
Audio Engineering Society

 Convention Paper 10185
Presented at the 146th Convention

2019 March 20 – 23, Dublin, Ireland
This paper was peer-reviewed as a complete manuscript for presentation at this convention. This paper is available in the AES
E-Library (http://www.aes.org/e-lib) all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

Reproducing bass guitar performances using descriptor
driven synthesis
Dave Foster1 and Joshua D Reiss2

1Queen Mary University of London, London, UK
2Centre for Digital Music, Queen Mary University of London, London, UK

Correspondence should be addressed to Dave Foster (dave@swingcitymusic.co.uk)

ABSTRACT

Sample-based synthesis is a widely used method of synthesising the sounds of live instrumental performances,
but the control of such sampler instruments is made difficult by the number of parameters that control the output,
the expertise required to set those parameters and by the constraints of the real-time system. In this paper, the
principles of descriptor-driven synthesis were used to develop a pair of software tools that aid the user in the
specific task of reproducing a live performance using a sampler instrument, by the automatic generation of MIDI
controller messages derived from analysis of the input audio. The techniques employed build on existing work
and commercially available products. The output of the system is compared to manipulation by expert users. The
results show that the system outperforms the human version, despite the latter taking considerably more time.
Future developments of the techniques are discussed, including the application to automatic performer replication.

1 INTRODUCTION

Orchestral sample-based Virtual Instruments (VIs) have
been increasing in quality and range as the processing
power and storage space that they require has become
more affordable and available, to the point that they
are acceptably used in media where the budget is not
available for a live orchestra. However, the increase
in quality is matched by an increase in complexity
and required expertise, sometimes to the point where
the demands on the user begin to approach those of
learning to play the very instrument being synthesised.

Although there has been much work on the control
of synthesisers which themselves generate the sounds,
less has been done at the higher level of abstraction:
that is, controlling the input and settings of an existing
sampler VI. This is the level at which users interface

with orchestral samplers and where the automation
could be both useful and potentially aid the production
of improved output.

The system described in this paper tackles a subset
of the larger problem of automated synthesiser con-
trol, namely of recreating musical performances using
sample-based VIs by the analysis of the input audio and
generation of appropriate MIDI (Musical Instrument
Digital Interface) messages. The use case is to take an
input audio file of an instrumental performance, and to
output a MIDI file which, when played through a spe-
cific VI, reproduces the nuances of that performance.

The problem has relevance in style transformation and
performance evaluation or editing. The aim is produce
output that is at least of comparable quality (if not bet-
ter) than an expert user can produce, and in less time.

Foster and Reiss Reproducing bass guitar performances

The results are evaluated by a listening test, where the
participants were asked to listen to different synthe-
sised reproductions of a musical extract, and to rate
them according to how well they match the original
recording.

The system was constrained by restricting it to a VI
reproducing a single instrument, the fretless bass guitar
(chosen for the predictable nature of plucked strings,
and for its capacity for expressive performances using
micro-tonal pitch variation); and to a subset of the range
of MIDI controller message types, namely MIDI pitch,
velocity, MIDI volume and expression.

2 RELATED WORK

The extraction of bass guitar parts from recordings, and
their subsequent transcription are presented in the pa-
pers by Hainsworth and Macleod [1] and Ryynänen
and Klapuri [2]. The more recent work by Abeßer and
Schuller [3] expands on their techniques, and their sys-
tem achieves an accuracy of 91% (in the note-based
evaluation results for score-level evaluation), outper-
forming all other methods. If this is the state of the
art, then up to 9% of notes will be incorrect, and hence
there will be a need either for human generated input
or human checking of output. We chose the former, so
our system is provided with approximate note data to
avoid errors. This means that the system is receiving
the same input as a sight-reading musician would be,
that is, a representation of the piece being played.

In Heise et al [4], a speech signal is reduced to its
set of features, and then reconstructed by searching a
corpus of audio snippets for the closest match for each
feature vector and putting them together. The last part
of the process, searching a multi-dimensional database,
is similar to what is being done herein. The papers
by Yang et al [5] and Lee [6] suggest techniques for
the analysis of pitch, and the higher level features of
portamento (pitch sliding up to, down to or between
notes) and vibrato. Applying the latter analysis in our
system did not reduce complexity or data size, but
could be useful in future versions.

In Mitchell [7], the field of “evolutionary sound match-
ing” is described, for application to a native FM syn-
thesiser. Riionheimo and Välimäki [8] and Walker and
Whalen [9] both use a Genetic Algorithm to match tar-
get sounds. Heise et al [10] match a generic sound to
the settings of a generic synthesiser, allowing for up

to 50 individual settings requiring a highly optimised
search strategy for finding the best combination of set-
tings. All of these papers concern the recreation of
sounds using native, sound-generating synthesisers, not
with the automation of controls at a higher level of
abstraction as may be needed to control sampler VIs.
Some of the approaches have analogies, particularly
with the analysis of input sounds.

In another paper by Heise et al [11], the authors again
analyse the output of a synthesiser given iterative pa-
rameter changes, but this time with the goal of finding
the meaningful start time of each sample. Of particu-
lar interest was their matching velocity values to out-
put level. This allowed the precise altering of levels
across a range of notes where the level differences be-
tween neighbouring velocity values is not necessarily
the same for each note. Schuller et al [12] analyse the
sound of a bass guitar and derive features from it such
as plucking style, expression style and which string
a note has been played on. These parameters were
not considered in this paper, but could improve the
performance if they were matched with corresponding
settings in an advanced VI.

“Descriptor-driven transformation” is defined by Cole-
man et al [13] as being where “input samples are trans-
formed with respect to target descriptors”. They refer
to Hoffman et al [14] for “descriptor-driven synthesis”.
In both papers, audio features pertaining to pitch, loud-
ness and timbre are extracted and it is the set of these
features, rather than the entirety of the input audio data,
that are used when constructing a new signal (in their
cases, using “mosaicing”, where a corpus of samples
are directly manipulated in the former or by construct-
ing a new signal entirely in the latter). As this paper
takes a similar approach of extracting features from au-
dio (both in the collation of data from the sample library
and from the audio to be replicated) and using those
features to select and manipulate samples (in this case
obliquely, via MIDI messages), the term seemed to be
a valid way of categorising the methodology employed.

3 IMPLEMENTATION

The system we designed for the task consists of two
parts: first, the exhaustive analysis of the output of a
sample based VI; and second, the analysis of an input
audio file and generation of a corresponding output
MIDI file. Two software applications were developed
to implement and automate these processes: “88x127”

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 2 of 9

Foster and Reiss Reproducing bass guitar performances

Audio file - the
phrase to be
reproduced

MIDI file of input
audio file

2) Audio File Analysis
application:

“Smarter Sample
Selector” Output MIDI file

Virtual
Instrument

1) VI Response
Analysis Plugin:

“88x127”

Serialisation of
VI responses

Output Audio

Fig. 1: A flow chart of the segmented implementation

for generating the MIDI file used in testing the VI,
and for analysing the resultant audio file; and “Smarter
Sample Selector” for analysing and recreating an in-
strumental performance. MATLAB was used for pro-
totyping and early proof of concept implementations,
and the “App Designer” application within MATLAB
used to bring together the various elements and to pro-
vide a GUI. A simple VI was chosen for prototyping
and experimentation, namely the “Fretless Bass” instru-
ment, which is a downloadable additional instrument
for the Logic Pro X1 EXS sampler plugin. Figure 1
shows a flow chart of how the system was segmented
and implemented.

3.1 88x127

The system begins by exhaustively evaluating the out-
put of a sample based VI, by triggering and recording
a note corresponding to each combination of input pa-
rameters. Each of the notes is then analysed for features
pertaining to the three categories of loudness, pitch and
timbre.

3.1.1 Loudness

Loudness is evaluated discretely throughout the dura-
tion of the note using the RMS (Root Mean Square)
formula. The values are stored as percentages of the
maximum value.

1https://www.apple.com/uk/logic-pro/

3.1.2 Pitch

Pitch is analysed using the YIN estimator [15], and
the knowledge of the expected pitch of the note was
used in a novel variation to the algorithm which re-
duces computation time (often by 50%), by restricting
the range of the difference function to use the upper
frequency limit (chosen to be 1 tone above the target
pitch), instead of half the window size. So formula (6)
from [15] (where x is a window of a discrete signal,
and ρ is the frequency period) is replaced by:

dt(ρ) =
w′

∑
j=1

(x j− x j+ρ)
2, (1)

where w′ = floor(Fs/F ′0), Fs is the sample rate and F ′0 is
the upper frequency limit. Features are then extracted
from the pitch curve:

• The mean value.

• The initial pitch.

• The time of first expected value (representing the
portamento up / down to the note).

• The maximum absolute deviation from the mean.

• The first (if any) time of an absolute deviation
from the mean that exceeds a set threshold value.

3.1.3 Timbre

Timbre is evaluated by two measures described in Kla-
puri [16]. The first is brightness, represented by spec-
tral centroid:

Ct =
N

∑
n=1

(Mt [n]?n)
/ N

∑
n=1

Mt [n], (2)

where Mt is a frame of an audio signal in the frequency
domain, and n is the frequency bin number. The sec-
ond is spectral dynamics, represented by spectral flux,
the sum of the squared differences in the spectra of
consecutive frames Mt−1 and Mt :

Ft =
N

∑
n=1

(Mt [n]−Mt−1[n])2. (3)

This process was automated by the development of the
“88x127” application, which is presented as a single

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 3 of 9

Foster and Reiss Reproducing bass guitar performances

0 1 2 3 4
Time (s)

-0.5

0

0.5

Am
pl

itu
de

Amplitude

0 1 2 3 4
Time (s)

0

0.05

0.1

0.15

0.2

R
M

S
Va

lu
e

Loudness

0 1 2 3 4
Time (s)

41.5

42

42.5

43

M
ID

I P
itc

h
N

um
be

r

Pitch

Pitches
Mean
Initial

Port. time
Max. Var.
1st thresh.

0 1 2 3 4
Time (s)

0

2

4

6

8

10

Sp
ec

tra
l C

en
tro

id
 /

f0

0

20

40

60

80

100
Timbre

Spectral Centroid
Spectral Flux

Fig. 2: 88x127 - Analysis results I

window with four tabs, worked through sequentially by
the user to set the parameters, view the analysis results
and output a data file.

The application takes as input the ranges and incre-
ments of the four variables listed in the introduction,
and generates a MIDI file consisting of notes (separated
by 1 second gaps) of every chosen pitch at every chosen
velocity (at a set central value of 95 for volume and
expression), followed by the 0.03 second notes at every
one of the note / velocity / volume / expression permu-
tations. This MIDI file is then imported into a digital
audio workstation (DAW) and put onto a channel strip
with the VI under testing.

The audio file generated by the DAW is then imported
back into 88x127 and the analysis begins by separating
the audio file into separate notes. The values derived
by the analysis of each note are saved in a data file,
and the results displayed to the user. Figure 2 shows
the analysis results of a single MIDI pitch / velocity
combination, showing the derived amplitude, loudness,
timbre and pitch values throughout the duration of the
note. Figure 3 shows a graph of the maximum loudness
given different MIDI volume / expression permutations.
The visualisations of the data proved to be useful in
choosing the most efficient range of values to use for
the input.

3.2 Smarter Sample Selector

The second part of the system is to analyse a given
audio performance, and to craft a MIDI file by finding
the best matching parameter settings for each note by
searching the corpus of data collected previously for
the VI. The “Smarter Sample Selector” (SSS) tool was
developed to automate this process, and requires three
input files: the MIDI file containing the notes of the per-
formance and their approximate timings; the audio file
of the performance; and the data file saved in 88x127.

3.2.1 Note analysis

Similar to the 88x127 application, SSS analyses each
note and extracts corresponding data points from it,
before using that information to pick and place the
most appropriate MIDI events, and further sculpt the
synthetic performance using MIDI controllers. In this
case, however, the exact start and end times of the notes
is not known. So, to accurately reproduce the start time
and duration of the notes (and not rely on the MIDI
data, which either will have been gathered by aural
transcription or from the sheet music from which the
musician played), the onset of each note must be found.

The percussive nature of the plucked string makes the
onset detection easier than with an instrument with a
softer onset, and the MIDI information supplied is used

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 4 of 9

Foster and Reiss Reproducing bass guitar performances

7 17 27 37 47 57 67 77 87 97 107 117 127
MIDI Volume

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
M

S
Va

lu
e

Maximum Loudness given MIDI Volume / Expression Combination

Exp. = 7
Exp. = 17
Exp. = 27
Exp. = 37
Exp. = 47
Exp. = 57
Exp. = 67
Exp. = 77
Exp. = 87
Exp. = 97
Exp. = 107
Exp. = 117
Exp. = 127

Fig. 3: 88x127 - Analysis results II

to provide a framework of likely start times. Spectral
flux (equation 3) was found to be the most reliable
onset detection technique for finding clear peaks. To
improve accuracy further, values were windowed by
a triangular window with the centre at the MIDI note
position, thus weighting peaks closer to the likely start
time higher.

These onset values are then used to segment the audio
into separate notes, each ending either just prior to the
subsequent note starting, or when the loudness of the
note falls below a threshold. The loudness, pitch and
timbre of the notes are then evaluated as before.

3.2.2 MIDI file construction

With the analysis complete, the next task is that of
constructing the MIDI file. For each note, the following
steps are taken:

1. The note on and off messages are set to the start
and end times derived by onset detection.

2. The velocity value for the note is chosen by find-
ing the option that best matches the timbre of the
original.

3. The MIDI volume is set to match the initial loud-
ness of the original.

4. A curve of expression values is constructed to
match the loudness throughout the note.

5. A curve of pitch bend values is constructed to
match the pitch variation of the original, by first
compensating for variations in the chosen sample.

To allow the greatest flexibility in choosing appropriate
MIDI volume and expression values, the input audio
values are scaled to correspond to the lowest velocity
values used in the loudness analysis. This is done by
finding the note with the greatest loudness value, and
calculating the ratio between that and the loudness of
the lowest velocity for that note value. This also gives
a gain adjustment that will be required to match the
loudness of the overall extract.

The velocity of the note is chosen by comparing the
timbre values at the landmark points of the input au-
dio with values derived at all available velocities for
the pitch of the note in question. A cluster analysis
algorithm (k-means nearest neighbour search) is per-
formed, using the landmark values of the input as the
search vector, and the array of values for appropriate
velocities as the candidate array. This gives the velocity
value for the note: to match the initial loudness, the
array of MIDI volume / expression combinations for
this velocity value is searched for the closest value, and
these values set at the start of the note.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 5 of 9

Foster and Reiss Reproducing bass guitar performances

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
47.8

48

48.2

48.4

48.6

M
ID

I n
ot

e
nu

m
be

r

Pitch of chosen sample

Pitches
Initial

Port. time
Mean

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
50

63

76

89

101

P
itc

h
be

nd
 v

al
ue

Compensating pitch bend values (step 1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
47.8

48

48.2

48.4

48.6

M
ID

I n
ot

e
nu

m
be

r

Pitch of input note

Actual Target

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
50

63

76

89

101

P
itc

h
be

nd
 v

al
ue

Original pitch bend values (step 2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)

50

63

76

89

101

P
itc

h
be

nd
 v

al
ue

Final pitch bend values (step 3)

Fig. 4: Constructing the pitch bend curve

The loudness of the note throughout its duration is then
crafted to match that of the original. This is achieved
by comparing the loudness of the target note and the
sampled note at each landmark point, and using the ex-
pression controller to compensate dynamically. When
this has been performed for each note in the extract,
the MIDI file now has MIDI volume values at the start
of each note, and a discrete curve of expression values
running throughout.

The pitch values of the input audio and of the chosen
pitch / velocity combination are used to create a curve
of MIDI pitch bend values so that the pitch variation
of the output matches the input. This is done in three
steps:

1. The main pitch variations of the chosen sample
are compensated for by creating a curve array that
cancels them out.

• The mean pitch value of the sample is cor-
rected by a constant pitch shift in the oppo-
site direction.

• Any initial portamento is corrected by a
ramp starting in the opposite direction and
ending at the mean pitch at the same tempo-
ral point as the input does.

2. The pitch variations in the input audio are con-
verted into a pitch bend array.

3. The two arrays are added together, rounded to
integer values, and applied at the correct time for
the note.

Figure 4 shows how the curve is constructed, where
the MIDI pitch bend values are in the range [0 127],
which map to [-1 1] semitones, and 63 represents no
pitch bend.

The constructed MIDI file can then imported into a
DAW, using the same settings as were used for the
analysis MIDI file, and the synthesised audio output
can be compared to the original audio input.

4 EVALUATION

A listening test experiment was conducted to determine
how well the synthesised output of the system repro-
duces its input audio.

4.1 Experimental set-up

Four musical extracts of fretless bass performances,
with durations of approximately 30 seconds each, were
chosen with the following criteria: musically inter-
esting, with an expressive performance; good quality
audio recording, with opportunity to isolate the solo
instrument using panning / filtering (if not completely
solo); monophonic, so no double stops (simultaneously
played notes). The extracts were transcribed and con-
verted into MIDI files.

The sample library used for testing was the Kontakt2

“Classic Bass” (fretted) bass guitar, included in the

2https://www.native-instruments.com/en/
products/komplete/samplers/kontakt-5/

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 6 of 9

Foster and Reiss Reproducing bass guitar performances

standard library of the full version of the sampler VI.
This sample library was chosen as it is the industry
standard across the main platforms: the default library
does not include a fretless bass guitar, so the fretted
model was used with the knowledge that MIDI pitch
bend could be used to mimic the characteristic pitch
variation of the fretless instrument.

The 88x127 application was used to analyse the li-
brary’s output. The Smarter Sample Selector applica-
tion was run on each of the four extracts, where the
trimmed (and processed) audio along with the corre-
sponding MIDI file were loaded, analysed, and MIDI
files extracted. These MIDI files were then opened
in Logic Pro X, onto the same track as the sample li-
brary, the gain adjusted by the amount advised by the
application, and the results exported as a WAV file.

Two audio professionals, with expertise in MIDI ma-
nipulation, were recruited to create alternative perfor-
mances with which to compare the output of the system.
They were not using the system, but instead manually
manipulating the MIDI controller values within a DAW
to achieve the same outcome. They worked remotely,
with their own equipment, but each had the Kontakt li-
brary on their computers: both used Logic Pro X. They
were given a set of instructions about the nature of the
task, and given a set of test files (audio and MIDI) with
which to experiment and practice with for 30 minutes.
They were supplied with the audio and the MIDI file
for each extract, and they were given 15 minutes to
work on each of the extracts, for a total of 1 hour. After
the hour was ended, they sent back the resultant MIDI
files.

The MIDI files generated by the system (which took
approximately 4 seconds each to produce with the SSS
application) and the audio professionals were exported
as wav files, and mixed with the extracted backing
of the original (or, in one case, the synthesised piano
accompaniment), to present them in a similar fashion
to the original extracts.

The anchor for the test was chosen to be the playing
of the transcribed MIDI file with no added velocity or
controller alternations, as it may be possible that the
best result is achieved by using “flat” settings and that
the sampler performs best when not encumbered by
excessive user manipulation.

88
x1

27
 / S

SS

Exp
ert

 1

Exp
ert

 2

Anc
ho

r
0

0.2

0.4

0.6

0.8

1

Au
th

en
tic

ity
 R

at
in

g
Fig. 5: The combined results of the listening test

4.2 Listening Test

A listening test, compiled using the Web Audio Evalu-
ation Tool (WAET) [17] was carried out, where partici-
pants were asked to listen to the original extract, then
the four synthesised versions, and to rate them on a
slider by deciding how well each version matched the
bass guitar performance of the original. A total of 15
participants took part, aged from 25 to 53, with a mean
age of 37.9 years and standard deviation of 8.7. Of the
participants, 13 identified themselves as “playing an
instrument”, 14 as “recording or mixing audio” and 13
as “synth user”. The listening tests were performed re-
motely by the participants, using their own equipment,
and they were asked to report the make and model of
the headphones that they used.

4.3 Results

Figure 5 shows the combined results of all of the ex-
tracts, with the same mean and confidence intervals.
The authenticity rating represents the overall rating of
each version, where 0 = “worst” and 1 = “best”. A
one-way ANOVA test was performed to find out the
effect of the type of MIDI manipulation on the authen-
ticity ratings, and a significant effect was found (F(3,
236) = 15.52, p<0.0000001). A Tukey post-hoc test
was also performed on the data to find the individual
comparisons between each type, and the results can be
seen in Table 1, where ** = p<0.0001, * = p<0.01, - =
p> 0.05.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 7 of 9

Foster and Reiss Reproducing bass guitar performances

88x127 Expert 1 Expert 2 Anchor

88x127 . * * **

Expert 1 * . - *

Expert 2 * - . *

Anchor ** * * .

Table 1: Results of a Tukey post hoc test

The combined results show that the 88x127/SSS system
scores higher than both of the expert versions which, in
turn, score higher than the general MIDI anchor. The
post hoc test shows a significant difference between the
88x127/SSS system and the others, and only the two
expert versions are considered as indistinguishable.

5 DISCUSSION

The results show that the goal stated in the introduction
has been met and, to some degree, exceeded. A few
caveats, however, have to be added.

Firstly, when questioned about their experience, the
expert users both reported that they felt that the time
constraint of 15 minutes per extract was too short, and
that another 10-15 minutes on each would have yielded
better results. The time restriction is an inherent part
of the problem that the software attempts to tackle.
That is, to reduce the time needed by a user to craft a
performance, and the fact that they needed more time to
match the detail achieved automatically by the system
shows that it has a potential to be useful.

Secondly, the ratings for the 88x127/SSS system were
not universally positive, despite the mean ratings being
the highest. Several participants placed the system’s
version at the bottom of the spectrum for some of the
extracts. They mentioned that factors such as the un-
realistic nature of the pitch variation and how some
isolated features which were strikingly different from
the original, were “spoiling” the overall effect for them.

The complaint about the pitch variation shows that
exact mapping of pitch from the original to a somewhat
unrelated sample library does not necessarily produce
the most life-like performance. The expert users were
able to exploit this by including just the variations that

they could tell added to, and did not prove a distraction
from, the overall effect.

The problem with the isolated errors are largely down
to background elements in the audio causing false read-
ings in the analysis (where onsets, loudness variation
and pitch are misidentified). This could be improved
by more rigorous error checking in the code, by having
a user check the values before output, or simply by
restricting the audio input to monophonic solo input.

6 SUMMARY AND FURTHER WORK

In this paper, we presented a novel approach to automat-
ing the reproduction of audio excerpts using sampler
VIs. The findings of the listening test show that the
system is effective in performing its task, and does
so in a much shorter time than is possible by human
manipulation.

The system, as it stands, is lacking an effective system
of feedback and self evaluation, with which many facets
of its performance and output could be improved. The
criteria for what would define a successful output, or
how it would be evaluated is not clear. Would it be done
by a human listening, or by another computer system
applying the same (or different) MIR techniques to the
output? Either way, having a feedback loop to train
the system towards iteratively improving the output
(and being able to apply the learnt parameters to future
assignments) would seem necessary for giving the best
possible output, especially in the case where a perfect
reproduction is not possible.

Improvement could also be made in the amount of data
and processing resources used. Optimisation could be
applied to the data structures produced to find dupli-
cated values or to find linear associations that could be
more efficiently described by a set of parameters.

The specific problem tackled in this paper could be
considered to be rather contrived, as it is not a task that
would regularly be performed by somebody working in
the field. But it is hoped that the methods and technolo-
gies developed here will be a step towards the ultimate
goal of improved automated synthesiser performance,
given just the input that a human musician would have:
a piece of sheet music.

Theoretically, and with enough data and computational
power, the “fingerprints” of every musician in an or-
chestra could be taken, and the recordings generated
might accurately predict and be indistinguishable from
a recording made by the orchestra themselves.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 8 of 9

Foster and Reiss Reproducing bass guitar performances

References

[1] Stephen W Hainsworth and Malcolm D
Macleod. “Automatic Bass Line Transcription
from Polyphonic Music.” In: International Com-
puter Music Conference. 2001, pp. 431–434.

[2] Matti P Ryynänen and Anssi P Klapuri. “Au-
tomatic transcription of melody, bass line, and
chords in polyphonic music”. In: Computer Mu-
sic Journal 32.3 (2008), pp. 72–86.

[3] Jakob Abeßer and Gerald Schuller. “Instrument-
Centered Music Transcription of Solo Bass Gui-
tar Recordings”. In: IEEE/ACM Transactions on
Audio, Speech, and Language Processing 25.9
(Sept. 2017).

[4] Sebastian Heise, Michael Hlatky, and Jörn Lo-
viscach. “Audio re-synthesis based on waveform
lookup tables”. In: 129th Audio Engineering So-
ciety Convention. Vol. 2. Nov. 2010, pp. 1186–
1192.

[5] Luwei Yang, Khalid Rajab, and Elaine Chew.
“AVA: An Interactive System for Visual and
Quantitative Analyses of Vibrato and Porta-
mento Performance Styles”. In: 17th Conference
of the International Society for Music Informa-
tion Retrieval. 2016, pp. 108–114.

[6] Heejung Lee. “Violin portamento: An analy-
sis of its use by master violinists in selected
nineteenth-century concerti”. In: 9th Interna-
tional Conference on Music Perception and Cog-
nition. 2006.

[7] Thomas Mitchell. “Automated evolutionary syn-
thesis matching”. In: Soft Computing 16.12
(2012), pp. 2057–2070.

[8] Janne Riionheimo and Vesa Välimäki. “Param-
eter Estimation of a Plucked String Synthesis
Model Using a Genetic Algorithm with Percep-
tual Fitness Calculation”. In: EURASIP J. Appl.
Signal Process. 2003 (Jan. 2003), pp. 791–805.

[9] Timothy M. Walker and Sean P. Whalen. “Dy-
namic recombination of evolving guitar sounds
(DREGS): A genetic algorithm approach to gui-
tar synthesizer control”. In: IEEE International
Symposium on Multimedia (2013), pp. 248–254.

[10] Sebastian Heise, Michael Hlatky, and Jörn Lo-
viscach. “Automatic cloning of recorded sounds
by software synthesizers”. In: 127th Audio Engi-
neering Society Convention. 2009.

[11] Sebastian Heise, Michael Hlatky, and Jörn Lo-
viscach. “Editing MIDI Data Based on the
Acoustic Result”. In: 127th Audio Engineering
Society Convention. 2009.

[12] Gerald Schuller, Jakob Abeßer, and Christian
Kehling. “Parameter extraction for bass gui-
tar sound models including playing styles”. In:
IEEE International Conference on Acoustics,
Speech and Signal Processing. 2015, pp. 404–
408.

[13] Graham Coleman, Esteban Maestre, and Jordi
Bonada. “Augmenting Sound Mosaicing with
Descriptor-Driven Transformation”. In: 13th Int.
Conference on Digital Audio Effects (DAFx-10)
(2010), pp. 494–497.

[14] Matthew Hoffman and Perry Cook. “The Feat-
synth framework for feature-based synthesis: De-
sign and applications”. In: International Com-
puter Music Conference (2007), pp. 184–187.

[15] Alain de Cheveigne and Hideki Kawahara.
“YIN, a fundamental frequency estimator for
speech and music”. In: The Journal of the
Acoustical Society of America 111(4) (2002),
pp. 1917–1930.

[16] Anssi Klapuri and Manuel Davy. Signal process-
ing methods for music transcription. Springer
Science & Business Media, 2007.

[17] Nicholas Jillings et al. “Web Audio Evaluation
Tool: A browser-based listening test environ-
ment”. In: 12th Sound and Music Computing
Conference. July 2015.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 9 of 9

