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ABSTRACT
In the context of music production, distortion effects are mainly used
for aesthetic reasons and are usually applied to electric musical in-
struments. Most existing methods for nonlinear modeling are often
either simplified or optimized to a very specific circuit. In this work,
we investigate deep learning architectures for audio processing and
we aim to find a general purpose end-to-end deep neural network to
perform modeling of nonlinear audio effects. We show the network
modeling various nonlinearities and we discuss the generalization
capabilities among different instruments.

Index Terms— audio effects modeling, virtual analog, deep
learning, end-to-end, distortion.

1. INTRODUCTION

Audio effects modeling is the process of emulating an audio effect
unit and often seeks to recreate the sound of an analog reference de-
vice [1]. Correspondingly, an audio effect unit is an analog or digital
signal processing system that transforms certain characteristics of
the sound source. These transformations can be linear or nonlinear,
with memory or memoryless. Most common audio effects’ transfor-
mations are based on dynamics, such as compression; tone such as
distortion; frequency such as equalization (EQ) or pitch shifters; and
time such as artificial reverberation or chorus.

Nonlinear audio effects such as overdrive are widely used by
musicians and sound engineers [2]. These type of effects are based
on the alteration of the waveform which leads to amplitude and har-
monic distortion. This transformation is achieved via the nonlinear
behavior of certain components of the circuitry, which apply a wave-
shaping nonlinearity to the audio signal amplitude in order to add
harmonic and inharmonic overtones. Thus, a waveshaping transfor-
mation consists in using a nonlinear function to distort the incoming
waveform into a different shape, which depends on the amplitude of
the incoming signal [3].

Since a nonlinear element cannot be characterized by its impulse
response, frequency response or transfer function [1], digital emula-
tion of nonlinear audio effects has been extensively researched [4].
Different methods have been proposed such as memoryless static
waveshaping [5, 6], where system-identification methods are used in
order to model the nonlinearity; dynamic nonlinear filters [7], where
the waveshaping curve changes its shape as a function of system-
state variables; analytical methods [8, 9], where the nonlinearity is
linearized via Volterra series theory or black-box modeling such as
Wiener and Hammerstein models [10, 11]; and circuit simulation
techniques [12, 13, 14], where nonlinear filters are derived from the
differential equations that describe the circuit. Recurrent neural net-
works have been explored as preliminary studies in [15, 16, 17],

where the proposed models may require a more extensive evalua-
tion.

In order to achieve optimal results, these methods are often ei-
ther greatly simplified or highly optimized to a very specific circuit.
Thus, without resorting to further complex analysis methods or prior
knowledge about the circuit, it is difficult to generalize the methods
among different audio effects. This lack of generalization is accen-
tuated when we consider that each unit of audio effects is also com-
posed of components other than the nonlinearity. These components
also need to be modeled and often involve filtering before and after
the waveshaping, as well as hysteresis or attack and release gates.

End-to-end learning corresponds to the integration of an entire
problem as a single indivisible task that must be learned from end-
to-end. The desired output is obtained from the input by learning
directly from the data [18]. Deep learning architectures using this
principle have experienced significant growth in music information
retrieval [19, 20], since by learning directly from raw audio, the
amount of required prior knowledge is reduced and the engineering
effort is minimized [21].

End-to-end deep neural networks (DNN) for audio processing
have been implemented in [22], where EQ modeling was achieved
with convolutional neural networks (CNN). We build on this model
in order to emulate much more complex transformations such as
nonlinearities. To the best of our knowledge, prior to this work,
deep learning architectures has not been successfully implemented
to model nonlinear and linear audio effects.

We explore nonlinear emulation as a content-based transforma-
tion without explicitly obtaining the solution of the nonlinear sys-
tem. We show the model performing nonlinear modeling for distor-
tion, overdrive, amplifier emulation and combinations of linear and
nonlinear audio effects.

2. METHODS
2.1. Model

The model is entirely based on the time-domain and is divided into
three parts: adaptive front-end, synthesis back-end and latent-space
DNN. We build on the model from [22] and we incorporate a new
layer into the synthesis back-end. The model is depicted in Fig.
1, and may seem similar to the nonlinear system measurement tech-
nique from [8], as it is based on a parallel combination of the cascade
of input filters, memoryless nonlinearities, and output filters.

The adaptive front-end consist of a convolutional encoder. It
contains two CNN layers, one pooling layer and one residual con-
nection. The front-end performs time-domain convolutions with the
raw audio in order to map it into a latent-space. It also generates a
residual connection which facilitates the reconstruction of the wave-
form by the back-end.
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Fig. 1: Block diagram of the proposed model; adaptive front-end, synthesis back-end and latent-space DNN.

The input layer has 128 one-dimensional filters of size 64 and
is followed by the absolute value as nonlinear activation function.
The second layer has 128 filters of size 128 and each filter is locally
connected. This means we follow a filter bank architecture since
each filter is only applied to its corresponding row in |X1| and we
also decrease significantly the number of trainable parameters. This
layer is followed by the softplus nonlinearity.

From Fig. 1, R is the matrix of the residual connection, X1 is
the feature map or frequency decomposition matrix after the input
signal x is convolved with the kernel matrix W 1, and X2 is the
second feature map obtained after the local convolution with W 2,
the kernel matrix of the second layer. The max-pooling layer is a
moving window of size 16, where positions of maximum values are
stored and used by the back-end. Also, in the front-end, we include
a batch normalization layer before the max-pooling operation.

The latent-space DNN contains two layers. Following the filter
bank architecture, the first layer is based on locally connected dense
layers of 64 hidden units and the second layer consists of a fully con-
nected layer of 64 hidden units. Both of these layers are followed by
the softplus function. Since Z corresponds to a latent representation
of the input audio. The DNN modifies this matrix into a new latent
representation Ẑ which is fed into the synthesis back-end. Thus, the
front-end and latent-space DNN carry out the input filtering opera-
tions of the given nonlinear task.

The synthesis back-end inverts the operations carried out by the
front-end and applies various dynamic nonlinearities to the modified
frequency decomposition of the input audio signal X̂1. Accordingly,
the back-end consists of an unpooling layer, a deep neural network
with smooth adaptive activation functions (DNN-SAAF) and a sin-
gle CNN layer.

DNN-SAAF: These consist of four fully connected dense layers
of 128, 64, 64 and 128 hidden units respectively. All dense layers are
followed by the softplus function with the exception of the last layer.
Since we want the network to learn various nonlinear filters for each
row of X̂1, we use locally connected Smooth Adaptive Activation
Functions (SAAF) [23] as the nonlinearity for the last layer.

SAAFs consist of piecewise second order polynomials which
can approximate any continuous function and are regularized under
a Lipschitz constant to ensure smoothness. It has been shown that
the performance of CNNs in regression tasks has improved when
adaptive activation functions have been used [23], as well as their
generalization capabilities and learning process timings [24, 25, 26].

We tested different types of adaptive activation functions, such
as parametric hyperbolic tangent, parametric sigmoid and fifth or-
der polynomials. Nevertheless, we found stability problems and non
optimal results when modeling complex nonlinearities.

The back-end accomplishes the reconstruction of the target au-
dio signal by the following steps. First, a discrete approximation
X̂2 is obtained by upsampling Z at the locations of the maximum

values from the pooling operation. Then the approximation X̂1 of
matrix X1 is obtained through the element-wise multiplication of
the residual R and X̂2. In order to obtain X̂0, the nonlinear filters
from DNN-SAAF are applied to X̂1. Finally, the last layer corre-
sponds to the deconvolution operation, which can be implemented
by transposing the first layer transform.

We train two types of models: model-1 without dropout layers
within the dense layers of the latent-space DNN and DNN-SAAF,
and model-2 with dropout layers among the hidden units of these
layers. All convolutions are along the time dimension and all strides
are of unit value. This means, during convolution, we move the fil-
ters one sample at a time. The models have approximately 600k
trainable parameters, which represents a model that is not very large
or difficult to train.

Based on end-to-end deep neural networks, we introduce a gen-
eral purpose deep learning architecture for modeling nonlinear audio
effects. Thus, for an arbitrary combination of linear and nonlinear
memoryless audio effects, the model learns how to process the au-
dio directly in order to match the target audio. Given a nonlinearity,
consider x and y the raw and distorted audio signals respectively. In
order to obtain a ŷ that matches the target y, we train a deep neural
network to modify x based on the nonlinear task.

2.2. Training

The training of the model is performed in two steps. The first step
is to train only the convolutional layers for an unsupervised learning
task, while the second step is within a supervised learning frame-
work for the entire network. During the first step only the weights of
Conv1D and Conv1D-Local are optimized and both the raw audio x
and distorted audio y are used as input and target functions.

Once the model is pretrained, the latent-space DNN and DNN-
SAAF are incorporated into the model, and all the weights of the
convolutional and dense layers are updated. The loss function to be
minimized is the mean absolute error (mae) between the target and
output waveforms. In both training procedures the input and target
audio are sliced into frames of 1024 samples with hop size of 64
samples. The mini-batch was 32 frames and 1000 iterations were
carried out for each training step.

2.3. Dataset

The audio is obtained from the IDMT-SMT-Audio-Effects dataset
[27], which corresponds to individual 2-second notes and covers the
common pitch range of various 6-string electric guitars and 4-string
bass guitars.

The recordings include the raw notes and their respective ef-
fected versions after 3 different settings for each effect. We use un-
processed and processed audio with distortion, overdrive, and EQ.
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Fig. 2: Results with the test dataset for 2a-b) model-1 bass guitar distortion setting # 1, and 2c-d) model-2 electric guitar overdrive setting # 2.
A segment of the input, target and output frames and their respective FFT magnitudes is shown. Also, from top to bottom: input, target and
output spectrograms of the test samples; color intensity represents higher magnitude.
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Fig. 3: Input-Target and Input-Output waveshaping curve for selected settings. 3a) model-1 bass guitar distortion task #1. 3b) model-1 electric
guitar distortion setting #2. 3c) model-2 bass guitar overdrive setting #1. 3d) model-2 electric guitar overdrive setting #2. X-axis is input
amplitude and Y-axis is target/output amplitude.

In addition, we also apply a custom audio effects chain (FxChain) to
the raw audio. The FxChain consist of a lowshelf filter (gain =
+20dB) followed by a highshelf filter (gain = −20dB) and an
overdrive (gain = +30dB). Both filters have a cut-off frequency
of 500 Hz. Three different configurations were explored by placing
the overdrive as the last, second and first effect of the cascade.

We use 624 raw and distorted notes for each audio effect setting.
The test and validation notes correspond to 10% of this subset and
contain recordings of a different electric guitar and bass guitar. In
order to reduce training times, the recordings were downsampled to
16 kHz, however, the model could be trained with higher sampling
rates.

3. RESULTS & ANALYSIS

The training procedures were performed for each type of nonlinear
effect and for both instruments. Then, the models were tested with
samples from the test dataset and the audio results are available on-

line1. Since the mae depends on the amplitude of the output and
target waveforms, Tables 1-2 show the energy-normalized mae for
the different models when tested with various test subsets.

Table 1 shows that the models performed well on each nonlinear
audio effect task for bass guitar and electric guitar models respec-
tively. Overall, for both instruments, model-1 achieved better results
with the test datasets. For selected distortion and overdrive settings,
Fig. 2 shows selected input, target and output frames as well as their
FFT magnitudes and spectograms. It can be seen that, both in time
and frequency, the models accomplished the nonlinear target with
high and almost identical accuracy. Fig. 3 shows the amplitude ratio
between a test input frame and its respective target and output. It can
be seen that the models were able to match precisely the input-target
waveshaping curve or ratio for selected settings. The models cor-
rectly accomplished the timing settings from the nonlinear effects,
such as attack and release, which are evident in the hysteresis behav-
ior of Figs. 3-a-b-c.

1https://github.com/mchijmma/modeling-nonlinear
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Table 1: mae values of the bass guitar and electric guitar models
with the test datasets.

Fx #
Bass Guitar

model-1 model-2 model-1 model-2

Distortion
1 0.00318 0.00530 0.00459 0.00331

2 0.00263 0.00482 0.00366 0.00428

3 0.00123 0.00396 0.00121 0.00586

Overdrive 1 0.00040 0.00437 0.00066 0.00720

2 0.00011 0.00131 0.00048 0.00389

3 0.00037 0.00206 0.00072 0.00436

EQ 1 0.00493 0.00412 0.00842 0.00713

2 0.00543 0.00380 0.00522 0.00543

FxChain 1 0.01171 0.02103 0.01421 0.01423

2 0.01307 0.01365 0.01095 0.00957

3 0.01380 0.01773 0.01778 0.01396

Table 2: Evaluation of the generalization capabilities of the models.
mae values for model-1 and model-2 when tested with a different
instrument recording and with the NSynth test dataset.

Fx #
Bass Guitar

model-1 model-2 model-1 model-2

FxChain-
different
instrument

1 0.02235 0.01670 0.10375 0.09501

2 0.02153 0.01374 0.06705 0.06397

3 0.02936 0.02072 0.10900 0.10254

FxChain-
NSynth

1 0.32153 0.21707 0.35964 0.32280

2 0.18381 0.10517 0.22182 0.18303

3 0.22020 0.14572 0.25810 0.26031

We obtained the best results with the overdrive task #2 for both
instruments. This is due to the waveshaping curves from Fig. 3-d,
where it can be seen that the transformation does not involve tim-
ing nor filtering settings. We obtained the largest error for FxChain
setting #3. Due to the extreme filtering configuration after the over-
drive, it could be more difficult for the network to model both the
nonlinearity and the filters.

It is worth mentioning that the EQ task is also nonlinear, since
the effects that were applied include amplifier emulation, which in-
volves nonlinear modeling. Therefore, for this task, the models are
also achieving linear and nonlinear modeling. Also, the audio sam-
ples for all the effects from the IDMT-SMT-Audio-Effects dataset
have a fade-out applied in the last 0.5 seconds of the recordings.
Thus, when modeling nonlinear effects related to dynamics, this rep-
resents an additional challenge to the network. We found that the net-
work might capture this amplitude modulation, although additional
tests are required.

For the FxChain task, we evaluate the generalization capabilities
of model-1 and model-2. We test the models with recordings from
different instruments (e.g. Bass guitar models tested with electric
guitar test samples and vice versa). As expected, bass guitar models
performed better with lower guitar notes and conversely. Also, to
evaluate the performance of the models with a broader data set, we
use the test subset of the NSynth Dataset [28]. This dataset consists
of individual notes of 4 seconds from more than 1000 instruments.
This was done for each FxChain setting and the energy-normalized
mae values are shown in Table 2.

It is evident that model-2 outperforms model-1 when tested with
different instrument recordings. This is due to the dropout layers
of model-2, which regularized the modeling and increased its gen-
eralization capabilities. Since model-1 performed better when tested
with the corresponding instrument recording, we could point towards
a trade-off between optimization for a specific instrument and gener-
alization among similar instruments. This also means the CNN and
DNN layers within the models are being tuned to find certain fea-
ture patterns of the respective instrument recordings. In other words,
even though model-2 is more flexible than model-1, the latter one is
more reliable when optimizing a particular instrument.

Other black-box modelling methods suitable for this FxChain
task, such as Wiener and Hammerstein (WH) models, would require
additional optimization in order to find the optimal combination of
linear/nonlinear components [11]. Moreover, further assumptions on
the WH static nonlinearity functions (i.e. invertibility) are needed
and common nonlinearities which are not invertible are for exam-
ple a dead-zone and a saturation [29]. Therefore, the proposed end-
to-end deep learning architecture represents an improvement of the
state-of-the art in terms of flexibility, regardless of the trade-off be-
tween the two models. It makes less assumptions about the modeled
audio system and is thus more suitable for generic black-box model-
ing of nonlinear and linear audio effects.

4. CONCLUSION

In this work, we introduced a general purpose deep learning architec-
ture for audio processing in the context of nonlinear modeling. Com-
plex nonlinearities with attack, release and filtering settings were
correctly modeled by the network. Since the model was trained on
a frame-by-frame basis, we can conclude that most transformations
that occur within the frame-size will be captured by the network. To
achieve this, we explored an end-to-end network based on convolu-
tional front-end and back-end layers, latent-space DNNs and smooth
adaptive activation functions. We showed the model matching dis-
tortion, overdrive, amplifier emulation and combination of linear and
nonlinear audio effects.

Generalization capabilities among instruments and optimization
towards an specific instrument were found among the trained mod-
els. Models with dropout layers tended to perform better with differ-
ent instruments, whereas models without this type of regularization
were better adjusted to the respective instrument of the training data.
As future work, further generalization could be explored with the
use of weight regularizers as well as training data with a wider range
of instruments. Also, the exploration of recurrent neural networks
to model transformations involving long term memory such as dy-
namic range compression or different modulation effects. Although
the model is currently running on a GPU, real-time implementations
could be explored, as well as shorter input frames for low-latency
applications.

The Titan Xp used for this research was donated by the NVIDIA
Corporation.
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