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ABSTRACT 
 
This paper presents a formal derivation of the Loudness Overflow Effect (LOE), which describes the impact of 

nonlinear distortion on loudness. Computational analysis is then performed, comprised of two experiments involving 
two compressive static nonlinearities, and using two well-known time-varying loudness models. The results 
characterize the nonlinearities in terms of LOE as a function of frequency and of listening level in the case of 250-
ms pure-tone stimuli, and in terms of the traditional equal-loudness-level contours. The analysis is then extended to 
synthesized wind instruments for one of the nonlinearities. The effect of the nonlinearity on loudness as a function 
of musical note fundamental frequency and listening level is described for various synthesized instruments. 

 
 

 

1.  INTRODUCTION 
 

 The present work analyses the effects of 
compressive static nonlinear distortion on the loudness 
function in the case of pure-tone stimuli, as used to 
derive the traditional equal-loudness-level contours, 
e.g., [1]. In a previous study [2], the Loudness 
Overflow Effect (LOE) was introduced to describe the 
effects of nonlinear distortion on loudness. This study 
seeks to establish a framework for the characterization 

and investigation of audio system nonlinearities in 
terms of signal-dependent LOE behavior. 
 A formal framework is given to describe LOE and 
followed by the results of a computational analysis 
based on the loudness models of Zwicker and Fastl [3] 
and Glasberg and Moore [4]. Initially, two experiments 
are presented and used to characterize a pair of 
compressive static nonlinearities. The loudness models 
are used to predict LOE behavior as a function of 
frequency and of listening-level. The loudness models 
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are then used to produce the traditional equal-loudness-
level contours. In each case, results describe deviations 
in the loudness function caused by nonlinearity. Next, 
two further experiments extend this analysis from the 
artificial stimulus of the pure-tone signal to the more 
realistic stimulus of the synthesized musical wind-
instrument note. Finally, the loudness model of [4] is 
used to predict LOE behavior as a function of musical-
note frequency and listening-level, and to produce 
equal-loudness-level contours for the musical notes. 
The loudness model is also used to produce a time-
varying LOE function for monophonic synthesized 
music signals at various listening levels. Brief 
discussion of the psychoacoustics of LOE and of the 
two models is given. 
 
2.  LOUDNESS OVERFLOW EFFECT 

 
The compressive type nonlinearity is common to 

audio systems [5, 6], and there is generally an 
expectation that a compressive nonlinearity will result 
in reduced loudness, as shown in [7]. Yet distortion 
products introduced by the nonlinearity may 
compensate for the amplitude compression in the 
loudness function [2]. In generalized loudness gain 
terms, LOE can be formalized as follows. Where the 
time-varying loudness ( L ), of the time-domain signal 
amplitude ( x ), at time ( t ) is denoted ),( txL  and where 
the nonlinear input-output function can be described 
with a function )(xf , LOE is defined as: 

),()),((),( txLtxfLtfLOE −=   (1) 

Positive values of LOE indicate an increase in loudness 
and negative values indicate a decrease in loudness as a 
result of the nonlinearity. 
 
3.  PURE-TONE LOE(ƒ, ℓ) 
 

The loudness models of Zwicker and Fastl [3] and 
Glasberg and Moore [4] were used to produce a 
normalized LOE function of frequency and of listening 
level, using 250-ms duration pure-tone sinusoidal and 
nonlinearly distorted sinusoidal signals as stimulus.  
Each loudness model was input with pure-tone 
sinusoidal signals at frequencies between 20 – 10,000 
Hz, at simulated peak levels between 40 – 120 dB SPL. 
A compressive nonlinearity was then applied to each 
signal, the resulting signal input to the model. 
Difference in maximum short-term loudness was 
calculated according to Eq. 1 for each pair of signals 
and plotted as LOE graphs as a function of frequency 
and as a function of listening-level. 
 

3.1. Characterization of the Nonlinear Functions 
 Two typical nonlinear functions were implemented 
according to the following expressions: 
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 Fig. 1(a) shows the normalized input-output 
functions of Eq. 2 and 3 respectively. Fig. 1(b) shows 
the peak compression effects of Eq. 2 and 3. Figs. 1(c) 
and 1(d) show the power spectral density functions of a 
1 kHz pure-tone (at unity) processed with Eq. 2 and 3 
respectively. Eq. 2 can be characterized as a smooth, 
gradual-onset, low-order, symmetrical, saturating 
nonlinearity with a 1-kHz THD+N value of ~14% and 
an equivalent peak compression of ~6 dB (Fig. 1(b)). 
Eq. 3, taken from Schetzen [8], can be characterized as 
a soft-clipping function featuring a discontinuity of 
slope and is of less-gradual onset, low-order, 
symmetrical, saturating nonlinearity with a 1-kHz 
THD+N value of ~22% and an equivalent peak 
compression of ~6 dB (Fig. 1(b)). The 1-kHz power 
spectral density functions (Fig. 1(c) and 1(d)) feature 
odd-order harmonic distortion products which are the 
result of symmetry in the nonlinearities. 

 
Figure 1. (a) Normalized input-output functions of Eq. 2 (black) and 
Eq. 3 (grey). (b) Peak compression effects of Eq. 2 (black) and Eq. 3 
(grey) on a sinusoidal signal. (c, d) Power spectral density, 1 kHz as 
processed with Eq. 2 (left, lower) and Eq. 3 (right, lower). 
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Figure 2 (left panel) LOE as a function of frequency. Figure 3 (right panel) LOE as a function of listening-level. 250-ms pure-tone signals. 
Calculated from results taken from the models of [3] (a, c) and [4] (b, d). Compressed using Eq. 2 (a, b) and Eq. 3 (c, d).  
 
3.2. Stimuli 
 The loudness model was operated at 44.1 kHz and 
250-ms pure-tone sinusoidal signals were generated 
digitally at the same rate. The pure-tone signals were 
then 100 times oversampled, nonlinearly processed at 
unity and decimated to the original sampling rate with 
an eighth-order anti-alias filter. This prevented the 
introduction of aliased (under-sampled) ultrasonic 
harmonic distortion products into the sonic range. 

 3.3. Results and Discussion 

 Figures 2 and 3 show LOE as a function of 
frequency and of listening-level, for Eq. 2 and Eq. 3, 
and for the models of [3] and [4]. Some features are 
consistent for both models and both nonlinearities. The 
results feature a strong dependence on frequency and 
listening-level. At listening levels between 60 – 100 dB 
SPL the largest positive LOE values are seen. At high 
frequencies (>2 kHz) harmonic distortion products 
contribute little to the loudness sum and so the result is 
a reduction in loudness (negative LOE values). At 
lower frequencies (< 2 kHz), an increase in loudness is 
shown (positive LOE values). For both nonlinearities 
and both loudness models, a peak compression of ~6 
dB (Fig. 1(b)) has resulted in a net increase of loudness 
level at low frequencies and at medium listening levels. 
In the most extreme case, for the model of [4] the peak 
compression of ~6dB has resulted in an increase in 
loudness level of ~6 dB (Fig. 3(d)). While the peak 
compression produced by both nonlinear functions is 
almost identical at ~6dB, the resulting LOE functions 
are quite different. The greater magnitude of harmonic 
distortion products of Eq. 3 produce predictably greater 

effects on the LOE function than those shown as a 
result of Eq. 2. 
 There are two key differences between the models. 
First, [3] applies the Bark scale and [4] applies the 
equivalent rectangular bandwidth (ERB) scale. Second, 
the model of [4] is designed to account for partially-
masked or sub-threshold loudness, where multiple sub-
threshold components are able to sum to audibility. The 
Bark scale is derived by the classical masking 
experiment method involving a narrowband masker and 
probe tone [9], and has since been superseded by the 
ERB scale applied in the model of [4], which is derived 
according to the notched-noise masker method [10]. 
The bandwidths of the Bark scale are significantly 
wider than that of the ERB [11] and therefore predict 
greater masking of the harmonic distortion products. In 
combination with sub-threshold partial-masking 
behavior, it appears plausible that these two differences 
may account for the difference in results. 

4.  EQUAL-LOUDNESS-LEVEL CONTOURS 

 A recursive algorithm was used to simulate equal-
loudness-levels similar to the method-of-adjustment 
task employed in traditional determination of equal-
loudness-level contours [12]. For each sound pressure 
level, the loudness level (phon) of a 250-ms 1-kHz tone 
was calculated and 250-ms tones at various other 
frequencies were adjusted in sound pressure level until 
their simulated loudness level was equal to that of the 1 
kHz tone. The algorithm recursively adjusted the sound 
pressure level of the target tone by a value inversely 
proportional to the difference in predicted loudness 
level of the reference 1-kHz tone until convergence to 
within 1 dB (phon). The tones were then processed by 
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the nonlinear function (Eq. 2 and 3) and the process 
was repeated. Pure-tone signals were produced digitally 
at a sample rate of 44.1 kHz and processed using the 
over-sampled method described previously. 
 

 
Figure 4. 30 - 100 phon equal-loudness-level contours at 10 dB 
intervals. Taken from the model of [3] (a, c) and [4] (b, d), processed 
with Eq. 2 (a, b) and Eq. 3 (c, d). Solid line indicates processed 
signals and dotted line indicates unprocessed signal reference. 
 
 The variation in equal-loudness-level contours (Fig. 
4) shows similar dependence on frequency and 
listening-level as in section 1. Maximum effect can be 
observed in the 50 – 80 dB SPL range, where maximal 
positive LOE effects at 1 kHz interact with maximal 
negative LOE effects at other frequencies to produce 
maximum deviation from the original contours. 
Maximum deviation of ~6 dB is seen around the 3-kHz 
range and at very high frequencies (>10 kHz) in Fig. 
4(d). 
 Qualitatively, the nonlinearities have caused a 
significant flattening of the ‘speech range’ minima, 
which is most pronounced in Fig. 4(d). Also, the 
unprocessed curves of the Glasberg and Moore model 
appear to conform well to the general features of the 
equal loudness contours of literature (e.g., [13]), while 
the derived contours of the Zwicker and Fastl model 
appear strikingly different to the data of literature. 
 The recent work of Suzuki and Takeshima [13] 
analyzed systematic deviation in equal-loudness-level 
contours throughout the history of the literature. In 
particular, this study showed large disparity between 
the data of early literature (e.g., Fletcher and Munson 
[1] and Robinson and Dadson [14]) and that of recent 
literature (e.g., Takeshima et al. [15]). Notably, large 
deviation in the low frequencies and speech range was 

shown which is not dissimilar to that produced here. In 
light of the present study, it might be concluded that the 
similarity in deviation perhaps implies that there was 
significant nonlinearity present in the apparatus of the 
earlier studies. 
 
5.  SYNTHESIZED MUSIC NOTES LOE (ƒ, ℓ) 
 
 A simple, robust digital additive synthesis model 
was chosen for the following analysis. The model is 
based on that described by Horner and Ayers [16] and 
implemented by Rocamora et al [17]. The model is able 
to produce musical notes of arbitrary duration for the 
following instruments: horn, clarinet, oboe, bassoon, 
flute, piccolo, saxophone, trumpet, tuba and trombone. 

250-ms duration musical notes were synthesized at 
fundamental frequencies between 20 – 5,000 Hz. The 
signals were then processed using Eq. 3. The loudness 
model of Glasberg and Moore [4] was used to estimate 
loudness for the unprocessed and processed signals at 
simulated listening-levels of 30 – 120 dB SPL. Then the 
LOE function of frequency was calculated according to 
the difference in maximum predicted short-term 
loudness-level of the un-processed and processed 
signals. 
 250-ms duration synthesized notes were generated 
digitally at the sample rate of 44.1 kHz and the over-
sampling method described previously was used. The 
signals were then processed by the over-sampled 
nonlinear function (Eq. 3). Fig. 5(a) (upper) shows the 
power spectral density for notes generated with an 0f  
of 1 kHz for each instrument and Fig. 5(b) (lower) 
shows the effects of the nonlinear processing. 
 Fig. 6 shows LOE as a function of frequency for 
synthesized notes in the range 50 – 5,000 Hz and for the 
various instruments at simulated sound pressure levels 
of 60 - 100 dB. Strong dependence on frequency is 
evident for all instruments and wide variation exists 
among instruments. For all instruments and levels there 
was a general trend of declining LOE values towards 
higher frequencies (> 2,000 Hz), which is also evident 
in the means (dark line), and is consistent with the 
results of the previous pure-tone experiment. This 
suggests that repertoire and instrumentation will have a 
strong influence on the results in the case of music 
signals. 
 Frequency-dependent variation in LOE value for 
any given instrument may be explained in terms of an 
interaction between spectral content of the signal and 
variation in masking effects, which results from 
variation in equivalent rectangular bandwidths. 
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Figure 5. Power spectral density of synthesized musical notes with 1-kHz fundamental frequency. (a) Unprocessed signals (upper). (b) Signals 

processed with Eq. 3 (lower). 
 

 
Figure 6. 60, 80 and 100 dB SPL LOE as a function of 0f  for 
synthesized 250-ms notes, calculated from the results of the model of 
[4]. (a) 60 dB SPL (left upper). (b) 80 dB SPL (right upper). (c) 100 
dB SPL (left lower). 
 
6.  EQUAL-LOUDNESS-LEVEL CONTOURS 
FOR MUSICAL NOTES 

 
 The simulated method of adjustment algorithm of 
experiment 2 was employed using synthesized horn 
instrument musical note signals of 250-ms. The 
algorithm recursively adjusted the sound pressure level 
of the target note by a value inversely proportional to 
the difference in predicted loudness level of the 
reference musical note ( 0f  1 kHz) until convergence to 

within 1 dB (phon). The signals were then processed by 
the nonlinear function (Eq. 3) and the process was 
repeated.  
 The variation in equal-loudness-level contours (Fig. 
7) shows similar dependence on frequency and 
listening-level as in experiment 3. Maximum effect can 
be observed in the 50 – 90 dB SPL range and in the 
note fundamental frequency range of 3 – 5 kHz, where 
a maximum deviation of ~5 dB is seen. The qualitative 
flattening of the speech-range minima is consistent with 
the results of the previous experiment. 
 

 
Figure 7. Equal-loudness-level contours for synthesized horn notes at 
10 dB intervals for levels between 30 – 100 phon, taken from the 
model of [4]. Solid line indicates signals processed with Eq. 3 and 
dotted line indicates unprocessed signal reference. 
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Figure 8. (a) Time-domain representation of the audio signal. Grey 
describes the unprocessed signal and black describes the signal 
processed with Eq. 3. (b) 60, 80 and 100 dB SPL LOE as a function 
of time, calculated from the results of the model of [4]. 
 
7.  LOE (ℓ, t) - TIME-VARYING 
MONOPHONIC MUSIC 

 
The loudness model of the previous experiment was 

used to produce LOE as a function of time. Using the 
synthesis model of the previous experiment, a MIDI file 
was used to generate a monaural audio signal of an 
excerpt of monophonic music for the horn instrument. 
The audio signal was then processed with Eq. 3. The 
two audio signals were then independently input to the 
loudness model and a time varying LOE function of 
listening-level was produced. 
 The loudness model was input with the synthesized 
monaural musical signal at simulated peak levels of 60, 
80 and 100 dB SPL. The signal was then nonlinearly 
processed and the difference in short-term loudness was 
calculated for each unprocessed and processed signal 
and plotted as a time-varying LOE graph. 
 The MIDI score comprised a sequence of MIDI 
notes taken from a musical score. The audio signal was 
produced digitally at a sample rate of 44.1 kHz and 
processed using the over-sampled method described 
previously. The waveform of the nonlinearly processed 
monaural audio signal is shown in Fig. 18(a), 
superimposed on the waveform of the original 
unprocessed signal. 
 
 
 
 

 Fig. 8(b) shows the 60, 80 and 100 dB SPL time-
varying LOE functions produced, which are correlated 
in time with the time-domain (waveform) 
representation of the audio signal in Fig. 8(a). For the 
highest SPL of 100 dB, the LOE value varies between 
around -2 and 1.5 dB (phon). This indicates a strong 
variation in effects depending on the particular note 
played, which is consistent with the results of section 6. 
Furthermore, where subsequent musical notes alternate 
between large negative LOE values and large positive 
LOE values maximum disruption of the perceived 
dynamic range can be expected between the notes (e.g., 
around 3 seconds – Fig. 18(b)). 
 
8.  CONCLUSION 
 

A formal framework for LOE has been given. The 
two arbitrary static nonlinearities have been 
characterized in terms of LOE for pure-tone and 
synthesized musical notes, both as a function of 
frequency and of listening-level and in the equal-
loudness-level contours using loudness models [3, 4]. It 
has been shown that the steeper-sloped nonlinearity of 
Eq. 3 has produced greater effects on the pure-tone 
loudness function. In the most extreme case of Eq. 3 at 
100 Hz, an approximately 6 dB compression has 
resulted in a surprising 6 dB increase in loudness. Key 
differences between the models have been discussed 
and the related limitations of bandwidth with respect to 
the impact of harmonic distortion products illustrated. 
The equal-loudness-level contours have illustrated 
frequency-dependent interactive effects and it has been 
suggested that systematic differences between the data 
of early and recent literature might be partially 
explained by the presence of nonlinearity in the 
apparatus (e.g., headphones and amplifiers). For the 
musical notes, the results of the computational analysis 
show a significant dependence on frequency and 
instrument. In the case of the horn solo musical excerpt, 
the time-varying LOE function showed a large effect on 
the relative loudness difference between notes. Future 
work should include further extension of the analysis to 
other types of nonlinearity, other types of musical 
instruments (e.g., percussion) and should include 
subjective testing which would provide support for the 
results of the model and computational analysis. Such 
measurements might also be useful in the specification 
and characterization of nonlinear audio systems such as 
loudspeakers and microphones. 
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