution of the SDM s(k), k = 0,1,…, is denoted 
by s. The bit sequence b(k); k = 0,1,…, is denoted 
by b. Λ denotes the set of all bounded solutions of 
(7), and BΛ denotes the set of all bit sequences b 
corresponding to the solutions ∈ Λs . By the 
construction of the set BΛ, for any BΛ∈b  there is a 
solution * ∈ Λbs  which has the bit sequence b. By 
Theorem 4.1, any other bounded solution of (7) sb 
with the same bit sequence b can be represented as 
sb = *

bs + αen for some α ∈\ . (Here, by adding the 
vector αen to the sequence *

bs  we mean that this 
vector is added to every element of the sequence.) 
Denote bA  to be the set of all α ∈\  such that 
s= *

bs +αen is a bounded solution of (1).  
Construct the set *: { , , }nM e Bα α Λ= + ∈ ∈b bs bA . 
By the construction, M=Λ. Denote 

: {( , ) : , }Bα α Λ= ∈ ∈bb bP A . Thus Λ ≅P . 
For a bit sequence b, define the function 
r(b):=

1
2 ( )k

k
k+∞ −

=∑ b . In other words, the bit 
sequence b is a binary representation of the decimal 
number d=r(b). By DΛ ⊂ \  we denote the set of 
all numbers d = r(b) such that BΛ∈b , i.e., 

{ : ( ), }D d d r BΛ Λ= ∈ = ∈b b\ . Notice that there 
is a one-to-one correspondence between a number 
and its binary representation. Therefore, B DΛ Λ≅ . 
Hence, 1

*
( )

: {( , ) : , }
r d

d d Dα α − ΛΛ ≅ ≅ = ∈ ∈P P A  

where r-1(d) is the binary representation of d. 
Notice that * 2{( , ) : , }d dα α⊂ ∈ ∈ =\ \ \P . This 
proves the claim of the theorem.   � 
 
Roughly speaking, Theorem 4.3 states that the set 
of all initial conditions corresponding to bounded 
solutions is not “thicker” than 2\ . This allows us 
to formulate the following corollary. 
 
Corollary 4.2 Consider an SDM  with 3n ≥ . Then 
for almost all initial conditions the corresponding 
solutions of SDM  are unbounded. 
 
The result of Corollary 4.2 explains why for two-
dimensional SDMs the bounded solutions are 
relatively abundant, while for higher-dimensional 
SDMs it is much more difficult to find bounded 
solutions. It also has the implication that for higher-
order SDMs small perturbations may lead to an 
otherwise bounded solution becoming unbounded.  
The next result concerns bounded solutions of 
SDMs with periodic or asymptotically periodic bit 
sequences. It is said that a bit sequence b is periodic 
if there exists T > 0 such that b(k) =b(k+T) for all 

                                                 
1 We say two sets are isomorphic (denoted by ≅ ), when 
there is a one-to-one correspondence between the sets. 



   

0k ≥ . A bit sequence b is called asymptotically 
periodic if it is periodic after some time instant N > 
0, i.e., if b(k) = b(k + T) for all k N≥ . 
 
Theorem 4.4 Consider an SDM, with 2n ≥ . The 
set of all bounded solutions with bit sequences that 
are either periodic or asymptotically periodic is 
isomorphic to a subset of ×\ _ . 
Proof: Similar to the proof of Theorem 4.3, we 
introduce the following notations. Let Ξ  denote the 
set of all bounded solutions of (7) with bit 
sequences that are either periodic or asymptotically 
periodic. By BΞ denote the set of all bit sequences b 
corresponding to the solutions ∈ Ξs , and define  

{ : ( ), }D d d r BΞ Ξ= ∈ = ∈b b\ . As in the proof of 
Theorem 4.3, it can be shown that 

1
*

( )
: {( , ) : , }

r d
d d Dα α −Ξ ΞΞ ≅ = ∈ ∈P A . By the 

construction of the set DΞ , any number d DΞ∈ has 
a periodic (after some digit order number) binary 
representation. This can happen if and only if d is a 
rational number. Therefore, DΞ ⊂ _ . Thus 

 
1

*
( )

: {( , ) : , }

{( , ) : , }
r d

d d D

d d

α α

α α

−Ξ ΞΞ ≅ = ∈ ∈

⊂ ∈ ∈\ _

P A
 (19) 

This completes the proof.     � 
 
Corollary 4.3 Consider an SDM with n = 2. The set 
of solutions of the SDM starting in any open set of 
initial conditions contains either an unbounded 
solution or a bounded solution with a bit sequence 
that is neither periodic nor asymptotically periodic. 
Proof: Consider some open set of initial conditions  

2Θ ⊂ \ . Suppose that the set of all solutions of an 
SDM starting in Θ does not contain unbounded 
solutions (if it does, then the claim is proved). Since 
Θ is open, it contains an open subset Ω that is 
isomorphic to 2\ . Therefore, the set of solutions 
starting in Ω is isomorphic to 2\ . Assume that all 
solutions starting in Ω have bit sequences that are 
asymptotically periodic. By Theorem 4.4, we would 
then have that this set of solutions would be 
isomorphic to a subset of ×\ _  However, this 
would imply that Ω is also  isomorphic to a subset 
of ×\ _ , which gives a contradiction.   � 
 
It follows from Corollary 4.3 that if for a two-
dimensional SDM one can identify an open set of 
initial conditions that lead to bounded solutions, 
there exist aperiodic solutions amongst these 
solutions. It is well-known (Farrell and Feely, 1998; 
Schreier, et al., 1997) that indeed one can identify 
these sets of initial conditions. Thus, this indicates 
that there may be chaotic solutions for two-
dimensional SDMs.  
 

5. CONCLUSION 
 
The work described herein is concerned with the 
boundedness of solutions of SDMs. Our approach 
has been to rephrase the sigma delta modulator as a 
controllable and observable discrete time system. 

We have shown that typical SDM designs fall into 
such a category. We further define an SDM as well-
posed if it has no solutions which diverge to infinity 
in finite escape time. From an SDM design point of 
view, the input signal u is always confined to a 
magnitude less than 1, and the coefficient vector C 
is strictly positive for a lowpass SDM. Thus typical 
SDM designs are implicitly well-posed. This allows 
us to show that an SDM yields bounded behaviour 
only if the length of the associated output bit 
streams are also bounded. To the best of the 
authors’ knowledge, this result has never before 
been derived. Its strength lies in that it allows the 
boundedness properties to be rephrased in terms of 
the constraints imposed by the output bits. Future 
research along this direction is concerned with 
proving the converse, and with identifying bounded 
solutions for commercial SDM designs. 
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