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ABSTRACT

We present a synthesis algorithm for approximating bird song using particle swarm optimization to match real bird
recordings. Frequency and amplitude envelope curves are first extracted from a bird recording. Further analysis
identifies the presence of even and odd harmonics. A particle swarm algorithm is then used to find cubic Bezier
curves which emulate the envelopes. These curves are applied to modulate a sine oscillator and its harmonics. The
synthesised syllable can then be repeated to generate the sound. 36 bird sounds have been emulated this way, and a
real-time web-based demonstrator is available, with user control of all parameters. Objective evaluation showed
that the synthesised bird sounds captured most audio features of the recordings.

1 Introduction

Most recent academic research on bird sounds deals
with the problem of identifying bird species based on
a sound recording, e.g. [1]. Species identification
through audio has many practical uses including sup-
porting the census of population sizes, improving taxon-
omy and even preventing bird collisions with airplanes.
The main problems are dealing with environment noise
and choice of audio features. There are also different
methods for modelling and segmenting the sound. The
most widely used consists of segmenting and isolating
each syllable of a bird’s call e.g. [2].

Bird song can be very complex and vary widely. Birds
can have several versions of their song, known as song
type; from the low phrase vocabulary, noisy and fre-
quency dense caws of a crow to the high phrase vocab-
ulary flute-like tones of a blackbird. High vocabulary
makes the problem of identifying species more diffi-
cult [3]. They convey complex behaviours in the way

they are influenced and influence others with calls and
exhibit consistent temporal interaction patterns [4].

A good bird song synthesis model should be able to
reproduce a wide variety of high quality vocalizations
for a particular and across species.

Catchpole and Slater [5] define syllables as a series of
units which occur together in a particular pattern. Each
syllable comes from a species dependent vocabulary,
with different degrees of similarity depending on the
species. These syllables are grouped in phrases which
are the sections in the song or call. Complex syllables
can also be segmented into elements or notes. An ele-
ment is defined as a continuous line on a spectrogram.

An important set of features necessary when studying
bird song is related to frequency modulation. Stowell
and Plumbley [6] find that simple frame-to-frame peak
energy bins works well as features for large scale bird
classification tasks.
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Fig. 1: Comparison of the Bezier curve approximation
and the fundamental frequency of a Blue Tit.

Despite the interest in bird song within the wider field
of Computational Bioacoustic Scene Analysis [7], there
has been little work on synthesising such sounds. Hu-
man speech synthesis has served as an interesting start-
ing point for other kinds of animal sounds. Anikin [8]
and [9] provided systems for synthesizing non-verbal
vocalizations and both were easily be adapted to pro-
duce nonhuman animal sounds such as cats and wolves.

But birds have a very different vocal system, and hence
a different approach was taken here. The synthesis
model presented in this paper imitates sounds consist-
ing of single, repeated syllables. The model is most
suited to simpler bird vocalizations where the syllable
is also a note and is repeated.

We introduce a method for learning the modulator’s
shape required to synthesize the syllable using parti-
cle swarm optimization. The rest of the parameters
required for synthesis are approximated by different
methods, namely the length and rate of the syllables
and two parameters describing the quality of the har-
monics, whether they are odd or odd and even, and the
amplitude ratio between the first two harmonics.

A javascript interactive version of the model with pre-
sets for 36 birds is available as a JSAP plug-in [10] on
FXive. FXive [11] is a real-time sound effect synthe-
sis browser framework at https://fxive.com/
app/main-panel/real-birds.html. It sup-
ports a large number of procedural audio models, such
as impact sounds [12], environmental sounds [13] and
acoustic phenomena [14] .

2 Dataset
Bird sounds used for testing and learning
came from an open database of bird calls and
song, https://www.xeno-canto.org/
[15]. It contains bird recordings from around
the world of over 10000 species. Record-
ings of various birds were gathered from
https://www.kaggle.com/rtatman/
british-birdsong-dataset/version/2, a
small dataset of 88 species from the UK. This dataset
was chosen because it contains manually curated good
quality recordings which are sometimes hard to come
by on a public database such as xeno-canto. Species
from the dataset were selected on the criteria of it being
a repeating syllable sound composed of harmonics of
short bandwidth.

Two files were manually created from each recording;
a file of the single syllable cut perfectly on both ends
and a file containing three syllables. The three syllable
file was used to compute the syllable rate. The single
syllable file was used to produce both fundamental
frequency curve and amplitude envelope curves as well
as the other parameters.

3 Model
Bezier curves are parametric curves described by points.
They were originally used to design the bodywork of
cars but are now used extensively in computer graphics
and animation [16]. The curves can have any number
of control points. Here, we use cubic Beziers, which
consist of four control points, to describe the frequency
curve and the amplitude envelope of a bird syllable.
They are computed from the control points and then
used as modulators on a sine oscillator. An example of
approximating a fundamental frequency curve is shown
in Figure 1.

Additional oscillators are added on top of the funda-
mental to implement overtones. The amplitude curve
is applied to each one with a successively lower am-
plitude described by an attenuation parameter ranging
from 0 to 1, and the frequency curve is multiplied by
the harmonic number. All computed harmonics that
exist below the Nyquist frequency are added to produce
the final sound. The model can synthesize odd, or odd
and even harmonics selected by a Boolean parameter.
The last two parameters are rate and length. Rate is
in Hertz and describes how fast the syllable repeats
itself. Length is in seconds and describes the syllable
duration. Table 1 shows the list of parameters.
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Table 1: Parameter list.

Learnt parameters Computed Parameters
Frequency control 2 X Start frequency
Frequency control 2 Y End frequency
Frequency control 3 X Rate
Frequency control 3 Y Length
Amplitude control 2 X Overtone attenuation
Amplitude control 2 Y Harmonics are odd
Amplitude control 3 X
Amplitude control 3 Y

4 Learning

4.1 Extracting parameters

The first and last control points of a Bezier lie on the
curve. So they describe the start and end frequencies for
the frequency curve, and are set to 0 for the amplitude
curve. The parameters which are learned are the x and y
values of the two middle control points of the amplitude
and frequency Beziers.

Pitch extraction works by performing an FFT and as-
suming the highest amplitude bin to be the fundamental
frequency. The precise frequency value is then calcu-
lated by comparing the expected and measured phase
shift between adjacent frames of the chosen bin, as
described by Brown and Puckette [17]. This calculated
error enables us to find the true frequency value. The
window length used was 128 samples and to optimize
accuracy we used a hop size of 1 sample. Our imple-
mentation uses the aubio library in python [18] with
the fcomb preset.

The amplitude envelope curve is found by applying a
moving average filter to the absolute value of the signal.
The filter uses a 7 ms window. After filtering the fully
rectified signal we normalize the result from 0 to 1 to
get the resulting curve.

Results from pitch and envelope extraction methods
are illustrated in Figures 3 and 4, where we show the
spectrogram and waveform of a syllable synthesised
with the raw extracted signals and compare it with the
Bezier approximation and original recording.

Rate is found by finding the first peak in the self cor-
relation of the three syllable file’s amplitude envelope.
After self correlating, the middle peak defines the loca-
tion where the signal was perfectly on top of itself. The
distance from the middle peak to the next peak tells
us the number of samples a syllable period takes. The

Fig. 2: Points used for learning on a frequency curve
of a Worm Eating Warbler approximated by
Bezier curves.

syllable length is found by finding the length of a burst
of energy from the amplitude envelope.

The overtone attenuation parameter is found by first
taking the RMS of the signal. At the point where the
RMS is highest, an FFT is taken from a small window
on that point. The highest peak in the FFT is assumed
to be the fundamental frequency. A peak after that
would be the first overtone. The overtone attenuation
would be the ratio of the value of the second harmonic
and the value of the first harmonic. This tells us how
much to attenuate at each overtone. If only one peak
is found, the overtone attenuation is set to 0 so there is
only one frequency in the synthesised sound.

After taking the FFT of the point with the highest RMS,
we determine whether harmonics are odd or both odd
and even by finding the distance between the highest
peak and the peak after that in the frequency representa-
tion of that bin. If the distance is close to the frequency
value of the highest peak, assumed to be the funda-
mental frequency, we know harmonics may be odd and
even. Otherwise, harmonics are assumed to be odd.

4.2 Learning parameters

The proposed method of finding the frequency and am-
plitude control points uses particle swarm optimization.
Only the location of the two middle control points for
each Bezier needs to be found so the search space is
four dimensions, two for the x values and two for the
y values. The y values are limited from zero to the
nyquist frequency and the x values are from zero to
one. The position of a particle describes the shape of
the Bezier. The cost on each iteration is calculated by
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Fig. 3: Comparison spectrogram of a syllable at differ-
ent stages. Real recording (left), synthesised
with extracted curves (center), and synthesised
with learnt Bezier approximation curves (right)
of an Eurasian Nuthatch.

comparing the curves extracted from the recording to
the generated Beziers. The comparison is done by tak-
ing five equally spaced values along the curves (shown
in Figure 2), excluding the ends, and taking the eu-
clidean distance of both vectors. The swarm algorithm
attempts to minimize the cost by iteratively running the
objective function on a set of particles.

5 Evaluation

Various audio features were extracted from 36 single
syllable recording of different species. The features
were also extracted from a syllable synthesised with
the learnt parameters and from noise for use as a control
variable. For each species, the absolute difference was
taken of the real feature and the synthesised feature.
The absolute difference was also taken from the real
feature and the noise feature. Table 2 shows that the
difference in feature values is significantly lower for the
synthesised vs real than the real vs noise. A comparison
was also done of the resulting cost of the amplitude
learning versus the frequency learning.

6 Discussion

Frequency curves (μ 0.122151) were on average
more accurately represented than amplitude curves
(μ 0.207206) with a similar standard deviation (σ
~0.169). A possible reason for this is that frequency
Bezier end points were matched to the frequency curve
end points, whereas the amplitude bezier end points

Fig. 4: Comparison waveform of a syllable at different
stages. Real recording (left), synthesised with
extracted curves (center), and synthesised with
learnt Bezier approximation curves (right) of
an Eurasian Nuthatch.

were both matched to zero. In some sounds whose syl-
lables were close to each other the amplitude envelope
endpoints were higher than zero so when learning the
Bezier had a disadvantage having endpoints that were
different.

Learning produces varying results. Species with sylla-
bles that consist of discrete and powerful bursts produce
the best results. Specifically where a syllable consists
of a single note. This way, when the frequency curve
is initially computed it will be accurate enough so the
learning has a stable basis to work with.

Songs that produce bad results are ones that consist of
multiple notes. a single Bezier can not approximate a
quick jump to another frequency mid syllable. Also,
these kinds of sounds generally have a low syllable
rate so the differences in frequency of the real and
synthesised sound are easier to listen to.

Best results of amplitude curve cost were sounds that
had separated syllables in a song. This helped learn a
more accurate amplitude envelope.

The synthesis model is limited to bird sounds that con-
sist of repeating syllables. It also can not replicate high
bandwidth noise-like sounds, syllables with multiple
notes, and long and complex notes. This model, how-
ever, produces accurate results for the kinds of sounds
it aims to reproduce.
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Table 2: Mean and standard deviation of real versus
synthesized and real versus noise compar-
isons on different features.

Feature Synthesized Noise

Spectral Centroid μ 897.073 3452.44
σ 474.101 751.174

Spectral Bandwidth μ 744.659 2259.83
σ 308.257 302.082

Spectral Flatness μ 0.374674 0.54145
σ 0.190711 0.0170464

Spectral Flux μ 43.2346 1067.15
σ 39.7388 79.3703

Spectral Contrast μ 6.00999 8.70942
σ 3.94991 2.01772

Variance μ 11.7458 14.761
σ 13.0024 17.9724

7 Further Work
Different curve fittings, such as splines, could be tried
to model the syllable, but it is not clear whether a more
complex curve would improve the model. The model
should also produce a larger range of bird sounds. An
interesting bird sound that is difficult to model is the
high bandwidth sound which has a noise-like quality.
An example of a bird like this is the crow.

A model that learns a bird’s different phrases may pro-
duce a more varying and interesting sound to listen
to for longer periods. A model of this kind would
reproduce a species’ probability of singing a specific
phrase. It would play different phrases at natural rates
and times for that species.

References
[1] Stowell, D. et al., “Automatic acoustic detection of birds

through deep learning: the first Bird Audio Detection
challenge,” Methods in Ecology and Evolution, 10(3),
pp. 368–380, 2019.

[2] Neal, L. et al., “Time-frequency segmentation of bird
song in noisy acoustic environments,” in IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP), pp.
2012–2015, 2011.

[3] Stowell, D. et al., “Automatic acoustic identification of
individuals in multiple species: improving identification
across recording conditions,” J. Royal Society Interface,
16(153), 2019.

[4] Stowell, D., Gill, L., and Clayton, D., “Detailed tem-
poral structure of communication networks in groups
of songbirds,” Journal of the Royal Society Interface,
13(119), p. 20160296, 2016.

[5] Catchpole, C. and Slater, P., Bird song: biological
themes and variations, Cambridge university press,
2003.

[6] Stowell, D. and Plumbley, M., “Large-scale analysis of
frequency modulation in birdsong data bases,” Methods
in Ecology and Evolution, 5(9), pp. 901–912, 2014.

[7] Stowell, D., “Computational bioacoustic scene analysis,”
in Computational analysis of sound scenes and events,
pp. 303–333, Springer, 2018.

[8] Anikin, A., “Soundgen: An open-source tool for
synthesizing nonverbal vocalizations,” Behavior Re-
search Methods, 51(2), pp. 778–792, 2019, doi:10.3758/
s13428-018-1095-7.

[9] Wilkinson, W. and Reiss, J. D., “A Synthesis Model for
Mammalian Vocalization Sound Effects,” in 61st Audio
Engineering Society International Conference: Audio
for Games, 2016.

[10] Jillings, N. et al., “JSAP: A plugin standard for the
web audio api with intelligent functionality,” in Audio
Engineering Society Conv. 141, 2016.

[11] Bahadoran, P. et al., “Fxive: A web platform for proce-
dural sound synthesis,” in Audio Engineering Society
Conv. 144, 2018.

[12] Sánchez, P. and Reiss, J., “Real-time synthesis of sound
effects caused by the interaction between two solids,”
in Audio Engineering Society Conv. 146, 2019.

[13] Moffat, D. and Reiss, J., “Perceptual Evaluation of Syn-
thesized Sound Effects,” ACM Transactions on Applied
Perception, 15(2), p. 13, 2018.

[14] Selfridge, R. et al., “Creating Real-Time Aeroacous-
tic Sound Effects Using Physically Informed Models,”
Journal of the Audio Engineering Society, 66(7/8), pp.
594–607, 2018.

[15] Vellinga, W.-P. and Planqué, R., “The Xeno-canto Col-
lection and its Relation to Sound Recognition and Clas-
sification.” in CLEF (Working Notes), 2015.

[16] Farin, G. et al., Handbook of computer aided geometric
design, Elsevier, 2002.

[17] Brown, J. and Puckette, M., “A high resolution funda-
mental frequency determination based on phase changes
of the Fourier transform,” J. Acoustical Society of Amer-
ica, 94(2), pp. 662–67, 1993.

[18] Brossier, P. et al., “aubio/aubio: 0.4.9,” 2019, doi:10.
5281/zenodo.2578765.

AES 147th Convention, New York, 2019 October 16 – 19
Page 5 of 5


	Introduction
	Dataset
	Model
	Learning
	Extracting parameters
	Learning parameters

	Evaluation
	Discussion
	Further Work

