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Abstract

Applications that aim to transcribe singing performances automatically into music notation are

mostly concerned with representing the singing voice in terms of pitch over time. Little research

has focused on the automatic transcription of lyrics and their representation alongside music

notes on staff notation. Song lyrics are one of the core building blocks of singing performances

and an essential part of the music listening experience. Thus, the automatic retrieval of song

lyrics has a huge potential for impact across many applications such as songwriting tools,

audio/video captioning, karaoke applications, music catalogue creation, music recommendation,

playlist generation and royalty forecasting. This study formalises lyrics transcription by means

of Large Vocabulary Continuous Speech Recognition (LVCSR) from the singing voice and aims

to develop an automatic lyrics transcription system that has a robust and scalable performance

across varying domains. In particular, challenges and opportunities within two major paradigms

of Deep Neural Network (DNN)-based LVCSR systems are investigated: the first one is the

hybrid DNN - Hidden Markov Model (DNN-HMM) trained on the Lattice-free Maximum

Mutual Information (LFMMI) objective. For the DNN-HMM framework, a number of novel

methods are proposed: using a lyrics-specific corpus for building the language model, a singing-

adapted pronunciation dictionary for modelling common pronunciation variants in singing,

a compact multistream neural network architecture to enhance performance against noisy

environments, and a cross-domain acoustic model with music informed silence modelling. The

second approach to lyrics transcription focuses on the end-to-end models, where transfer learning

is applied via fine tuning a pretrained speech recognition model on singing data. Specifically,

the end-to-end model has a transformer architecture and is trained on the hybrid CTC / Attention

objective.

Some of the key findings of this study can be summarised as follows: song lyrics have
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diverse lexical and prosodic characteristics to spontaneous or read speech, thus a lyrics-specific

language model often performs better than one trained on speech transcriptions. Secondly,

adapting a pronunciation dictionary to singing data leads to consistent but modest improvements.

The multistream neural network architecture for the acoustic model leads to an improved

word error rate and faster inference performance compared to its single stream counterpart.

Domain invariant transcription performance can be achieved by including both monophonic and

polyphonic recordings during training. Using distinct target class labels for non-vocal silent and

music instances helps improve lyrics transcription rates on polyphonic recordings. The final

DNN-HMM model achieves the state-of-the-art by a considerable margin through combining the

aforementioned methods. The experiments on the end-to-end approach show that in the presence

of low data resources, end-to-end models can achieve comparable transcription results to the

DNN-HMM models on solo singing through speech-to-singing transfer. However, the word

error rates of end-to-end models on polyphonic recordings are still much higher than those of

the state-of-the-art DNN-HMM-based ALT. Furthermore, a new evaluation metric is introduced

which measures a model’s performance drop across multiple datasets. As a conclusion, this

study elaborates the opportunities and challenges of the DNN-HMM and end-to-end approaches,

provides benchmark results, and contributes to reducing the research and literature gaps between

lyrics transcription and speech recognition with the goal of setting a point of reference for the

next generation of lyrics transcription systems. For reproducibility, the codebase of this thesis is

shared publicly and a tutorial is provided to retrieve the data used in the experiments.
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Chapter 1

Introduction

Music and lyrics co-occur through singing in most human populations around the globe (Clarke,

1952; Levitin, 2006; Donald et al., 2012). In particular, singing with lyrics is a medium of

communication where two of the most complex auditory cognitive abilities of humans coexist:

speech and music (Slevc, 2012). Contrary to spontaneous speech, the intended information

is conveyed with singing lyrics through the complex interaction between musical and lyrical

structure in addition to the linguistic content. In this regard, automatic lyrics transcription (ALT)

is a computational task that is located at the junction of music, speech and language processing.

This dissertation aims to tackle this problem using deep neural networks (DNN) and explores a

number of methods for an improved and generalisable lyrics transcription performance.

1.1 Motivation

Previous psychological studies that examined the function of song lyrics showed that in certain

situations, lyrics can be used to express, explore, and discuss emotions (Ali and Peynircioğlu,

2006; Barradas and Sakka, 2021), feelings, problems, personal ideas (MacDonald et al., 2002;

Gardstrom, 1987) and political views (Van Sickel, 2005), help deal with everyday problems

(Gibson et al., 2000), and influence and reflect listener’s daily actions and decisions as well their

music listening behaviour (Ballard et al., 1999; North and Hargreaves, 2008). For instance, Strat-

ton and Zalanowski (1994) argued that listeners may prefer richer, more thoughtful, persuasive,

and emotional lyrics. The authors also found evidence for the addition of lyrics to instrumental
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songs invoked stronger emotions on listeners. Furthermore, the same study argued that when

the music and the lyrics have contradictory affection information, the lyrics would be more

influential on the induced mood. Song lyrics may give clues about listeners’ socioeconomic

status as well (Pettijohn and Sacco Jr, 2009a,b). In particular, the recent study by Putter et al.

(2021) found evidence from lyrics that people in the UK and US with lower socioeconomic

status listened to lyrics that reflect social isolation and lower satisfaction, during the COVID-19

pandemic. In this regard, lyrics constitute one of the core elements of music that establish a

communication ground between the singer/composer and the audience.

With the digital media revolution, song lyrics have also been exploited extensively to

organise and navigate music collections. While song lyrics can be directly processed from text,

these are often not available or not correctly paired with their music recordings. From this point

of view, the automatic transcription of lyric information has a great potential to enhance the

creation, listening and distribution of music. Such automatic transcription tools are generally

referred to as Automatic Lyrics Transcription (ALT) systems, which are specifically designed to

transcribe the sung lyrics from audio into text.

At first sight, the above described systems can be considered to be similar to speech-

to-text machines. Although this perspective would not be terribly invalid as the inputs to

both systems are human voice and the expected output is their orthographic transcriptions,

singing has specific attributes compared to natural speech, which stand out as challenges for

the industry-standard speech-to-text machines in transcribing sung lyrics accurately. Similar

to such machines, transcribing sung lyrics is already challenging for human listeners. The

experiments held by Collister and Huron (2008) showed that the word intelligibility is lower for

singing than speech by human listeners. One of the most obvious reasons for this is the way

that vowels are uttered in singing. Collister and Huron (2008) suspected that confusions due to

the timbral and the temporal changes of vowels (which also lead to confusion in the perception

of the surrounding consonants) can be a candidate cause for the lower word intelligibility.

Sundberg and Rossing (1990) considered word intelligibility of sung vowels as a function of

the fundamental frequency of vowel syllables. Palmer and Kelly (1992) showed that vowel

duration variances and extensions change the rate at which syllables are uttered, hence affecting

the prosody. Leanderson et al. (1987) highlighted the physiological differences between natural
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speech and singing, and observed higher glottal pressure variance for the latter. The authors

argued that this is related to the greater emotional expression in singing. (Sundberg, 1995)

showed that vocal styles like vibrato also influence word intelligibility. A number of studies

focused on the cluster of powerful formants in the spectrum observed for singing performances,

i.e. the singer’s formant (Smith and Scott, 1980; Gregg and Scherer, 2006; Sundberg and

Romedahl, 2009), which is mostly observed in Western opera. These arguments are mostly

concerned with performer (singer) related factors affecting word intelligibility, though listener

and environment related factors are not to be omitted. Due to the hearing effects (like masking),

the listeners’ understanding of sung words might be affected by the background noise, especially

when there is are instruments accompanying the vocals (Di Carlo, 2007). The acoustics and the

reverberation of the auditory environment (Sato and Prodi, 2009), and vocal effects (like artificial

reverberation, chorus, etc.) are some other major factors that influence the word intelligibility.

Furthermore, the pilot study by Ibrahim et al. (2017) highlighted the importance of music genres.

Above mentioned research outlines the major contradictory elements between natural speech

and singing, and must be taken into account when attempting to build a lyrics transcriber.

The automatic retrieval of sung lyrics and transcribing natural speech do not only differ by

their physical attributes. The semantics of both domains are also distinct. Lyrics are somehow

closer to poetry, and natural speech is to prose. Song lyrics are often temporally and structurally

aligned with the underlying musical piece. Non-linguistic words are often neglected during the

automatic transcription of natural speech, however they contribute to the sung melody, hence

should be included in the transcription output. More about these differences between speech

and singing are scrutinised further through a few examples in Section 2.1 - Problem Definition.

The research in ASR has been developing since long before its applications found place in

the industry. The efforts of numerous researchers and research groups has helped establishing

standardised methods, open-source data resources, and training / testing schemes for model

evaluation. ALT is an emerging field, and hence lacks the research and literature that ASR

research has been developing. To reduce this research and literature gap is one of the main

driving factors that motivated the progression of this research.

Until recently, studies in ALT had used private datasets for model evaluation (Fujihara et al.,

2006; Mesaros and Virtanen, 2010a; Hansen, 2012; Kruspe, 2016), which made the model
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comparison across different publications difficult. Secondly, the availability of large-scale

training data resources has been among the major bottlenecks for ALT research. For instance, a

benchmark training set in ASR, namely Librispeech (Panayotov et al., 2015) has nearly 1000

hours of transcribed natural speech. The size of the training sets used previously for ALT are

around 150 hours (Meseguer-Brocal et al., 2019), which weren’t available until recently. The

curation and distribution of large-scale datasets is not only a bottleneck for ALT, but also for

music information retrieval (MIR) research, due to copyright issues that emerge when sharing

music recordings. From this perspective, this dissertation provides experiments and results

exploiting the available training and evaluation data resources commonly used in research, with

the goal of establishing benchmark ALT results.

Some of ALT’s direct use cases include music video captioning/subtitling (e.g. for Karaoke),

music recognition, and query by singing (Watanabe and Goto, 2019). For the task of audio-to-

lyrics alignment - the automatic retrieval of word timings in music signals - the best performing

approaches include a pretrained ALT acoustic model in their core (Gupta et al., 2020). On the

other hand, the language model within ALT modules can be used for lyrics generation (Hopkins

and Kiela, 2017). ALT models also find utility in using lyrics for song mood/emotion detection

(Rachman et al., 2018) or improving vocal source separation (Schulze-Forster et al., 2020;

Meseguer-Brocal and Peeters, 2020) and cover song identification (Correya et al., 2018; Vaglio

et al., 2021). In addition, these systems can be utilised in musical therapy methods that are

developed to treat language deficits (Schlaug et al., 2010). Some other potential applications

of ALT include music composition, playlist generation, music recommendation, and royalty

forecasting. Considering the above mentioned applications that will be enabled and enhanced

via ALT, this research is motivated to improve the applicability of this technology.

1.2 Research Aim

As will be discussed later in Section 2.1, the task of ALT is similar to automatic speech

recognition (ASR), or specifically Large Vocabulary Continuous Speech Recognition (LVCSR),

as the final desired output of such systems is the transcription of uttered (or sung) words and

characters. LVCSR has already been acknowledged as one of the most challenging tasks within
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the overall machine learning domain, yet ALT is no less challenging, considering the specific

characteristics of singing performances and song lyrics mentioned above. Despite the unique

characteristics of song lyrics compared to natural speech, not as much research has been done

on the ALT domain that could potentially enable its application in the industry. This dissertation

is aimed at contributing towards reducing the research and the literature gaps between ASR and

ALT to accelerate the development of the latter research field. Within this respect, it strives to

adapt the state of the art deep neural network-based LVCSR techniques to the singing domain.

Therefore, it ponders which of those techniques is more suitable given the open-source data

resources that could be leveraged to build a lyrics transcriber.

This thesis tackles the task of ALT by means of a specific data domain of the LVCSR

problem. Although there are several aspects of lyrics to be handled to achieve more context-

aware transcriptions, such as the semantics, rhythmic components, rhyming and the segmentation

of lyrical lines, this study focuses on adapting the existing state-of-the-art methods in ASR to

singing data. The adaptation considers the a number of contrastive dimensions of lyrics and

natural speech, like the lexical diversities, utterance lengths, and the pronunciation variances

which will be quantitatively examined later in Sections 3.3 and 4.2.1. Furthermore, this study

proposes methods to improve transcription performance when there is music accompaniment to

singing.

In recent years, ASR systems in research have reached to a performance level that can be

comparable to human transcribers. For instance, the professional transcribers in the experiments

conducted by Saon et al. (2017) and Xiong et al. (2017) had 5.9 % and 5.1 % word error rates

(WERs)1 respectively on the Switchboard corpus (Godfrey et al., 1992) 2. In 2016, Microsoft

reported WERs below 6 % on the Switchboard corpus (Saon et al., 2017). Recently, IBM’s

Research A.I. Team achieved below 5 % WER (Tüske et al., 2021). However, at the time

when the author of this thesis started his Ph.D. research, the lowest WER score reported on

solo singing was around 34 % (Gupta et al., 2018), which was even higher when there is

musical accompaniment (around 50-60 % WER (Gupta et al., 2020)). This highlights the

large gap in the performances of word recognition systems for speech and singing data. This
1WER is the most commonly used evaluation metric in ASR research, which will be studied later in Section 3.4.
2The Switchboard corpus is a research benchmark dataset for ASR and consists of human conversational speech

data.
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poor performance prevented researchers and engineers from developing the above-mentioned

applications that would leverage lyrics transcriptions. Moreover, being an amalgamation point

for multiple complex information domains, namely music, speech and language, ALT has been

considered to be among the most challenging tasks within Music Information Retrieval (MIR)

research (Humphrey et al., 2018). Therefore, this research aims to improve lyrics transcription

performance through leveraging available data resources and adapting the state-of-the-art in

ASR to singing data.

1.3 Thesis Structure

The content of this thesis is organised according to the following structure:

• Chapter 2 - Related Work provides the background knowledge, goes through the related

previous work, and gives a comparison of the common open-source toolkits used in the

relevant research field.

• Chapter 3 - Singing Data for Word Recognition examines the singing data available for

research in lyrics transcription, and gives an explanation of the metrics used to evaluate

ALT models.

• Chapter 4 - Hybrid DNN-HMM Lyrics Transcription describes the details of the first

approach (as the chapter title implies) for building an ALT system included in this study,

and

• Chapter 5 - End-to-end Lyrics Transcription describes the second approach, which is

end-to-end training, where a number of possibilities to apply speech-to-singing transfer

learning are explored.

• Chapter 6 - Discussion & Conclusion compares the DNN-HMM and end-to-end ap-

proaches, discusses the future challenges and opportunities in this research field, and

summarises the novel contributions of this thesis.
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1.4 Associated Publications

Certain sections in this thesis work were previously published at international peer-reviewed

conferences. The related publications are listed below:

• Emir Demirel, Sven Ahlbäck, and Simon Dixon, Automatic lyrics transcription using

dilated convolutional neural networks with self-attention: The baseline DNN-HMM

model presented in Chapter 4, where the around 5% WER improvement reported through

self-attention and RNNLM3, compared to the previously best work by the time publication

(Dabike and Barker, 2019).

• Emir Demirel, Sven Ahlbäck, and Simon Dixon, A recursive search method for lyrics

alignment: The model in the above publication is also used in the MIREX 2020: Auto-

matic Lyrics Transcription challenge where it achieved the best results on the monophonic

evaluation set (Demirel et al., 2020b). In addition, a recursive audio-to-lyrics alignment

procedure is presented in this work.

• Emir Demirel, Sven Ahlbäck, and Simon Dixon, Computational pronunciation analysis

in sung utterances: The pronunciation analysis and singing-adapted lexicon presented in

Sections 4.2 were published in this paper (Demirel et al., 2021c).

• Emir Demirel, Sven Ahlbäck, and Simon Dixon, MSTRE-Net: Multistreaming acoustic

modeling for automatic lyrics transcription: Three of the novel methods in building the

DNN-HMM model in Chapter 4, namely the compact multistream TDNN architecture,

music-informed silence modeling and cross-domain training were proposed (Demirel

et al., 2021b). A new polyphonic evaluation set was also presented in this work, which is

discussed in Section 3.1.2.

Note that all the codework and the papers are written by the author of this thesis, and

supervised by the co-authors, Sven Ahlbäck and Simon Dixon.

In addition, further work is done on audio-to-lyrics alignment and sung note segmentation,

which resulted in the following publications:
3RNNLM refers to Recurrent Neural Network-based Language Model, which will be discussed later in Section

4.1.2
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• Emir Demirel, Sven Ahlbäck, and Simon Dixon. Low resource audio-to-lyrics alignment

from polyphonic music recordings. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2021 (Demirel et al., 2021a) : This work pro-

poses a novel audio-to-lyrics alignment method that can operate on long music recordings

with low memory requirements.

• Yukun Li, Emir Demirel, Polina Proutskova, and Simon Dixon. Phoneme-Informed

Note Segmentation of Monophonic Vocal Music. In 2nd Workshop on NLP for Music

and Audio (NLP4MusA), 2021 (Li et al., 2021): This work presents a novel method for

leveraging the output of the ALT system for the sung note segmentation task.

The details of the last two publications are not included in this document as their topics are

not within the main scope of this thesis.

1.5 Reproducibility

For the reproducibility of the results of this research, the author used and developed open-source

software. These are summarised below:

• Open source ASR Toolkits: Two open-source toolkits are used for building the lyrics

transcribers studied in this thesis, namely Kaldi (Povey et al., 2011) and SpeechBrain

(Ravanelli et al., 2021) packages. A more detailed discussion regarding these toolkits is

provided in Section 2.4.

Links:

Kaldi - https://github.com/kaldi-asr/kaldi

SpeechBrain - https://github.com/speechbrain/speechbrain

• The (A)utomatic (L)yrics (T)r(A)nscription - ALTA package: The package contains

two Kaldi-based recipes for the DNN-HMM lyrics transcription (studied in Chapter 4)

approach and the data retrieval is explained in the instructions. The first recipe is for

monophonic lyrics transcription which is used to produce the results by Demirel et al.

(2020a). The second recipe is for training the MStreNet model (Demirel et al., 2021b).

The pretrained models are not shared due to licensing restrictions.
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Link: https://github.com/emirdemirel/ALTA

• A repository is shared with the community to retrieve the newly introduced polyphonic

evaluation set which is curated from a portion of the DALI dataset (Meseguer-Brocal

et al., 2019). The repository contains lyrics annotations, the relevant metadata information

and a Jupyter notebook tutorial to automatically retrieve the audio recordings.

Link: https://github.com/emirdemirel/DALI-TestSet4ALT

• The novel DNN-HMM based lyrics alignment software is developed as an open-source

toolkit. This software uses the pretrained acoustic model from the ALTA package.

Link: https://github.com/emirdemirel/ASA_ICASSP2021

• In addition to the open-source software, all publications and research outcomes are shared

online including video presentations. The list of related talks can be found at:

https://emirdemirel.github.io/alt.html. Specifically, the summary of this thesis is presented

at: https://www.youtube.com/watch?v=r-4JEqyDGPs.

1.6 Contributions

The novel contributions of this thesis are listed below:

• Chapter 3: A quantitative comparison between speech and singing data is given. Eval-

uation metrics are explained and a novel metric is proposed in 3.4.2, which measures a

model’s performance drop across multiple test sets or different domains. A lyrics-based

corpus for constructing the language model and a new evaluation set for ALT (DALItest240)

is presented in this chapter.

• Chapter 4: The state-of-the-art DNN-HMM based system is presented. Novel methods

proposed in this chapter are: a quantitative pronunciation analysis and a singing adapted

pronunciation dictionary, cross-domain training for building a more robust acoustic model

on polyphonic recordings, the use of the ‘music’ token in the target class set to model

non-vocal (instrumental) instances in polyphonic recordings (i.e. music-informed silence

modeling), and the multistream time delay neural network (TDNN) architecture. In
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addition, an extensive cross-dataset evaluation is performed to measure the proposed

methods’ generalisability across all benchmark test sets used in research.

• Chapter 5: The state-of-the-art end-to-end ASR approach is applied on the available

singing data. As a novelty, transfer learning from speech to singing is applied. This

showed that some information between speech and singing is transferable. In addition, a

cascaded transfer learning approach is proposed to adapt the monophonic acoustic model

to the polyphonic domain. Finally, the cross-domain training approach is tested for the

end-to-end models.

• Chapter 6: Comparison of the DNN-HMM and the end-to-end approaches, and an

exploratory error analysis are conducted. Both models are compared with the previous

literature. According to this, the DNN-HMM model outperforms the previous state-of-the-

art in ALT by a large margin. While the end-to-end models have considerably higher error

rates than the DNN-HMM method, the best performing end-to-end model still has better

results than other end-to-end systems reported in the literature. Furthermore, the current

challenges and the future opportunities in ALT research are discussed in this chapter.



Chapter 2

Related Work

This chapter introduces the relevant concepts for understanding the lyrics transcription models

proposed in the following chapters. It begins by defining the ALT problem, and proceeds with

the essential theoretical details of two of the most competitive frameworks in speech recognition,

namely Deep Neural Networks - Hidden Markov Models (DNN-HMM) with Lattice-Free

Maximum Mutual Information (LFMMI) training and transformer-based end-to-end (E2E)

systems using the hybrid Connectionist Temporal Classification (CTC) / Attention objective.

After the theoretical introduction, a comparison of the ASR toolkits available for research is

given. Finally, the literature on the recent advances in ALT is studied excluding what is presented

in the following chapters of this thesis.

2.1 Problem Definition

The task of Automatic Lyrics Transcription (ALT) can be defined as the procedure of trans-

forming a singing voice performance with lyrics that has a finite length of data into a string

of text which is targeted to match that of the original lyrics written by the lyricist. From this

perspective, it is possible to consider this task as ASR in the singing voice domain. Following the

statistical modeling approach presented by Gales and Young (2008), this task can be translated

to estimating the posterior probability that any given stream of sung words or lyrics will be

uttered. This is equivalent to finding the most probable word sequences, w, given the acoustic

observations X, and can be formalised as:
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ŵ = argmax
w

(P (w|X)) (2.1)

Similar to the art of poetry, prosody is a main concern for song lyrics, which is often

influenced by the rhythmic patterns of the underlying musical piece (Palmer and Kelly, 1992;

Rasinski, 2006). Likewise the pitch and the melodic structure have an influence when uttering

words, which affects how words are pronounced and thus their intelligibility (Fine and Ginsborg,

2014). For instance, consider the following phrase from Act 2 - Scene 2 from Shakespeare’s

Twelfth Night:

O time, thou must untangle this, not I.

It is too hard a knot for me to untie!

The prosodic elements would not be identical if the above lines were uttered in prose form

or natural speech, considering words at the beginnings and the ends of lines, the choice and the

articulation of words, and how the sequence of words is ordered. However, the composition

and the singing of lyrics are not influenced only by prosody or stress, but also the musical

information conveyed through melodic lines. Consider the same phrase by Shakespeare sung

with the melodic lines shown in Figure 2.11.

Notice the duration, pitch and transition variances between syllables and different interpre-

tations of the piece with the same underlying musical harmonic structure, considering their

corresponding musical notes, and the rhythmic patterns. In addition, there are certain words

repeated multiple times by the singers that are not in the original lyrics. Although the examples

are not necessarily representative of specific music styles, they are provided as a reflection on

how the manner of utterance or pronunciation can be varied depending on the content creator’s

musical creativity. In this respect, generalising rules regarding the acoustics, the linguistics and

the semantics of lyrics would not necessarily be a comprehensive perspective when attempting to

solve the ALT problem. Broadly, this research considers ALT as a sequence prediction problem,

and mainly employs relevant concepts of the state-of-the-art Large Vocabulary Continuous

Speech Recognition (LVCSR) frameworks. In this regard, the main approach is developing
1The sheets are generated using the ScoreCloud app which can be downloaded from https://scorecloud.com.
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(a)

(b)

Figure 2.1: Two examples of lyrics in Western music notation.

methods to adapt the training pipelines and the computational blocks of ASR systems for singing

voice. Although there are endless possibilities for injecting lyrics priors in the transcription

system with the goal of obtaining more semantically and musically coherent output, this thesis

is mainly motivated by providing a baseline for the next generation of lyrics transcribers.

As an additional consideration, common ASR applications often do not include non-

linguistic sounds in the target word space as they contribute minimally to the overall context.

On the contrary, the accurate transcription of such sounds is a major concern for ALT since they

often appear in sung melodies or scat singing. For this reason, the non-linguistic "words" are

not excluded from the target search space or the vocabulary in ALT.

Decoding

In conventional speech recognition, ŵ in Equation 2.1 is generally estimated using beam search,

which can store conditional probabilities of multiple tokens, and provides best N outputs based
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on the accumulated scores. The search chooses predictions with higher probabilities when

generating hypotheses. Consider Ωl is a set of partial hypotheses with length l. Beam search

uses the start and end of sentence tokens (<sos> and <eos> respectively) that indicate the

beginning and the end of the predictions. The search begins from l = 0, and Ω0 has only one

hypothesis which is the start-of-sentence, ‘<sos>’ token. For 1 ≤ l ≤ Lmax, the hypothesis

set can be expressed as Ωl = {gl−1 · wl : gl−1 ∈ Ωl−1, wl ∈ ŵl}, where the operation ‘·’

denotes concatenation, ŵl is the set of all possible predictions at step l and Lmax is the maximum

allowed length of the hypotheses in question. Each new hypothesis at the lth time step of the

beam search (i.e. hl ∈ Ωl) is generated through concatenating a label wl ∈ ŵl to the partial

hypothesis gl−1 ∈ Ωl−1 at the previous time step (i.e. hl = gl−1 · wl). The beam search score,

α for every new hypothesis, h, is obtained through summing the scores of the partial hypothesis

of the previous time step gl−1 and the conditional probability of a token to predict, wl, in the

log domain:

α(hl,X) = α(gl−1,X) + log p(wl|gl−1,X). (2.2)

The search terminates if wl is predicted to be <eos>, and hl is added to the final set of

complete hypotheses Ω̂l. The final prediction is selected to be the hypothesis with the highest

scores:

ŵ = argmax
h∈Ω̂

α(h,X). (2.3)

In practice for efficiency, only hypotheses with the N highest probabilities are kept during

the search process (i.e. less likely labels are pruned).

Alignment

Although this dissertation only targets retrieving sung words and phrases in the correct sequence,

the ALT task overall is not only concerned with retrieving uttered words in a certain order, but

also with their timings, and how they are aligned with the overall musical structure, as the target
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of transcriptions is to guide performers and listeners about the subject musical piece. From

the information retrieval point of view, the task of retrieving word timings can be associated

with the alignment problem. The most common approach to this is the procedure referred to as

forced alignment. In principle, this procedure is based on aligning the target sequence (either on

word, phoneme or syllable level) with the sequence of posterior probabilities. However, forced

alignment considers ŵ = w, thus does not need to find the most probable sequence (i.e. no

need for ‘argmax’). In practice, this is equivalent to finding the least cost path of the given

lyrics of a singing performance and its acoustic representation, which is generally achieved by

dynamic programming. More details on forced alignment can be found in the works of Rabiner

and Juang (1993) and Gales and Young (2008).

Although this thesis acknowledges that retrieving word timings of lyrics is important for the

applications of ALT, improving word alignments is not among the prior concerns of the proposed

methods in this research. Instead, this work mostly focuses on the retrieval of the intended

words in the correct order, and does not attempt to transcribe lyrics in a musically structured

manner, or tackle the audio-to-lyrics alignment problem. However, readers are encouraged to

read the distinct approaches to the audio-to-lyrics problem proposed by Stoller et al. (2019);

Gupta et al. (2020); Demirel et al. (2021a) and Huang et al. (2022), and how such systems are

evaluated in the thesis by Dzhambazov et al. (2017).

2.2 DNN-HMM Based Approach

2.2.1 Hidden Markov Models

HMMs are a popular choice for statistically modeling a sequence of symbols or vectors (Gales

and Young, 2008). Typically an HMM is defined with a finite number of states j = 1, 2, ..., N ,

transition probabilities (ai,j) between state pairs, and output distributions of emitting states

(bj) over a set of predefined output symbols. Going back to the speech recognition problem,

HMM-based ASR applies Bayes Rule to Equation 2.1 (Gales and Young, 2008), which yields

to:
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argmax
w

P (w|X) = argmax
w

P (X|w)P (w)). (2.4)

It is impractical to compute P (X|w) directly in large vocabulary applications. Moreover,

word predictions should consider pronunciation variations of uttered words. Considering these,

most HMM-based ASR systems use phonemes2 to decompose words into smaller units for

representing speech sounds. According to the connectionist theory of ASR (Graves et al.,

2006), a sequence of phonemes is considered as a Markovian chain where each phoneme

is represented as a continuous density HMM, Q with states q, transitions ai,j and output

observation distributions bi,j that generates acoustic feature vectors X. This is injected into

Equation 2.4 as follows:

argmax
w

P (w|X) = argmax
P (X,w)

P (X)

= argmax
w

P (X,w)

= argmax
w

∑
Q

P (w,Q,X)

= argmax
w

∑
Q

P (X|Q,w)P (Q,w)

= argmax
w

P (w)
∑
Q

P (X|Q,w)P (Q|w) (2.5)

where Q is the sequence of phoneme states. Note that the states and the observations have to

yield the standard conditional independence assumptions for an HMM (Gales and Young, 2008),

so that P (X|Q,w) = P (X|Q). Then, Equation 2.5 can be summarised as:

ŵ = argmax
w

P (w|X) = argmax
w

P (w)
∑
Q

P (X|Q)P (Q|w). (2.6)

According to Equation 2.6, there are three factors used to approximate P (w|X). The

2A phoneme is the basic sonic unit of speech.
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acoustic model (AM), P (X|Q) aims to match an acoustic observation X to a sequence of

phonemes. The term P (Q|w) is generally obtained from a predefined dictionary that gives

a mapping between words and their phonemic pronunciation, and it is associated with the

pronunciation model. Finally, the grammar information or the language model (LM) is obtained

through P (w) which is the probability of observing a word in a sequence of words, w1w2...wN .

Figure 2.2: Overall bloack diagram for HMM-based ASR systems.

Acoustic Model

Consider a composite HMM Q, formed by the concatenation of the phones qw1 , ..., qwL . Then

the acoustic likelihood can be modeled by

p(X|Q) =
∑
θ

p(θ,X|Q), (2.7)

where θ is the state sequence, and

p(θ,X|Q) = aθ0,θ1

T∏
t=1

bθt(Xt)aθt,θt+1 (2.8)

where θ0 and θT+1 are non-emitting start and exit states. For simplicity, these non-emitting

states are ignored in the model parameter estimation.

In the pre-deep learning era, the traditional approach for building the acoustic models had

been modeling output distributions as multivariate Gaussian distributions (or Gaussian Mixture

Models - GMM) where the model parameters (like the mean and covariance matrix of these

distributions) can be estimated via the forward-backward algorithm (Baum et al., 1970). A
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GMM is a probability density function that is obtained by calculating the weighted sum of the

Gaussian component densities. In audio and speech processing, it is assumed that a GMM

represents the acoustic characteristics of a spectral envelope (Gales and Young, 2008). There are

two learnable main sets of parameters of GMMs that can be estimated using machine learning

methods for building an acoustic model, which are the mean and the covariance matrices. The

GMM-HMM model is initialised with global mean and covariance values and the same number

of frames are assigned to each HMM (phoneme) state, q. Then, alignment (via Viterbi decoding)

and the parameter estimation are iteratively applied using the Expectation-Maximization (EM)

algorithm (Moon, 1996).

Pronunciation Model

Consider a pronunciation of a word as a particular sequence of phonemes qw
Mw

= q1, q2, ..., qMw .

Then, P (Q|w) can be obtained via the following formula:

P (Q|w) =
L∏
l=1

P (qwl |wl), (2.9)

where Q is a particular sequence of pronunciations, L is the number of words in the predictions

and the product is done over all possible pronunciation sequences. In practice, there exist only

few alternative pronunciations for a particular word, which makes the summation in Equation

2.6 tractable. The pronunciation probabilities, P (qwl |wl) can either be set to be equal for each

alternative pronunciation, or can be estimated via a pretrained model as proposed by Chen et al.

(2015).

Language Model

The language model is generally trained using statistical learning methods trained on text

corpora. In conventional ASR systems, P (w) is computed using the n-gram language modeling

approach,

P (w) =
K∏
k=1

P (wk|wk−1, wk−2, ..., wk−N+1), (2.10)

where w = w1, ..., wK is a word sequence with length K. There are often cases where a word in
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a test sample appears in an n-gram that was never seen in the training data. In this case, the LM

would assign a zero probability for such words. To prevent the LM assigning zero probability to

these unseen events, probabilities of the most frequent events are shaved off and distributed over

the unseen n-gram. This procedure is called smoothing. The DNN-HMM framework employed

in this dissertation uses the Kneser-Ney algorithm (Kneser and Ney, 1995) for this purpose.

Context and Position Dependency

The acoustic properties of phonemes may vary in general due to co-articulation or omitting

(elision) during pronunciation. In modern ASR systems, a common way to solve this problem is

to use context-dependent HMMs, where an HMM state (phone) is labeled with the combination

of the base phone and the phones immediately to the left and right. Such state labeling is referred

to as triphone modeling. However, such labeling would result in a very large set of phones,

i.e. target classes. Hence, to make the final decoding graph computationally tractable, less

frequently occuring triphones in the training data are pruned, most commonly via tree-based

clustering (Young et al., 1994).

The pronunciation of phonemes may also vary depending on where they are located within

a word. To account for this, phonemes are additionally labeled with respect to their position in

a word. There are four categories for doing this: phonemes in the beginnings and endings of

words, intra-word phonemes and singleton phonemes which form alone for a single word. This

final set of context and position dependent phonemes are generally referred to as senones.

Weighted Finite State Transducers

The probabilities estimated via the AM, LM and the pronunciation dictionary are then composed

into a graph with hidden states and decoding is applied through the Viterbi algorithm on the

emission probabilities of the HMM states in order to retrieve the likeliest sequence of words. This

procedure is represented by the ‘Decoder’ block in Figure 2.2. In the DNN-HMM framework

we employ, Kaldi (Povey et al., 2011), the decoding graph is constructed using Weighted Finite

State Transducers (WFST) (Mohri et al., 2002), where the priors coming from the AM, context

dependency, the lexicon and the LM are constructed via separate FSTs, represented by H , C, L

and G graphs respectively, and composed into a single decoding graph.
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The WFST structure can store multiple pronunciation variants and word predictions through

a lattice form, a weighted labeled acyclic (directed) graph generated after a first-pass decoding

(an example can be seen in Figure 2.3). Readers are encouraged to read more about WFSTs and

their application in ASR in the work of Mohri et al. (2002).

Figure 2.3: An example of the lattice structure constructed at the end of the HCLG graph that
is generated after the first forward pass. The decoding procedure aims to find the most likely
path on this lattice from left-to-right. Numbers on the left-side of the words represent word IDs.
Ground Truth : ‘AS THE SUN WILL RISE’.

Language Model Scaling & Word Insertion Penalty

In HMM-based speech recognition, the probabilities estimated by the acoustic and the language

models are often on different scales, as the ones estimated by the former are not normalised

(Gales and Young, 2008). This is due to the emission probabilities of the HMM states not

being independent of each other, which contradicts the conditional independence assumption of

HMMs. Due to this, the acoustic model may dominate, causing the influence of the language

model to be too low during inference. Therefore, it is necessary to apply scaling on these

probabilities. In our pipeline, we keep the acoustic model scaling as 1, and apply scaling on the

language model as follows:
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ŵ = argmax
w

(p(X|w)P (w)µw), (2.11)

where µw is called the language model scaling factor. To improve numerical stability, the

log-likelihood is used:

ŵ = argmax
w

(log(p(X|w)) + µw logP (w)). (2.12)

A typical range for µw is between 5 and 20, though increasing µw too much would increase

the risk of making deletion mistakes (Gales and Young, 2008). To balance the deletion mistakes

with insertions and substitutions, a word insertion penalty, σw, is added as:

ŵ = argmax
w

(logP (X|w) + µw logP (w) + log σw). (2.13)

Tuning the values for µw and σw has an important effect on the output transcriptions which

are typically tuned on an external development set.

2.2.2 Training Acoustic Models with Deep Neural Networks

Deep neural networks (DNNs) are artificial neural networks (ANN) with stacked structures

of more than one hidden layer between their inputs and outputs (Bengio, 2009) . Due to their

capability of modeling nonlinearities in data, DNNs are widely used to train classifiers that

classify audio frames into phoneme types (Graves et al., 2013). DNNs in speech recognition

are multicategory classifiers which output the posterior probabilities of phoneme states q for an

acoustic observation X at a given time t which can be obtained via the softmax function:

y(q) = p (q|Xut) =
exp{a (q)}∑
q′ exp{a (q

′)}
(2.14)

where a(q) is the activation function at the output layer corresponding to state q (Bourlard and

Morgan, 2012). By definition, DNN phoneme classifiers use a pseudo-log-likelihood of state q

given the observation X (Graves et al., 2013),
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log p(Xut|q) = log p(q|Xut)− logP (q),

= log yut(q)− logP (q), (2.15)

where P (q) is the prior probability of state q estimated from the training data (Bourlard and

Morgan, 2012; Veselỳ et al., 2013).

One common approach for obtaining phoneme posteriors using DNNs employs the categori-

cal frame-wise cross-entropy loss as the objective function for training:

FCE = −
U∑

u=1

Tu∑
t=1

log yut(qut), (2.16)

where qut is the phoneme state in an utterance u at time t.

The parameters of DNNs are updated via the standard error backpropagation procedure

(Rumelhart et al., 1985). The gradient for this is then calculated as:

∆FCE

δaut(q)
= −δ log yut(qut)

δaut(q)
= yut(q)− δq; qut, (2.17)

where δq; qut is the Kronecker delta function (Veselỳ et al., 2013). The network parameters are

often updated using either Stochastic Gradient Descent (SGD) (Saad, 1998) or Adam (Kingma

and Ba, 2014) optimisers.

2.2.3 Sequence Discriminative Training

Sequence discriminative training is essentially based on the maximum mutual information

(MMI) criterion where the corresponding objective function, FMMI is defined as:

FMMI =
∑
u

log
p(Xu|Qu)

KP (Wu)∑
W p(Xu|Q)KP (W )

(2.18)

where Xu = {Xu1,Xu2, ...,XuTu} is the sequence of acoustic observations for the utterance
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u and Qu = {qu1, qu2, ..., quT } is the sequence of phoneme states corresponding to the word

sequence Wu. When training the acoustic model, the neural network parameters are updated

w.r.t. phoneme posteriors, P (X|Q) (Bahl et al., 1986). Hence, the gradient used for optimisation

is obtained by differentiating Equation 2.18 w.r.t. these phoneme posteriors:

δFMMI

δ log p(Xut|r)
= Kδr;qut −

K
∑

W :qt=r p(Xu|Q)K +KP (W )∑
W p(Xu|Q)KP (W )

(2.19)

Injecting the output of the softmax function in Equation 2.14 into the gradient above, we

obtain:

δFMMI

δaut(q)
= K(δq;qut − yut(q)), (2.20)

where yut(q) is the posterior probability of observing state q at time instance t. According

to Equation 2.19, there are two gradients needed to be computed in sequence discriminative

training. The graph in the numerator encodes utterance specific phoneme posteriors whereas the

denominator graph is constructed from all possible word sequences available in the labels and is

constant across the entire training set (Povey et al., 2016). Considering that the goal of training

is to maximise the shared information between the reference and observed word sequences, the

gradients are updated to maximise the utterance-specific posteriors in the numerator graph and

minimise the corpus-level posteriors in the denominator graph. From this perspective, the DNNs

are optimised to discriminate phoneme sequences according to their corresponding acoustic

observations in MMI training.

2.2.4 Lattice-free Maximum Mutual Information Objective

The sum in the denominator in Equation 2.20 is calculated over a very large number of word

sequences, which is computationally expensive and slows down the training. As a more

computationally feasible approach, the lattice structure is generally employed on the word and

phoneme levels (Mohri et al., 2002). However, this requires initialization of lattice paths prior

to training, using a pretrained model that is typically trained on the cross-entropy loss. Due to

this initialization step, sequence discriminative based DNN-HMMs stood out as a less attractive

method for many researchers considering to the ease of training in more modern ASR methods,
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such as E2E models. To discard the necessity of generating lattices prior to training, Povey

et al. (2016) introduced a lattice-free version of the sequence discriminative training, which is

referred to as LFMMI training. The procedure suggests three major improvements over the

standard sequence discriminative training in order to reduce the computational complexity:

• First, the language models in Equation 2.10, P (w) are constructed on the phone-level.

Since the number of target phones is much smaller than the number of words in the

vocabulary, the total number of possible sequences to compute the language model is also

much lower.

• The second improvement proposed is to apply frame-subsampling with a factor of 3 in

the input feature sequence which means the DNN outputs are reduced to 1/3 of their size.

• Finally, a 3-state HMM topology is employed as opposed to the 5-state version of GMM-

HMM based models, which is simpler and accelerates training speed.

Povey et al. (2016) and other Kaldi based models use FSTs for constructing the graph to

store phoneme posteriorgrams. Recalling that the graphs H and C correspond to the phone

HMMs (acoustic model) and the context-dependency tree, and considering Gphone is now the

language model built on the phone-level, the decoding graph decomposition becomes:

HCG = H ◦ C ◦Gphone. (2.21)

According to this, the L graph is not included during training. Note that the phone LM,

Gphone is typically a 4-gram language model where no backoff is allowed lower than 3-grams so

to avoid triphones that are not present in the training data.

After the denominator and numerator graphs are created, the forward-backward algorithm is

applied to update network parameters. The numerator graph is still much less complex than the

denominator graphs, hence for efficient training, numerator and denominator computations are

performed on the CPU and GPU respectively.

There has been a few attempts to improve the LFMMI objective, such as boosted LFMMI

(Povey et al., 2008) and lattice free state-level minimum Bayes risk (LFSMBR) (Kanda et al.,

2018), however substantial improvements were not consistently observed (Weng and Yu, 2019).
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Therefore, the original LFMMI still remains as the standard sequence discriminative training

objective for DNN-HMM based ASR at the date of this thesis.

2.3 End-to-end Training

Despite still being used in many industrial products, hybrid DNN-HMM based models have a

number of drawbacks which gave rise to the need for the development of purely neural network

based end-to-end models. The model construction procedure for the hybrid DNN-HMM models

is complex and requires several preprocessing systems such as generating alignments for the

DNN training. The overall recogniser is composed of different independent modules where an

optimal performance of each module does not necessarily lead to global optimality. Finally,

constructing a pronunciation dictionary requires language-specific expert knowledge. Due to

these reasons and the recent advances in deep learning research, the popularity of end-to-end

ASR systems have been growing considerably. In broad terms, end-to-end speech recognisers

construct a single module that directly maps the input audio frame sequences to target sequences

of words or graphemes (Graves et al., 2013; Hannun et al., 2014), which essentially reduces the

overall complexity of training and construction of ASR models.

Figure 2.4: E2E speech recognition structure

The E2E module encodes acoustic speech signals into a latent space where the latent

features are mapped to target word or grapheme sequences via the decoder (Figure 2.4). Note

that the input to the encoder can either be the standard fixed speech features like MFCCs,

mel-spectrograms or filterbanks, or directly take the raw speech signal (Ravanelli and Bengio,

2018). The decoding operation is typically based on the beam search algorithm to find the

likeliest sequence of output labels (Steinbiss et al., 1994), a procedure similar to the one

explained in Section 2.1, however the end goal is often to predict directly the likeliest character
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or other subword unit sequence, Y = y1, ..., yT , and the word-to-phoneme conversion step is

not required:

Ŷ = argmax
Y

log p(Y|X) (2.22)

.

The decoder module often includes additional RNNs and/or language model fusion (Sriram

et al., 2017) for obtaining more sensible results at the output. Note that an audio-to-text

alignment step might still be required before the decoding stage depending on the objective

function, such as frame-wise cross-entropy.

2.3.1 Connectionist Temporal Classification

As mentioned above, speech-to-text alignment is required in HMM based systems to perform

training. To circumvent the need for alignment, the Connectionist Temporal Classification

(CTC) objective was proposed for ASR by Graves et al. (2006). The introduction of CTC was

considered a breakthrough in the development of end-to-end LVCSR models. The main reason

for this is that the CTC approach does not require alignment between input and output sequences

prior to training because the loss is computed through summing over all possible alignment

paths between the input and output label sequences.

In the CTC-based end-to-end learning approach, the input acoustic feature sequence X are

encoded into a sequence of latent representation vectors, H = h1, h2, ..., hT ;

H = encoder(X). (2.23)

The hidden vectors are converted to probability distributions of target classes, Y = y1, y2, ..., yT ,

via the softmax operation:

p(πt|X) = softmax(Linear(ht)), (2.24)

where πt is the output label at time t in the frame-wise letter sequence ϕ and Linear(.) denotes a

linear layer. The final conditional probability of the frame-wise letter sequence, ϕ is computed

using the probabilistic chain rule:
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p(ϕ|X) =

T∏
t=1

p(πt|π1, ...πt−1,X). (2.25)

Similar to the HMM-based approach, CTC assumes that labels at different time steps are

conditionally independent (Graves et al., 2006):

p(ϕ|X) =

T∏
t=1

p(πt|X). (2.26)

Then, the posterior probability of observing the output label sequence is the sum of all

compatible ϕ’s:

pctc(Y|X) =
∑

ϕ∈Φ(y)

p(ϕ|X), (2.27)

=
∑

ϕ∈Φ(y)

T∏
t=1

p(πt|X),

where Φ(y) denotes the set of all framewise paths that can be mapped to Y . The final CTC loss

defined as the negative log likelihood:

LCTC = −ln(pctc(Y|X)). (2.28)

CTC introduces a blank symbol, <b> which marks the label boundaries to separate consecu-

tive identical labels, and the augmented target sequence becomes:

Y′ = y1,<b>, y2,<b>, ...,<b>, yT

To eliminate the need for a handcrafted pronunciation dictionary, CTC directly uses letters as

the output labels y ∈ V where V is the set of letters in the subject language and V ′ = V
⋃

<b>.

At inference, path aggregation is applied through merging the repeating characters and removing

the blank symbol, <b>, to obtain the final label sequence.
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2.3.2 Sequence-to-Sequence Training

Initially introduced for the neural machine translation task (Sutskever et al., 2014), sequence-to-

sequence (seq2seq) architectures have been used extensively for building end-to-end sequence

classification models. Particularly for the ASR task, the seq2seq approach has been a popular

choice due to its ease of training and folding the pronunciation, language and acoustic models

into a single purely neural network based model (Hannun et al., 2014; Amodei et al., 2016; Lu

et al., 2016; Graves and Jaitly, 2014).

(a) Basic E2E (b) CTC-based E2E

Figure 2.5: Comparison of basic and CTC-based E2E ASR structures.

Similar to the structure depicted in Figure 2.5, seq2seq models have encoder and decoder

networks to perform the mapping between input and output sequences. The encoder transforms

the input speech features X into a hidden state vector, henc = {h0, h1, ..., hL}, with a fixed

length L, which is often referred to as the context vector:

henc = encoder(X). (2.29)

Most seq2seq based ASR models use the CTC objective, which already outputs soft align-

ments, so an aligner is not required at this step. They input the context vector directly to the

decoder, which then predicts output labels Y (Figure 2.5)
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Y = decoder(henc). (2.30)

The encoder network typically consists of a few layers of recurrent neural networks (RNN)

(Rumelhart et al., 1986) due to their sequence modeling capabilities. Audio sequences are

generally much longer than text data. Due to this, standard RNNs are weak in learning long

term context dependencies, essentially due to the vanishing gradient problem (Hochreiter et al.,

2001). To overcome this, Long-Short Term Memory (LSTM) cells are introduced (Hochreiter

and Schmidhuber, 1997). Research has shown that including information from future is helpful

in training. To achieve this the bidirectional version of LSTMs, or BiLSTMs (Schuster and

Paliwal, 1997) is employed to achieve better performance. Notably, Gated Recurrent Units

(GRU) (Cho et al., 2014) are similarly popular recurrent cells replacing standard RNNs, which

essentially operate similarly to LSTMs but with a lower complexity, hence less parameters and a

faster training time. The decoder network is a language model, also commonly built with RNNs

or their above mentioned variants, which is referred to as RNNLM (Tomas et al., 2011).

Neural network architectures mainly based on RNNs, and specifically (Bi)LSTMs tend to

be hard to train due to their unparallelizable nature. An alternative to RNN based encoders is

Convolutional Neural Networks (CNN) where the input acoustic features are first processed

by a stack of 2-dimensional (2D) CNNs at the front-end of the network, then followed by

time-domain 1D CNNs (Time-delay Neural Networks - TDNN) (Waibel et al., 1989) to model

the temporal context dependencies (Peddinti et al., 2015). It was shown in (Zeghidour et al.,

2018) that a competitive performance can also be achieved via fully CNN based networks. The

idea of using the 2D CNN front-end can be also applied in conjunction with RNNs, which

was shown to be effective in terms of performance gain (Hannun et al., 2014) and reduction

in the number of trainable parameters (Amodei et al., 2016). The effectiveness of the fully

CNN-based encoder is also shown in a more recent architecture, called ContextNet (Han et al.,

2020) where the decoder is essentially an RNN Transducer (Graves, 2012), and in contrast the

output of the encoder is fed into a so-called Squeeze-and-Excitation (SE) layer (Hu et al., 2018).

The SE layer encodes the sequence of local feature representations into a global vector, and



2.3. End-to-end Training 30

broadcasts it back to the local features. By granting access to the CNN encoder outputs into

this global vector, the encoder learns context-aware features and has an increased receptive field

without substantial additional computational cost. ContextNet is considered to be one of the

state-of-the-art approaches within E2E ASR.

2.3.3 Attention Mechanism in Deep Neural Networks

As mentioned in the previous section, seq2seq models rely on a fixed length context vector. This

can hurt training in the presence of training audio with varying durations. Also, the inference

performance drops when the input and output sequences are long, especially compared to the

training data. Moreover, raw seq2seq models process each input frame with equal weight which

is not optimal as it leads to a lack of context and discrimination of temporal information. To

overcome this, the attention mechanism was introduced by Bahdanau et al. (2014).

Not long after its introduction, attention was successfully implemented for end-to-end ASR,

and specifically for seq2seq models in the paper ‘Listen, Attend and Spell’ (Chan et al., 2016)

(LAS), which the model is usually referred to as in the literature. The LAS architecture consists

of three main blocks: the listener (encoder) module serves as the acoustic model which encodes

input features to hidden representations, henc. Attention mechanism takes part in the attender

block which weights the encoded representations based on how relevant or important each vector

on time domain henc
t is for predicting the next output symbol, yi. In practice, the attender acts in

a similar way to the aligner in Figure 2.5a. The output of the attender is then fed to the speller,

which takes the attender output, ci and the embeddings from the previous prediction, yi−1 when

generating a posterior probability, P (yi|yi−1, ..., y0,X).

The basic idea behind the attention mechanism is weighting input frames with respect to

their relevancy to generating the current output. To achieve this, the attention layer learns a

context vector, ci:

ci =
∑
t

αi,th
enc
t (2.31)

where α is referred to as the attention weight. According to Equation 2.31, this operation
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Figure 2.6: Listen, Attend and Spell structure

is essentially a weighted multiplication, where the weights at time step t are obtained via

normalizing the attention energies, ei into a probability distribution as:

αi = softmax
t

(ei). (2.32)

The attention energies are essentially similarity scores:

ei,t := similarity(hdec
i−1, h

enc
t ), (2.33)

where hdec
i−1 is the hidden state of the decoder output. There are a number of ways to obtain the

similarity score depending on the attention type to be applied such as dot-product, multiplicative

or additive attention. Specifically in the LAS architecture, additive attention is employed where

the tanh function is used as;

ei,t = vT tanh(W [hdec
i , henc

t , βi,t]), (2.34)

where W is a trainable matrix, v is trainable vector and βi,t is the attention weight feedback:
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βi,t = sigmoid(vTβ ht).
i−1∑
k=1

αk,t. (2.35)

Unlike HMMs and the CTC loss, the attention mechanism does not have the conditional

independence assumption. The training objective is computed using the probabilistic chain rule

similar to Equation 2.26:

patt(Y|X) =

T∏
t=1

p(yt|y∗1, ..., y∗t−1,X), (2.36)

where y∗t are the ground truth labels.

Self-Attention

The basic attention mechanism explained above learns a context vector between the encoder

and decoder states, however there is also context between the states of the encoder that needs to

be modeled. To achieve this, the self-attention layer was proposed (Vaswani et al., 2017), which

calculates a similarity score between the encoder states to learn how relevant an encoder state

from the past or the future, ht±u (where u = 1, 2, ..., T ) is, for generating the encoder state at

the current time step ht.

Self-attention is based on the principles of query-retrieval modeling given a database with

keys and values (Garcia-Molina et al., 1999) and a query to search for. From the perspective of

seq2seq structures, the query, Q is projection of the decoder hidden state hdec through a trainable

matrix. The key, K is the same as the query but from the hidden states of the encoder, and

the value, V , directly corresponds to henct in Equation 2.31. The similarity scores are obtained

similar to Equation 2.34, but using the dot-product attention, QKT . This score is then scaled by

the square root of the key and query dimensions, dK . The attention weights are obtained after

the softmax operation to ensure the rows in the similarity score add up to 1:

αi,t = softmax(
QKT

√
dK

). (2.37)
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Then, injecting the above equation into Equation 2.31 results in the following formula to

summarise self-attention:

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V. (2.38)

Multiple self-attention blocks can be placed in the network architecture where the weights

are learned in parallel. In this context, each attention block is referred to as head, where

headi = Attention(QWQ
i ,KWK

i , V W V
i ), and the multi-head attention (MHA) is computed

through concatenating heads:

MHA(Q,K, V ) = concat(head1, ..., headN ), (2.39)

where N is the number of heads that is predefined prior to training.

Speech sequences are generally much longer than word sequences, hence for every time step,

calculating the attention matrix over the entire audio can be computationally expensive. Povey

et al. (2018b) propose restricting the time context for which the attention scores are calculated.

Notably, the aforementioned study is also one of the first implementations of attention within

the hybrid DNN-HMM framework.

2.3.4 Transformers

One of the major challenges in training DNNs for sequence prediction or transduction tasks

is they are computationally expensive due to the high number of trainable parameters. To

reduce model complexity while maintaining the context modeling power, Vaswani et al. (2017)

introduced the ‘Transformer’ architecture. Transformers are essentially seq2seq models with

typical encoder-decoder structures. However, instead of containing RNNs or CNNs in both the

encoder and decoder blocks and having an attention layer in between, the transformers solely

consist of combinations of self-attention and fully-connected layers (see Figure 2.7).

Unlike LSTMs, the transformer layers do not involve any recurrence, which implies that the

data sequence order is not taken into account when computing the gradients. In order to impose
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Figure 2.7: The Transformer architecture.

positions of the data points during training positional embeddings are added to the training data

at the front-end of the network. While initially sinusoidal embeddings are proposed for this, it

was shown to be possible to learn positional embeddings through CNNs. The architectures that

use convolutional positional embeddings are generally referred to as conformers (Gulati et al.,

2020).

After adding the positional embeddings, the data is fed to multi-head attention (MHA)

vectors and layer normalization is applied (Ioffe and Szegedy, 2015). The normalised hidden

vectors are projected to 2D via a linear layer, obtaining the final attention values. The overall

operation starting with the multi-attention layer until retrieving linear attention vectors can be

stacked to construct deeper networks and increase modeling power. This stack of Transformers

between the input features and output of the final Transformer block constitutes the encoder

block.

The decoder operates similarly to the encoder in a sense that the output embeddings of the

previous time-steps and their positional embeddings are fed to an MHA module. This first MHA

is masked to not include embeddings from future time steps because future words would be

needed to compute the output embeddings of the current time step, which are not yet generated.
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The attention scores are then fed to a cross-attention layer. This layer is operationally similar to

self-attention as the attention scores are computed via the dot-scale similarity as in Equation

2.33. In this case, the attention scores coming from the output embeddings are considered as

queries, and key and values come from the output of the encoder. The cross-attention is then

followed by another linear layer before going to the final classification layers.

Transformers have drawn the attention of the deep learning research community since their

its introduction due to considerable reduction in model complexity, speeding up training while

achieving competitive or better results compared to the state-of-the-art. Specifically within the

context of ASR, transformers have been applied successfully in both hybrid DNN-HMM (Wang

et al., 2020) and E2E frameworks (Gulati et al., 2020).

2.3.5 Language Model Fusion

In essence, end-to-end training of ASR systems requires paired audio and text data, i.e. Yi =

f(Xi), i ∈ N where {Xi,Yi} represent the input audio and the output text pairs for the ith

training sample, f is the end-to-end ASR system, and N is the number of samples in the train

set. On the other hand, conventional DNN-HMM ASR systems can leverage separate language

models trained on external (unpaired) text data, during inference. From this perspective, the

paired data restriction stands out as a limiting factor for end-to-end system’s modeling power.

Addressing this, there have been a number of ways proposed previously to incorporate an

external language model trained on unpaired text data during decoding, namely the shallow,

deep (Gulcehre et al., 2015) and cold fusion (Sriram et al., 2017) approaches. These techniques

differ from each other with respect to at which point they are integrated with the ASR model’s

output probability distribution computation. Note that the language models are assumed to be

neural LM in this scheme (the details of a neural LM training will be explained in Section 4.1.2).

Shallow fusion is the simplest language model integration approach where the word priors

obtained from a pretrained external language model are simply added to the posteriors coming

from a pretrained acoustic model. Recall the formulation of end-to-end ASR in Equation 2.22,

the updated probabilities are computed as:

Ŷ = argmax
Y

(log p(Y|X) + γ log pLM(Y)) (2.40)
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where γ is the language model weight which can be tuned after training.

Instead of using the word priors from a pretrained LM, deep fusion (DF) fuses the hidden

states of pretrained language and acoustic models through a parametric gating procedure

(Gulcehre et al., 2015):

gt = sigmoid(v⊤
g h

LM
t + bg) (2.41)

hDF
t = [ct; hdec

t ; gth
LM
t ] (2.42)

P (yt|henc) = softmax(WDFhDF
t + bDF) (2.43)

where c,henc and hdec are the context, encoder and decoder hidden state vectors of the pretrained

acoustic model respectively (recall notation in Section 2.3.2). The parameters vg,b
DF and the

matrix WDF are learned through training the model on a smaller proportion of the training

data where the rest of the model parameters are kept fixed. Through fixing most of the model

parameters, fine-tuning can be achieved efficiently.

Both shallow and deep fusion approaches are late training integration procedures and require

pretrained acoustic and language models. In contrast, cold fusion is an early training integration

approach where the acoustic model is trained from scratch with a pretrained language model.

Note that all of model parameters in cold fusion are learnable. Due to early training integration,

cold fusion is costlier than shallow and deep fusion.

2.3.6 Sentence Piece Tokenisation

Most of the traditional large vocabulary continuous speech recognition (LVCSR) systems employ

phonemes as the subword units that constitute the target class set to predict, and the predicted

phonemes are converted back to words using a lexicon. As mentioned in Section 2.2.1, this

procedure requires a predefined mapping between words and phonemes, usually referred to as

the pronunciation dictionary, which needs to be curated by experts. Such resources may not be

available for every language or speech recognition task. For this reason, researchers have been

exploring ways of using different methods for tokenizing words into smaller subword units, such

as graphemes (Killer et al., 2003; Le et al., 2019), or syllables (Wu et al., 1997; Ganapathiraju
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et al., 2001).

Inspired by the NMT research, one popular approach for generating a set of subword units is

a text data compression method called Byte Pair Encoding (BPE) (Shibata et al., 1999a), which

was successfully employed in recent E2E ASR systems (Shin et al., 2019). The main operation

for constructing the BPE units is substituting pairs of consecutive characters which frequently

appear in the text with single tokens (or characters) Shibata et al. (1999b). This operation will

be iterated until either no pair of consecutive characters appears frequently or all characters are

used up. Given a fixed size vocabulary (typically between 1000 and 5000 in E2E ASR), BPE

ensures that most frequent words are represented by a single token, while less frequent words

are divided into more frequent subword BPE tokens.

BPE is essentially based on the frequency of appearance of patterns and characters in a

text corpus and it is unsupervised and deterministic. Once the vocabulary of BPE units is

established, words can be reconstructed using only the existing BPE’s, but this may cause word

reconstruction errors, implying a loss of modeling power in general. Improvements over BPE

have been observed using the WordPiece algorithm (Schuster and Nakajima, 2012), which

chooses the pairs that maximise the likelihood of patterns instead of choosing the most frequent

ones, which is the subword tokenization employed in the famous BERT natural language

processing machine (Devlin et al., 2018). To model the subword tokenisation in a probabilistic

manner, (Kudo, 2018) introduced a method referred to as subword regularisation that ranks all

possible subword tokenisations given a word based on likelihoods, and removes the least likely

tokens. The likelihoods of the subwords are then obtained via a unigram language model trained

on a text corpus. This subword tokenisation method is generally referred to as unigram subword

regularisation and consistent improvements have been reported compared to the standard BPE

approach (Kudo, 2018). Table 2.1 gives an example for various subword tokenisation methods

including phonemes, graphemes, BPE and unigram models:

2.4 Research ASR Frameworks

As mentioned above, this thesis tackles the task of automatic lyrics transcription from two major

streams in ASR research: DNN-HMM and E2E models. The models presented in Chapters 4
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Subword Tokenization Tokens

Phonemes D IY P <silence> L ER N IH NG

Graphemes D E E P <blank> L E A R N I N G

BPE _DEEP _LEAR NING

Unigram _DEEP _LEARN ING

Table 2.1: Comparison of different tokenization methods for the phrase ‘DEEP LEARNING’.
Underscore ‘_’ is for word beginnings. For the Unigram and BPE approaches, a tokeniser is
trained on a the lyrics corpus in (Demirel et al., 2021b) with the vocabulary size of 1000.

and 5 are built using two open-source toolkits: Kaldi (Povey et al., 2011) for the DNN-HMM

based approach and recently introduced SpeechBrain (Ravanelli et al., 2021) for the end-to-end

model. This section covers the properties, advantages and disadvantages of these frameworks

and finally briefly covers other existing frameworks which researchers in ASR field use to report

their results. For convenience for the readers, a table is provided at the end of this section that

provides an overall comparison between general ASR frameworks available for research.

2.4.1 HMM-based Toolkits

HMM-based toolkits have been available for research for few decades already and are used

extensively within the development of ASR research. Among the ones that were more popular

during the pre-deep learning era, the Hidden Markov Model Toolkit (HTK) (Young, 1993) and

CMU Sphinx (Lamere et al., 2003) have been used the most extensively. Originally developed

for the Japanese language, Julius (Lee et al., 2001) has also experienced great attention within

the research community due to its multiple language support (similar to CMU Sphinx) and

capability for operating in real-time. Last but not least, the RWTH Toolkit (Rybach et al., 2011)

is another popular HMM-based toolkit that provides a comprehensive list of speech processing

pipelines, similar to Kaldi, such as sequence discriminative training, lattice processing and

speaker adaptive training.

Kaldi

Arguably the most commonly used and comprehensive framework within the DNN-HMM based

approach is Kaldi (Povey et al., 2011). There are several factors for Kaldi’s popularity: first is
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that there is a large active research community including researchers from varying institutions

that are involved in the constant development of the toolkit and implementing the state-of-the-art

concepts in research. Secondly, Kaldi has been proven to work well on different tasks such

as speech enhancement, speaker identification, key-word spotting as well as lyrics alignment

(Gupta et al., 2020; Demirel et al., 2021a), and industrial applications.

On the other hand, most of Kaldi’s code is written in C++, which allows it to be deployable on

varying operating systems. Due to nature of its implementation Kaldi requires compilation before

execution which may be considered to be not very flexible against any custom modifications.

Moreover, Kaldi still lags behind the most recent deep learning research as it does not fully

support seq2seq models, transformers or contrastive learning methods such as wav2vec. To

integrate WFST’s with the aforementioned modern deep learning techniques, the new version

of Kaldi, k23 was introduced, however this is still in the development stage and not ready for

large-scale applications.

2.4.2 End-to-end ASR Toolkits

As developing E2E models is becoming increasingly accessible due to open-source deep learning

libraries, such as Theano (Team et al., 2016), TensorFlow (Abadi et al., 2016), Keras (Ketkar,

2017b) and Pytorch (Ketkar, 2017a), multiple open-source ASR toolkits have been emerging

in recent years. One of the first successful large scale applications of such models, Mozilla’s

DeepSpeech (Amodei et al., 2016) is considered as a breakthrough in the transition from

hybrid DNN-HMM systems to purely E2E models. This model was later implemented in many

other more recent E2E ASR toolkits, like TensorFlowASR4. Although this TensorFlow based

repository provides a good baseline for developing E2E systems, it does not support other

relevant tasks to ASR, such as speech enhancement and separation, multi-channel ASR, and

speaker detection. There are a number of more comprehensive toolkits that provide training

pipelines for the aforementioned tasks. Among these, ESPNet (Watanabe et al., 2018) is one of

the most popular as its structure resembles Kaldi which is convenient for ASR researchers who

want to transition from HMM to E2E models. Note that Gupta et al. (2020) also used ESPNet for

building E2E models within the context of ALT. Notably, Facebook’s fairseq (Ott et al., 2019)
3Alpha version can be accessed from https://github.com/k2-fsa/k2.
4Can be accessed from https://github.com/TensorSpeech/TensorFlowASR.
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provides a repository with pretrained models and training pipelines. This toolkit also provides

the recently introduced wav2vec model (Schneider et al., 2019) which is a pretrained speech

representation that could perform similarly to the state-of-the-art while requiring much less data

(Baevski et al., 2020). On the other hand, fairseq mainly adopts Facebook Team’s research and

is less flexible in implementing various E2E structures from scratch. Finally, OpenSpeech (Kim

et al., 2021) is a recently introduced E2E toolkit which covers the state-of-the-art approaches

similar to ESPNet and SpeechBrain (see below), however it does not provide pretrained models.

Other notable toolkits include Espresso (Wang et al., 2019b), RWTH-RETURNN (Zeyer et al.,

2018), Lingvo (Shen et al., 2019) and NeMo (Kuchaiev et al., 2019) which are mostly designed

for specific purposes or datasets.

SpeechBrain

Although the large amount of available open source software provides a great opportunity for

researchers to develop their own speech processing modules, the toolkits listed above have

varying workflows, programming languages and coding styles. This emerges as a challenging

factor when various codebases are intended to be integrated together for developing an overall

all-in-one module. To overcome this challenge and provide a unified framework, Ravanelli

et al. (2021) recently introduced Speechbrain which is purely implemented in Python as the

programming language and Pytorch as the deep learning library. Speechbrain is designed to be

flexible and convenient for developers proficient in Python language while supporting training

pipelines for many of the major ASR tasks.

2.4.3 Commercial APIs Available for Research

Today’s digital technology industry enjoys the wide range of commercial speech-to-text (STT)

services. Voice assistants like Apple’s Siri and Amazon’s Alexa are already well-known and

widely used by the public. Surely, STT software is not limited to such commercial products

designed for end-user applications. Three leading and well-recognised software companies

have made their STT APIs available on the web, namely "Google Cloud Speech API", "IBM’s

Watson", "Amazon Transcribe" and "Microsoft - Azure Speech Services". Although these API’s

allow limited usage for free and require a service fee to support large-scale applications and
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training custom models on custom datasets, they have been considered to be of great value by

many researchers as they provide an opportunity for a quantitative comparison of research ASR

software with commercial STT products. In addition to these, we also added Nvidia’s Jasper

(Li et al., 2019a) which is another E2E model based on 1D CNNs, similar to the architecture

proposed by Zeghidour et al. (2018).

2.4.4 Summary

Below is provided Table 2.2 that shows an overall comparison of the commonly used toolkits

available for research. To get a hint on which framework is to be more suitable for the

current task, we compare them in several technical and practical aspects: ASR type, support of

subword tokens (target classes), model training difficulty, computational complexity, memory

requirements, flexibility for modification, level of open-source, programming language, real-

time support, and the overall word-recognition rates based on previous comparative studies

(Këpuska and Bohouta, 2017; Filippidou and Moussiades, 2020; Georgescu et al., 2021). The

training difficulty is related to the data preprocessing steps required prior to training and tuning

of hyperparameters for the system to converge. Computational complexity is related to the

number of trainable parameters. The flexibility property is proportional to the support for

different models, datasets and tasks. The ASR performance index is a relative measure and

values are included according what were reported in the aforementioned comparative studies.

Among the HMM based toolkits, it is clear that Kaldi stands out to be the most preferable

due to its word recognition performance, support for a wide range of ASR tasks, benchmark

datasets and training frameworks, and a fairly easy pipeline for training custom models.

The memory requirements for the speech-to-text APIs listed in Section 2.4.3 are the lowest in

Table 2.2 as the computation is done on cloud servers instead of the local machine. On the other

hand, these APIs are publicly available for inference only, and do not support training custom

models. Moreover, the amount of inference is limited and further usage requires subscription,

which makes them less appealing for large-scale research applications. In contrast, Nvidia’s

Jasper provides an open-source repository where training is possible. However, it supports a

single E2E-ASR type, which is the fully CNN based architecture (Li et al., 2019a). As reported

by Georgescu et al. (2021), this model has a very large number of trainable parameters making
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it difficult to train compared to the rest of the models in Table 2.2. Facebook’s fairseq repository

contains smaller networks than some other state-of-the-art approaches in ASR (Baevski et al.,

2020), however the list of models is mostly limited to Facebook’s publications. ESPNet and

SpeechBrain share essentially similar properties such as ASR performance, flexibility and

computational complexity, but the latter is purely pythonic, which provides a unified coding

framework and easier to create models based on custom models and datasets. Motivated by the

concerns listed above, we decided to use SpeechBrain as the E2E ASR framework in our study.
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Table 2.2: ASR Frameworks commonly used in research.
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2.5 Advances in Automatic Lyrics Transcription Research

ASR technologies have experienced considerable improvement in the course of the last few

decades, letting them be integrated into large-scale commercial products, which have brought

convenience to people’s lives and already has an important impact on the global society. On

the other hand, ALT has not been utilised in large-scale industrial applications yet, as word

recognition performance from singing had not reached similar levels as for ASR prior to this

thesis. In this section, an outline of the recent advances in ALT research is provided. The section

begins with the initial attempts that tackled the ALT problem with limited data and conventional

machine learning methods. Then, the commonly used datasets in research are briefly introduced.

Third, data augmentation methods for singing data are described, which has been a popular

research direction for improving ALT. Then, various methods previously proposed to leverage

the musical information embedded in the singing data are discussed. The chapter finishes by

providing a numerical comparison between state-of-the-art ALT approaches. In this, we include

results for both DNN-HMM and E2E ASR approaches.

The early attempts for ALT prior to the advent of deep learning and the availability of

large training datasets focused on leveraging already existing speech recognisers. Fujihara

et al. (2006) compose a lyrics focused language model with a pretrained acoustic model for

speech. Mesaros and Virtanen (2010a,b) employ the traditional GMM-HMM models trained on

speaker-adaptative features and the results improve when a lyrics-focused language model is

incorporated. Hansen (2012) trains Multilayer Perceptrons (MLP) using MFCC and Temporal

Pattern (TRAP) features. Even though these results are hard to compare due to reporting results

on different datasets, it is worth mentioning them as these results constitute the initial baselines

for lyrics transcription research.

The word recognition rates of lyrics transcribers published in the literature have improved

drastically since the recent introduction of two open-source datasets, namely DAMP 5 and

DALI (Meseguer-Brocal et al., 2019). DAMP was initially used for training an ALT module

by Dabike and Barker (2019), marking a breakthrough in the word recognition rates reported

previously. Gupta et al. (2018) used DALI for the first time, to train an acoustic model for

polyphonic recordings. Since these works, both datasets have been used to benchmark different
5URL: https://ccrma.stanford.edu/damp/, accessed in Jan, 2022.
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ALT models.

A number of open-source evaluation sets have been used to report word recognition rate

results. Among these, Dabike and Barker (2019) presented a subset of the DAMP dataset (notated

as DAMPtest in this thesis) with hand-checked annotations as a new benchmark test set of a

cappella recordings. In addition, the NUS Sung and Spoken Lyrics Corpus (Duan et al., 2013)

was utilised in our previous work (Demirel et al., 2021c) to compare word error rates (WER) on

speech and singing data. For evaluating ALT from polyphonic recordings, the Jamendo dataset

(Stoller et al., 2019) is mostly used for benchmarking, which is an open source dataset containing

20 polyphonic recordings from the Jamendo catalogue, with corresponding lyrics and word-level

time annotations. Despite not having publicly available recordings due to copyright, the Hansen

(Hansen, 2012) and the Mauch (Mauch et al., 2011) datasets have also been commonly used in

the literature, including the most recently introduced Music Information Retrieval Evaluation

Exchange - Automatic Lyrics Transcription (MIREX - ALT)6 public evaluation. More detailed

information and analysis of the commonly used training and evaluation datasets are provided in

Chapter 3.

On one of the earlier releases within Smule’s DAMP repository, the DAMP - multiple songs

dataset, where no line-level lyrics annotations were provided, Kruspe (2016) trained a DNN-

HMM system on weak labels obtained from a speech-trained forced aligner, and reported 77%

Phoneme Error Rate (PER) on a subset of the aforementioned dataset. To generate labels and

line-level weak annotations to be used for training, Gupta et al. (2018) automatically segmented

recordings with respect to words detected by a pretrained speech recogniser. Since the line-level

lyrics are already provided in the later released DAMP corpus, namely Dsing! - 300×30×2, the

interest in semi-supervised learning for ALT decreased, and researchers focused on generating

‘synthetic’ singing data.

In her work, Kruspe (2015) transformed speech data into singing through digital signal

processing (DSP) techniques such as adding vibrato, time stretching and pitch shifting (transposi-

tion) to capture the acoustic variations in singing and yet observed only a moderate performance

improvement using the ‘songified’ training data. In a later attempt, Basak et al. (2021) applied

style-transfer using opera data to convert speech into singing. In particular, the authors resyn-
6To access; https://www.music-ir.org/mirex/wiki/2020:Lyrics_Transcription
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thesise speech by adapting fundamental frequency contours and spectral envelope parameters

estimated from opera data. However, the melody and the lyrics are not necessarily aligned,

potentially causing unrealistic prosody and pronunciation in the synthesised vocals. To cope

with this, Zhang et al. (2021) developed a speech-to-singing conversion method, namely PD-

Augment where pitch and duration are readjusted in the original speech utterances guided by

melodic patterns extracted from a MIDI dataset. The authors report a considerable improvement

compared to training on non-augmented data.

Task-specific language models have been shown to be beneficial for the development of

ASR systems. Similarly in ALT, building a language model on a lyrics-specific corpus has

been the preferred method since the early work of Fujihara et al. (2006). Recently, Gupta et al.

(2020) showed that a lyrics-specific language model is superior to using either speech-only or

speech-mixed-with-lyrics corpus. Notably, most of the WER improvement in their experiments

was due to the lyrics-specific language model. In our recent work, we observed around 25%

relative WER improvement when a neural network based language model, namely RNNLM, is

used (Demirel et al., 2020a), which is later shown in Chapter 4. Finally, Zhang et al. (2021),

scraped over 45 million lyrics lines from the web and trained a Transformer-based LM, which

verified a lyrics-LM being beneficial against a speech LM in the context of E2E ALT.

The prosodic elements of sung utterances are often motivated by melody construction and

expressivity which may affect how words are pronounced. Singers tend to utter longer vowels

according to statistical observations (Duan et al., 2013; Dabike and Barker, 2021; Demirel et al.,

2021c). To model longer vowels, Gupta et al. (2018) proposed representing word pronunciations

with repeated vowels in the pronunciation model, which resulted in a considerable improvement.

Kawai et al. (2017) showed that including pitch in the feature space was beneficial on a private

Japanese language dataset. Later, Dabike and Barker (2021) concluded that the improvements

observed due to including pitch features diminishes as the training data gets larger.

One of the major challenges in ALT is transcribing words when there is music accompani-

ment, i.e. polyphonic recordings. There have been few methods proposed to leverage music

related information present in the acoustic scene of polyphonic recordings, in order to improve

overall performance in ALT. Gupta et al. (2020) leveraged the genre annotations in the DALI

dataset and labeled utterances with genre-tags, essentially constructing a genre-aware pronun-
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ciation model. While improvements were especially noticeable for the task of audio-to-lyrics

alignment7, modeling genre-specific phonemes results in a very large set of target classes and a

huge acoustic model, however this was mentioned to be extremely memory consuming (Demirel

et al., 2021a).

The state-of-the-art

In Table 2.3, previously reported results for both the DNN-HMM and E2E approaches are

compared for four commonly used evaluation sets: DAMPtest, Hansen, Mauch and Jamendo.

The WER scores in Table 2.3 do not include my previous publications, although these report the

state-of-the-art results. The improvements achieved in my work are compared with the previous

literature in Chapter 6, as outlined in Section 1.4 where the relevant sections of this thesis can

be found.

The E2E approach for ALT was first implemented by Stoller et al. (2019), who used a

basic CTC structure with a U-Net as the encoder. In their work, Gupta et al. (2020) tested an

attention-based seq2seq model but obtained worse results, possible due to training on a much

smaller dataset. In the same work, the authors compared their E2E model with the genre-aware

DNN-HMM LFMMI model mentioned above, which had considerably better results than Stoller

et al. (2019).

DNN-HMM models were also considered to be the better option for monophonic recordings

until very recently. Zhang et al. (2021) trained a Transformer with convolutional positional

embeddings on the DAMP dataset, and reported 6% absolute WER improvement over the

previous best results in Demirel et al. (2020a). Although their results for models trained on

non-‘PD-augmented’ data are still worse (27.6% WER) than the best performing DNN-HMM

model, the study shows the possibility for bridging the gap between E2E and DNN-HMM based

systems within the context of ALT. Note that this paper has not yet been peer-reviewed, and it is

published only on arxiv.

7This work is still the state-of-the-art for audio-to-lyrics alignment to date.
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Dataset DNN-HMM End-to-end

DAMPtest LFMMI (Dabike and Barker, 2019) 19.60 Transformer w PD-augment (Zhang et al., 2021) 9.60

Hansenpoly LFMMI + 47.01 Seq2seq w/ Attention + Lyrics LM (Gupta et al., 2020) 80.1

Mauch + Genre-labeled phonemes 44.02 U-Net + CTC (Stoller et al., 2019) 70.9

Jamendo + Vowel extended lexicon (Gupta et al., 2020) 59.57 77.8

Table 2.3: State of the Art in ALT (in terms of % WER).



Chapter 3

Singing Data for Word Recognition

In this chapter, singing data used in building and evaluating the lyrics transcription system

is studied in order to establish a better understanding of how it is processed and leveraged

within this task. First, the training and evaluation datasets are examined which are commonly

used in ALT research and also included in our experiments in Chapters 4, 5 and 6. Then, a

new evaluation set is introduced, namely DALItest240, which is curated for benchmarking lyrics

transcription results on polyphonic recordings. Finally, a statistical and quantitative comparison

between speech and singing data is provided, where their distinct properties are identified that

are taken into consideration for adapting conventional ASR systems to singing data.

3.1 Datasets

As mentioned in Chapter 2, the recent availability of training datasets - DAMP-Sing! 300×30×2

and DALI - had a great impact on the development of ALT research, and most of the reproducible

studies have used either of these datasets in building their transcribers. On the other hand,

evaluation in ALT has been on a variety of publicly available datasets, each of them having

unique properties. Thus, curating a single framework for testing ALT models through including

all the publicly available evaluation sets would potentially contribute to establishing a more

comprehensive outlook of varying models at operation. In this section, we introduce the datasets

employed in our study for the training and testing stages, and highlight their specific properties.

The overall statistics of the subject datasets are provided at the end of this section in Table 3.1.
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3.1.1 Training Data

Each data sample for training the transcriber is typically a line of lyrics. This requires time

stamps pointing to the beginning and end of each line of lyrics. The only publicly available

datasets with such time annotations and sufficient size are the DAMP and DALI datasets (first

mentioned in Section 2.5). These datasets have distinct characteristics making them suitable for

a specific scenario within the ALT problem, which are discussed below:

DAMP - Sing!300x30x2

The DAMP repository consists of karaoke recordings collected via a commercial mobile appli-

cation, Smule. The performers are the users of the mobile app, and generally amateur singers.

Most recordings are monophonic and there is no dominant background music accompanying

singing. Note that the acoustic properties of the recording environment vary due to the data cre-

ation procedure. This is typically reflected as variance in reverberation or echo, distorted singing

voice signals, users’ languages and recording locations, making the dataset fairly representative

of real-world solo singing data.

There are a few separate datasets within the DAMP repository.1. Specifically, this study uses

the Sing! 300x30x2 dataset within the DAMP repository, where line-level timing annotations of

the corresponding lyrics are provided. In addition, the dataset was initially released as a clean

version of its predecessors while having singers’ gender balance, and containing samples from

30 different countries. Because of this, the dataset provides a large variety of accents, prosody

and pitch ranges, making it even more suitable for the ALT task.2.

DALI

The DALI dataset is a large corpus of commercial polyphonic recordings, also with weak labels

obtained via a semi-supervised learning strategy (Meseguer-Brocal et al., 2019) where the time

annotations are also provided on the lyrics line level. The recordings can be obtained via the

Youtube links and the code repository provided at https://github.com/gabolsgabs/DALI. DALI is

frequently used in research to train polyphonic ALT models (Gupta et al., 2020; Basak et al.,
1The data can be retrieved from https://ccrma.stanford.edu/damp/ upon request to Smule.
2The data identifiers and annotations are shared at https://github.com/emirdemirel/ALTA/s5/data/train_damp.
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2021) The version reported in this study (DALI-v2.0) (Meseguer-Brocal et al., 2020) has around

200 hours of data, however a subset of the original version (156 hours) is used due to what was

available on the links provided at the time of retrieval3. Note that, there were overlapping songs

in our initial version of DALI set with some of the samples in the evaluation sets. Hence, we

removed the overlapped songs from the training set.

The Lyrics Corpus

As mentioned in Section 2.5, constructing a lyrics-specific language model is found to be

beneficial for ALT (Gupta et al., 2020). For this, the lyrics corpus introduced by Dabike and

Barker (2019) is taken as the starting point, which consists of two resources: the songs of artists

from the Billboard charts between the years 2015 and 20184, and the sentence annotations in the

training subset of the DAMP dataset. This corpus is extended with the lyrics of the train split of

the DALI data to form the final version of our Lyrics Corpus. For scientific evaluation, the lyrics

of the songs are excluded from the test sets for training the language model.

3.1.2 Evaluation Data

NUS Sung and Spoken Lyrics Corpus

The NUS Corpus (Duan et al., 2013) contains sung and spoken performances of 20 pieces in

English language by 12 singers with varying native and non-native accents. The dataset includes

manual annotations of phonemes, which enabled a data-driven comparison of sung and spoken

utterances. The data and annotations are exploited in our computational pronunciation analysis

(Demirel et al., 2021c), which will be discussed in Chapter 4.

DAMPtest

Dabike and Barker (2019) who first reported results on DAMP - Sing!300x30x2 dataset, in-

troduced a test split where the annotations are manually verified or fixed. This set, generally

referred to as DAMPtest is also used to compare results by Demirel et al. (2020a); Zhang et al.
3Similar to the DAMP dataset, the metadata information for our version of DALI set used in training are shared

publicly at https://github.com/emirdemirel/ALTA/s5/data/train_dev.
4This was first curated in Dabike and Barker (2019), then utilised by Demirel et al. (2020a).
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(2021); Demirel et al. (2021b). The dataset contains a higher number of singers compared to

other test sets and similar to the DAMP data overall.

Hansen

Introduced by Hansen (2012), the Hansen dataset consists of 10 commercial pop songs in

English released in early 2010s, which is used as one of the evaluation sets in the MIREX -

ALT challenge. Despite its limited musical variability, this set is interesting for ALT research

as it contains the original vocal stems making a direct comparison between monophonic and

polyphonic recordings possible (referred to as Hansenmono and Hansenpoly respectively).

Mauch

The Mauch dataset (Mauch et al., 2011) is another set used in the MIREX - ALT challenge which

has 20 commercial songs in English and a higher variability in terms of the release years and

music styles, though it still mostly consists of pop music. Word-level time annotations are also

provided within this dataset, and hence it is also used as an evaluation set for the audio-to-lyrics

alignment task.

Jamendo-lyrics

The above-mentioned datasets are prone to have evaluation bias as both Hansen and Mauch

consist of songs in similar styles. In their work, Stoller et al. (2019) introduced the Jamendo

dataset which consists of 20 songs from a variety of music genres including hiphop, metal,

reggae, R&B and country (Stoller et al., 2019) which provides a higher musical (and lyrical)

variability. In addition, the recordings have an open source license (Creative Commons) and can

be publicly retrieved at https://github.com/f90/jamendolyrics. Similar to the Hansen and Mauch

dataset, the Jamendo-lyrics dataset also has manually annotated word-level time stamps and is

used to evaluate lyrics alignment models.

DALItest240

Data within DALI is also used to evaluate ALT from polyphonic recordings (Gupta et al.,

2020; Basak et al., 2021; Zhang et al., 2021). However, usually sufficient information is not



3.1. Datasets 53

provided on the curation of these splits and data identifiers are not publicly shared, which makes

evaluation across different papers difficult. For these reasons, we have curated a new split of the

DALI dataset to be used as a benchmark evaluation set for polyphonic recordings (Demirel et al.,

2021b). We began the curation of the set from the test split used by Vaglio et al. (2020), which

consisted of 513 recordings. However, several recordings were not retrievable from the links

provided at the time of data retrieval. To cope with this, we obtained the YouTube links through

automatic search using relevant key words. We eliminated live performances, recordings with

low audio quality or that contained extra utterances compared to the corresponding original

lyrics. In addition, we excluded songs where the dominant language was not English. For each

artist, we included at most 5 songs. Among the remaining ones, a subset is chosen manually

for maintaining a balanced distribution of singers’ gender, official release dates over decades

(see Figure 3.1) and variability of singing styles, vocal effects and music genre. We manually

verified the lyrics according to the original DALI annotations and other online resources.

Figure 3.1: The distribution of release years of recordings per test set studied in this study.

The final version consists of 240 recordings, setting the largest evaluation set for ALT in

polyphonic recordings with manually verified annotations. In the rest of this thesis, this dataset is

referred to as DALItest240. For reproducibility, the data identifiers and cleaned lyrics annotations

are shared publicly. In addition, a tutorial to retrieve the correct versions of the audio files

via their corresponding YouTube links can be found at “https://github.com/emirdemirel/DALI-

TestSet4ALT”.

3.1.3 Summary

Regarding the presence of musical accompaniment, the above-mentioned datasets used in this

study can be categorised under two distinct data domains:
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• Monophonic : DAMP, NUS, Hansenmono

• Polyphonic : DALI, Hansenpoly, Mauch, Jamendo

Below in Table 3.1, a statistical summary of these datasets is provided:

Set Words Unique Words Num. Samples Mean Sent. Length Num. Rec. Num. Singers Avg. Utt. Dur. Total Dur.

Librispeech 9,613,824 90,153 292,367 40 292,367 3052 14.38sec 960h

DAMPtrain 685,956 5304 79,959 9 4155 3052 6.74sec 112h

DALItrain 1,077,133 25,477 227,021 5 4132 1507 2.48sec 156h

DAMPtest 4630 840 479 10 70 40 6sec 48min

DALItest240 62,800 4200 240 262 240 160 233sec 15.5h

NUS 8667 684 48 181 48 12 143sec 2h

Hansen 2874 585 10 287 10 9 214sec 35min

Mauch 5181 820 20 259 20 19 245sec 82min

Jamendo 5688 995 503 11 20 20 216sec 72min

Table 3.1: Statistics of datasets used in experiments. Titles (from right-to-left): dataset name,
total number of words, total number of unique words, number of training samples, average
sentence length, number of recordings, number of singers, average duration of training samples
(in seconds), and the total duration of the audio data.

3.2 Preprocessing Lyrics

Lyrics automatically retrieved from web resources5 often contain textual noise. Thus, this raw

lyrics data requires a few denoising and normalization steps prior to training, which are listed

below:

• All non-ASCII characters are removed except apostrophe ("’") as this occasionally con-

tributes to the context and how words are pronounced. The non-ASCII characters include

punctuation marks such as exclamation marks ("!"), question marks ("?"), dots ("."), etc.

• All numeric characters are converted to their alphabetic correspondence.

• All letters are converted to upper case.

• Lyrics text automatically retrieved from public online resources have certain specific noise,

such as explicit hyphenation or syllabification of single words (e.g. HY-PHEN-ATION).

These explicit notations occur possibly to guide singers to utter words in separate syllables

during melody construction by providing cues regarding rhythms or durations.
5This includes the lyrics in the DALI dataset, as they are also scraped from the web.
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• Such symbols or repeated letters are removed and words are converted back to their

canonical form using the standard open-source Natural Language Toolkit (NLTK) toolkit.6.

Note that these steps can be language specific.

• The output of the procedure explained above are then corrected and verified manually.

3.3 Speech vs. Singing

In this section, singing and speech data are compared in quantitative terms to provide evidence

for the design choices in constructing our baseline lyrics transcribers in Chapters 4 and 5. The

analysis begins with the lyrics data in text form to identify its domain-specific characteristics in

contrast to typical speech utterances used to train speech recognition models. Later, the major

differences between sung and spoken utterances as audio data are highlighted.

3.3.1 Text

At this stage, speech and singing text data are compared based on a number of properties related

to linguistic complexity, which are shown in Table 3.2. As the speech data, the transcriptions

of the Librispeech - train960h dataset (Panayotov et al., 2015) are used, and the lyrics corpus

mentioned in Section 3.1.1 is used for singing. It can be seen that the lyrics corpus in this

analysis is larger than Librispeech in terms of total number of training samples and words.

Librispeech Lyrics Corpus
# samples 292,367 2,020,776
# words 9,613,824 12,773,430
# types 90,153 101,386
# OOV types 46,264 66,873
# types (% 95) 11,377 4,965
# OOV types (% 95) 368 457
MTLD (mean,std.) (63.41, 35.25) (8.66,8.65)

Table 3.2: Comparison between speech and lyrics corpora used in this study. The rows represent
the number of training samples, words, types (unique words), out-of-vocabulary types and their
95% percentile, and the measure of textual lexical diversity (MTLD) scores (top-to-bottom).

The number of unique words (types) or the vocabulary size is also larger in the lyrics corpus.

However, if we consider the most common 95% of all words, the vocabulary size drops sharply
6Source code is available at https://github.com/nltk/nltk
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for both the corpora, indicating a high number of types occurring only for few instances. In

order to provide more numerical evidence on this matter, or the lexical diversity, we make use

of the measure of textual lexical diversity (MTLD) metric (McCarthy, 2005) as it provides a

sentence-length invariant index (Torruella and Capsada, 2013). Figure 3.2 and the last line in

Table 3.2 show that the MTLD index is much higher for the Librispeech dataset compared to

the lyrics corpus.

Additionally, the out-of-vocabulary (OOV) words per corpus are provided. Here, a word is

considered to be OOV if it does not exist in the standard CMU English Dictionary used in most

ASR baseline systems. It can be seen that more than half of the words are OOV in the lyrics

corpus, which stands out as a factor to consider for phoneme-based word recognition models. In

this regard, a grapheme-to-phoneme conversion procedure is required which is also a standard

data preprocessing procedure in LVCSR pipelines.

Figure 3.2: Distribution of MTLD scores computed on the transcriptions for each training
sample. The x-axis shows the concentration of samples given an MTLD value (i.e. the wider
the shaded region, the more samples there are for the corresponding value on the y-axis). The
y-axis is log-scaled for visualisation purposes.

On the other hand, the samples in the lyrics corpus generally have fewer words compared

to the speech corpus. This is illustrated via the violin plots in Figure 3.3. According to this,

the number of words per training sample in the Librispeech corpus is concentrated around 40

whereas this slightly lower than 10 for the lyrics corpus. This shows that lyrics at line level
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have lower contextual depth compared to speech transcriptions in the Librispeech set. Note

that these transcriptions are often formed of multiple sentences which contributes to the lexical

density, whereas the lyrics samples are restricted to be a single line of lyrics. Moreover, it can

be inferred that most of the lyrics samples (i.e. lines of lyrics) have less than 20 words whereas

the number of words per sample varies a lot more for Librispeech.

Figure 3.3: Distribution of number of tokens (words) per utterance in the Librispeech dataset
and the Lyrics Corpus used in this study.

According to the above comparison, the corpus size seems sufficient for training a language

model on lyrics data. Thus, we decided not to extend the lyrics corpus further. However, the

analysis above also shows that the lyrics corpus has much lower lexical diversity compared to

speech, which might be potentially due to the repetitive patterns in lyrics. In Section 4.4.2, the

effect of increasing the corpus’ lexical diversity is tested through including Librispeech data in

language model training.

3.3.2 Audio

Singing and speech have a number of commonalities such as having a hierarchical structure

and complexity (Fitch, 2006), and containing information about the speaker’s / singer’s gender,

identity and emotion (Weninger et al., 2011), however the sound production mechanism may

be used differently. For instance, singers may use their vocal organs in an unusual way during
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opera singing (Sundberg, 1977, 2018), may perform different breathing techniques (Leanderson

et al., 1987) or change the location of the vowel formants in the spectral domain (Sundberg and

Romedahl, 2009). Moreover in singing, performers tend to articulate syllabic patterns in an

expressive and an artistic manner. Compared to speech, these articulations in singing result in

vowels having considerably higher variance in duration and acoustic characteristics like pitch,

loudness and timbre, and thus in overall prosody of utterances Fujisaki (1981); Lindblom and

Sundberg (2014); Duan et al. (2013); Dabike and Barker (2021); Sharma et al. (2021). For a

basic prosodic comparison, we compare the articulation rates and vowel duration distributions

of the sung and spoken utterances in the NUS Corpus. The articulation rate (AR) can be simply

computed as the number of pronounced linguistic units or syllables per minute. Note that the

computation of AR does not take silent regions into account.

In general, an utterance or a sequence of speech (or singing) sounds is made of syllable

nuclei which are optionally edged by initial and final margins. Vowels often are found within

these syllabic boundaries where the energy concentration or the sound intensity is the highest.

Thus, the articulation rate can be estimated by tracking the number of vowels in an utterance.

Following the steps of De Jong and Wempe (2009), syllable detection is performed based on

thresholding the sound intensity level and observing whether a preceding dip exists for each

peak above the threshold. Then, the fundamental frequencies are extracted to exclude unvoiced

segments.

Speech Singing
Articulation Rate (per min) 266.25 172.50
Duration (min) 0.03 0.18
Duration (max) 0.77 3.86
Duration (mean) 0.10 0.34

Table 3.3: Mean articulations rates (syllables per
minute) and syllable duration stats (in seconds).

Figure 3.4: Vowel duration
distributions.

According to Table 3.3, having a lower AR value in sung utterances implies fewer syllables

are uttered per minute and the presence of longer vowels. Longer uttered vowels can also be

verified via the vowel duration distributions in Figure 3.4. In addition to the above analysis,

readers are encouraged to read data-driven spectral analyses by Duan et al. (2013) and Dabike
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and Barker (2021) on the articulation differences and pitch variances between sung and spoken

phonemes and syllables.

Although this study acknowledges the aforementioned differences between speech and

singing and the relevant literature on the subject, it focuses on the data-driven aspects in both

domains that would be of importance in the design principles of our deep learning based lyrics

transcribers. From this perspective, we are mainly concerned with the total size of the training

data. According to the statistics in Table 3.1, the available speech audio data (Librispeech 960h)

is much larger than the combination of both the ALT training sets (960 vs. ≈ 270 hours). Unlike

the lyrics corpus used for the language model, the number of words and training samples are

less for singing. Moreover, training utterance lengths appear to be shorter for singing data

compared to Librispeech (second column from right in Table 3.1) which is beneficial for memory

consumption during training.

3.4 Evaluation Metrics for Automatic Lyrics Transcription

3.4.1 Word / Character Error Rate

The applications of ALT expect accurate word transcriptions. Similar to ASR, the standard metric

for evaluating ALT systems is the word error rate (WER), which is derived from the Levenshtein

(edit) distance. Given two strings, the Levenshtein distance computes the minimum number

of modifications required to transform one string to the other through dynamic programming

(Levenshtein, 1965). Within the context of ASR, Levenshtein distance is used to measure the

difference between an automatically recognised word sequence and a reference word sequence

(McCowan et al., 2004; Morris et al., 2004). This edit distance is normalised by the number of

words in the reference word sequence, Nref. This normalised value is called the word error rate.

There are three types of errors in computing the Levenshtein distance: number of word

substitutions (S), number of words in the reference that are deleted in the transcription (D), and

number of words in the transcription that do not appear in the reference, i.e. insertion errors,

(I). Considering Nref = C + S +D, where C is the number of correctly predicted words, then,

WER can be formulated as:



3.4. Evaluation Metrics for Automatic Lyrics Transcription 60

WER =
S +D + I

Nref
=

S +D + I

C + S +D
(3.1)

There may be cases where the predicted word is incorrect but orthographically very similar

to the reference. For instance, suppose reference lyrics to transcribe is “I AM TITANIUM", and

the prediction is “I’M TITANIUM”. In this case, WER penalises the prediction two times, one for

substituting the first words, and a deletion error for the missing second word. As an alternative

metric to penalise such instances less, the error rate can be calculated on the character-level,

which is often referred to as Character Error Rate (CER).

3.4.2 Cross-dataset Performance Drop

In this section, we introduce the Cross-dataset Performance Drop (CPD) metric that measures a

specific model’s performance drop across different test sets. CPD is proposed to summarise a

specific model’s performance across all the datasets used in evaluation with the goal of making

the model selection procedure more convenient at each experimental step.

Given an objective function, deep neural networks (DNN) can learn a hyper-dimensional

function that can map input features to target labels. This provides the ability to model high level

nonlinear information. However, they may overfit to their training data and their performances

may get degraded depending on the statistical properties and distributions of the datasets used in

training and evaluation. In deep learning evaluation frameworks, this phenomenon has been

referred to as the dataset or aggregation bias (Torralba and Efros, 2011). This inherent bias

from the training data should be taken into account when evaluating different deep learning

models.

Dataset bias can be observed via scrutinising the performance generalisation of a machine

learning model across different datasets. In this study, we formulate the typical cross-dataset

evaluation scheme as follows: Given a root dataset D, each subject model is trained on a Dtrain

split and a smaller subset Dvalid is used for validation. The hyperparameters of models are

fine-tuned and tested on different unseen portions of D, namely the development, Ddev, and the

test set, Dtest
self, is used to report the final evaluation scores. This implies that a unique pair of

Ddev and Dtest
self is defined for each training set. These splits are illustrated in Figure 3.5.
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Figure 3.5: The dataset splits considered in the cross-dataset evaluation framework.

In cross-dataset evaluation, subject models are evaluated on other corpora unrelated to

the root dataset D, (noted as Dtest
others = {Dtest

0 ,Dtest
1 , ...,Dtest

N } in Figure 3.5). The datasets in

Dtest
others are selected to have distinct data distributions to simulate a more generalisable evaluation.

According to the cross-dataset evaluation studies by Torralba and Efros (2011), it is considered

that the smaller the gap between a model’s performance on Dtest
others and its performance on

Dtest
self, the higher the model’s generalisability (or lower the dataset bias) is. Conversely, a higher

performance drop on unseen data may indicate that the system is biased either due to overfitting

or dataset bias.

In the context of ALT, the performance drop across Dtest
others according to the above explained

generalisation assumption, can be formalised in terms of word recognition rate (WRR), which is

the opposite of WER (McCowan et al., 2004):

WRR(%) = 100− WER(%)

= (1− S + I +D

C + S +D
)× 100

= (
C − I

C + S +D
)× 100

= (
C − I

Nref
)× 100. (3.2)

Then the WRR drop between Dtest
self and Dtest

others can be expressed as:

∆WRR(%) = WRRtest
self(%)−

M∑
m

WRRtest
m (%)

M
(3.3)
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where M is the number of datasets in Dtest
others. Equation 3.3 gives a relative measure w.r.t.

WRRtest
self and calculating the performance drop in terms of percentages does not take the size

of Dtest
self into full consideration. For this reason, Tommasi et al. (2017) proposed measuring

the performance drop directly based on the absolute differences of the numbers of correctly

predicted instances. However, using direct differences may result in biased measurements in

case of large differences in the sizes of test sets to compare. For instance, consider an extreme

case where the number of words in Dtest
self is 10, and the words in hypothetical Dtest

others,a and

Dtest
others,b are 2 and 1 million respectively. Suppose half of the words both in Dtest

self and Dtest
others,b

are predicted correctly (i.e. WRR = 50% with no insertion errors) and both words in Dtest
others,a

are predicted correctly (WRR = 100%). According to Equation 3.3, the resulting cross-dataset

performance drop would be −25% meaning that the subject model performs much better on

unseen evaluation sets, while the overall performance is almost the same according to the ratio

between the total number of correct predictions and the number of words in the reference.

Therefore, in order to reduce the bias introduced by sizes of the subject test datasets, we propose

using this ratio as the cross-dataset performance drop, CPD, which can be expressed as:

CPD(%) =

(
C test

self − I test
self

N test
self

−
∑M

m (Cm − Im)∑M
m Nm

)
× 100 (3.4)

The above expression can be interpreted as merging all sets in Dtest
others into a single test

set. According to Equation 3.4, CPD = 0 implies that the subject model’s average word

recognition performance is the same as for Dtest
self. In other words, the results obtained on Dtest

self are

generalisable to other datasets. In this context, CPD > 0 means performance drop is observed

and signals the presence of dataset bias. As CPD gets larger, the risk of overfitting increases

and the influence of aggregation bias increases. CPD < 0 might occur where the root dataset D

has sufficient diversity compared to Dtest
others although there is a room for improvement and hints

the risk of underfitting. This can be interpreted as the lower CPD gets for CPD < 0, the risk of

underfitting increases and the performance of the model M should be improved further, possibly.

The above described interpretation of the performance drop measure can be summarised as

follows:
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CPD > 0 → Dataset bias, risk of overfitting

CPD < 0 → More fine-tuning needed, risk of underfitting

Research in automatic lyrics transcription has focused on two distinct data domains: solo

singing performances (monophonic) and recordings with musical accompaniment (polyphonic).

Specifically for the polyphonic domain, the background acoustic scene is highly variable

depending on the music accompaniment, i.e., music styles, instruments, sound effects, musical

harmony, etc. Moreover, the data acquisition process (e.g. recording environment, device,

audio encoding) is likely to vary across different sources of data. These domain differences

have motivated researchers to focus on building domain-specific models7 and thus reporting

domain-specific evaluation results (Kruspe, 2016; Stoller et al., 2019; Gupta et al., 2018, 2020;

Dabike and Barker, 2019; Demirel et al., 2020a; Basak et al., 2021). In contrast, one of the

main focuses of the methods proposed in this thesis is to improve lyrics transcription models’

performance generalisability and scalability across varying domains. Therefore, we measure

subject models’ performance drop on the combination of monophonic and polyphonic recordings

which is referred to as Dtest
others in cross-dataset evaluation (Section 4.4.6). For this, we use the

CPD metric for comparing different models.

3.4.3 Other Performance Metrics

In addition to evaluating ALT systems based on word recognition rates, we assess different

models in terms of effective model complexity (Hu et al., 2021) and inference runtime. The

former, which is also referred to as practical complexity in the literature (Novak et al., 2018),

reflects the complexity of the functions of a model with a fixed set of parameters represented by

DNNs (Hanin and Rolnick, 2019). This measure has been utilised to improve model selection

strategies (Myung, 2000) and explore model compression techniques (Cheng et al., 2018). A

common metric for measuring the effective model complexity is the number of trainable DNN

parameters given the same model framework is employed (Kurkova, 2018), which is the one
7In this context, the term domain-specific is used for models trained on either monophonic or polyphonic

recordings.
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utilised in this study.

The second operational performance metric mentioned above is concerned with how fast the

transcription system responds given the input speech / singing signal. A popular metric used

in both research and industry for this purpose is called the real-time factor (RTF), which is

simply the ratio between the system’s response time and the duration of the input utterance. To

specifically measure the word inference block of the overall transcription pipeline, we compute

RTF based on the graph decoding times, and exclude the initial data preprocessing and feature

extraction steps, which are identical across all models tested in this study. In the experiments,

we repeat decoding for 5 times and report the average of these iteration as the final RTFs. All

tests are performed on the same machine.

3.5 Summary

To sum up, we went through the datasets available for research and mentioned their specific

properties relevant to the ALT task. According to these properties, we categorised datasets

with respect to having background music accompanying the singing voice. A lyrics corpus is

curated for constructing the language model and a new evaluation set, DALItest240 is presented.

Furthermore, we studied the singing data within the context of word recognition both in text

and audio forms, and analysed its mutual and contrasting aspects with speech. In summary,

while the lyrics corpus is sufficiently large, its lexical diversity is much lower than that of the

benchmark speech dataset. Moreover, the audio dataset available for training the acoustic model

is also much smaller than Librispeech. On the other hand, training samples in singing are shorter

both in terms of audio and text lengths. These data properties are taken into consideration

for adapting state-of-the-art speech recognition engines to singing data and building the lyrics

transcribers in Chapters 4 and 5. Finally, we studied the evaluation metrics that will be used

for model selection during experiments, and introduced a novel evaluation metric, CPD which

measures a lyrics transcriber’s performance generalisability.



Chapter 4

Hybrid DNN-HMM Based Lyrics

Transcription

For decades, HMMs had been the standard approach for modeling speech signals due to their

capability of modeling sequential data. According to the HMM based speech processing

framework, the most common approach for modeling utterances is through decomposing spoken

utterances into streams of phonemes where each phoneme is represented by an HMM (Gales

and Young, 2008). Conceptually, the overall function of HMMs in this context is modeling

the transition probabilities and observation distributions of phoneme sequences statistically

based on acoustic observations. The transition and output phoneme posterior probability

distributions (or emission probabilities) of HMM sequences are estimated from training data.

Phoneme probabilities are converted to word probabilities through a phoneme-to-word symbol

transduction procedure based on the mapping predefined by a pronunciation dictionary. The raw

posterior probabilities are then smoothed via a word-level language model.

Before the deep learning era, Gaussian Mixture Models (GMM) were employed to estimate

the HMM emission probabilities from acoustic feature observations, i.e. the acoustic model.

With the advances in deep learning research, Deep Neural Networks (DNN) have become the

standard classifiers for estimating the HMM emission probabilities. The framework examined

in this chapter is referred to as the hybrid DNN-HMM approach for speech recognition, and the

first lyrics transcription system presented in this thesis follows the principles of this framework.

Modern HMM based ASR frameworks (including Kaldi) use the concept of Weighted Finite
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State Transducers (WFST) for modeling the phoneme states1. As their name implies, WFSTs

have the ability to perform transduction / translation between symbolic sequences from two

different domains. This is achieved via storing a weight between symbols to translate, which

can later be used to implement a probability distribution over a sequence of events (Mohri

et al., 2002). According to this framework, a cascading transduction operation is applied for

converting phoneme posterior probabilities to word probabilities. The main transducers in this

cascaded pipeline are described below:

Transducer Function Input sequence Output sequence
H acoustic model HMM topology context-dependent phonemes
C context-dependency context-dependent phonemes context-independent phonemes
L pronunciation dictionary context-independent phonemes words
G language model words words

Table 4.1: Finite state transducers in the decoding graph

The acoustic model transducer, H , takes acoustic features as input and stores context-

dependent phoneme state probabilities. The context-dependency is removed by the C transducer.

These context-independent phoneme labels are then converted to words via the lexicon trans-

ducer, L. The output word probability distributions are then composed with word posteriors

estimated by the language model or the grammar transducer, G. The cascaded composition

operation can be summarised as:

HCLG = H ◦ C ◦ L ◦G, (4.1)

where HCLG is referred to as the final decoding graph. In the above equation, ◦ stands for the

graph composition operation which is used to define the binary relationship between the input

and output sequences in different domains. For instance, consider the symbol q is converted to s

via the T1 transducer (q → s) and T2 translates s to w. Then the cascaded transducer T1 ◦ T2

can be used to define the transduction q → w. Following this principle, it can be inferred that

the composition in Equation 4.1 is applied unidirectionally from left to right. According to this,
1Kaldi uses the Open-FST toolkit’s WFST implementation (Allauzen et al., 2007).
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the acoustic model and the grammar transduction are the initial and the final operations during

the construction of the overall transcriber, i.e. decoding graph composition.

This chapter outlines the details of the proposed methods to improve the performance of the

DNN-HMM lyrics transcription system following a top-down approach. It follows the reverse

order of the graph composition procedure and begins with building the language model. Then, a

comparative study is held to adapt the lexicon (pronunciation) transducer to singing. The next

two sections focus on the acoustic model. First, the study proposes cross-domain training to

achieve domain invariant performance. Secondly, a novel compact multistream neural network

architecture is presented which is designed with the goal of improving robustness in noisy

environments and polyphonic recordings. The chapter concludes with experiments to find the

optimal setting for each of the major computational blocks of the DNN-HMM based lyrics

transcriber. In this final section, a cross-dataset evaluation framework is provided to measure

models’ performance generalisability across varying evaluation datasets used in research.

4.1 Language Model

Language models in DNN-HMM frameworks are typically built on n-gram approximation.

Once word lattices are generated after a first-pass scoring with an n-gram model, the word

posteriors can be rescored with a larger n-gram (Ljolje et al., 1999). In addition, rescoring can

also be performed via RNNLMs (Sundermeyer et al., 2014; Liu et al., 2016). In this section, an

explanation of the theory behind the construction of these language models is given.

4.1.1 n-Gram Approximation

The word probabilities, P (w), can be defined according to the n-gram approximation approach

as:

P (w) =

K∏
k=1

P (wk|wk−1, wk−2, ..., wk−N+1), (4.2)

where w = w1, ..., wK is a word sequence with a finite length K. Similar to the previous studies

by Dabike and Barker (2019) andGupta et al. (2020), the DNN-HMM based lyrics transcriber in

this study adopts the maximum entropy (ME) modeling approach (Rosenfeld, 1994; Alumäe



4.1. Language Model 68

and Kurimo, 2010) within the SRILM toolkit (Stolcke, 2002), a standard open-source natural

language processing software. The n-gram probabilities are estimated in the ME optimization

approach as follows:

P (wk|wk−1, wk−2, ..., wk−N+1) =
exp(

∑
k λkfk(wk, wk−1, wk−2, ..., wk−N+1))∑

wk∈Vk
exp(

∑
j λjf(wk−1, wk−2, ..., wk−N+1))

,

(4.3)

where f corresponds to the word feature functions used in training, and Vk is the set of all

possible word predictions at time step k. The numerator in Equation 4.3 represents the likelihood

of the word wk given the word history, and the denominator is the likelihood of all words in

V on the same observations which serves as the normalisation factor. The goal of ME training

is to learn the optimal weights, λk corresponding to features fk(wk, wk−1, wk−2, ..., wk−N+1),

to maximise the likelihood of all observed word sequences in the training data L(w;λ). The

weights are usually learned via the iterative scaling algorithm (Rosenfeld, 1994) or gradient

descent. Our system in particular performs parameter optimization using the Orthant-Wise

Limited-memory Quasi-Newton (OWL-QN) method for this (Andrew and Gao, 2007).

There are often cases where a word in a test sample appears in an n-gram that was never

seen in the training data. In this case, the LM would assign zero probability to such words. To

prevent this, the probabilities of the most frequent events are shaved off and distributed over

the unseen n-gram. This procedure is called smoothing. Our framework uses the Kneser-Ney

smoothing algorithm (Kneser and Ney, 1995).

Once first-pass decoding is done, a lattice structure is obtained as in Figure 2.3 which stores

the word posterior probabilities, labels and graph costs. Previous studies showed that further

performance improvement can be achieved after a second-pass scoring of word lattices using

another language model trained on a larger corpus or with a larger n-gram (Liu et al., 2016;

Ljolje et al., 1999). WFST based ASR (as in Kaldi) provides the flexibility to rescore the word

posteriors with an external or a larger language model. This is achieved by subtracting the costs

of the initial language model from the overall graph cost and replacing them with the costs of

the new language model G
′

(Liu et al., 2016). For instance, Dabike and Barker (2019) initially

obtain word probabilities with a 3-gram LM, then rescore the word lattices with a 4-gram. Their
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experiments showed that the rescoring with the 4-gram LM was consistently superior over the

3-gram. Note that the final decoding graph can as well be constructed through composing the

HCL graph directly with a 4-gram language model.

4.1.2 RNNLM

The external language model used for lattice rescoring can also be built with neural language

models (Bengio et al., 2003). Recurrent Neural Networks (RNN) are the standard choice for this

purpose due to their capability of capturing longer context dependencies (in text data) compared

to n-grams. Although this approach of language modeling is generally referred to as RNNLM,

the network topology may include other variants of RNNs, such as LSTMs or GRUs.

The basic training principles of the neural language model can be summarised as follows:

suppose the training samples are sequences of words, w1, w2, ..., wT with wt ∈ V , where V is

the set of words in the training set, or the vocabulary. Then, the objective function is to learn

word likelihoods given a certain context with length n:

f(wt, ..., wt−n+1) = P (wt|wt−1
1 ) (4.4)

The words are represented with embeddings, or distributed feature vectors, C2. The network,

g takes C as input and learns a context representation, zi. This representation correspond to

unnormalised word log-probability distributions which are normalised with softmax function to

guarantee they sum up to 1:

P (wt|wt−1, ..., wt−n+1) =
ezwt∑
i e

z
i

. (4.5)

In their work, Chen et al. (2017) successfully integrated RNNLMs for word lattice rescoring

within the DNN-HMM framework. This initial approach used word classes as the target units.

However, considering that there can be thousands of words in a dataset, the computation of the

word probabilities at the end of the softmax layers becomes expensive. To reduce computational

complexity and speed up rescoring, Sundermeyer et al. (2014) introduced lattice pruning which
2Here we use C for representing the context vector symbol only within this context as it is the most common

symbol used for this in the literature. It should not be confused with the symbol to represent the number of correct
word predictions.
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removes the predictions with lower probabilities from the search space. This pruned search

procedure was later implemented within Kaldi’s DNN-HMM based framework (Xu et al.,

2018b,a). In our previous work, we showed that the pruned RNNLM rescoring leads to a much

simplified lattice structure at inference (see Figure 4.1) which helps to reduce the decoding

runtime (Demirel et al., 2020a). In the aforementioned paper, RNNLM rescoring was also

shown to improve the lyrics transcription performance. Although there are more modern neural

language modeling approaches, this study uses Kaldi’s RNNLM rescoring implementation due

to it being already well-integrated with the other computational blocks of the DNN-HMM based

lyrics transcription system.
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Figure 4.1: Lattices obtained with a 4-gram LM (a) and RNNLM (b). The figures are obtained
from (Demirel et al., 2020a).

Kaldi’s RNNLM implementation uses the word representation proposed by Huang et al.

(2013). According to this approach, words are decomposed into character-level n-grams which
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may also be referred as word hashing procedure. For instance:

#flow# → {#f, fl, flo, low, ow, w#},

where # indicates word boundaries. Word hashing is a data compression method and can

be perceived as feature dimensionality reduction. Consider representing words using one-hot

encoding for a vocabulary with the size of 40K words where each bit in the feature space

corresponds to a word. This would result in feature vectors having the dimensions of 40K bits.

In word hashing, the above-explained subword n-grams are used to construct the feature vectors.

Therefore each element in the feature space corresponds to a subword unit. According to the

statistics reported by Huang et al. (2013), using word hashing with unigrams reduced the size of

feature vectors from 40,000 to 1107 bits.

One issue with word hashing is collision where feature representations of different words

have the same set of character-level n-grams. Huang et al. (2013) showed that the number of

collisions can be reduced through increasing the order of n-grams. However, this would increase

the size of the word representation vector to 10,306. To distinguish different words with the

same set of unigrams, Xu et al. (2018b) append the number of per-word n-grams and word-level

unigram log-probabilities on top of the subword-level unigram vectors. These feature vectors are

fed to the neural network through a learnable embedding matrix which is trained in conjuction

with the RNNLM.

The architecture of the RNNLM is a simple two-layer LSTM network with a hidden dimen-

sion size of 256 and the word features are projected to the LSTM network via an embedding

matrix of 1024. A pair of layer normalisation and ReLU activation is applied after each LSTM

layer (Figure 4.2). The data order is randomised and one out of 50 samples are chosen for the

validation set. The network is trained for 30 epochs. At inference, the pretrained RNNLM

takes word likelihoods obtained after the n-gram approximation scoring as input, and outputs

new likelihoods. These are composed with the scores in the final decoding graph HCLG

through removing the costs from the n-gram LM and adding the new RNNLM cost (Xu et al.,

2018a). Then the standard beam search is applied on the updated costs to obtain the final word

transcriptions.
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Figure 4.2: The topology of the RNNLM architecture

4.2 Pronunciation Model

The acoustic model in the DNN-HMM setup learns a function to translate acoustic features into

a probability distribution over a phoneme set. As the expected output of a lyrics transcriber is

word sequences, the transduction from a stream of phonemes to word sequences is required. In

the DNN-HMM speech recognition framework this transduction, or word-to-phoneme mapping

is achieved using a predefined dictionary (or lexicon), which is referred to as the pronunciation

model.

For most cases, LVCSR research for the English language employs the standard CMU

dictionary (Weide, 1998) as the lexicon transducer L.fst. The CMU dictionary is curated by

phonetics experts and models word pronunciations based on the North American English accent.

This restriction regarding accents becomes less apparent when DNNs are used to build the

acoustic model as they can model higher levels of nonlinearity between target classes and

the variances in the input acoustic features. On the other hand, previous research showed an

explicit modeling of domain-specific common pronunciation variances can improve recognition

rates (Adda-Decker and Lamel, 2000; Morales and Cox, 2007; Yilmaz and Pelemans, 2014).

Specifically for sung utterances, Gupta et al. (2018) showed that adapting a standard speech

lexicon to singing data through extending vowel occurrences in pronunciations is beneficial for
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transcribing lyrics.

Motivated by the aforementioned research, potential directions for adapting a standard

speech pronunciation model to singing data is investigated in this section. The first approach

is generating word pronunciations alternative to their canonical form, based on the common

pronunciation variances in singing compared to natural speech. For this a data-driven confusion

analysis is initially applied on sung phonemes, a method that is similar to one presented by

Morales and Cox (2007); Yilmaz and Pelemans (2014), and the alternative pronunciations are

generated based on the observations driven from the confusion analysis. Later, graphemes as an

alternative subword token to phonemes is studied.

Phoneme Set

In constructing the target class set, the DNN-HMM based transcriber the 39-phoneme set for

English which is used in the CMU Pronunciation Dictionary3 and does not take the variance

in lexical stress into account. The phonemes in this set are referred to as the base or context-

independent phones. The set of phonemes can be seen in the pronunciation analysis tables

(Table 4.2) in the following section.

4.2.1 Pronunciation Analysis

The goal of the pronunciation analysis in this section is to reveal statistically observable

pronunciation variances in sung utterances compared to the canonical word pronunciations in

speech. The analysis is applied on the NUS Corpus (Duan et al., 2013), due to the availability

of phoneme-level annotations, and considers only the native English speakers within dataset.

Initially, the orthographic word transcriptions are extracted from singing recordings in the

analysis set using the pretrained ALT model in (Demirel et al., 2020a), which uses the standard

CMU pronunciation dictionary. The word predictions are converted back to their phonemic

representations Q̂ by decomposing the grammar transducer G from the decoding graph HCLG.

To get the phoneme confidences, Q̂ is aligned with their corresponding manually annotated

phoneme sequences. The alignments are generated following the procedure explained below:

1. The alignment score matrix D is computed through the Levenshtein alignment, lev,
3The phoneme set can be found here http://www.speech.cs.cmu.edu/cgi-bin/cmudict?in=desert&phones.
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between the phoneme tokens q of the predictions Q̂M and the ground truth QN :

DM×N = lev(Q̂M ,QN ), (4.6)

and find the best alignment path, A2×K through reverse tracing to find the path with the

lowest pairwise gap cost:

A2×K =

. . . qk−1 qk qk+1 . . .

. . . q̂k−1 q̂k q̂k+1 . . .

 . (4.7)

A can be interpreted as a sequence of phoneme pairs.

2. There are three operations defined on these phoneme pairs to match Q̂M to QN : insertions

(I), substitutions (S) and deletions (D). These operations are represented in A with the

symbol ϵ. An alignment instance ak =

 ϵ

q̂∗k

 is a deletion and the opposite case would

be an insertion, and ak =

 ϵ

q∗k

 is a substitution instance if q̂∗k ̸= qk.

3. Let the number of correctly matching pairs in A be C, then the confidence score per

phoneme type, cq, can be retrieved as:

cq =

∑T
i Cq,i − (Sq,i + Iq,i +Dq,i)∑T
i Cq,i + Sq,i + Iq,i +Dq,i

,

q ∈ ΩE , (4.8)

where T is the number of utterances in the analysis set, q is the phoneme type4 and

ΩE is the English phoneme set used in our analysis. The denominator is necessary to

normalise with respect to the total number of pairs in A, since the phonemes in ΩE are

not necessarily represented equally in the analysis data set.

Table 4.2 shows the confidence scores obtained through the procedure explained above. The

first two columns from the left are the list of English phoneme categories and types. In the third
4Note that in the case of non-correct predictions, qk ̸= q̂k.
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column from the left, the confidence scores and their confidence rankings R are given. Note

that cq are normalised values according to Equation 4.8, −1 ≤ cq ≤ 1. Finally, three most

frequently confused phonemes per target phoneme type, Φ′, are included in Table 4.2.

Vowels q cq(R) Φ′
N

Short Vowels

AE -0.42 (38) AH, EH, AA

AH 0.17 (33) AA,EH,OW

EH 0.3 (32) AH,AE,IH

IH 0.48 (26) IY,AH,EY

UH 0 (36) AO,UW,AH

Long Vowels

AA 0.5 (24) AO,AW,AE

AO 0.06 (35) AA,AH,OW

ER 0.36 (31) AH,OW,EH

IY 0.87 (6) EY,IH,EH

UW 0.88 (4) OW,AH,UH

Diphthongs

AY 0.86 (8) AA,AH,EH

AW 0.71 (18) AA,AH

EY 0.87 (7) IY,AY,EH

OW 0.76 (17) AO,AA,AH

OY 0.4 (28) OW,AO,AY

Consonants q cq(R) Φ′
N

Plosives

B 0.77 (16) D,P,W

D 0.16 (34) T,N,JH

G 0.77 (15) NG,K

K 0.85 (15) G,HH

P 0.78 (14) B,M,F

T 0.37 (29) D,S,CH

Affricates
CH 0.79 (13) JH,SH,T

JH 0.88 (5) CH,S,Y

Nasals
M 0.93 (2) N,NG

N 0.85 (12) M,NG,D

NG 0.85 (9) N,M,T

Fricatives

DH 0.36 (30) TH,D,N

F 0.91 (3) V,P,TH

HH 0.70 (19) DH,W,Y

S 0.95 (1) Z,TH,T

SH 0.85 (10) CH,S,Z

TH 0.57 (21) S,T,DH

V 0.56 (22) F,R,DH

Z -0.05 (37) S,T

ZH N/A N/A

Approximants

L 0.44 (27) AA,OW,AH

R 0.48 (25) AA,AH,IH

W 0.66 (20) AA,OW,V

Y 0.55 (23) IH, AH, IY

Table 4.2: Results of the phonetic analysis.

Note that, cq < 0.25 means that there are less true positives than the sum of false negatives

and positives in per phoneme type predictions, i.e. in most cases, q is predicted incorrectly.

These phoneme types with low confidence scores are highlighted in gray colour in Table 4.2.

It can be seen that it is mostly the vowel types within short and long vowel categories fall

in this low confidence zone. On the other hand, diphthongs are more accurately predicted

compared to the other vowel types. In particular, the phoneme ‘AE’ has the lowest cq and is

generally associated with the schwa sound in phonetics (Silverman, 2011). This very low cq

is not surprising as it is often pronounced weakly and is one of the most frequently occurring

vowel sounds in the English language (Roach, 2004).
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Consonants have higher cq values in general with certain exceptions. For instance, plosives

‘D’ and ‘T’ are severely confused indicating a systematic error, likewise the fricative sound ‘Z’.

On the other hand, plosives ‘B,G,K,P’ have rather high confidences which may be interpreted

as singers in our analysis not omitting ‘B,G,K,P’ sounds in word pronunciations. It was also

mentioned in the literature that singers may utilise such phonemes to utter strong note offsets

during melody construction (Bauer, 2002).

In addition, it can be seen that approximants are mostly confused with vowels. This might

imply either deletion errors during the text alignment step or again omitted approximants similar

to plosives as explained above. The former can occur when multiple different vowels are

annotated consecutively in the reference to represent the actual uttered phonemes during melody

construction, whereas the predictions based on a canonical pronunciation dictionary cannot

predict such extra vowels. This is represented as a missing phoneme prediction, and hence a

deletion error. Hence, it can be inferred that there are systematic confusions of approximants

with vowels.

Figure 4.3: Confusion matrix. The x and y axes are represent the ground-truth and predictions
respectively.
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Figure 4.3 shows the phoneme confusion matrix summarised with respect to phonetic

categories where the numbers in each cell represent the phoneme category-wise confusion

scores. In computation of these, Cqs are discarded and the sum considers only S, I and D values

for each phonetic category. Therefore the diagonal axis does not represent self-confidences.

Instead it represents the domestic confusions within each phonetic category. Phonetic-category-

wise normalization is applied based on unit sum. These normalization steps are crucial to get

confusion values independent of the number of occurrences. Moreover, per-phoneme-category

insertions and deletions are also included in the confusion matrix representing extra pronounced

or omitted phoneme instances.

The concentration of high confusion rates can be observed for vowels (top left in Figure

4.3). Short vowels are mostly confused with each other. The annotated longer vowels are not

necessarily represented in the standard speech lexicon, thus causing the system to assign a

higher likelihood for the short vowels when making word predictions. Note the high number of

deleted plosives signaling them being omitted from pronunciations during singing. Overall, a

high frequency of deletions is observed for all categories. In addition to alignment errors, one

possible cause for this could be the word liaisons being annotated as single phonemes in human

annotations whereas the ALT system would predict such instances as separate phonemes. For

example, in ‘DREAM MAKER’, ‘M’ is annotated once in the corresponding Q, but detected

twice in Q̂.

4.2.2 Singing Adapted Lexicon

In this section, a number of methods for adding alternative pronunciations to the standard speech

lexicon is proposed which are based on the observations of the previous section. Through this,

we aim to observe the effect of explicit pronunciation dictionary adaption on the sung word

recognition performance within the DNN-HMM framework.

The initial method is extending the vowel representations in word pronunciations. This was

first shown to be effective by Gupta et al. (2018). In this study, a similar strategy is applied. For

instance, consider the word OCEANS with its phonemic representation OW SH AH N Z in the

lexicon. Gupta et al. (2018) extends vowels for 4 times which might cause a large increase in

the search space, thus making it computationally expensive. The number of vowel repetitions as
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a hyperparameter is tested in Section 4.4.3.

Figure 4.4: An example of an omitted plosive in singing. W = ‘AND I ’ ; Qread = ‘AE N D AY’
(left) ; Qsing = ‘EH N AY’. The gray horizontal lines show the temporal phoneme regions and
the bright green curves are the pitch tracks extracted using pYIN (Mauch and Dixon, 2014).

Next, we consider the omitted consonants observed in the previous section. It is not seldom

that in singing, performers may omit some consonants at the endings of words. This phenomenon

can be explained as a stylistic convention that singers exhibit in their performances in order to

maintain the sonority of their singing (Sundberg and Rossing, 1990), or it could as well be a

microphone technique to avoid unpleasant pops. The analysis in Section 4.2.1 suggests that

this occurs most likely for plosives as the phoneme category with highest number of deletions.

An example of an omitted plosive is illustrated in Figure 4.45. The spectrogram segments

in Figure 4.4 show the same words uttered as speech (left) and singing (right) by the same

performer. According to the human annotators, the phoneme ‘D’, is not present during singing.

This can also be seen from the discrepancies in the spectrogram and the undisturbed pitch curve

in the singing segment6. For explicitly modeling such instances, we propose adding alternative

pronunciations to words ending with consonants ’D’ and ’T’ by removing their last phoneme

in the corresponding word pronunciation, qwl . These consonants are selected due to their low

confidence scores in Table 4.2. We refer to the model built with omitted plosives as Pron-1.

According to Figure 4.3, the phoneme category with the lowest confidence seems to be the

fricatives. By combining this observation with the statistics in Table 4.2, it can be inferred

that it is only the Z sound within fricatives that is severely misdetected and mostly confused

with the sound S. To test this, we substitute the Z sounds with S when generating alternative
5The analysis is performed using Sonic Visualiser software (Cannam et al., 2010).
6According to the empirical study by Goldsworthy (2015), pitch and phoneme perception are found to be

cognitively correlated processes. Hence, we have chosen explicitly to show the pitch tracks.
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pronunciations. This method is referred to as Pron-2. Finally, we apply the vowel extension in

Pron-3. An example of the resulting alternative pronunciations generated with each of these

methods is shown below:

Word FLOAT OCEANS
Canonical F L OW T OW SH AH N Z

Pron-1 F L OW OW SH AH N Z
Pron-2 F L OW T OW SH AH N S
Pron-3 F L OW OW T OW SH AH AH N Z, OW OW SH AH N Z

Table 4.3: Comparison of different alternative word pronunciation generation methods.

4.2.3 Computing Pronunciation Probabilities

The above explained alternative pronunciation generation steps would increase the size of the

search space, potentially making the decoding procedure computationally more expensive. In

addition, these steps are based on data-driven heuristics, hence not necessarily generalisable

to all the words in our vocabulary. To reduce the size of the pronunciation dictionary, pruning

can be applied through discarding the redundant pronunciation variants and keeping only the

likeliest ones.

Although different pronunciations of a given word can have distinct probabilities, they are

considered to be equally likely in practice taken as P (q|w) = 1 (i.e. max-norm applied) for

numerical stability. On the other hand, these probabilities can be calculated explicitly following

the steps in Chen et al. (2015). According to this, phoneme alignments are first obtained via

a pretrained acoustic model using the raw lexicon with equally likely pronunciations. At this

point, it is assumed that the acoustic model chooses the likeliest pronunciation. The list of

word-pronunciation pairs are retrieved during the training data alignments and their counts,

Count(w,qw
i ), are computed. Then, the probability p(qw

i |w) of the ith pronunciation q of a

word w is computed as:

p((qw
i |w) =

Count(w,qw
i ) + λ∑Nw

i=1(Count(w,qw
i ) + λ)

(4.9)

where Nw is the number of pronunciation variants of a word defined in the dictionary, and

λ is smoothing constant which is typically set to 1. Then, pronunciation variances with low
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probabilities are pruned to reduce the overall search space.

4.2.4 Graphemes as Alternatives to Phonemes

One of the major caveats of the state-of-the-art DNN-HMM based ASR systems is their de-

pendence on a handcrafted pronunciation modeling which typically requires human expertise.

Several attempts have been proposed to discard this requirement through using graphemes

(Killer et al., 2003; Rao and Sak, 2017). Le et al. (2019) showed that competitive performance

can be achieved via tied context and position dependent graphemes, i.e. chenones, in the

presence of large training sets. In our study, we leverage the Kaldi framework for building the

grapheme context trees and tied states for injecting the context dependency. We add position

encoding via adding a word boundary tag (_WB) to phonemes (as shown in Table 4.4). Finally,

the context dependency is also added similar to the phoneme-based models. The final set of

graphemes consists of all the English alphabetic characters and the apostrophe sign (" ’ "). An

example of a grapheme-based subword tokenization is shown below:

Words FLOATIN’
Raw Tokens F L O A T I N ’

+ Position Dependency F_WB L O A T I N ’_WB
+ Context Dependency <null>_F_L_WB F_L_O L_O_A O_A_T A_T_I I_N_’ N_’_<null>_WB

Table 4.4: From raw graphemes to chenones.

4.3 Acoustic Model

The acoustic model is trained on the LFMMI scheme7 explained in Section 2.2.4. The novel

contributions of this study in building the lyrics transcriber acoustic model are two-fold: first,

we explore ways to construct a single acoustic model where the recognition performance is

undisturbed across both monophonic and polyphonic domains. Secondly, we propose and

fine-tune a novel neural network architecture for improving the model’s robustness against noisy

environments and polyphonic recordings.
7The main pipeline is similar to that of Kaldi’s chain recipe, which can be found at: https://github.com/kaldi-

asr/kaldi/tree/master/egs/librispeech/s5/local/chain/run_tdnn.sh.
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4.3.1 Cross-Domain Training

Conventional ASR systems were initially designed for standard data domains like conversational

telephone speech or broadcast news. As the performance of such systems improves, they

have been adopted for speech-based human-computer interaction applications used widely in

everyday life. Consequently, this has resulted in newly emerging data domains such as web

/ Youtube data, podcasts, radio talks, movies, as well as utterances with different accents or

in low-resource languages. Handling such data domains using a model trained on standard or

out-of-domain data is among the main challenges in current ASR research.

Domain mismatch also stands out as a major bottleneck in ALT. It has been previously

mentioned that the music background accompanying the singing voice affects the intelligibility of

words negatively for human listeners (Fine and Ginsborg, 2014) as it tends to mask lyrics content

due to overlapping frequencies with the singing voice. A similar trend applies for ALT machines

according to lyrics recognition rates reported previously in the literature (Demirel et al., 2021a)

and the MIREX 2020: Automatic Lyrics Transcription challenge8. According to these results,

the performance of lyrics transcribers trained on monophonic singing recordings is degraded

considerably when there is musical accompaniment. The presence of the accompaniment might

affect the acoustic scene drastically, potentially masking formants and phonemes. This is

illustrated in the images on the left and in the middle of Figure 4.5. The one on the left is the

spectral image of a singing excerpt. The second image has the polyphonic music accompaniment.

Within this context, the most common approach for suppressing the music accompaniment

has been extracting the vocal track through source separation (Stoller et al., 2019; Gupta et al.,

2020; Demirel et al., 2021a). Although better recognition rates could be achieved (Stoller et al.,

2019; Demirel et al., 2021a), there are two major caveats in this approach. The first one is that

the current state of source separation models available for research usually introduces artifacts

such as removed consonants or added background noise. For instance, consider the rightmost

image in Figure 4.5. This is the spectrogram of the source-separated version of the same excerpt

as shown on the left. While the phonemic structures in this image have lower resolution than

the original vocal track, additional high frequency content can also be observed, which are

potentially reflected as noise (or artifacts) during lyrics transcription. Secondly, in real-world
8https://www.music-ir.org/mirex/wiki/2020:Lyrics_Transcription_Results.
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applications, source separation would have to be applied prior to the lyrics transcription module,

which would increase the computational cost and complexity of the overall pipeline. This is

especially undesirable in such real-world applications where the users want to retrieve lyrics as

quickly as possible.

Figure 4.5: Excerpts from the dataset presented by Hansen (2012): (left) Original vocal stem,
(middle) polyphonic mix, (right) vocal separated using Spleeter (Hennequin et al., 2020).

At first sight, the domain mismatch can be thought to be resolved through training a model

on in-domain data, however such resources in sufficient quantities to train robust models may

not be available all the time. Notable methods to resolve the domain mismatch problem for

low-resource data domains include domain adaptation (Samarakoon et al., 2018; Yi et al., 2018),

speech enhancement(Liao et al., 2018), data generation/augmentation through semi-supervised

learning (Park et al., 2020) or using domain-invariant features for training the model (Hsu and

Glass, 2018).

Fortunately in ALT, labeled data is available through the DAMP and DALI datasets re-

spectively, which researchers have been able to leverage to construct domain-specific models

for monophonic and polyphonic recordings separately (Dabike and Barker, 2019; Demirel

et al., 2020a; Gupta et al., 2020). To circumvent the source separation step, a polyphonic

acoustic model can be trained solely on polyphonic recordings. However, these models do not

perform well on monophonic datasets compared to monophonic acoustic models. In order to

construct a single acoustic model where the transcription performance is maintained across both

monophonic and polyphonic recordings, the cross-domain acoustic model training includes

both monophonic and polyphonic recordings as proposed in our previous work (Demirel et al.,

2021b), which was shown to be effective and led to improved results specifically for polyphonic

recordings.
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Music Informed Silence Modeling

Phoneme based ASR systems employ extra phonemes in addition to the set of phonemes given

by the natural language to be processed. These extra phonemes, generally referred to as ‘silence’

and ‘spoken noise’ are included to represent the non-voice instances or sounds that are not

relevant to the transcription (such as laughter, sneeze sounds, etc.). In this cross-domain training

framework, a new extra phoneme is introduced, which is referred to as the ‘music’ phoneme

that is inserted for modeling the acoustic representations of instrumental music sounds or the

non-vocal instances in the polyphonic recordings.

The music and silence information are explicitly embedded by tagging the monophonic

and polyphonic recordings. Tagging is performed by inserting the respective phoneme type

at the beginnings and ends of each training sample. As it is known that the DAMP and DALI

datasets consist of only monophonic or polyphonic recordings respectively, this prior knowledge

is exploited during tagging of the data.

w
Raw w1 w2 ... wN

DAMP <silence> w1 w2 ... wN <silence>
DALI <music> w1 w2 ... wN <music>

Table 4.5: Music / silence phoneme tagging during cross-domain training.

Recall that training sample is a line of lyrics. Therefore, adding the <silence> and <music>

tags in the beginning and end of each sample allows the training to be context aware on the

lyrics line-level. This is especially useful for the audio-to-lyrics alignment task (Demirel et al.,

2021a) or when the line-level segmentation is required.

4.3.2 Compact Multistreaming Time Delay Neural Networks

This section explains the design principles of the compact multistreaming neural network ar-

chitecture developed in our research. First, time delay neural networks (TDNN) (Waibel et al.,

1989) are studied which are the main building blocks of the our neural network architecture.

Then, a convolutional front-end structure is studied to reduce model complexity while maintain-

ing operational power. Then, the novel compact variant of the multistream TDNN architecture

is presented.
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Time-Delay Neural Networks

TDNNs are essentially one dimensional CNNs where the convolution is applied on the time

domain with dilated frames. Consider a stream of input acoustic features like filterbanks or

MFCCs, xt ∈ Rm are concatenated to form the input matrix to a TDNN, X ∈ Rm×t where m

is the height of input features and each column represents a time frame t. Consider a learnable

matrix W ∈ Rm×l where l is the width of the matrix, and the height is the same as the height

of input features, m. Then, m× l indicates the kernel size for the convolution operation. The

kernel width of a TDNN layer determines the span of temporal context covered by the layer

which is often referred to as the receptive field.

Similar to standard CNNs, the learnable matrix W slides through the input, X , with a time

stride s. This means that the TDNN layer applies convolution for s time steps. To make the

input feature matrix compatible with the TDNN convolutions, padding (with a size of p) might

be added at each end of the input vectors. Given these, the output width of a TDNN layer, o can

be calculated as:

o = ⌊ t+ 2p− l

s
⌋+ 1, (4.10)

where ⌊.⌋ is the floor function. In a typical TDNN setting, the kernel slides over the input one

step at a time, meaning s = 1. In this framework, zero (null) padding is applied9.

At each time step t of a TDNN layer, a convolution operation is applied which is essentially

an element-wise multiplication of the kernel weights, W and the input features X , then these

products are summed at the output. In neural networks, a bias matrix is typically added before

passing through the sigmoid function, ϕ. According to this, the output of a TDNN layer at

output step q ∈ {1, 2, ..., o}, z(q) is computed as:

z(q) = ϕ(W ∗Xq + b), (4.11)

where Xq represents the portion of the input features within the receptive field and ∗ stands for

the convolution operation. The above equation can be unfolded as:
9In this context, zero padding means padding zero vectors.
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z(q) = ϕ(
M∑

m=0

L∑
l=0

wm,l.xm,l + b). (4.12)

The description above is the same as for a one dimensional convolution operation where

the height of the kernel and the input feature vectors are the same. According to Equation

4.12, the convolution operation is applied at every time step. For TDNNs in particular, certain

frames are dropped out during the convolution and the summation is done over frames dilated

in time. This operation is often referred to as dilated convolution. Specifically, consider a set

of context indices, J , where the element j = 0 is the current time step to be processed, for

example, J = {−3, 0,+5}. Then the output size of the TDNN layer becomes:

o = ⌊T − (max(J)−min(J)) + 2p

s
⌋+ 1 (4.13)

This time, the TDNN output, z(q) is computed within the range of J :

z(q) = ϕ(

M∑
m=0

∑
j∈J

wm,j .xm,j + b) (4.14)

Notice that the length of J is smaller than L due to subsampling. Hence, fewer frames are

required to achieve the same receptive field as the standard one dimensional convolution. In

other words, dilated CNNs can cover a larger context compared to a similarly complex one

dimensional CNN with non-dilated convolutions.

TDNNs can be stacked together to form a deep neural network structure where the context

index set for each TDNN layer Jn can be layer specific, where n ∈ N. For instance, consider

the 4 layer TDNN structure summarised in Table 4.6. The first layer (n = 1) has a dilation

rate τ = 1, meaning that the convolution is applied only with the neighbouring frames. Hence,

the receptive field (RF) is 3 frames10. The RF of the following layer relative to the preceding

TDNN layer is 5 − (−3) + 1 = 9. Considering the overall receptive field aggregates as the

10The current frame is included in the receptive field computation.
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layers go deeper in the network, the absolute receptive field of the second layer with respect to

the beginning of the network becomes 32 frames.

Layer Input context RF (relative) RF (absolute)
1 {-1,0,1} 3 frames 3 frames
2 {-5,0,7} 13 frames 15 frames
3 {-3,0,5} 9 frames 23 frames
4 {-3,0,3} 7 frames 29 frames
5 {-1,0,3} 5 frames 33 frames

Table 4.6: A dummy TDNN example.

According to the above computation, the receptive field of the overall network can be

formulated as:

RF =

(
N∑

n=1

(max(Jn)−min(Jn))

)
+ 1, (4.15)

where N is the number of TDNN layers in the network. Although having varying context spaces

for each layer seems to be a way of diversifying how the temporal information is processed,

previous research showed that having the same symmetrical past and future context led to

optimal results within the context of DNN-HMM based ASR (Povey et al., 2018a). In this case,

amount of dilation per layer (i.e. dilation rate) can be referred to as τn, where n is the index of a

TDNN layer. For instance, suppose the frame at time step t is convolved with frames at t = ∓3,

which means the dilation rate is τ = 3, and the RF of this layer is 2× 3 + 1 = 7 frames. This

computation can be generalised as:

RF = (2× τ ×N) + 1, (4.16)

where τn = |max(Jn)| = |min(Jn)|. Then, the time span covered by the receptive field at the

end of the TDNN stack, rfN can be simply computed by multiplying RF with the input frame

length H:
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rfN = (2× τ ×N + 1)×H

= RF ×H (4.17)

As the computation of network weights is based on the convolution operation, training

TDNNs is parallelisable providing a more efficient training compared to LSTMs. Although

TDNNs are introduced more than three decades ago (Waibel et al., 1989), they are still used in

the state-of-the-art architectures in both DNN-HMM based speech recognition (Pan et al., 2020)

and lyrics transcription and alignment (Gupta et al., 2020; Demirel et al., 2020a; Dabike and

Barker, 2019).

Factorising TDNN Layers

As Equation 4.17 implies, the more TDNN layers the architecture has, the larger time span

it covers, i.e. it is capable of modeling longer context dependencies. However, increasing

the number of TDNN layers is computationally expensive. To reduce the number of trainable

parameters and establish a more efficient training, Povey et al. (2018a) proposed a factorised

version where the trainable matrices MTDNN are decomposed (or factorised) into multiplication

of two matrices:

MTDNN = AB, (4.18)

where one of the multiplicant matrices is constrained to be semi-orthogonal. In linear algebra,

M is called to be semi-orthogonal if,

MMT = MTM = I, (4.19)

where I is the identity matrix.

In practice, TDNN layers are factorised as follows: consider a standard TDNN topology

with a hidden dimension of h and a convolution kernel of 3 × 1. Then the parameter matrix,
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MTDNN, would have the dimensions of hTDNN × 3hTDNN. Suppose we choose A to be a much

smaller matrix with a size hTDNN × hA where hA < hTDNN. Consequently, B has the size of

hA×hTDNN and is constrained to be semi-orthogonal. Here, the matrix A is referred to as linear

bottleneck and its size the bottleneck dimension. As the main goal of this procedure is to reduce

computational complexity, a small value is chosen for the bottleneck dimension. In the same

paper, the factorisation step was shown to reduce the trainable parameters to a quarter compared

to the original TDNN and had a faster training while WER improvement is also observed (Povey

et al., 2018a). Finally, in the implementation of the factorised TDNN (or TDNN-f) blocks, the

input parameter matrix is passed through ReLU activation, batch normalisation and dropout

layers placed in cascade before the TDNN factoriwation procedure.

Similar to LSTMs, the design principle of TDNNs is to learn temporal information. However,

the TDNN is mainly based on the convolution operation, and hence is parallelisable. In addition,

factorising TDNNs (as mentioned above) leads to a reduction in the number of trainable

parameters. Considering these points, providing a more efficient training stands out as one of

the major advantages of using TDNNs compared to LSTMs.

Baseline Network Topology

The input features can be fed directly into the TDNN blocks as in Figure 4.6, which is the

architecture in Kaldi’s standard Librispeech recipe, and later used for lyrics transcription (Dabike

and Barker, 2019; Gupta et al., 2020). According to this architecture, the output of the TDNN

blocks is projected to the final classification (softmax) layer via a couple of fully connected

layers (FC).

Convolutional Front-end

Two dimensional CNNs are widely used to capture patterns and temporal information from

audio spectral images (Huang et al., 2015). Applied in conjuction with pooling (or subsampling)

steps, CNNs can also be used for dimensionality reduction for the deep layers in the network

(Cai et al., 2014; Passricha and Aggarwal, 2018; Pardede et al., 2018). Inspired by this, we

propose adding a CNN-based front-end network to summarise the input acoustic features prior

to being processed by the TDNN-f blocks (Figure 4.7).
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Figure 4.6: Single stream TDNN architecture. The stack of yellow blocks are the TDNN part of
the network. Each small blue block represent within yellow blocks represent a TDNN-f node,
and the red lines are for the convolutional operations between these nodes.

Figure 4.7: Single stream TDNN architecture with 2D CNN front-end. Notice the reduced
number of TDNN-f layers.

The front-end structure consists of a stack of 2D-convolutional layers with 3× 3 kernels,

where feature subsampling with a factor of 2, is applied. With this, we aim to obtain compact

embeddings for the following part of the network. For instance, suppose using 40-band filterbank

features in the input. Instead of directly feeding a feature vector of 40 to TDNN-f blocks, the

latent space vector has a height of 5 (after three subsampling stages). We tune the front-end

topology and test the effectiveness of this method in terms of recognition performances and the

reduction in the number of trainable parameters in Section 4.4.5.

Multistream TDNN - MstreNet

In consideration of the observations mentioned above in Section 4.3.1, this study treats poly-

phonic recordings as singing performances in noisy environments within the context of automatic

lyrics transcription, similar to the famous cocktail party problem (Cherry, 1953). One method
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for ASR in noisy environments is multistream acoustic modeling, which is initially proposed

based on empirical analysis of the speech decoding and perception principles in the human

auditory system (Allen, 1995; Hermansky, 2019). According to this, acoustic signals enter into

the cochlea and are decomposed into multiple frequency bands through hair cells, where all the

decomposed streams are processed in parallel.

The multistream ASR approach was initially implemented in the DNN-HMM framework

through splitting the frequency bands in the spectrogram into multiple subbands with different

recognisers. Then the output phoneme posteriorgrams are recombined through either a weighted

summation or a fully connected neural network layer (Hermansky, 2013; Zhao and Morgan,

2008). This approach was found to have comparable recognition rates to a standard single

stream approach on clean speech, however performed much better on noise-corrupted data.

Later multistream attempts applied spectrum modulation and processing acoustic features at

multiple resolutions (Mesgarani et al., 2010). Mallidi and Hermansky (2016a) and Mallidi and

Hermansky (2016b) simplified the multi-recogniser framework in (Hermansky, 2013) into a

single neural network where input feature streams are randomly dropped out. At inference, the

likeliest word sequence is obtained via a tree search algorithm. Instead of random activation

of feature streams, Wang et al. (2019a) and Li et al. (2019b) proposed using the attention

mechanism which was shown to be effective specifically for the multiple microphone setting

(Barker et al., 2017; Ravanelli et al., 2017).

Recently in (Han et al., 2021; Pan et al., 2020), multistream ASR was applied through a

single network in which the acoustic features are directly processed through multiple streams of

TDNN-f blocks, where each stream has a unique dilation rate τ . An illustration of the overall

structure of this multistream TDNN-f architecture can be seen in Figure 4.8a. According to

this, input features, xi are first processed by a single stream of a 2D-CNN front-end (described

above),

hi = Stacked-2D-CNN(xi) (4.20)

The compressed hidden representations, hi are then fed into the multiple streams of TDNN-

f’s. Each stream j of TDNN-f’s has a unique time dilation rate, dj , encoding temporal informa-

tion with different resolutions into separately trained representations,
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(a) Multistream architecture with even TDNN streams

(b) Multistream architecture with diverse TDNN streams

Figure 4.8: The TDNN of the architecture in 4.8a have identical hyperparameters (such as
number of TDNN-f layers and hidden dimensions) except their time dilation rates. 4.8b shows
diverse TDNN-f streams where the number of layers decrease with increasing dilation rate. The
lesser the frequency of blue points, the higher the dilation rate is.

zji = Stacked-TDNN-fj(hi|dj). (4.21)

The output of each stream, zji , are then concatenated and succeeded by a pair of fully

connected (FC) layers before projecting to the output layer,
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ai(s) = softmax(FC(FC(Concat(z1i , z
2
i , ..., z

J
i )))). (4.22)

where ai(s) is the activations of the output layer obtained via the softmax function.

The architectures proposed by Han et al. (2021) and Pan et al. (2020) have identical streams

in terms of the number of hidden layers within TDNN-f blocks and their hidden dimensions,

despite having varying dilation rates and thus receptive fields (RF). This setting may not be

optimal as the rf s of deeper layers in the streams with greater dilation rates may exceed the length

of the audio chunk to be processed, making corresponding network connections redundant. For

instance, consider training the DNNs on 1.5-second audio chunks (as in (Povey et al., 2016)),

having a frame rate of 30 ms for the feature vectors, and 8 layers across all streams. According

to Equation 4.17, the streams with dilation rates di = {3, 6, 9} have receptive fields, rf3 = 1440,

rf6 = 2880 , rf9 = 4320 milliseconds.

In our variant of the multistream TDNN architecture (see Figure 4.8a), the model complexity

is reduced by adjusting the number of TDNN layers, Nj , with respect to their dilation rates,

ideally in order to exclude network nodes that are temporarily redundant. In addition, we test

the effect of diversifying TDNN streams in terms of their hidden dimensions kj . According to

this, the hidden representations at the end of the multistream TDNN blocks can be expressed as:

zji = Stacked-TDNN-fj(hi|dj , Nj , kj). (4.23)

In our recent paper (Demirel et al., 2021b), this architecture is referred to as MStreNet, its

performance is shown to be superior to the single-stream TDNN architecture, especially on

the polyphonic recordings. In Section 4.4.5, the experiments in the paper extended to find an

optimal network setting.

4.4 Experiments and Results

This section includes the experiments held to test the proposed methods and design choices for

the DNN-HMM framework. Similar to the direction presented at the beginning of this chapter,

this section follows a top-to-bottom approach in the progression of the experiments and performs
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ablative tests to evaluate the proposed methods. It begins with introducing the baseline model

and continues with finding the most suitable corpus for building the language model. After that,

the alternative pronunciation generation methods proposed in Section 4.2.2 are tested. Then, the

effectiveness of cross-domain training and music informed silence modeling approaches are

tested. Next step of experiments is concerned with finding the optimal setting for the compact

multistream time delay neural network architecture. To provide more scalable results, we

measure model performance generalisability across a number of benchmark evaluation sets used

in research (i.e. all the test sets studied in Chapter 3).

4.4.1 Constructing the Baseline Model

The DNN-HMM setup in our study follows the pipeline of the chain recipe within the Kaldi

framework (Povey et al., 2011), which is based on the LFMMI / sequence discriminative training

principles explained in Sections 2.2.3 and 2.2.4. In order to initiate the training of neural

networks, phoneme level alignments and lattices are necessary as a preprocessing step. For this

reason, the overall training pipeline starts with training a Gaussian Mixture Model (GMM) -

HMM baseline model that will be used to generate alignments. The overall pipeline follows the

standard Kaldi - LVCSR recipe for this, and the GMM-HMM training procedure is explained

below. Note that all experiments until the cross-domain training stage (Section 4.4.4) are done

on the monophonic DAMP dataset and no data augmentation is applied.

The GMM-HMM Model

The training pipeline initiates with training a monophone GMM-HMM acoustic model11. The

monophone model is trained on the 13-dimensional MFCC features. Monophone acoustic

modeling treats phoneme types as singular units, meaning that a phoneme type would have

a certain acoustic model independent from the context. This can be interpreted as meaning a

certain phoneme type is pronounced the same way in all contexts. Context and word position

information is embedded in phonemes through the procedure explained in Section 2.2.1, which

results in a triphone model. To include the context in the acoustic domain, the ∆ and ∆-∆
11A monophone based acoustic model uses the base phoneme classes as explained in Section 4.2 where no context

or position dependency is applied. Note that the monophone model should not be confused the term monophonic
which is used to refer models trained on solo singing recordings.
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features (i.e. dynamic coefficients) are concatenated to the MFCC features at each time step t

(Gales and Young, 2008). The training of this model is initiated with the alignments obtained

with the initial monophone model. The triphone model trained on dynamic features is used to

regenerate alignments that are used to train another triphone model. In this next model, the input

feature space is reduced using Linear Discriminant Analysis (LDA) (Haeb-Umbach and Ney,

1992) and the reduced features are mapped into a speaker-invariant space using feature-map

maximum linear likelihood regression (fMLLR) transformation (Anastasakos et al., 1996).

Finally, the pronunciation probabilities are computed through the procedure explained in Section

4.2.3. With these updated probabilities the lexicon transducer, L.fst, is reconstructed, which is

used to train another singer adaptive triphone GMM-HMM model. The final model described

here is referred to as the GMM-HMM baseline model in our experiments.

Neural Network Training

This section outlines the training details of DNNs 12:

• The networks takes 40-band filter bank features as the input. To extract these, a hop size of

10 ms and window size of 30 ms are used. According to this pipeline, frame subsampling

with a factor of 3 on the input feature vectors is applied. This means that one in every

3 frames is taken into account as the input features and the next 2 frames are skipped.

In other words, there is one feature vector for every 30 ms. The Kaldi chain recipe also

makes use of the skipped frames in training. Once the training examples are generated, for

each sample, the feature vector indices are shifted by 1 and 2. Shifting by 1 means that the

feature vectors correspond to the first stream of skipped frames after frame subsampling,

and shifting by 2 would correspond to the last stream of skipped frames. By applying

frame-shifting and regenerating training data from the skipped frames (feature vector

streams), we create different versions of the same training data, hence this procedure

serves as data augmentation. In research, this is referred to as frame-shift augmentation.

• Because of the reduced frame rate, a modified HMM topology is employed in the LFMMI

training (Povey et al., 2016). As opposed to the 3-state topology in the GMM setting,
12The DNN training employs the standard settings in the Kaldi chain recipe.
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the Kaldi chain recipe uses a 1-state HMM topology which can be traversed only in one

transition. The transition probabilities between consecutive HMM states is constant and

set to be 0.5, so the input and output transition probabilities would sum up to 1. According

to Povey et al. (2016), learning transition probabilities did not improve the modeling

power whereas it slowed down training.

• Training of the acoustic model is performed on fixed size audio chunks of 1.5 seconds

instead of using the entire singing performance. In order to inform training on the

utterance-level when doing the forward-backward computation, a number of steps are

taken. Recall from Equation 2.18 that the MMI objective contains two separate gradients,

one for the numerator which is utterance-specific and one for the denominator that is

computed on the entire training data. For the former, the chunk-wise numerator graphs are

constructed as follows: Prior to training the neural networks, phoneme lattices containing

alternative pronunciations are obtained using a pretrained GMM-HMM aligner. Each

state transition in the resulting lattices is labeled with a unique label, which is then used

to split the utterance-wise numerator graphs into appropriate chunks. For the denominator

graph, the phone-level FST G is composed with the context-dependency C from the left,

and then composed again with the updated 3-state HMM HLFMMI from the left. However,

the probabilities in the decoding graph reflect the overall singing performance, hence they

are incompatible with the numerator graph considering training on chunks of 1.5 seconds.

Povey et al. (2016) circumvent this by running the denominator HMM for 100 iterations

and take the average of state distributions accordingly. Then, this average is used as the

initial state probabilities for the chunk-wise denominator HMM graphs. The final state

probabilities are set to 1.

• Neural network training is performed on minibatches of 128 where each training sample

is a 1.5-seconds audio chunk as explained above. The numerator FSTs are initially

obtained on the chunk-level, then the FSTs of chunks belonging to the same utterances are

appended one top of each other linearly, so that the backward-forward pass is performed

only once per utterance instead of applying it separately for each audio chunk. A decaying

learning rate is applied with the beginning and final learning rates of 10−4 and 10−5



4.4. Experiments and Results 96

respectively. Stochastic Gradient Descent (SGD) (Kiefer and Wolfowitz, 1952) is used as

the neural network optimiser. The network is trained for 6 epochs. Early stopping is not

applied though, but increasing the number of training epochs did not result in improved

results.

• To achieve singer-adaptive training, i-Vectors with the dimension of 100 are extracted,

which provide global speaker-id embeddings (Kenny et al., 2005). The i-Vector training

is performed on the DAMP recordings. For the cross-domain models, the i-Vector model

is retrained on the combination of DAMP and DALI.

• To be able to report results in line with our most recent publication on the topic (Demirel

et al., 2021b), the same single stream CTDNN structure with 8 TDNN layers is used as

the baseline neural network architecture. For the same reason, the experiments involve

the same dataset as in our previous work (Demirel et al., 2021b) for building the baseline

language models, which is the Lyrics Corpus presented in Chapter 3. The global optimal

DNN-HMM setup is then determined according to the final cross-dataset evaluation where

each proposed method is tested individually.

4.4.2 Language Model

Previous research in ALT noted that a lyrics-focused language model is beneficial in terms of

word recognition compared to using transcriptions of spoken utterances (Gupta et al., 2020;

Zhang et al., 2021). At this initial step, a similar comparison is provided in Table 4.7 including

both the baseline GMM-HMM and LFMMI models. All models apply a single-pass decoding

via a 4-gram LM.

LM Corpus GMM-HMM LFMMI
Dev Test Dev Test

Lyrics 38.55 45.69 14.73 17.73

Librispeech65.34 67.26 39.46 42.65

Both 38.85 45.94 12.99 17.08

Table 4.7: WER scores produced by 4-gram LMs trained on different corpora.

The above comparison indicates that an in-domain language model for ALT is beneficial
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for word recognition in the DNN-HMM setting. In addition, although increasing the lexical

diversity of the lyrics corpus via merging it with the Librispeech transcriptions was not clearly

beneficial for the GMM-HMM model, it led to a slight WER improvement in the LFMMI /

DNN-HMM model.

RNNLM Rescoring

The choice of the training set is an important factor also for the RNNLM rescoring procedure.

Specifically, the modeling power of RNNLMs is prone to get degraded when trained on noisy

data. Table 4.8 gives a comparison of RNNLM models trained on different corpora. The

first RNNLM is trained on the transcriptions of the DAMPtrain split. Next, the training set is

extended with the lyrics of the DALItrain split. The model on the fourth column is trained on the

lyrics corpus used to train the lyrics-specific n-gram language model above. Next, we test the

effectiveness of combining Librispeech and the lyrics corpora.

4-gram LM DAMP DAMP
⋃

DALI Lyrics Corpus Lyrics + Speech

Dev Test Dev Test Dev Test Dev Test Dev Test

WER 13.76 17.73 10.20 14.07 13.02 14.27 13.12 16.86 13.79 16.45

C 87.08 83.48 90.57 87.07 87.76 86.88 87.61 84.26 87.06 84.57

S 7.52 11.71 5.48 9.21 7.32 9.19 7.37 11.18 7.42 10.68

I 0.85 1.10 0.77 1.13 0.77 0.97 0.72 1.10 0.85 0.96

D 5.40 4.91 3.96 3.72 4.93 4.13 5.03 4.62 5.53 4.81

Table 4.8: RNNLM scores trained on different corpora

In addition to overall WERs, Table 4.8 provides scores explicitly in terms of the percentage

of correct word predictions, (C), plus substitution (S), insertion (I) and deletion errors (D).

It can be seen that extending the training corpus led to increased deletion errors. Table 4.8

shows that the best results are achieved when the RNNLM is trained only on the transcriptions

of the DAMPtrain set. This is interesting because RNNLM training on larger corpora did not

seem to improve word recognition results compared to the smaller DAMPtrain set, which is

counter-intuitive from the deep learning perspective.
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4.4.3 Pronunciation Model

At this stage, the effects of alternative pronunciation generation methods proposed in Section

4.2.2 are tested in terms of word error rates. For this, we begin by constructing the pronunciation

model-specific GMM-HMM models to generate phoneme alignments. This is crucial for this

stage of experiments as the acoustic model optimization is based on phoneme alignments and

the DNN training is performed on phoneme-based LMs.

At first, the vowel extension factor is tuned when generating the vowel extended alternative

pronunciations. In their work, Gupta et al. (2018) use the combination of vowel extensions

(VE = {1, 2, 3, 4})13. However this potentially increases the size of the lexicon transducer

(L.fst). To find the optimal setting in this context, lexicons extended with only one VE are

compared first (results for 1-4 in Table 4.9). Then in the two rightmost columns, results for the

lexicons where vowel extended pronunciations with smaller VEs are also added. For example,

for the lexicon for the column denoted with ≤ 3, the resulting list of alternative generations of

the word OCEANS also includes OW OW SH AH N Z, OW SH AH AH N Z, OW SH AH AH AH

N Z, etc. In addition to WERs, we compare models with respect to size of the resulting decoding

graph (HCLG.fst) and real-time factors.

VE 1 2 3 4 ≤ 3 ≤ 4
WER 17.73 17.27 17.47 17.33 17.85 17.61
Size 2.5GB 2.5GB 2.8GB 3.1GB 3.0GB 3.4GB
RTF 0.6899 0.4275 0.4169 0.4115 0.4455 0.4459

Table 4.9: Tuning the vowel extension factor

Table 4.9 above shows that using alternative pronunciations with extended vowels generally

leads to better performance, however none of the extension factors improves the recognition

rates considerably more than others. Moreover, extending vowels also resulted in a faster

inference performance (lower RTF), possible due to an increased recognition rate. According to

these results, VE = 2 is sufficient to achieve performance improvement while having a smaller

decoding graph and a comparable RTF with other VEs. For this reason, VE = 2 is chosen to

build the vowel extended lexicon used in the next experimental step.

In Table 4.10, the comparison of different alternative pronunciation generation methods is

given. The leftmost column with the label LCMU represents the model based on the standard
13Note that VE = 1 means using the non-vowel-extended lexicon.
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CMU pronunciation dictionary. In L1, the plosive consonants mentioned in Section 4.2.2 are

removed, ‘D,T’, from word endings in the alternative pronunciations. L2 corresponds to the

lexicon extended with Pron-2 where the Z sounds are removed from word endings. L3 is the

vowel extended lexicon which was tuned above. In order to observe whether the pronunciation

generations are beneficial specifically for singing, the read / singing splits of the NUS Corpus

(Duan et al., 2013) are included in the evaluation and native English speakers are excluded in

evaluation as those samples are the ones used in the pronunciation analysis in Section 4.2.1.

Finally, L4 includes the pronunciation variants in both L1 and L3. Here, the method for L2 is

not included in L4, as it did not lead to improvements.

LCMU L1 L2 L3 L4

DAMPtest 17.73 17.41 18.56 17.33 17.17
NUSread 7.47 7.15 8.32 7.24 7.31
NUSsing 8.04 7.85 9.07 7.71 7.68

Table 4.10: WERs obtained using different lexicon variants

According to the table above, both L1 and L3 lead to slightly improved word recognition

rates, and the best results are achieved by combining them in L4. Replacing the Z sound with S

did not help with the performance, hence we did not include the Pron-2 method when generating

L4. Note that improvements due to the extended lexicon are more apparent for singing according

to the results for the reading and singing splits of the NUS Corpus. This indicates that the

heuristics used to generate the alternative pronunciations are more suitable for the singing data.

Table 4.11 shows a more detailed comparison between the speech and singing adapted

lexicons (LCMU and L4 respectively), specifically in terms of the rate of substitutions, deletions

and insertions as well as CERs. This shows that most improvements are observed on deletions

while the improvement in insertions is marginal. Word recognition systems might produce

no word output when the prediction is ambiguous. The observation related to deletion errors

might be interpreted as follows: the recognition procedure suffers less from the pronunciation

ambiguities due to prolonged vowels or omitted plosives when using L4 as the pronunciation

dictionary.

Furthermore, we extract case-specific results to observe whether the proposed lexicon exten-

sion methods lead to improved results relevant to newly generated alternative pronunciations.

Specifically to test the method Pron-1, the results for the words ending with the low confidence
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LCMU L4

ER S I D ER S I D

word
DAMPtest 17.73 11.70 1.10 4.91 17.17 11.02 1.36 3.89

NUSread 7.47 5.34 0.82 1.31 7.31 5.31 0.88 1.12
NUSsing 8.04 5.67 0.68 1.69 7.56 5.61 0.59 1.36

character
DAMPtest 11.56 5.13 1.47 4.96 11.26 5.25 1.74 4.27

NUSread 4.24 2.07 1.05 1.12 4.32 2.20 1.01 1.12
NUSsing 4.37 2.22 0.55 1.60 4.27 2.08 0.64 1.55

Table 4.11: Word and character error rates using the standard (LCMU) and the singing-adapted
(L4) pronunciation dictionaries.

plosives are compared. For Pron-3, results only on vowel characters are given in Table 4.12.

Note that while the results for the former are WERs, CER is used to evaluate vowels, i.e vowel

error rate (VER). The results in Table 4.12 show that the lexicon extensions led to improvements

in the aforementioned specific cases. This hints that improvements due to adding alternative

pronunciations not only provide more flexibility in the search space during decoding but also

can be beneficial for specific utterances.

LCMU L4

ER S D ER S D

words ending with plosives (WER)
DAMPtest 22.84 13.06 7.78 17.6710.15 7.21

NUSread 9.74 8.82 0.91 9.01 7.90 1.10
NUSsing 14.01 7.76 5.73 7.94 5.73 2.21

vowels (VER)
DAMPtest 13.20 6.47 6.72 9.80 5.59 4.21

NUSread 4.02 2.44 1.58 3.99 2.55 1.44
NUSsing 7.23 2.98 4.26 6.71 3.03 3.68

Table 4.12: Error analysis for plosives and vowels

Discussion

The pronunciation dictionary can possibly be extended further to adapt to the common pronun-

ciation variances in singing. Additional alternative pronunciations may be generated through a

statistical analysis of the interchange of phonemes between sung and spoken utterances. This

can be performed in a context-dependent manner via observing the neighbouring phonemes. The

analysis above shows that the proposed singing adapted lexicon methods lead to consistent but

modest improvements in the overall word error rates and the combination of two methods (i.e.
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L1 + L3 := L4) resulted in the best performance. According to the case-specific error analysis,

both methods were beneficial in their targeted direction. In addition, the vowel extension method

is also observed to speed up inference.

Note that this section of Chapter 4 follows the same experimental steps as our previous study

in (Demirel et al., 2021c). In contrast, a smaller language model is used in the aforementioned

study. In addition, data augmentation by means of speed perturbation is also applied and the

neural network architecture has an extra self-attention layer (Demirel et al., 2021c). In order to

provide a coherent and consistent results with the rest of the experiments in this thesis work, we

have redone the experiments using the baseline setup explained in Section 4.4.1. Overall, these

results are perfectly in line with our previous study (Demirel et al., 2021c).

Senones vs. Chenones

Here, the potential of using graphemes (or specifically chenones) within the DNN-HMM lyrics

transcription setup is tested. For a clear comparison, the results for senone-based models using

both the standard and the singing adapted lexicons are included.

Token WER CER
Senones (CMU) 17.73 11.56

Senones (singing) 17.17 11.26
Chenones 19.98 14.75

Table 4.13: WERs of different lexicon variants. Test set is DAMPtest.

Although the singing adapted lexicon is clearly superior to using chenones according to

Table 4.13, the error rate differences between using senones and chenones are smaller in the

case of using the standard pronunciation dictionary. Although having around 2% higher WERs,

using chenones can be justified where a pronunciation dictionary for the language in question is

not available. This analysis shows the potential of chenones in the contrast to senones. These

results are interesting in particular for applications where a senone based system would require

a manually curated pronunciation model, such as for multilingual lyrics transcription. For such

applications, chenones are potentially a good candidate as subword units to train the acoustic

model as they do not require language specific phonological expert knowledge to define a

mapping between words and subword units.
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4.4.4 Cross-Domain Training

In this section, we test our hypothesis on the possibility of constructing a single lyrics transcriber

where the word recognition performance is not degraded across varying domains through

training the acoustic model on multiple domains. Specifically, we suggest using the combination

of DAMP and DALI as the training set.

(a) (b) (c) (d)

Figure 4.9: Summary of the training sets. a) DAMP, b) DALI, c) (DAMP
⋃

DALI)small, d)
(DAMP

⋃
DALI)large: Mb (Gupta et al., 2020) uses a 200 hour version of this dataset.

The models in Table 4.14 are based on the baseline model used in the previous experimental

stages, that uses the neural network architecture of 8-layer TDNN-f’s with a CNN front-end,

the lyrics corpus for the language model, and the standard pronunciation dictionary. The tested

models differ only by their training sets. The top two lines are the domain-specific models

trained on either DAMP or DALI datasets respectively. The second-to-last line is the first model

that is trained jointly on monophonic and polyphonic recordings. For ablation tests, we initially

combine subsets of both datasets keeping their relative proportion the same with respect to

the number of singers and in a similar range in terms of total utterance duration. The total

utterance duration of this initial combined set (denoted as (DAMP+DALI)train
small) is kept at 150

hours to enable a fair comparison with domain-specific models (a,b in Figure 4.9). In training

the final cross-domain model, the full versions of both training sets are combined. These dataset

combinations are illustrated in Figure 4.9. Note that for evaluating Mpoly, a subset of DALItrain

with 20 recordings (DALI)dev is chosen for tuning the language model scaling factor. Then, the

cross-domain models use the combination DAMPdev and DALIdev as the development set.

According to Table 4.14, the model trained only on polyphonic recordings (Mpoly) consid-

erably outperforms the baseline monophonic model (Mmono) on polyphonic data although its

performance is considerably poorer on monophonic recordings. On the other hand, results for

the models in the last two lines show that including data from both domains can be observed to
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Model Train Set Dev DAMPtest DALItest240

Mmono DAMP 13.69 17.73 78.42

Mpoly DALI 37.90 61.95 59.19

MCD-small DAMP+DALIsmall 30.27 17.83 56.75

MCD-large DAMP+DALIlarge 28.05 17.14 53.86

Table 4.14: Cross-domain evaluation results. The cells in gray show the results on the develop-
ment sets. Results on Dtest

self are highlighted according to their corresponding training set (Dtrain).

help preserving transcription performance across domains. In particular, consider the MCD-small

which is trained on equal portions of monophonic and polyphonic recordings with a similar

overall size compared domain-specific models. Despite the data from both domains being

reduced to half of their size, the model performance is kept to a similar level across different

domains. This validates the advantage of training an acoustic model both on polyphonic and

monophonic recordings compared to building a domain-specific one. Moreover, including full

versions of both DAMP and DALI datasets improved the performance on the polyphonic domain

further. However, this did not help much on monophonic recordings.

Music Informed Silence Modeling

To enhance the modeling capability of cross-domain training, the music informed silence

modeling proposed in Section 4.3.1 is applied. In Table 4.15, the effectiveness of this approach

is shown over the initial cross-domain model.

Model dev DAMPtest DALItest

Cross-domain 28.05 17.14 53.86
+ music/sil tag 25.40 17.29 47.00

Table 4.15: Cross-domain training and music/silence tagging results

The results in Table 4.15 show that music informed silence tagging was effective on the

polyphonic domain. In particular, close to 7% absolute WER improvement is observed on

DALItest240. However, this method did not lead to improvements on the monophonic case where

the overall performance is similar to not using the explicit silent token tagging. Due to the

improvements observed specifically on the polyphonic domain, music-informed silence tagging

is always applied when referring to the cross-domain model within the cross-dataset evaluation

in Section 4.4.6.
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4.4.5 Neural Network Architecture

At this stage, the neural network architecture used to construct the acoustic model is tuned. The

goal is to find an optimal setting for achieving an improved word recognition performance while

keeping the architecture as compact as possible. For this, the experiments begin with the 2-D

convolutional front-end network studied in Section 4.3.2 for ALT. Then, the number of layers in

the TDNN-f blocks is tuned with respect to the receptive field of the last TDNN-f layer.

2-D CNN Front-end

In the presence of larger training datasets, purely TDNN-f based networks can perform well and

do not necessarily need the convolutional front-end. However, the training sets used to train a

lyrics transcriber in this study are much smaller than benchmark speech datasets. Because of

this, a more compact feature representation is needed to exploit the potential of TDNN-f’s to

a larger extent. A 2 dimensional CNN at the front-end of the network is placed to summarise

features to a smaller height while preserving the vertical (spectral) information in the learned

representations. For feature dimension reduction, subsampling with a factor of 2 is applied on

the vertical axis only. Subsampling is not applied on the temporal axis to preserve the time

information to be later processed directly by the TDNN-f blocks.

# layers # subsamp. hinput dim. Kernel dim. # params DAMPdev DAMPtest

1) 0 0 40 N/A 7,939,520 16.72 19.93
2) 3 1 20 3× 3 8,284,608 15.15 17.81
3) 4 2 10 3× 3 8,166,912 14.46 18.35
4) 5 2 10 3× 3 8,187,696 14.01 17.44
5) 6 3 5 3× 3 5,893,312 13.49 17.14

Table 4.16: Parameter combinations tested for tuning the CNN front-end.

In Table 4.16, several front-end settings are tested in terms of number of CNN layers,

subsampling steps, kernel dimensions and the total number of trainable network parameters14.

The model on the top consists of only TDNN-f’s and has 8 hidden layers. In the second model,

a 3-layer CNN network is included where a subsampling is applied in between the second and

third CNN layers, thus reducing the dimension to be fed to the TDNN-f’s from 40 to 20. In the

next model, another pair of subsampling and a CNN layer on the top of the previous front-end
14The experiments in Tables 4.16, 4.17 and 4.18 regarding NN architectures use data augmentation prior to

training, hence these baseline results are slightly better than the baseline in the previous sections.
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setting are added. The next model has an extra CNN layer between the two subsampling

operations. Finally in the fifth row, the final front-end CNN structure is constructed by adding

one more subsampling + CNN pair, reducing the feature height to 5 before the TDNN-f block.

This final setting achieved the best performance and the most compact representation compared

to previous front-end settings. Moreover, compared to the raw TDNN-f architecture, this

final model achieved around 2.5% absolute WER improvement with a less complex network.

According to these observations, we can conclude that the addition of the 2D CNN front-end is

beneficial for our task of lyrics transcription given the limited size of the training data.

Time-delay Layers

The main goals in determining the optimal number of TDNN-f layers are: (1) to process all input

feature frames at each time step t during the forward-backward pass, and (2) to avoid too large

receptive fields (rf) that would require too much zero padding at the borders of training chunks,

hence a sub-optimal model. Since, the training chunks have a fixed length of 1.5 seconds, we

tune the number of hidden layers within the TDNN-f block with respect to the resulting rf at the

end of the final layer. The architectures used by Dabike and Barker (2019); Gupta et al. (2020)

have 16 TDNN-f layers with heterogeneous τ ’s across layers. The first 3 layers have τ = 1,

the fourth layer has τ = 0, which is essentially a 1-D CNN with no dilation. The rest of the

layers [5− 16] have τ = 3. According to Equation 4.17, this architecture has rf = 2310 ms at

the output of its top layer which exceeds the length of the audio chunks considerably. Motivated

by this and in order to provide evidence that better performance can be achieved via a smaller

TDNN-f network, the number of hidden layers is also tested in Table 4.17.

# layers rf Num. params DAMPdev DAMPtest

1) 7 1290 ms 5,614,208 14.41 17.21
2) 8 1470 ms 5,876,864 13.49 17.14
3) 9 1650 ms 5,893,312 13.54 17.08
4) 10 1830 ms 6,139,520 14.82 17.21
5) 16 2310 ms 7,978,112 13.42 17.38
6) 16 2880 ms 19,171,248 13.21 17.84

Table 4.17: Tuning the TDNN layers.

According to Table 4.17, models with rf < 2 seconds perform better than the models with

rf > 2 seconds. The model on the third row which has 9 TDNN-f layers has comparable results
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with models with fewer hidden layers and also with similar model complexities. On the other

hand, this model has slightly larger rf than 1.5 seconds, hence the network is able to process all

the input features at every time step and does not require as much padding as models with larger

rf ’s while having less model complexity. We choose this model as the baseline TDNN stream

during the design of the multistream architecture in the following section.

Finally, we add the architecture that is previously used by Dabike and Barker (2019) and

Gupta et al. (2020) which does not have the CNN front-end. Compared with the network having

the identical TDNN network but also the 2-D CNN front-end (line 5 in Table 4.17), the purely

TDNN based architecture does not have better WER scores on DAMPtest while having a much

more complex network. This is an additional evidence for the benefit of using the CNN front-end

studied in the previous stage of experiments.

Multistream CTDNN

Now that the front-end and the baseline TDNN stream is tuned, we can proceed with the design

of the multiple TDNN streaming architecture. As previously mentioned in Section 4.3.2, the

motivation behind multistream acoustic modeling is to enhance the robustness of transcribers

specifically on polyphonic recordings. For this reason, the DALItest240 is included in evaluating

the multistream architectures. For hyperparameter tuning, we merge DAMPdev and DALIdev and

use this as the development set.

The design principles follow the receptive field tuning approach similar to the preceding

step. According to the empirical results on the design of multistream TDNN architectures used

in DNN-HMM speech recognition previously reported in the literature (Han et al., 2021), the

best setting in terms of dilation rates was achieved when layers have a greatest common divisor

(g.c.d.) greater than 1. Some examples for this could be, τ = {2, 4, 6, 8} with g.c.d. 2 or

τ = {6, 9, 12} with g.c.d. 3. Specifically the second example was shown to be the best setup

(Pan et al., 2020). In Table 4.18, we test similar models where the g.c.d. of all dilation rates is 3.

The effect of using different combinations of τ ’s can be seen through the results in lines

2,3 and 4 where the model complexity is kept the same. Although including larger τ seems

to improve results on DAMPtest, the opposite applies on the polyphonic DALItest240. As the

motivation for the multistream approach is to observe improvements in the polyphonic case,



4.4. Experiments and Results 107

τ # Layers Hidden Dim. Num. params dev DAMPtest DALItest240

1) 3 9 512 5,893,312 27.68 17.08 52.25
2) 3× 6× 9 9× 9× 9 512× 512× 512 11,720,320 26.69 16.75 51.38
3) 6× 9× 12 9× 9× 9 512× 512× 512 11,720,320 28.13 16.64 54.31
4) 3× 9× 15 9× 9× 9 512× 512× 512 11,720,320 27.92 16.41 54.73
5) 3× 6× 9 9× 4× 3 512× 512× 512 8,831,104 26.65 16.45 49.32
6) 3× 6× 9 9× 9× 9 512× 256× 172 7,293,968 27.13 16.08 52.54
7) 3× 6× 9 9× 4× 3 512× 256× 172 6,825,796 27.38 16.62 51.92

Table 4.18: Parameter combinations tested for tuning the Multistream TDNN architecture.

we choose the setting in line 2 when further tuning the number of layers and hidden dimension

sizes in TDNN streams. This architecture corresponds to the one in Figure 4.7.

Next, the variants of the setting in line 2 are compared. The architecture in line have

identical TDNN structures (except for τ ). Its variants in lines 6,5 have either reduced number

of hidden layers (N ) or hidden dimensions respectively depending on the τ . Both directions of

model reduction are applied in line 7. N is reduced for the streams with larger dilation rates

(τ = {6, 9} to keep rf similar across all streams. Lines 5,7 have 4 and 3 layers at the streams

with τ = 6 and τ = 9 having rf values of 1470 and 1650 ms respectively. Note that, adding one

more TDNN layer on these streams would result in increasing the rf too much, which is shown

above to be suboptimal in the single-stream TDNN experiments.

It is clear from the number of trainable parameters in Table 4.18 that diversifying TDNN

streams helped reducing the model complexity. When model reduction is applied in terms of

both aforementioned directions, as in line 7, the model complexity merges to a comparable

level to its single stream counterpart while leading to improved performance both in polyphonic

and monophonic models. However, this is not the best performing models for neither of the

domains. The model with the same number of TDNN layers across streams (line 6) achieves

the best results on the monophonic DAMPtest set. However, this model does not lead to any

improvement on polyphonic data. On the other hand, the model with adjusted per-stream

number of TDNN layers improved the WER around 3% on the polyphonic DALItest240 set while

some improvement is also observed on monophonic recordings. Since our initial motivation for

using the multistream TDNN architecture is to improve recognition rates from noisy setting and

specifically polyphonic recordings at this stage of experiments, we choose the model in line 5 as

the best multistream TDNN setting that will later be used to compare results in Section 4.4.6.
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Note that this is the architecture illustrated in Figure 4.6.

In addition to WERs, we evaluate the efficiency of the multistream architecture during

inference in Figure 4.10. We compare the RTFs of single-stream models {1,2,3,4} in Table

4.17 (noted as M single
i ) with the multistream models {2,5,6,7} in Table 4.18, which are noted as

Mmulti
i in Figure 4.1015.

Figure 4.10: Comparison of RTFs between single and multistream models.

The analysis shows that the multistream architectures have a faster inference response

compared to their single stream counterparts. We suspect that this might be due to two reasons:

improved recognition performance and processing distant frames in early stages.

Robustness Against Reverberation

Reverberation is a well-known source of mismatch and a cause of reduction in word intelligibility

(Poissant et al., 2006) in ASR. Similarly in ALT, reverberation may cause performance reduction

in real-world applications due to varying acoustic environments in recording settings. Moreover,

artificial reverberation is often applied on vocal tracks as a vocal effect. In this section, the

model robustness is tested in different settings via curating simulated data from the a cappella

evaluation sets.

Reverberation is generally modeled by means of a convolution of the input signal with a

room impulse response (RIR). Recording real RIRs is quite standard in acoustics but requires

effort, hence these are generally simulated by sampling the room size variables and the receiver

position in the room. Following the RIR simulation steps in (Ko et al., 2017), the room size and

receiver position parameters are uniformly sampled. Based on the set of sampled parameters,

a number of RIRs are randomly generated using the method presented by Allen and Berkley
15We have included the MTDNN variants having the same set of τ ’s across TDNN streams.
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(1979)16. The simulated RIRs are categorised into three based on the length and width of the

sampled room.

• Small room: Ranges from 1 m to 10 m.

• Medium room: Ranges from 10 m to 30 m.

• Large room: Ranges from 30 m to 50 m.

In Figure 4.11, the WERs of the baseline single stream CTDNN and the compact MTDNN

architectures (Models 1 and 5 in Table 4.18) across different reverberation conditions are given.

According to the WER scores, the multistream model clearly outperforms its single stream

counterpart. Interestingly, WERs tend to be lower for the large-reverb condition, which is

counter-intuitive from the ASR perspective.
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Figure 4.11: WER comparison across different reverberation settings.

In this part of the analysis, the neural network architecture of the acoustic model was

constructed and tuned. The first step of tuning was performed on the 2-D convolutional network

with subsampling at the front-end to summarise the features in the spectral domain. Then, the

multistream TDNN architecture was tuned to get optimal settings. The multistream approach

was compared to the traditional single stream structure in varying reverberation conditions and

also compared for inference performance. We showed the superiority of the proposed compact

multistream TDNN architecture over the standard single stream network.
16The experiments in this section use an open-source implementation of this method, available from http:

//home.tiscali.nl/ehabets/rirgenerator.html.

http://home.tiscali.nl/ehabets/rir generator.html
http://home.tiscali.nl/ehabets/rir generator.html
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4.4.6 Cross-Dataset Evaluation

In the previous experimental stages, we tested the proposed methods for an improved DNN-

HMM based lyrics transcriber. We tuned each of the transcriber’s computational blocks (e.g.

acoustic, pronunciation and language models) individually. For this, the test splits of DAMP

and DALI sets are used. In this section, an evaluation of the proposed methods on the other

benchmark test sets used in ALT research is provided.

The main goal for the cross-dataset evaluation is to observe improvements emerging from

each of the proposed methods individually. At first, one method at a time is applied on the

baseline model. Similar to the above experimental setups, the baseline model has a single-stream

architecture, is trained on monophonic recordings, and uses the standard CMU pronunciation

dictionary and 4-gram MaxEnt language model built on lyrics only (see Table 4.19). Model 2

is the same as the baseline model but is trained on the combination of DAMP and DALI. The

model in line 3 has the compact multistream architecture tuned above. Model 4 uses the singing

adapted lexicon. In line 5, the language model is trained on the combination of speech and

lyrics corpora which was shown to be effective above in Section 4.4.2. In the last line, 2nd-pass

RNNLM rescoring is applied on the baseline model that uses the 4-gram LM. The RNNLM is

trained only on the DAMPtrain transcriptions as it was shown above to be the best setting.

Model Domain Network Pron.Model Lang.
1) (Baseline) Monophonic Single-stream CMU Lyrics 4-gram

2) Cross-domain Single-stream CMU Lyrics 4-gram
3) Monophonic Multistream CMU Lyrics 4-gram
4) Monophonic Single-stream Singing-adapted Lyrics 4-gram
5) Monophonic Single-stream CMU Mixed LM 4-gram

1+) Monophonic Single-stream CMU Lyrics RNNLM

Table 4.19: Summary of models compared in the cross-dataset evaluation.

The model comparison begins with respect to the training and validation loss trends. This

is shown in Figure 4.12 where each data point corresponds to the training or validation losses

computed after each batch processing17. Notice that the losses of Models 1, 4 and 5 are

almost indistinguishable. This is expected as all of them use the same baseline (single-stream)

neural network architecture for training the acoustic model. It can be seen that the multistream

architecture has slightly lower loss compared to the single-stream models. On the other hand,
17The reason why Model 2 has a larger number iterations is due to having a larger training set, i.e DALI

⋃
DAMP.
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the cross-domain model (Model 2) has much larger loss which is not surprising as the training

uses larger training and validation sets. According to the overall loss trends, none of the models

seems either to overfit, as the gap between training and validation losses does not seem to

increase or to underfit, as the training loss is still lower than the validation loss.

Figure 4.12: Train (full-lines) vs. validation losses (dashed lines).

To observe how generalisable the resulting WER scores are, we use the cross-dataset perfor-

mance drop metric introduced in Section 3.4.2. The performance drop metric provides a measure

of a model’s performance generalisability across different evaluation datasets. According to

Equation 3.4, it compares the scores obtained on the test split of the dataset used to build a model

(Dself) and on completely unseen data (Dothers). The evaluation scheme in this section uses all

of the evaluation sets introduced in Chapter 3 and follows the framework in Section 3.4.2. For

Dtest
self, we use either the DAMPtest or its combination with DALItest240 depending on the training

set. In particular, consider the second line in Table 4.20 which is the cross-domain model. As

this model is trained both on DAMP and DALI sets, we need to include polyphonic recordings in

Dtest
self for a fair comparison of the performance drop across different domains of singing data. The

rest of the evaluation sets, namely the singing portion of NUS Corpus (i.e. NUSsing), Hansen,

Mauch and Jamendo form Dtest
others. In addition to overall CPD computed across all these test sets,

we observe the performance drop specifically in monophonic or polyphonic domains. Domain

specific CPDs are obtained on NUSsing and the monophonic version of Hansen datasets for the

monophonic, and on Jamendo, Mauch and Hansenpoly sets for the polyphonic cases.
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Model Dev DAMPtest NUS Hansenmono CPDmono(%) Hansenpoly Mauch Jamendo DALItest240 CPDpoly(%) CPD(%)

1) 13.76 17.73 8.04 18.96 -6.47 85.66 81.97 73.47 82.17 60.59 51.75

2) 32.59 17.48 7.92 19.14 -6.46 48.19 47.23 41.74 52.93 30.66 25.77

3) 13.29 16.82 8.44 19.90 -5.44 81.94 79.62 67.84 79.31 59.07 50.34

4) 13.66 17.17 7.68 19.00 -6.86 82.25 81.53 69.48 80.67 60.92 51.98

5) 12.99 17.08 7.47 19.45 -6.73 84.52 78.69 69.53 80.44 59.52 50.79

1+) 10.20 14.09 7.99 18.62 -3.44 84.52 80.00 73.12 80.05 64.28 55.36

Table 4.20: Cross-domain evaluation results. The best WERs for each set is highlighted with
bold font. If best ones are achieved via RNNLM rescoring for a test set, the best result with the
4-gram LM is also highlighted.

There are several arguments deduced from the results in Table 4.20. At first sight, each of

the proposed methods improved WERs on most of the test sets in Dtest
others. However, the best

results for each test data occur with varying models. This is not surprising as each test set has

distinct properties. In order to provide more insight on the comparison of the proposed methods,

we summarise the implications drawn from Table 4.20 below:

• Model 1: The baseline model is trained on monophonic recordings. Although it performs

well on monophonic Dtest
others, there seems to be a room for improvement as CPD < 0.

Clearly this monophonic model suffers from dataset bias when tested on polyphonic

recordings.

• Model 2: This is the baseline cross-domain model. CPD shows that cross-domain

training helped increasing the model generalisability mostly on polyphonic recordings.

The performance drop across Dtest
others is by far the least with this model indicating the

highest generalisability. The WER improvement on monophonic recordings is marginal,

and CPDmono is almost the same as the baseline model, which indicates cross-domain

training does not affect the performance on monophonic recordings considerably. The

performance drop improvement can be seen more explicitly in Figure 4.13.

• Model 3: The multistream architecture did not seem to improve WERs on monophonic

Dtest
others. However, it led to the smallest |CPDmono| (with an n-gram LM) indicating its

performance is the most generalisable on monophonic recordings. The multistream

modeling approach seems to consistently improve WERs also on polyphonic sets, which

supports the initial motivation for the design of the network architecture. Moreover, this

method is the most effective method compared to other monophonic models (1,4,5,1+)
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Figure 4.13: Performance drop across Dtest
others.

in terms of overall model generalisability. The best results on Dtest
self and the smallest

|CPDmono| are achieved with this model compared to other models with the 4-gram LM.

• Model 4: According to the CPD values, the singing adapted lexicon does not seem to lead

to generalisable improvements as much as other methods, despite the slight but consistent

decrease in per dataset WERs. The improvements have a parallel trend with Model 3 with

slightly lower magnitude of improvement.

• Model 5: Combining lyrics and speech data in training the 4-gram language model

improved WER scores on every set in Dtest
others where the improvement on polyphonic

recordings is more apparent. Compared to other monophonic models, the second least

overall performance drop is achieved with this model on monophonic recordings.

• Model 1+: RNNLM rescoring improved WER on Dtest
self considerably but was not as bene-

ficial for monophonic Dtest
others. Therefore, |CPD| decreased, meaning that the performance

gap between Dtest
self and monophonic Dtest

others decreased. However, it did not lead to as much

improvement on polyphonic sets, hence CPD increased due to the increased performance

gap between Dtest
self and Dtest

others. Thus, the second-pass RNNLM scoring did not increase

the overall generalisability.

To sum up the findings of the above studied cross-dataset evaluation, all proposed methods

improved the model’s generalisability, where the improvement was by far the largest on the

cross-domain model (Model 2). Each of Models 3,4,5 improved WER scores in most cases

and their contribution to generalisability were modest compared to Model 2. Although the best
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scores on Dtest
self are achieved via RNNLM rescoring, this did not improve recognition rates as

much on Dtest
others and did not contribute to the model’s generalization power.

Performance on Separated Vocals

Here, WERs on the source-separated vocal tracks are compared. Since only the Hansen set has

both the original vocal track and polyphonic mix available, the comparison is performed on this

dataset in Table 4.21 and Figure 4.14. We measure the performance drop on separated vocals

and polyphonic versions with respect to model performance on Hansenmono. This is equivalent

to considering Hansenmono as Dtest
self and the rest as Dtest

others. The goal for this comparison is to

observe the performance degradation and how much gain can be achieved via source separation.

Note that we use Deezer’s spleeter toolkit (Hennequin et al., 2020) for source separation as it is

representative of the state of the art in music source separation.

Model Monophonic Separated Polyphonic
1 18.96 62.46 85.66
2 19.14 56.72 44.05
3 20.25 60.40 81.94
4 19.00 60.89 82.25
5 19.45 61.20 84.52

1+ 18.62 60.93 84.52

Table 4.21: WER comparison on separated vocals and original polyphonic mix. Test set: Hansen.

1 2 3 4 5 1+
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Figure 4.14: Comparison of performance drop on separated vocals and polyphonic mix.

According to the results shown above, the WER scores of monophonic models (1,3,4,5,+1)

are much better on separated vocals, which is in line with previous research (Demirel et al.,

2021a; Stoller et al., 2019). On the other hand, the cross-domain model (2) performs worse on

separated vocals compared to the original polyphonic mix, yet still better than the monophonic

models. This shows that separating vocals does not necessarily lead to improved recognition
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rates if a cross-domain model is employed. In addition, the performance drop (CPD) on

separated vocals with respect to monophonic recordings is the lowest for the cross-domain

model, which can be considered as evidence for the better domain-invariant performance of

cross-domain models compared to domain-specific ones. Moreover, the multistream architecture

(Model 3) has the lowest CPD compared to other monophonic models.

Top-down Integration

Now that each proposed method is compared above individually, we can proceed with integrating

them into a single model. In this section we apply one method at a time progressively when

building each of the analysis models. Table 4.22 gives the summary of the models tested at

this stage. Similar to the top-down direction of the HCLG graph composition, we begin by

integrating the improved language model. The first model (line 2) is Model 5 in the above

analysis which has the same overall structure as the baseline model (line 1), but the language

model is trained on the combination of speech and lyrics corpora. On top of Model 5, the

alignments prior to DNN training are generated with the singing adapted lexicon in Model 6,

and this is also used as the lexicon transducer. In Model 7, the acoustic model has the proposed

multistream TDNN architecture. Model 7 is retrained on the combination of DAMP and DALI

training sets to build the cross-domain model resulting in Model 8. To scale up performance,

we apply data augmentation through speed perturbation in Model 8+ which has been shown

to improve performance consistently Ko et al. (2015). Speed perturbation is applied with the

factors of 0.9 and 1. Finally, we report results in Model 8++ obtained via RNNLM rescoring.

In addition, the state-of-the-art DNN-HMM model published in our previous work (Demirel

et al., 2021b) is included in Table 4.22, labeled as 9+. Model 9+ differs from Model 8+ only in

terms of the language model where the former uses only the lyrics corpus for building the LM.

Rescoring is applied using the same RNNLM for Model 9++.

According to Table 4.23, the improvements during the top-down integration of the proposed

methods in this chapter are not extremely consistent across Dtest
others and some of the improvements

are dataset specific. Because of this, the implications of these results are multidimensional, and

hence require to be scrutinised in detail. Below are itemised the key implications that can be

drawn upon with respect to the WER and CPD scores in Table 4.23:
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Model Domain Network Pron.Model Lang.
1) (Baseline) Monophonic Single-stream CMU Lyrics 4-gram

5) Monophonic Single-stream CMU Mixed LM 4-gram
6) Monophonic Single-stream Singing-adapted Mixed LM 4-gram
7) Monophonic Multistream Singing-adapted Mixed LM 4-gram
8) Cross-domain Multistream Singing-adapted Mixed LM 4-gram

8+) Cross-domain Multistream Singing-adapted Mixed LM + RNNLM
8++) Cross-domain Multistream Singing-adapted Mixed LM + RNNLM
9+) Cross-domain Multistream Singing-adapted Lyrics LM 4-gram

9++) Cross-domain Multistream Singing-adapted Lyrics LM + RNNLM

Table 4.22: Summary of top-down integration models.

Model Dev(self ) DAMPtest NUS Hansenmono CPDmono Hansenpoly Mauch Jamendo DALItest240 CPDpoly CPD

1) 13.76 17.73 8.04 18.96 -6.47 85.66 81.97 73.47 82.17 60.59 51.75

5) 12.99 17.33 7.47 19.45 -6.73 84.52 78.69 69.53 80.44 59.52 51.28

6) 12.17 17.64 7.48 19.35 -7.34 84.55 79.32 67.51 79.01 59.54 52.05

7) 12.39 17.03 7.14 18.55 -6.77 81.32 77.04 66.94 78.35 57.97 49.99

8) 27.68 17.29 7.57 18.16 -6.93 35.49 45.32 39.22 48.48 27.76 24.06

8+) 24.03 16.13 7.82 23.97 -4.86 37.61 41.47 32.07 43.36 27.61 23.46
8++) 24.93 13.40 8.13 23.45 -1.46 37.13 39.76 31.21 43.49 29.21 25.16

9+) 24.27 15.89 7.49 23.00 -4.95 36.78 39.00 34.94 42.98 26.68 23.74

9++) 25.54 12.56 7.66 22.93 -1.38 37.82 38.81 35.05 43.07 29.61 26.58

Table 4.23: Top-down integration results

• Overall, the cross domain training (models >=8) is the most effective method in terms of

CPD which indicates a better performance generalisability.

• The multistream TDNN architecture is also consistently effective for performance gen-

eralisability, however the improvements are more modest compared to cross-domain

training.

• One-by-one integration of the speech + lyrics language model and pronunciation models

did not lead to consistent improvements. In addition, although the speech + lyrics language

model seems to improve the results compared to the baseline model (1), this was not the

case when models were trained on augmented data (Models 8+ and 9+). This indicates

that improving one of the computational blocks in DNN-HMM based models does not

necessarily lead to global optimal performance. This phenomenon has been mentioned in

the literature as a cause of different computational blocks (i.e. language, pronunciation

and acoustic models) using different objectives (Xiao et al., 2018; Watanabe et al., 2017;

Li, 2021).

• Similar to the previous stage of cross-dataset evaluation (Table 4.20), the RNNLM led
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to considerable improvements on DAMPtest, however it was not as beneficial on Dtest
others.

This indicates a bias towards DAMP data and hence the overall CPD is higher.

• Speed perturbation generally improves the results. Interestingly, this caused a sharp drop

only in Hansen datasets which is counter-intuitive. However, Hansen is a small dataset,

thus the performance drop on this dataset did not affect the overall CPD considerably.

Figure 4.15: Top-down integration cross-dataset performance drop results.

The results in Figure 4.15 and Table 4.23 consider DAMPtest as the Dtest
self when computing the

cross-dataset performance drop metric, CPD. This was done so to make a fair comparison across

different proposed methods. However for the cross-domain models in particular, DALItest240 is

needed to be included in Dtest
self and excluded from Dtest

others, in order to observe models’ operational

performance more accurately. Model 7 in Figure 4.16 is the MStreNet model trained on only

monophonic recordings, hence it considers Dtest
self = DAMPtest. The columns in the middle section

are for the cross-domain multistream TDNN model (8) where CPD’s are computed similarly

with the monophonic model. On the other hand, the rightmost set of columns also represent

scores for the cross-domain model but the overall CPD computation includes DALItest240 in

Dtest
self. For domain-specific CPD’s, DAMPtest is still used to compute CPDmono and DALItest240

for CPDpoly .

• If CPD for the cross-domain Model (8) is calculated considering Dtest
self = DAMPtest (the

bars in the middle in Figure 4.16), its overall value is positive, implying that the model

has dataset bias towards its training or in-domain data. However, Model 8 is trained on

both monophonic and polyphonic recordings, hence its in-domain data should not be
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Figure 4.16: Cross-dataset performance drop. The first two bars on the left side use Dtest
self =

DAMPtest. The CPD scores on the right consider DALItest240 ∈ Dtest
self.

restricted to monophonic recordings. This may cause the risk of misinterpretation of CPD

observations.

• When the CPD calculation for Model 8 considers the combination of polyphonic and

monophonic recordings as Dtest
self, in other words in-domain data, its overall value is

negative. This indicates that cross-domain training is helpful to mitigate the dataset

bias problem, however, there is still a room for improvement to achieve overall domain

invariant performance, and hints the risk of underfitting.

• CPDpoly when Dtest
self = DAMPtest is positive indicating the risk of overfitting. However, the

performance drop on polyphonic recordings is negative when Dtest
self = DALItest240, hence

the model does not seem to overfit to its training data.

• Domain-specific CPDs are both negative. In this case, |CPDmono| < |CPDpoly|, which

means lyrics transcription performance on monophonic recordings is better than on

polyphonic recordings.

4.5 Summary

For the task of automatic lyrics transcription, the DNN-HMM based speech recognition ap-

proach is a robust but complex framework. This study proposes adapting this LVCSR framework
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to singing data in a number of ways. Following a top-down approach, the first approach is

concerning the language model. Experiments show that using a large lyrics corpus is consider-

ably beneficial compared to training the n-grams on speech transcriptions. We further explore

the effect of including the available spoken utterance transcriptions in the language model

training corpus on lyrics transcription performance, where a minor gain is observed despite the

increased data size. The reason for this might be associated with the prosodic and structural

differences of spontaneous speech transcriptions and song lyrics. The pronunciation dictionary

used to decompose words into phonemes is adapted to singing data based on the knowledge

obtained from a data-driven phoneme confusion analysis. This analysis highlighted prolonged

vowels and omitted plosives during singing. The acoustic model employs a novel compact

multistream TDNN architecture which is shown to be effective in terms of WER, robustness

against reverberation and faster inference. To develop a scalable lyrics transcription solution,

cross-domain training is applied where a single lyrics transcriber can operate well undisturbed by

the domain differences such as the presence of musical accompaniment. Experiments regarding

this can also be considered as an evidence for including monophonic recordings in training the

acoustic model is useful for ALT from polyphonic recordings.

The above mentioned proposed methods are tested on a cross-dataset evaluation framework

which is based on several benchmark test sets used in research. In order to observe performance

generalisability across datasets with different properties, we make use of the cross-dataset

performance drop (CPD) metric introduced in Chapter 3. Among all methods, the cross-dataset

training (including music informed silence modeling) and the multistream acoustic model

architecture are the most effective ones. Overall, all proposed methods lead to improvements

when applied independently. However, combining these methods to build the final transcriber

did not always improve results overall, and the word error rates across Dtest
others do not follow a

consistent trend depending on the method tested. One major implication that can be drawn upon

this is that improving an independent computational block of DNN-HMM based systems does

not necessarily lead to a global performance improvement. This makes DNN-HMM models

hard to tune for a downstream word recognition task. In addition to the tuning difficulty, the

overall system includes several data preprocessing steps which can be cumbersome during

experimental iterations.
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Although having robust and scalable performance, DNN-HMM based systems have been

becoming less attractive for the research community compared to end-to-end models. Some of

the major factors for this trend are the tuning difficulty, training complexity and dependency on

human expertise for building the models (and specifically the pronunciation dictionary). The

cross-dataset evaluation study in this chapter verifies these previously mentioned drawbacks

of DNN-HMM based systems within the context of automatic lyrics transcription. To mitigate

these, we develop an end-to-end lyrics transcriber in Chapter 5 and provide a comparison with

the DNN-HMM based approach in Chapter 6. Furthermore, a comparison with other published

methods is given in Chapter 6.



Chapter 5

End-to-end Lyrics Transcription

This chapter takes an alternative approach to the DNN-HMM method for building a lyrics

transcriber, which is an end-to-end training method. According to the previous research on

ALT, end-to-end models have not been able to surpass the DNN-HMM approach until very

recently (Gupta et al., 2020; Stoller et al., 2019). Zhang et al. (2021) reported better results on

the monophonic DAMPtest set using a Transformer architecture which highlighted the potential

of end-to-end lyrics transcription given the data resources available for research. However,

similar success has not been achieved on polyphonic recordings yet. In this chapter, we follow a

similar approach with Zhang et al. (2021) to explore the potential of the end-to-end Transformer

architecture in multiple domains (i.e. monophonic, polyphonic and source separated) . As a

novelty, we apply cross-domain training and speech-to-singing transfer learning. The models’

performances are tested following the cross-dataset evaluation scheme studied in the previous

chapter. Furthermore, this chapter provides the first attempt at building a lyrics transcription

system using the SpeechBrain toolkit.

The end-to-end learning scheme offers a simplified paradigm that can directly map given

input representations to output labels using a single classification or regression model. With

the emergence of promising models in computer vision (Krizhevsky et al., 2012) and natural

language processing (Bengio, 2009; Devlin et al., 2018), the popularity of end-to-end models

has grown significantly in the last decade. This framework has also been applied successfully

to ASR, where a purely neural network based system translates input audio signals directly

into orthographic transcriptions (Graves and Jaitly, 2014). Although the hybrid DNN-HMM
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models had been the most widely used framework for large-scale speech processing applications

both in academia and industry (Hinton et al., 2012), most recently, end-to-end models have

begun to surpass the performance of the traditional HMM-based models in a number of speech

processing tasks (Watanabe et al., 2017, 2018; Sainath et al., 2020; Graves and Jaitly, 2014; Li

et al., 2020; Han et al., 2020; Baevski et al., 2020), which marks a breakthrough in research.

Research in end-to-end ASR has mainly evolved to overcome the major drawbacks of

the traditional DNN-HMM models that limit their modeling capability and/or performance

scalability. Watanabe et al. (2017) outlines these problems as follows:

• Linguistic information: The mapping between the acoustic and language models is

achieved with a pronunciation model, which is typically based on a handcrafted dictionary.

The construction of the dictionary requires linguistic expertise and thus is subject to human

errors. In addition, the word-phoneme mapping has language-dependent structures.

• Complex inference: The final decoding path uses a composition of probabilities computed

from separate computational blocks. This composition is often a quite complex proce-

dure. Although modern systems use WFST’s for this purpose, their optimization for a

downstream task is still complicated (Mohri et al., 2002; Allauzen et al., 2007; Stolcke,

2002).

• Complex preprocessing steps: A DNN-HMM based speech recogniser cannot be built

from scratch, and the initialization of DNN training requires several complex prepro-

cessing steps. These include training a GMM-HMM acoustic model, building context-

dependency decision trees and generating alignments and lattices. Errors in any of these

procedures may cause a failure of the overall pipeline or end up building a suboptimal

model.

• Incoherence in optimization: The above listed issues introduce several variables separate

from the core neural network training, that may affect the overall performance of the

recogniser. Moreover, each computational block is constructed independently with

different objectives. Therefore, having an optimal model for each of these blocks does

not necessarily lead to a global optimum. This observation was verified in Section 4.4.6
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where combining improved pronunciation and language models did not consistently lead

to a better performance.

• Conditional independence assumption: HMMs and n-gram LM approximation models

are based on Markov chains and hence rely on the conditional independence assumption

(Gales and Young, 2008). However, this assumption does not hold for real-world speech

data.

The end-to-end lyrics transcription system studied in this chapter is constructed using the

SpeechBrain framework (Ravanelli et al., 2021), which is introduced to address and provide

solutions to the above listed drawbacks of DNN-HMM models. In particular, the system

architecture is based on the transformer encoder-decoder structure trained on the hybrid CTC

/ Attention objective1. The advantages of this framework over the Kaldi-based DNN-HMM

system studied in Chapter 4 are as follows: first of all, the classifier uses the SentencePiece

(unigram) tokens (Kudo, 2018) as the target subword classes which were introduced in Section

2.3.6. These tokens can be extracted automatically from a text corpus without the need of expert

linguistic information. The inference pipeline directly applies beam search on the neural network

outputs, which provides a single block between inputs and output probabilities. The attention

mechanism can learn alignments between input and output sequences during training, therefore

generating alignments prior to training is not necessary. The attention mechanism also does not

rely on the conditional independence assumption. In addition to these advantages, SpeechBrain

can process and expand datasets dynamically. Because of this capability, the feature extraction

and data augmentation steps are applied on the fly during training (Ravanelli et al., 2021) which

does not require storing the augmented data. Unlike SpeechBrain, Kaldi requires to store raw

and augmented features separately which can be costly in terms of time, storage and memory

resources.

The following sections explain the details of the end-to-end lyrics transcription system built

in this study. First, the implementation details of the hybrid CTC / Attention training principles

are given. Then, a few methods to leverage low resource singing data are presented. These

methods are tested in Section 5.4 where the training and inference details are also provided.
1The network and training configuration of the system can be found here: https://github.com/

speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/transformer/
hparams/transformer.yaml.

https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/transformer/hparams/ transformer.yaml
https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/transformer/hparams/ transformer.yaml
https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/transformer/hparams/ transformer.yaml
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In this section, a similar cross-dataset evaluation is applied to compare the generalisability of

end-to-end models and their performance on source-separated vocals.

5.1 Hybrid CTC/Attention Training

The Hybrid CTC/Attention learning objective was first introduced in the work of (Watanabe

et al., 2017). In this section, the formulation and implementation details of this training approach

is provided.

5.1.1 Multiobjective Learning

The neural network training is based on the multiobjective learning approach (Kim et al.,

2017) using the combination of CTC and attention objectives explained in Section 2.3. The

performance of the attention based models drops considerably in noisy environments (Kim

et al., 2017) as the network may assign high attention weights to noisy audio frames that

do not contribute to the overall context of the utterance in question. In order to suppress

the undesired attention to noisy instances, the network can be conditioned with the timing

information of labels, which can be achieved through alignment. Because there is no conditional

independence assumption in the attention mechanism, the objective in Equation 2.36 does

not enforce predictions to be aligned with the input sequence and it can attend anywhere in

the input sequence when predicting the next label. Due to this, the attention mechanism is

inherently prone to make deletion and insertion mistakes (Watanabe et al., 2017). As CTC

based training already enforces a monotonic alignment between the input audio and output

labels, Kim et al. (2017) proposed jointly training the networks using both CTC and attention

objectives. According to this architecture, the CTC layer takes the output of the encoder henc

when computing the objective LCTC. The final objective to maximise is computed through the

logarithmic linear combination of the log-scaled CTC and attention objectives:

Lmultiobj = λ log patt(Y|X) + (1− λ) log pctc(Y|X) (5.1)

where λ is a tunable hyperparameter with 0 ≤ λ ≤ 1. Note that Y corresponds to either
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character or subword tokens to predict.

5.1.2 Decoding

Inference in the hybrid CTC / Attention models uses beam search for decoding as explained in

Section 2.1, similar to the traditional DNN-HMM and other conventional end-to-end models.

The multiobjective decoding objective at inference can be defined as:

Ŷ = argmax
Y

(λ log patt(Y|X) + (1− λ) log pctc(Y|X)) (5.2)

According to Equation 2.2, the beam search procedure computes a score for each partial

hypothesis. From this perspective, combining attention and CTC scores is not straightforward,

as the former performs decoding synchronously with the output labels while the latter’s scores

are frame-synchronous. To cope with this, Watanabe et al. (2017) proposed utilizing the CTC

prefix probability which is defined in Kawakami (2008) as the cumulative probability of all

sequences which have the partial hypothesis h as their prefix (recall the notation in Section 2.1:

pctc(h, ...|X) =
∑

v∈(U
⋃
{<eos>})

pctc(h · v |X), (5.3)

where v is the set of all possible sequences excluding the blank symbol <b>. Then the multiob-

jective beam search uses the log CTC-prefix objective:

αctc(h,X)
∆
= log pctc(h, ...|X). (5.4)

The attention scores also use the logarithmic objective:

αatt(h,X)
∆
= log patt(h|X). (5.5)

Then the multiobjective scores during beam search can be expressed as:
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Ŷ = argmax
h∈Ω̂

(λαatt(h,X) + (1− λ)αctc(h,X)) (5.6)

For a more detailed explanation of the algorithmic implementation of the multiobjective

beam search decoding, readers are encouraged to study the work of Watanabe et al. (2017).

5.1.3 Language Model Integration

Previous research showed that shallow fusion outperforms both deep and cold fusion in addition

to being the most inexpensive language model integration approach (Toshniwal et al., 2018). For

this reason, the shallow fusion language model integration is applied in this end-to-end lyrics

transcription model. Recall the inference equation for end-to-end ASR updated with the shallow

language model fusion in Equation 2.40. This is integrated with the hybrid CTC / attention

model as follows:

Ŷ = argmax
h∈Ω̂

(λpatt(h,X) + (1− λ)pctc(h,X) + γ log pLM(Y)) (5.7)

5.1.4 Overall System Structure

The overall structure of the end-to-end lyrics transcription system employed in this thesis is

illustrated in Figure 5.1. To summarise its components: the encoder consists of a stack of

transformer layers. The decoder is also a transformer network which takes the encoded hidden

representation or the context vector at its input and generates the attention loss patt. To enforce

the timing information, the context vector is also used to generate the CTC loss, pctc. The

output predictions are generated through the joint decoding procedure explained in Section 5.1.2.

At inference, the token priors coming from a pretrained TransformerLM are added with shallow

fusion when computing the final output likelihoods.

5.2 Speech-to-Singing Transfer

Up until very recently, the performance of traditional DNN-HMM based ASR approaches

surpassed the end-to-end training systems. Some of the commercial applications of end-to-

end models, such as Google’s LAS (Chan et al., 2016) or Mozilla’s Deep Speech (Hannun
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Figure 5.1: The overall hybrid CTC/Attention training procedure with shallow language model
fusion at the joint decoding stage.

et al., 2014) showed that the performance gap between DNN-HMM and end-to-end models

dwindle as the training data gets larger. This large training data requirement has been commonly

acknowledged due to the end-to-end learning being expected to learn high level information

abstractions purely from data (Bengio, 2009). However, large training sets are not always

available to be able to train well-performing end-to-end models.

Research has shown that the parameters of a pretrained end-to-end model can be transferable

to different data domains (Taylor and Stone, 2009) or tasks (Bengio, 2012). Methods that

aim to construct end-to-end models through leveraging information gained from a relevant

task are broadly referred to as transfer learning (Pan and Yang, 2009). In speech recognition,

transfer learning is generally applied in low resource scenarios such as multilingual applications

(Swietojanski et al., 2012; Ghoshal et al., 2013; Schuster et al., 2018; Cho et al., 2018), and

ASR from children’s (Shivakumar and Georgiou, 2020) or dysarthric speech (Xiong et al., 2020).

There are numerous ways proposed to apply transfer learning for speech processing tasks such

as model adaptation (Pan et al., 2010; Paredes et al., 2012), multilingual and cross-lingual

adaptation (Swietojanski et al., 2012; Ghoshal et al., 2013), and deep representation learning

(Bengio, 2012). This study exploits the available pretrained open-source ASR models and

applies transfer learning specifically through model transfer from speech to singing data.

Model transfer can be applied when the output labels of the source and target domains are

the same. As shown in Figure 5.2, a model is initially trained on data from the source domain
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(1). Then, a model for the target domain is retrained (3) where the parameters of the network

are initialised with the parameters of the pretrained source model (2).

Figure 5.2: Model fine-tuning on a target domain.

The language model integration method employed in this end-to-end ASR framework, i.e.

shallow fusion, is a late training integration approach where the posteriors to compute the final

objective in Equation 5.7 are obtained from separately trained language and acoustic models.

Thus, a complete adaptation of the end-to-end ASR model should include adapting the language

model to lyrics as well. In this framework, this is achieved via model transfer from Librispeech

to DAMPtrain transcriptions. It was previously shown in Section 4.4.2 that using larger corpora

for training the neural lyrics language models did not necessarily improve results and using only

the DAMPtest data was the most beneficial setup. Similarly, this was observed to apply also for

the end-to-end training framework employed in this study. A larger corpus for transferring the

language model is not used due to this reason.

One common application of transfer learning is transferring knowledge between different

domains, i.e. cross-domain transfer learning (Wang and Zheng, 2015). In the context of

ASR, cross-domain transfer learning has two distinct directions; the first one is concerned with

transferring features from different modalities of the same data, such as leveraging video or

image features that are associated with an audio recordings used in training, in addition to the

standard audio features. The other major direction in transfer learning is achieved through

transferring knowledge in-between different applications of the same task. For example the

tasks of lyrics transcription from monophonic and polyphonic recordings can be considered as

different applications of the same task considering their distinct acoustic properties. This type
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of transfer learning is referred to as domain transfer. This study focuses on the latter transfer

learning approach due to different data modalities not being current available in the training

data. Moreover, domain transfer is more relevant to the applications of ALT.

The methods proposed in this section applies domain transfer in three ways. The basic

approach is illustrated in Figure 5.3b which is simply fine-tuning a pretrained speech recogniser

either on monophonic or polyphonic recordings. Figure 5.3c shows a recursive transfer learning

approach, where fine-tuning is applied on different domains in cascade. The domain transfer

in Figure 5.3d is similar to the one in Figure 5.3b, but the model transfer is applied directly in

the combination of monophonic and polyphonic recordings, a method that is also similar to

the cross-domain training approach explained in Section 4.3.1. These different ways to apply

domain transfer in ALT are evaluated in Section 5.4.1.

(a) (b)

(c) (d)

Figure 5.3: Speech-to-singing transfer learning. (a) Training on singing data from scratch. (b)
Fine-tuning a pretrained speech model on singing data. (c) Cascaded transfer learning to train a
polyphonic acoustic model. (d) Cross-domain fine-tuning for end-to-end ASR.
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5.3 Experimental Details

5.3.1 Training

The overall system architecture follows the standard Transformer recipe within the SpeechBrain

toolkit, and is summarised in Figure 5.4. There are two main training blocks of the overall

system: the acoustic and language models. The network topology of the acoustic model follows

the encoder-decoder framework (i.e. sequence-to-sequence models explained in Section 2.3.2),

where both encoder and decoder consist of transformer layers. The acoustic model takes

80-band mel-spectrogram features at the input which are extracted with a window size of 25

ms, a hop size of 10 ms. The input audio recordings are sampled at the rate of 16kHz. The

mel-spectrograms are fed to a 3-layer 2D CNN block with 3× 3 filters at the front-end of the

network. The convolutional front-end is used to extract input positional embeddings, inspired

by ContextNet (Han et al., 2020). The encoder and decoder have 12 and 6 transformer layers

respectively where each transformer layer has a multi-head self-attention layer with the hidden

dimension of 768 and 8 heads, followed by a feed-forward layer with the dimension of 3072. No

dropout is applied between transformer layers, which use the Gaussian Error Linear-activation

Unit (GELU) (Hendrycks and Gimpel, 2016) as the activation function. The training objective

uses the CTC weight λ = 0.3, which is determined empirically on DAMPdev. At inference λ is

also empirically set to 0.4 as the final likelihood computation uses probabilities coming from

the language model (recall Equation 5.7).

Figure 5.4: The overall training pipeline.

The language model is a TransformerLM (Vaswani et al., 2017), which has a 12-layer



5.3. Experimental Details 131

encoder with 12 self-attention heads and hidden dimensions of 768. The transformer feed-

forward layer has the size of 3072 similar to the acoustic model. Words are tokenised using

the SentencePiece algorithm (Kudo, 2018) with the unigram vocabulary size of 5000. Both

the acoustic and the language models are trained on the same set of unigram tokens as the

target class set, which is the pretrained Librispeech tokeniser obtained from the HuggingFace

repository.2 Therefore, both neural networks have the output size of 5000. The language model

weight used to compute the overall objective, γ is empirically set to 0.1.

Training samples that are shorter than 1.5 seconds and longer than 15 seconds are discarded.

Moreover, malformed audio files are also excluded. 3 These procedures are similar that of

Kaldi’s, hence similar portions of the training data are actually used in training both the E2E

model in this chapter and the DNN-HMM model in Chapter 4. After this initial filtering, the

total utterance durations of the training data for DAMP and DALI datasets are around 112 and

150 hours respectively.4 All recordings in the train set are sampled at 16 kHz. The dataset is

augmented with the SpecAugment method (Park et al., 2019) with a time warp window size of 5,

frequency mask width of 30 frames and a time mask of 40 frames. Speed perturbation is also

applied with a time-warping factors of 0.9 and 1.1 similar to the DNN-HMM setup in Chapter 4.

The training is performed on Nvidia ® - Quadro RTX 6000 ™ machines with 22 GB memory

capacity. End-to-end models, and transformers in particular, are large neural network models

and have very large numbers of trainable parameters, and thus large memory requirements.

One way to avoid exceeding memory capacity is to use smaller minibatches. However, large

models require larger minibatches for them to be able to converge. To circumvent these issues,

large-batch training is simulated via gradient accumulation (Ravanelli et al., 2021). According

to this approach, the gradients are accumulated for a predefined number of batches (N ), and they

are updated after the N th minibatch. For each minibatch, zero-padding is applied to match the

sizes of the samples within the batch. The amount of padding for each sample in a minibatch is

another issue during batch processing. In order to minimise the effect of the features computed

from zero-padded samples, and to save computational resources due to these, the training dataset

is sorted by duration and fed into the network in an ascending order with minibatches of 2. The
2The model can be retrieved from https://huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech.
3Most malformed files were in the DALI dataset, possibly due to them being automatically retrieved from online

resources.
4This means around 6 hours of DALI data is discarded after this procedure.
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gradients are accumulated for 64 minibatches to simulate training on 128 minibatches.

For all iterations, the acoustic models are trained for 10 epochs using the Adam optimiser

with an initial learning rate of 1, then trained for an additional 5 more epochs using the SGD

optimiser with a learning rate of 25× 10−6. This hybrid optimiser training has been shown to

be useful within the end-to-end ASR training framework (Ravanelli et al., 2021).

5.3.2 Inference

Unlike the DNN-HMM setup, end-to-end transfomer models require fixed length audio samples

at the inference step. If an utterance in question is shorter than the tensors used in training,

padding is applied. However, longer utterances are not compatible, hence they need to be split

into smaller chunks. The audio recordings are split using the timestamp annotations if they

are available. Otherwise, automatic segmentation is performed based on heuristics 5. One

straight-forward segmentation approach is through splitting audio linearly with overlapping

chunks (Stoller et al., 2019). However, this method is prone to cut the context within utterances

in the middle, leading to an inherent reduction in performance during inference. In order to

perform inference on cleaner audio chunks, the long utterances are segmented based on a neural

voice-activity detection (VAD) model. The inference pipeline in this study uses the pretrained

CRDNN model retrieved from the HuggingFace repository6, which is essentially a binary speech

/ non-speech classifier. The classifier outputs the posterior probability of a frame being a speech

instance or not, and a threshold is set to make a decision. The pretrained model is trained on

the LibriParty dataset (Ravanelli et al., 2021) which does not generally have music instruments

within the examples. For this reason, the VAD segmentation is performed on the source separated

vocal tracks. Once the raw VAD frames are retrieved, they are smoothed to obtain a minimum

of 5 and a maximum of 15 seconds. Finally, these VAD segments are manually corrected and

verified to make sure they are sensible audio chunks for lyrics transcription evaluation. The

overall inference pipeline is illustrated in Figure 5.5.
5Jamendo, Hansen and Mauch sets do not have such annotations, therefore the automatic segmentation is applied

on these. The rest test sets use the available timestamps to segment the full-length audio.
6The model can be retrieved via the online tutorial at https://huggingface.co/speechbrain/asr-transformer-

transformerlm-librispeech.
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Figure 5.5: The inference pipeline.

5.4 Results

The experiments use the same training pipeline and network topology for all the tested models,

and focus on constructing a baseline model with available data resources. Similar to Chapter 4,

the experiments begin with monophonic data and continue with cross-dataset evaluation.

5.4.1 Speech-to-singing Transfer

Table 5.1 shows the results of the transfer learning experiments. The initial model uses the

acoustic and language models both pretrained on Librispeech dataset (the version with around

960 hours of speech). Models 2 and 3 are trained on DAMP from scratch. The acoustic model

for the rest of the models (4,5,6) uses the pretrained ASR in Model 1 which is fine-tuned (i.e.

parameter transfer) on the DAMP dataset. As Models 2 and 3 do not benefit from any pretraining,

they may require more epochs to converge. Therefore, these models are trained for an additional

5 epochs (20 epochs in total) compared to the rest of the transferred models (4,5,6). Models

1,2,4 use the language model trained on the Librispeech transcripts, and the language models

in 3,5 are trained from scratch on the lyrics corpus introduced in Chapter 3. In model 6, the

Librispeech language model is also transferred to singing data.

Acoustic Model Language Model Dev Test
1) Librispeech Librispeech 54.18 53.18
2) DAMP Librispeech 94.07 85.92
3) DAMP Lyrics Corpus 106.00 131.2
4) Librispeech → DAMP Librispeech 21.44 18.05
5) Librispeech → DAMP Lyrics Corpus 31.99 36.48
6) Librispeech → DAMP Librispeech → Lyrics Corpus 15.00 16.69

Table 5.1: Summary of speech-to-singing transfer learning results (WER) on the DAMP dataset.
The symbol → stands for the model transfer operation.

As mentioned above, transformers require large training sets in order to have a converging
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training loss. This can be seen from the losses of the Models 2 and 3 in Figure 5.6, which have

acoustic models trained from scratch on DAMPtrain. Moreover, notice the large gaps between the

train and validation losses for these models. While this usually signals the risk of overfitting, the

WER scores for Models 2 and 3 (Table 5.1) are extremely high. Hence the models do not seem to

converge to near the global minima. On the other hand, models initialised with a pretrained ASR

model (4,5,6) have loss curves converging to a much lower loss. Even tuning only the acoustic

model (4) led to a WER score of 18% on DAMPtest, which is comparable with the baseline

DNN-HMM model (Model 1 in Table 4.19). The gap between DNN-HMM and end-to-end gets

even lower when transfer learning is applied on the language model (6). Notice that training the

language model solely on lyrics (Models 3,5) did not lead to optimal results.

Figure 5.6: Train (full-lines) and validation (dashed) loss curves for the end-to-end models.

The above analysis provides evidence that end-to-end models require large training sets, and

transfer learning is a useful method to achieve considerable performance boost in low resource

scenarios.

5.4.2 Cross-Dataset Evaluation

Similar to the motivation in Section 4.3.1 on achieving a domain-invariant lyrics transcription

performance, this stage of experiments is concerned with exploring ways for building an end-

to-end cross-domain model. In order to provide quantitatively comparable results to these in

Chapter 4, the same evaluation framework is utilised in Table 5.2, i.e. DAMPtest⋃DALItest are

used as Dtest
self for the cross-domain models.
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Acoustic Model Train Set
1) Monophonic Librispeech → DAMP
2) Polyphonic Librispeech → DALI
3) Cross-domain Librispeech → DAMP → DALI
4) Cross-domain Librispeech → (DAMP

⋃
DALI)

Table 5.2: Summary of the end-to-end models in the cross-dataset evaluation.

The baseline model (1) is the best performing one in the previous stage of experiments,

which is fine-tuned on the monophonic DAMPtrain. Model 2 is trained solely on the polyphonic

DALItrain. Model 3 is constructed through the cascaded transfer learning illustrated in Figure

5.3c, where the acoustic model is fine-tuned on DAMPtrain, then DALItrain consecutively. Finally,

model 4 has a similar approach to the cross-domain DNN-HMM based model, where the acoustic

model of the pretrained ASR model is fine-tuned directly on (DAMP
⋃

DALI)train. Following

the observations in Section 4.4.6, Dtest
self is set depending on the training set. Specifically, while

the monophonic (Model 1) and polyphonic (Model 2) models use DAMPtest and DALItest

respectively, the cross-domain models (3,4) use the combination of both when computing the

cross-dataset performance drop CPD.

Model DAMPtest DALItest NUS Hansenmono CPDmono Hansenpoly Mauch Jamendo CPDpoly CPD

1) 16.69 81.16 19.20 53.23 9.48 80.23 77.50 91.75 64.82 57.65

2) 72.55 76.29 92.11 79.17 8.56 75.15 60.58 67.95 -9.41 0.12

3) 64.72 76.22 89.23 77.71 11.26 76.08 59.68 67.40 -9.25 0.14

4) 16.04 67.21 19.93 53.92 -36.05 72.43 65.16 79.12 5.73 -13.40

Table 5.3: Results of the cross-domain experiments on end-to-end framework. Dtest
self used in

evaluating each model is highlighted in blue.

The implications of the above cross-dataset evaluation are studied below:

• Model 1 performs well on Dtest
self (DAMPtest), however a performance drop is observed on

other monophonic sets (CPDmono > 0), indicating the possibility that the model suffers

from overfitting to DAMPtrain. CPD gets much larger on polyphonic data, hence the

monophonic end-to-end model does not have performance generalisation across varying

domains.

• Although finetuning the pretrained speech recogniser on the polyphonic DALI dataset

improves recognition rates on polyphonic data, the corresponding model’s (2) performance

on Dtest
self is considerably lower than that of the monophonic model 1. For this model,
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CPDpoly < 0, meaning that this model performs worse on DALItest240 than the polyphonic

Dtest
others, which might be due to the former having a larger size, and can be an indication

for being a more challenging dataset compared to the latter. On the other hand, this is also

understandable as DALItest240 is much larger in size with a higher musical variability than

DAMPtest. The overall performance drop CPD is near 0 (zero), implying a generalisable

performance. However, this is mostly due to model 2 already having a very high WER on

Dtest
self.

• Applying cascaded transfer learning (model 3) helps improve the performance on mono-

phonic recordings compared to model 2, while the improvement on polyphonic data is

not as apparent. Note that this model uses both DAMPtest and DALItest240 sets as Dtest
self and

the computation of CPD is done accordingly.

• Cross-domain training in Model 4 improved the performance on part of the polyphonic

sets while maintaining the performance on monophonic recordings. However, a sharp

drop is observed on the Jamendo and Mauch datasets. Note that the performance on

polyphonic recordings is still much poorer compared to monophonic.

• The CPD scores of Models 2 and 3 are near the perfect performance balance (zero).

However, this alone cannot be interpreted to signify a powerful model.

• Moreover, the interpretation of CPD scores also needs to consider the data which is

included in Dtest
self and Dtest

others sets. In particular, Model 2 uses a polyphonic Dtest
self, but

Model 3 uses (DALI
⋃

DAMP)test. The overall CPD for Model 2 gives a performance

generalisability measure with respect to the in-domain polyphonic data, whereas the

CPD scores for Models 3 and 4 consider both monophonic and polyphonic recordings as

in-domain data.

From the above perspective, the following observations can be inferred regarding the domain

and dataset biases:

• Model 1 is biased towards the monophonic domain, hence its performance cannot be

generalised to the polyphonic domain. There is also a dataset bias as CPDmono > 0.
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Figure 5.7: Cross-dataset performance drop. The first two bars on the left side use Dtest
self =

DAMPtest. The CPD scores on the right consider DALItest240 ∈ Dtest
self.

• Model 2 is biased towards the polyphonic domain as CPDmono > 0, CPDpoly < 0, and

considering Dtest
self is polyphonic.

• Further improvement is observed on monophonic recordings through cascaded transfer

learning. However, this model (3) is a cross-domain model, and DAMPtest ∈ Dtest
self.

Therefore, the monophonic Dtest
others can also be considered as in-domain data, and the

reason for CPDmono > 0 is due to dataset bias.

• The overall CPD is near zero for Models 2 and 3, their performance on DAMPtest and

DALItest240 sets can be generalised to other datasets. However, consider that both of these

models have much higher WERs on monophonic recordings. This means that their poorer

performance in both domains can be generalisable.

• Model 4 is also a cross-domain model. The risk of overfitting to monophonic recordings

still applies as CPDmono > 0. The performance on DALItest240 is similar to other poly-

phonic sets, so CPDpoly is near zero. In contrast to Model 1, the cross-domain model has

CPDoverall < 0, hence it carries the risk of underfitting and further tuning is required.

5.4.3 Performance on Separated Vocals

Experiments in Section 4.4.6 showed that a cross-domain DNN-HMM lyrics transcriber that

performs well on polyphonic recordings does not necessarily benefit from source separation

(recall the results in Table 4.21). On the other hand, previous research leveraged source

separation for performance improvement on end-to-end models even when trained on polyphonic
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recordings (Stoller et al., 2019; Gupta et al., 2020). The results in Table 5.4 show the performance

of the end-to-end models tested in the above cross-dataset evaluation stage on source separated

vocals. The most commonly used polyphonic test datasets are used at this stage. Vocals are

separated using the spleeter toolkit (Hennequin et al., 2020), as in the relevant experiments in

Chapter 4. In order to observe the relative gain due to source separation compared to inference

on the original polyphonic mixes, the CPD metric is utilised. The polyphonic versions of the

Hansen, Mauch and Jamendo sets are included in Dtest
self and their separated versions are in Dtest

others.

This means the CPD measures the performance drop on seperated vocals with respec to the

original polyphonic recordings. Within this perspective, the CPD values in Table 5.4 are not

directly comparable with the ones in Table 5.3.

Model Hansen Mauch Jamendo CPDsep

1) 78.60 66.38 83.23 -7.13

2) 87.17 86.38 79.64 16.76

3) 86.32 81.01 80.53 15.65

4) 75.07 57.16 77.22 -15.18

Table 5.4: WER scores end-to-end models on source-separated vocals. The columns named with
test sets are the WER scores and the rightmost column is CPD w.r.t performance on original
polyphonic versions.

Following a similar outline with Section 5.4.2, the findings of the results in Table 5.4 are

listed below:

• Source separation helped improve WERs of the monophonic model (1) which is reflected

as CPDsep < 0 (negative performance drop, i.e. performance on separated vocals is better

than on polyphonic recordings).

• However, it did not improve word recognition rates for the acoustic models fine-tuned

on DALI (2,3), and hence CPD > 0. This is inline with the relevant observation for the

DNN-HMM approach in Section 4.4.6 regarding models that have polyphonic recordings

in their training data performing better on polyphonic recordings than on separated vocals.

• Similar to the monophonic model, the cross-domain model that is trained on DAMP
⋃

DALI

(4) also benefits from source separation (i.e. CPD < 0), which is the opposite case for the

DNN-HMM models.
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• It should be noted that a further performance improvement on separated vocals might be

achieved if the training used spleeter-separated data.

5.5 Summary

In this chapter, a method is presented for building an end-to-end lyrics transcription system,

which can perform similarly to the DNN-HMM based model on the monophonic test set

DAMPtest. The main method can be summarised as fine-tuning a Transformer + Hybrid CTC /

Attention ASR model on singing data. The best performance is achieved by fine-tuning both the

acoustic and language models. Furthermore, potential for cross-domain transfer to polyphonic

data is investigated based on the observations drawn upon cross-dataset evaluation. This analysis

shows that the monophonic end-to-end model, similar to its DNN-HMM counterpart, has a

domain bias towards in-domain data and a large performance drop is observed in the polyphonic

domain. On the other hand, the analysis also highlights a number of contrasting observations

with DNN-HMM models regarding cross-domain training. First of all, cross-domain training did

not consistently improve polyphonic results. In contrast, it was slightly useful for monophonic

recordings. For all models, WERs on polyphonic data are very high for both Dtest
self and Dtest

others,

which is reflected in CPD being closer to zero than for their DNN-HMM counterparts. This

implies that the low recognition rates of end-to-end models reported in this chapter can be

generalisable to unseen polyphonic data, hence an overall improvement is needed. In addition,

source separation helped improve word recognition rates for the cross-domain model, but not for

the polyphonic models fine-tuned only on DALI (2) and the cascaded transfer learning method

in Model 3.

To sum up, an end-to-end model is constructed in this chapter using the same data settings as

for the DNN-HMM based lyrics transcriber so that the results obtained from these two distinct

approaches are comparable. As a novel contribution, a cascaded transfer learning approach

is proposed, and cross-domain end-to-end training is applied to improve the performance of

the acoustic model on polyphonic recordings. From this perspective, this study also provides

evidence for the possibility of the information between speech and singing being transferable.

While both approaches lead to better results, the improvements are not consistent among different
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evaluation sets. Overall, the cross-domain model had the best results on both sets in Dtest
self. Within

the scope of the above observations, the performance gap between end-to-end and DNN-HMM

based lyrics transcription models evaluated in this study is evident. This performance gap is

further discussed in Chapter 6.



Chapter 6

Discussion & Conclusion

The previous two chapters explained the system principles of the two major paradigms in LVCSR

and proposed novel methods to adapt them to singing data, and thus for the ALT task. This

section provides the final discussions regarding the performance robustness, generalisability,

and scalability aspects of these paradigms. At the end of Section 6.1, a comparison of the

best-performing proposed models with what was reported in the previous literature is given.

After that, the novel findings of this thesis are summarised. Based on the knowledge derived

from the data and the experiments, the potential future directions in ALT research are highlighted

in the final section. This chapter finishes with a summary of the overall contributions of this

dissertation, specifically regarding the data, knowledge and user-driven aspects.

6.1 DNN-HMM vs. End-to-End

Cross-Dataset Evaluation

For fairness in evaluation, the best performing DNN-HMM and end-to-end models are selected

for comparison based on their results on the DAMPtest and DALItest240 sets (i.e. Dtest
self) (refer to

Tables 4.23 and 5.3). The results of the DNN-HMM approach considered in this section are

for the Model 9+ in Table 4.22 which is a cross-domain model with the MStreNet network

architecture and uses a 4-gram language model that is trained only on lyrics (Demirel et al.,

2021b). The end-to-end model is also a cross-domain model where the pretrained speech

acoustic model is fine-tuned directly on DAMP
⋃

DALI (Model 4 in Table 5.3).
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Model DAMPtest DALItest240 NUS Hansenmono CPDmono Hansenpoly Mauch Jamendo CPDpoly CPD

DNN-HMM 15.89 42.98 7.49 23.00 -4.75 36.78 39.00 34.94 -6.6 -16.62

E2E 16.04 67.21 19.93 53.92 11.56 72.43 65.16 79.12 2.13 -13.40

Table 6.1: WER (%) comparison of the cross-domain DNN-HMM and end-to-end models. The
CPDs are illustrated in 6.1. The highlighted cells (in blue colour) indicate Dtest

self used to compute
CPDs.

Figure 6.1: DNN-HMM vs E2E: Cross-dataset performance drop.

It is clear from the WER comparison in Table 6.1 that the DNN-HMM approach has lower

error rates on all of the evaluation sets. The end-to-end model has a comparable performance on

DAMPtest. However, it performs generally much worse on polyphonic recordings. From this

perspective, it can be inferred that the size of the monophonic training dataset is sufficient to build

a monophonic end-to-end lyrics transcriber (through transfer learning) that has a comparable

performance to the DNN-HMM model on solo-singing data. However, this does not apply for

the polyphonic training dataset (which has a similar size to the monophonic one) as WERs

are generally much higher, and hence increasing its size is required. This might be associated

with the higher spectral complexity and varying music styles in polyphonic recordings. On the

other hand, there is a considerable performance drop on other monophonic test sets compared

to the DNN-HMM model. This results in a positive CPD indicating the risk of overfitting to

DAMP data. This also implies that increasing the variance of the monophonic training set is

necessary to achieve a more generalisable performance. The overall CPDs for both models are

in a comparable range, indicating that their performances on Dtest
self are similarly generalisable on

other sets in this cross-dataset evaluation. However, considering that the DNN-HMM model

has much lower WERs overall, its performance is generally better than the end-to-end model.

Furthermore, the DNN-HMM model has negative CPDs, therefore, overfitting does not seem
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to be the primary issue. To sum up, this comparison verifies that the DNN-HMM model

outperforms end-to-end models under the low data resource circumstances for the ALT problem.

Error Analysis

Further analysis is undertaken in Figure 6.2 where errors (substitution, insertion and deletion)

and overall WERs are computed singer-wise, and are illustrated via box-whisker plots. The

interquartile range (IQR) of the boxes consider the 25-75 % of the data and the horizontal

line within indicates the median value. The whiskers extend to 5-95%. The statistics are

computed on the polyphonic DALItest240. It can be seen that the medians of the singer-wise error

distributions for the end-to-end model are generally higher. On the other hand, there appears

to be more outlier errors for the DNN-HMM model. This observation is in line with the fact

that |CPDDNN-HMM
poly | > |CPDE2E

poly|, and hence slightly less generalisable results on polyphonic

recordings despite having superior performance. From this perspective, it can be inferred that

increasing the data variability (for instance in terms of music styles, singers and recording

conditions) is needed to improve the DNN-HMM model.

Figure 6.2: DNN-HMM vs E2E: Error analysis. The data samples are computed singer-wise.

Model Complexity

Figure 6.3 shows the number of trainable parameters per model. The end-to-end model is

considerably larger with more than 160 million parameters compared to the DNN-HMM model

with less than 9 million parameters. This is one of the main reasons why the end-to-end models

require much larger training datasets. Note that very large models also require more powerful
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computational resources for training.

Figure 6.3: Number of trainable parameters

The Effect of Data Preprocessing

Besides the word recognition rates and models’ performance generalisability across completely

unseen data and domains, one needs to consider certain preprocessing steps included in the

overall inference pipeline. For instance, the end-to-end model requires automatic segmentation

(see Figure 5.5) and according to the steps explained in Section 5.3.2, manual correction is

applied to the test samples. Therefore, the end-to-end results in this study are not obtained by

means of pure inference, and a performance drop is expected when using suboptimal segments

obtained via automatic segmentation. On the other hand, the Kaldi-based DNN-HMM solution

can process longer audio recordings at once1. Moreover, due to the requirement of fixed-length

audio at the input, the utterance duration (hence the amount of padding) is another determining

factor for the inference performance of the end-to-end models. These external dependencies can

be considered as disadvantages towards the scalability of the end-to-end approach.

Comparison with the literature

Tables 6.2 and 6.3 provide a comparison of the DNN-HMM and end-to-end models with

what was reported in the ALT literature excluding the publications which are the outcomes of

this research project (Demirel et al., 2020a, 2021a,c,b). The best performing model for each
1In practice, the recordings are split into 1.5 second chunks and the forward pass is applied on these. The

probabilities are accumulated for all chunks until the last one and decoding (beam search) is applied on the final
accumulated probabilities, hence the context is preserved.
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evaluation set is included in this comparison. For this reason, results obtained via the 2nd pass

RNNLM rescoring are reported for DAMPtest and Mauch sets on top of the DNN-HMM model

in Table 6.1. The best end-to-end results for DAMPtest and Jamendo and Mauch sets are obtained

using the Cross-Domain / Transfer Learning approach while the cascaded transfer learning

approach (model 3 in Table 5.3) had the lowest WER scores.

DNN-HMM

Dataset Previous Work This Study

DAMPtest LFMMI (Dabike and Barker, 2019) 19.60 LFMMI + MStreNet 12.56*

Hansenpoly LFMMI 47.01 + Cross-domain Training 36.78

Mauch + Genre-labeled phonemes 44.02 + Music informed Sil. (Demirel et al., 2021b) 38.81*

Jamendo + Vowel extended lexicon (Gupta et al., 2020) 59.57 + Singing adapted lexicon (Demirel et al., 2021c) 34.94

Table 6.2: Comparison of the DNN-HMM WER results with the previous literature. Scores
marked with ‘*’ are obtained with the RNNLM rescoring (Demirel et al., 2020a) due to better
results compared to 4-gram.

End-to-end

Dataset Previous Work This Study

DAMPtest Transformers + PD Augment (Zhang et al., 2021) 9.80 Transformers + Transfer Learning 16.04

Hansenpoly Seq2seq / Attention (Gupta et al., 2020) 80.10 + Cross-domain Training 72.43

Mauch UNet + CTC (Stoller et al., 2019) 70.90 Transformers 59.68

Jamendo 77.80 + Cascaded Transfer Learning 67.40

Table 6.3: Comparison of the end-to-end WER results with the previous literature.

The MstreNet based cross-domain DNN-HMM model performs better than the other DNN-

HMM results reported in the literature. On the polyphonic Hansen, Mauch and Jamendo

sets, this model achieves the state-of-the-art by a considerably large margin (around 15-30 %

relative WER improvement depending on the test set). On these datasets, the end-to-end models

presented in this study achieve around 10% absolute WER improvement compared to previously

reported scores in the literature, however there is still a large performance gap between the

DNN-HMM and the end-to-end models.

Most recently, Zhang et al. (2021) achieved WER scores below 10 % on the monophonic

DAMPtest. This model is similar to the end-to-end model presented in this study in several

aspects. First of all, both models use Transformer architectures with similar hyperparameters.

For training, the same DAMP and DALI sets are used. Both models leverage speech data, i.e.

the Librispeech corpus, where Zhang et al. (2021) apply training from scratch and include
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the Librispeech data in the training set while the model in this study applies finetuning on the

Librispeech pretrained model on DAMP and DALI. In addition, Zhang et al. (2021) apply pitch

and duration-wise data augmentation, i.e. PDAugment, which was shown to improve WER

results considerably. With this approach, the aforementioned model achieves around 6 % lower

WER than the end-to-end model presented in this study. Without PDAugment, their model had

around 20 % WER and the hybrid CTC / attention + Transfer Learning based end-to-end model

performs 4 % better than this. With this setup, both models have very similar results as both

leverage the data from DAMP, DALI and Librispeech. In this regard, they are comparable and

better WER shows the benefit of using hybrid CTC / attention loss compared to using only

the attention loss. On the other hand, the benefit of the PDAugment is also evident and future

research has to be conducted to scale-up results.

6.2 Summary of Findings

This thesis tackles the task of automatic lyrics transcription in numerous aspects, raises several

research questions, proposes methods for improved word recognition performance and provides

an extensive evaluation framework. In order to summarise and highlight the research outcomes

of this study, a list of important findings is given below:

1. DNN-HMM vs. End-to-end: According to the result tables in Section 6.1, the LFMMI

based DNN-HMM approach to lyrics transcription is superior to end-to-end models.

However, this is true given the size of the data resources available for training was around

a few hundred hours. It is known to the research community that the gap between end-

to-end and DNN-HMM models gets smaller as the training data gets larger. Therefore,

this comparison also needs to be conducted in the presence of large training sets ( >

1000 hours). According to the cross-dataset evaluation study in this chapter, the poor

performance of the end-to-end model is generalisable to unseen data, which is especially

true for the polyphonic domain. While its performance on the monophonic DAMPtest is

comparable to the DNN-HMM results, this cannot be generalised much to completely

unseen monophonic data, which signals the risk of overfitting. The DNN-HMM model

does not seem to suffer from overfitting according to the negative CPD values in Figure
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6.1.

2. Performance generalisability and evaluation in Automatic Lyrics Transcription: This

thesis considers two data domains within the ALT task and its applications: monophonic

(solo-singing) and polyphonic (with music background) recordings. The cross-dataset

evaluation scheme offers a way to benchmark lyrics transcription scores using and cat-

egorising the training and evaluation data based on the domain properties. It offers the

use of CPD to summarise the behaviour of a model in question across a number of

evaluation sets. This evaluation showed that both DNN-HMM and end-to-end models

perform much better on monophonic recordings than polyphonic recordings, and adding

solo-singing samples in the training sets helps to improve performance in the polyphonic

domain. Finally, the singer-wise error analysis in Section 6.1 highlighted that the lyrics

transcription rate may vary depending on the singer.

3. Cross-domain training: Training the acoustic model both on monophonic and poly-

phonic recordings is shown to be beneficial for achieving a more domain-invariant perfor-

mance. Including solo singing recordings especially benefits the transcription performance

on the polyphonic domain. Moreover, modeling non-vocal sounds distinctively for si-

lence and instrumental instances (by using separate labels - <silence> vs. <music>, as

in the music-informed silence modeling approach proposed in Section 4.3.1) improves

performance on polyphonic data.

4. MStreNet architecture: The multistream TDNN architecture performs better than its

single stream counterpart and is more robust on polyphonic recordings and against

varying reverberation conditions. Through diversifying the parallel TDNN streams, a

more compact model can be achieved, which also benefits the word recognition rate and

inference runtime.

5. Speech-to-singing transfer: The experiments on end-to-end models show that some in-

formation between speech and singing can be transferable within the context of automatic

lyrics transcription as the speech-to-singing transfer model performance is superior to

that of the model trained on either speech or singing.



6.3. Future Prospects 148

6. Inference on separated vocals: Although source separation help improve word recog-

nition rates for the monophonic models, the cross-domain DNN-HMM models perform

better on the original polyphonic mixes. In contrast, source separation slightly improves

word recognition rates for the cross-domain end-to-end model. However, this could as

well be due to the overall poor performance on polyphonic data. Note that this study

utilises one source separation model (spleeter). Because of this, the effect of the artifacts

introduced by the source separation procedure on lyrics transcription needs to be investi-

gated further. From this perspective, whether or not source separation is beneficial for

ALT from polyphonic recordings still remains an open question.

7. Model optimisation: There are a number of independently tuned computational blocks

within the DNN-HMM approach and this study proposes improvements for each block.

Combining improved blocks did not always lead to an optimal performance. This is

especially true for improvements proposed in the language and pronunciation models.

Due to this, tuning the DNN-HMM model is difficult, whereas tuning the end-to-end

model is more straightforward as both the acoustic and language models are optimised on

the same objective.

8. Computational cost: As mentioned before, the DNN-HMM model involves several

preprocessing steps required prior to training the acoustic model. Some of these steps

need to be re-executed for each experimental iteration. Due to this, model optimization

is time costly. On the other hand, the end-to-end training can be initiated directly on

audio data paired with text, hence the overall training pipeline is much simpler. Because

of this, iterating over hyperparameters and thus model optimisation is less time costly

compared to the DNN-HMM framework. However, the end-to-end model has a much

larger model size and thus complexity (Figure 6.3), which requires powerful machines,

and again, much larger training sets.

6.3 Future Prospects

One of the goals of this thesis is to identify the opportunities and challenges for the future

development of ALT research. Considerable improvements compared to the previous litera-
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ture have been reported, however this alone does not mark a robust performance and further

improvement in lyrics recognition rates is required. Although this study provides one of the

most extensive evaluation frameworks presented in research, it still has several limitations, such

as using data from a single language and limited span of music and singing styles. Within this

respect, there still exists a long list of directions that the research on ALT can focus on. In this

section, the current challenges and the future opportunities for the development of ALT research

are mentioned.

6.3.1 Challenges

• More training data: Most recent benchmark ASR models use at least 1000 hours of

audio data for training the acoustic model. DAMP and DALI have around 300 hours in

total. Therefore, the size of the open-source training data needs to be at least tripled.

Although creating time annotations can be costly, these can be generated on the sentence-

level through alignments using a pretrained model, an approach similar to the one used to

generate annotations for the Librispeech dataset (Panayotov et al., 2015).

• Multilingual lyrics transcription: This thesis focuses on lyrics transcription for the

English language only, and research on other languages has to be undertaken considering

ALT’s potential applications. Other than the data requirement for the language in question,

one main challenge for multilingual lyrics transcription is the dependency on linguistic

expert knowledge to build the word-to-phoneme pronunciation modeling. In this study,

possibilities for eliminating such dependency are investigated via the grapheme-based

DNN-HMM and end-to-end models which could be leveraged for future research. Note

that the gap between the grapheme and phoneme based DNN-HMM models might

dwindle with more training data as well, which would decrease the dependency on

linguistic expertise for constructing such models.

• Style-independent acoustic modeling: The acoustic properties of singing performances

may vary depending on the singers, music and singing styles. Some of the directions

for a more style-independent performance are learning domain/style-invariant features or

leveraging genre embeddings, similar to the singer identity embeddings using i-vectors
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(Saon et al., 2013; Liu et al., 2018).

• Ambiguity in evaluation: Lyrics in text form may include altered word forms to cue

melody construction, such as repeated vowels (eg. ‘HIGHS → HI-I-I-I-IGHS’2), which

may cause alterations in word pronunciations as well.

• Performance ceiling: As mentioned before, the surveys by Johnson et al. (2013) and

Fine and Ginsborg (2014) demonstrated that word intelligibility according to human

listeners reduces in sung utterances. However, the average human lyrics transcription

performance has not yet been quantitatively measured. In order to benchmark lyrics

transcription results in this respect, listening tests similar to the one by Amodei et al.

(2016) that measure the word recognition rates by human listeners need to be conducted.

6.3.2 Opportunities

• Training on big data: The results reported in the recent work by Zhang et al. (2021)

showed that including the available speech data, like the Librispeech set, in training the

end-to-end lyrics transcriber is useful for improved transcription performance. More

recently in MIREX 2021: Automatic Lyrics Transcription challenge, this was shown to be

also true for the LFMMI-based DNN-HMM system (Yang et al., 2021). In addition, the

team added an available private dataset of polyphonic recordings for training the acoustic

model and a much larger lyrics corpus for building the language model. With this, Yang

et al. (2021) showed that big improvements can be achieved in the presence of very large

training sets. These studies substantiate the possibility of robust acoustic and language

modeling when sufficient resources are available.

• Data augmentation: Zhang et al. (2021) also proposed a novel data augmentation

approach through pitch and duration shifting which was shown to improve the transcription

performance for the end-to-end approach. This augmentation method would possibly help

improve the performance of the DNN-HMM approach.

• Leveraging music priors: Although they can be expressed by the same mathematical

expression, the tasks of ASR and ALT have their own domain specific characteristics.
2This is an example taken from DAMPtest.
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This is especially true when attempting to transcribe lyrics from polyphonic recordings

where there is music accompaniment and/or multiple singers. Previous research showed

that music style information can be leveraged for improved performance (Gupta et al.,

2020). This can be expanded to including genre / music style embeddings in the feature

space, a method similar to speaker-adaptive training using i-Vectors (Saon et al., 2013).

Genre-adaptive training can also be achieved via learning music-style invariant features

using representation learning paradigms, such as contrastive learning (Schneider et al.,

2019; Spijkervet and Burgoyne, 2021). Another direction in this regard is using additional

musical features. For instance, Dabike and Barker (2021) showed that adding pitch in the

feature space can be helpful, yet the improvement due to this gets negligible as the training

data gets larger. Instead of using pitch in the feature space, one could apply multitask

learning through optimising the model parameters with respect to the combination of

pitch and lyrics (phonemes, graphemes, etc.) losses.

• Lyrics and musical structures: Many songs can be segmented into distinct sections,

such as verses, choruses, intros, outros, interludes, etc., and each section may have distinct

semantics and characteristics. One possible direction in this regard would be to apply

‘section-aware’ training. This could be achieved via testing different granularities of

lyrics when curating the training samples. For instance, the language model can use the

whole section of verses and choruses as training samples, instead of using line-level lyrics.

This would essentially bring more context to the lyrics transcriber during inference. In

addition to this, leveraging the rhythmic, prosodic and melodic structures as a prior to

lyrics transcription has a potential to achieve more context-aware models. The pitch and

beat tracks and the dynamic properties of sung melodies can be taken into consideration

in this direction.

• Multi-task learning: As mentioned in Section 1.1, singing involves both semantic and

musical context. In this regard, the training of a lyrics transcriber can benefit from learning

information about other relevant tasks, such as vocal automatic music transcription, source

separation, language and cover song identification. Conversely, the aforementioned tasks

can also leverage model optimisation considering the lyrics transcription objective. For
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instance, the concept of multi-task learning can be utilised to reconstruct more intelligible

lyrics at the output of vocal source separation. A similar perspective was presented

by Basak et al. (2021) where the ALT model is jointly optimised with a singing voice

synthesiser.

• Audio transformation: The WER scores reported in this thesis show that the lyrics

transcription performance is much better on solo singing performances than polyphonic

recordings. According to the experiments on the effect of source separation, the perfor-

mance does not necessarily improve on separated vocals when cross-domain models are

used. This is potentially due to the artifacts introduced during separation. In this regard,

source separation is still an interesting research direction to take. One potential direction

specific for ALT is building a vocal separation algorithm that has the objective of main-

taining or enhancing the word intelligibility. Another possibility for audio transformation

to improve ALT is songifying the available speech data by means of data augmentation

(Kruspe, 2016). This idea was later improved by Zhang et al. (2021) and considerable

improvements are observed. The opposite transformation is also possible, in which the

singing data would be speechified, i.e. converted to speech utterances.

6.4 Summary of Contributions

6.4.1 Data-Driven Aspects

Chapter 3 showed that sung utterances, as data for LVCSR, have specific properties different

to speech such as input audio length, the variability of the phonetic and prosodic contents,

and the presence of music accompaniment. This chapter also provided the details of the basic

data preprocessing steps included the ALT pipelines. In addition, considering the open-source

data resources available for research being limited in size compared to the benchmark training

datasets used in LVCSR, two distinct approaches to ASR are employed: the DNN-HMM-based

sequence discriminative training, and the transfer learning of end-to-end models. In particular,

the experiments for the latter approach showed that some information between speech and

singing can be transferable, thus pretrained speech models can be utilised for ALT in the case of

low data resources.
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Based on the potential applications of ALT and available data resources, this research con-

siders singing data under two major data domains: solo singing (monophonic) performances and

singing with music accompaniment (polyphonic recordings). Two methods for avoiding domain

mismatch are proposed. First, cross-domain training including data from both monophonic

and polyphonic recordings in the training set, and second, labelling and representing non-vocal

music and silent instances with explicit tokens (i.e. music informed silence modeling).

One of the most important steps in developing a machine learning model is model evaluation.

In this study, an extensive evaluation framework is presented including a new test set, and a

novel evaluation metric is introduced for quantitatively observing model generalisability and

performance drop across different datasets, domains and environmental conditions. These

results provide a benchmark over all the test sets used in ALT research.

6.4.2 Knowledge-Driven Aspects

ALT is a complex problem that requires domain knowledge from several areas during its design.

Pertinent fields include speech recognition, natural language processing, music information

retrieval, neural networks, audio signal processing and, last but not least, linguistics and

phonology. This study considers the domain knowledge from these fields when designing

the ALT system. The first aspect concerns explicit language modelling: influenced by the

prosodic elements of both natural language and music, song lyrics exhibit unique structures.

Often rhyming is the priority over rules of grammar. Motivated by these aspects a lyrics-specific

language model is built. Secondly, since lyrics are structured in unique ways depending on

the musical structure and semantics, the training of both the language and acoustic models are

performed on the line-level. Third, tokens are embedded explicitly in training that indicate the

beginnings and endings of the lyrical lines. This is performed with distinct tokens depending

on whether a recording is monophonic or polyphonic, knowing that the non-vocal silence and

music instances exhibit distinct acoustic properties (i.e. music informed modeling in Section

4.3.1), which is shown to be a simple but effective method for improving ALT performance

especially on polyphonic recordings. Moreover, a computational analysis is held to get a better

understanding of the systematic pronunciation variations between sung and spoken utterances.

Using the knowledge that the study reveals, a novel pronunciation dictionary for singing voice
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is developed.

The design of a neural network architecture requires a deep understanding of the training

objective, the properties of data to be processed and, how neural networks process information.

Based on the knowledge of these aspects, a novel compact variant of a state-of-the-art neural

network architecture is presented for noise-robust LVCSR that is shown to have a lower inference

time and model complexity while achieving an improved performance.

Furthermore, based on the knowledge derived from the comparison of the proposed ALT

models, the challenges and future opportunities of this research field are outlined to set initial

guidance for future researchers. Specifically, this study provides examples for the uses of a

couple of open-source toolkits in building a lyrics transcriber. Within this regard, this dissertation

contributes towards reducing the research and literature gaps in ALT research.

6.4.3 User-Driven Aspects

The present project had the opportunity to test the lyrics transcription model on a real-world

application as a result of the collaboration with Doremir. In this, a singing-to-text module

is developed to be integrated and utilised within an automatic music transcription software.

Imposed by practical concerns of end-users, a successful singing-to-text module requires a

fast runtime, low memory footprint, robustness and performance generalisability. For the

last, singers from 30 different countries are included in training the transcriber to make it

familiar with varying accents. For robustness against environmental variability and to reduce

the effect of domain-mismatch the cross-domain training approach is proposed. For the first two

aforementioned requirements, a multistream neural network architecture is developed which

is also shown to perform faster at inference than its single stream counterpart. In addition, the

architecture is tuned for achieving a more compact model to reduce model complexity, thus

memory requirements. Finally, this study holds an extensive evaluation and comparison of the

two major paradigms in ASR, with the goal of finding the most scalable and better performing

approach considering ALT’s potential real-world use cases, and given the available resources.
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6.5 Final Remarks

Automatic lyrics transcription has been considered as one of the most complex tasks within

MIR as it requires expertise and domain knowledge from multiple data domains: music, speech

and language. One of the major bottlenecks prior to the initiation of this research was the lack

of open-source datasets to train models. Because of this, ALT was not among the most popular

tasks within the MIR community, and the existing literature was limited. Soon after I started

my research on ALT, two datasets were released that could be leveraged for the purpose, the

DAMP and DALI sets. At this point, these datasets and the reproducible work by Dabike and

Barker (2019) granted the opportunity to achieve considerable performance improvement. In the

beginning of my Ph.D. journey, the WERs reported in the literature were around 34 % and above

70 % on monophonic and polyphonic recordings respectively, whereas this thesis approximately

halved the error rates compared to what was reported previously depending on the dataset.

With such improvement, the technology of ALT began to seem to be applicable for real-world

use cases. Through our collaboration with Doremir Music Research AB, we developed the

first industrial application of ALT and integrated this with their music transcription system,

with the goal of creating a 360-degree songwriting software. More can be found on this at

https://scorecloud.com/.

I hope that the work presented in this thesis paves the ground for future researchers to

improve the current state of lyrics transcription even further. For open-science and repro-

ducibility, the codebase of this thesis is shared publicly with the research community at

https://github.com/emirdemirel/ALTA.
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S Omar Ali and Zehra F Peynircioğlu. Songs and emotions: Are lyrics and melodies equal

partners? Psychology of Music, 2006.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. OpenFST:

A general and efficient weighted finite-state transducer library. In International Conference

on Implementation and Application of Automata, pages 11–23. Springer, 2007.

Jont B Allen. How do humans process and recognize speech? In Modern Methods of Speech

Processing. Springer, 1995.

Jont B Allen and David A Berkley. Image method for efficiently simulating small-room acoustics.

The Journal of the Acoustical Society of America, 1979.

Tanel Alumäe and Mikko Kurimo. Efficient estimation of maximum entropy language mod-

els with n-gram features: An SRILM extension. In Eleventh Annual Conference of the

International Speech Communication Association, 2010.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg,

Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep Speech



BIBLIOGRAPHY 157

2: End-to-end speech recognition in English and Mandarin. In International Conference on

Machine Learning (ICML), pages 173–182. PMLR, 2016.

Tasos Anastasakos, John McDonough, Richard Schwartz, and John Makhoul. A compact model

for speaker-adaptive training. In Proceedings of the Fourth International Conference on

Spoken Language Processing. IEEE, 1996.

Galen Andrew and Jianfeng Gao. Scalable training of l-1 regularized log-linear models. In

Proceedings of the 24th International Conference on Machine learning, pages 33–40, 2007.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-

work for self-supervised learning of speech representations. arXiv preprint arXiv:2006.11477,

2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Lalit Bahl, Peter Brown, Peter De Souza, and Robert Mercer. Maximum mutual information

estimation of Hidden Markov Model parameters for speech recognition. In IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 1986.

Mary E Ballard, Alan R Dodson, and Doris G Bazzini. Genre of music and lyrical content:

Expectation effects. The Journal of Genetic Psychology, 160(4):476–487, 1999.

Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The third ‘CHiME’

speech separation and recognition challenge: Analysis and outcomes. Computer, Speech &

Language, 46:605–626, 2017.

Gonçalo T Barradas and Laura S Sakka. When words matter: A cross-cultural perspective on

lyrics and their relationship to musical emotions. Psychology of Music, 2021.

Sakya Basak, Shrutina Agarwal, Sriram Ganapathy, and Naoya Takahashi. End-to-end lyrics

recognition with voice to singing style transfer. In IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 266–270. IEEE, 2021.

William R Bauer. Scat singing: A timbral and phonemic analysis. Current Musicology, 2002.



BIBLIOGRAPHY 158

Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals

of Mathematical Statistics, 41(1):164–171, 1970.

Yoshua Bengio. Learning Deep Architectures for AI. Now Publishers Inc., 2009.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In

Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages 17–36. JMLR

Workshop and Conference Proceedings, 2012.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic

language model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

Herve A Bourlard and Nelson Morgan. Connectionist speech recognition: a hybrid approach,

volume 247. Springer Science & Business Media, 2012.

Meng Cai, Yongzhe Shi, Jian Kang, Jia Liu, and Tengrong Su. Convolutional maxout neural

networks for low-resource speech recognition. In The 9th International Symposium on

Chinese Spoken Language Processing, pages 133–137. IEEE, 2014.

Chris Cannam, Christian Landone, and Mark Sandler. Sonic Visualiser: An open source

application for viewing, analysing, and annotating music audio files. In Proceedings of the

18th ACM International Conference on Multimedia, pages 1467–1468, 2010.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell: A neural

network for large vocabulary conversational speech recognition. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4960–4964. IEEE,

2016.

Guoguo Chen, Hainan Xu, Minhua Wu, Daniel Povey, and Sanjeev Khudanpur. Pronunciation

and silence probability modeling for ASR. In Sixteenth Annual Conference of the International

Speech Communication Association, 2015.

Xie Chen, Xunying Liu, Anton Ragni, Yu Wang, and Mark JF Gales. Future word contexts

in neural network language models. In 2017 IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), pages 97–103. IEEE, 2017.



BIBLIOGRAPHY 159

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep

neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine,

35(1):126–136, 2018.

E Colin Cherry. Some experiments on the recognition of speech, with one and with two ears.

The Journal of the acoustical society of America, 25(5):975–979, 1953.

Jaejin Cho, Murali Karthick Baskar, Ruizhi Li, Matthew Wiesner, Sri Harish Mallidi, Nelson

Yalta, Martin Karafiat, Shinji Watanabe, and Takaaki Hori. Multilingual sequence-to-sequence

speech recognition: Architecture, transfer learning, and language modeling. In 2018 IEEE

Spoken Language Technology Workshop (SLT), pages 521–527. IEEE, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the

properties of neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259, 2014.

Henry Leland Clarke. The basis of musical communication. The Journal of Aesthetics and Art

Criticism, 10(3):242–246, 1952.

Lauren B Collister and David Huron. Comparison of word intelligibility in spoken and sung

phrases. 2008.

Albin Andrew Correya, Romain Hennequin, and Mickaël Arcos. Large-scale cover song

detection in digital music libraries using metadata, lyrics and audio features. arXiv preprint

arXiv:1808.10351, 2018.

Gerardo Roa Dabike and Jon Barker. Automatic lyrics transcription from karaoke vocal tracks:

Resources and a baseline system. Interspeech, 2019.

Gerardo Roa Dabike and Jon Barker. The use of voice source features for sung speech recogni-

tion. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2021.

Nivja H De Jong and Ton Wempe. Praat script to detect syllable nuclei and measure speech rate

automatically. Behavior Research Methods, 2009.



BIBLIOGRAPHY 160

Emir Demirel, Sven Ahlbäck, and Simon Dixon. Automatic lyrics transcription using dilated

convolutional neural networks with self-attention. In 2020 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2020a.

Emir Demirel, Sven Ahlbäck, and Simon Dixon. A recursive search method for lyrics alignment.

In MIREX 2020 Audio-to-Lyrics Alignment and Lyrics Transcription Challenge, 2020b.

Emir Demirel, Sven Ahlbäck, and Simon Dixon. Low resource audio-to-lyrics alignment from

polyphonic music recordings. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2021a.

Emir Demirel, Sven Ahlbäck, and Simon Dixon. Mstre-net: Multistreaming acoustic mod-

eling for automatic lyrics transcription. In Proceedings of International Society in Music

Information Retrieval Conference (ISMIR), 2021b.

Emir Demirel, Sven Ahlbäck, and Simon Dixon. Computational pronunciation analysis in sung

utterances. In 29th European Signal Processing Conference (EUSIPCO 2021). IEEE, 2021c.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,

2018.

Nicole Scotto Di Carlo. Effect of multifactorial constraints on intelligibility of opera singing (i).

Journal of Singing, 2007.

R Donald, G Kreutz, L Mitchell, and R MacDonald. What is music health and wellbeing and

why is it important? In Music, Health, and Wellbeing, pages 3–11. Oxford University Press,

2012.

Zhiyan Duan, Haotian Fang, Bo Li, Khe Chai Sim, and Ye Wang. The NUS sung and spoken

lyrics corpus: A quantitative comparison of singing and speech. In 2013 Asia-Pacific Signal

and Information Processing Association Annual Summit and Conference. IEEE, 2013.

Georgi Dzhambazov et al. Knowledge-based probabilistic modeling for tracking lyrics in music

audio signals. PhD thesis, Universitat Pompeu Fabra, 2017.



BIBLIOGRAPHY 161

Foteini Filippidou and Lefteris Moussiades. A benchmarking of IBM, Google and Wit automatic

speech recognition systems. In IFIP International Conference on Artificial Intelligence

Applications and Innovations, pages 73–82. Springer, 2020.

Philip A Fine and Jane Ginsborg. Making myself understood: Perceived factors affecting the

intelligibility of sung text. Frontiers in Psychology, 2014.

W Tecumseh Fitch. The biology and evolution of music: A comparative perspective. Cognition,

100(1):173–215, 2006.

Hiromasa Fujihara, Masataka Goto, Jun Ogata, Kazunori Komatani, Tetsuya Ogata, and Hi-

roshi G Okuno. Automatic synchronization between lyrics and music CD recordings based

on Viterbi alignment of segregated vocal signals. In Eighth IEEE International Symposium

on Multimedia (ISM’06), pages 257–264. IEEE, 2006.

HIROYA Fujisaki. Dynamic characteristics of voice fundamental frequency in speech and

singing. acoustical analysis and physiological interpretations. Dept. for Speech, Music and

Hearing, Tech. Rep, 1981.

Mark Gales and Steve Young. The application of hidden Markov models in speech recognition.

Foundations and Trends in Signal Processing, 2008.

Aravind Ganapathiraju, Jonathan Hamaker, Joseph Picone, Mark Ordowski, and George R Dod-

dington. Syllable-based large vocabulary continuous speech recognition. IEEE Transactions

on Speech and Audio Processing, 9(4):358–366, 2001.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The

Complete Book. Prentice Hall, 1999.

Susan C Gardstrom. Positive peer culture: A working definition for the music therapist. Music

Therapy Perspectives, 4(1):19–23, 1987.

Alexandru-Lucian Georgescu, Alessandro Pappalardo, Horia Cucu, and Michaela Blott. Perfor-

mance vs. hardware requirements in state-of-the-art automatic speech recognition. EURASIP

Journal on Audio, Speech, and Music Processing, 2021(1):1–30, 2021.



BIBLIOGRAPHY 162

Arnab Ghoshal, Pawel Swietojanski, and Steve Renals. Multilingual training of deep neural

networks. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 7319–7323. IEEE, 2013.

Rhonda Gibson, Charles F Aust, and Dolf Zillmann. Loneliness of adolescents and their choice

and enjoyment of love-celebrating versus love-lamenting popular music. Empirical Studies of

the Arts, 18(1):43–48, 2000.

John J Godfrey, Edward C Holliman, and Jane McDaniel. Switchboard: Telephone speech

corpus for research and development. In Acoustics, Speech, and Signal Processing, IEEE

International Conference on, volume 1, pages 517–520. IEEE Computer Society, 1992.

Raymond L Goldsworthy. Correlations between pitch and phoneme perception in cochlear

implant users and their normal hearing peers. Journal of the Association for Research in

Otolaryngology, 16(6):797–809, 2015.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint

arXiv:1211.3711, 2012.

Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural

networks. In International Conference on Machine Learning (ICML), 2014.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist

temporal classification: Labelling unsegmented sequence data with recurrent neural networks.

In International Conference on Machine learning (ICML), 2006.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and

signal processing, pages 6645–6649. IEEE, 2013.

Jean Westerman Gregg and Ronald C Scherer. Vowel intelligibility in classical singing. Journal

of Voice, 2006.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,

Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented

transformer for speech recognition. arXiv preprint arXiv:2005.08100, 2020.



BIBLIOGRAPHY 163

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in neural

machine translation. arXiv preprint arXiv:1503.03535, 2015.

Chitralekha Gupta, Haizhou Li, and Ye Wang. Automatic pronunciation evaluation of singing.

In Interspeech, 2018.

Chitralekha Gupta, Emre Yılmaz, and Haizhou Li. Automatic lyrics alignment and transcription

in polyphonic music: Does background music help? In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

Reinhold Haeb-Umbach and Hermann Ney. Linear discriminant analysis for improved large

vocabulary continuous speech recognition. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 13–16, 1992.

Kyu J Han, Jing Pan, Venkata Krishna Naveen Tadala, Tao Ma, and Dan Povey. Multistream

CNN for robust acoustic modeling. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6873–6877. IEEE, 2021.

Wei Han, Zhengdong Zhang, Yu Zhang, Jiahui Yu, Chung-Cheng Chiu, James Qin, Anmol Gu-

lati, Ruoming Pang, and Yonghui Wu. Contextnet: Improving convolutional neural networks

for automatic speech recognition with global context. arXiv preprint arXiv:2005.03191, 2020.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International

Conference on Machine Learning, pages 2596–2604. PMLR, 2019.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan

Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up

end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014.

Jens Kofod Hansen. Recognition of phonemes in a-cappella recordings using temporal patterns

and mel frequency cepstral coefficients. In 9th Sound and Music Computing Conference

(SMC), 2012.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint

arXiv:1606.08415, 2016.



BIBLIOGRAPHY 164

Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussallam. Spleeter: A fast

and efficient music source separation tool with pretrained models. Journal of Open Source

Software, 2020.

Hynek Hermansky. Multistream recognition of speech: Dealing with unknown unknowns.

Proceedings of the IEEE, 101(5):1076–1088, 2013.

Hynek Hermansky. Coding and decoding of messages in human speech communication:

Implications for machine recognition of speech. Speech Communication, 106:112–117, 2019.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural

networks for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):

1735–1780, 1997.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies, 2001.

Jack Hopkins and Douwe Kiela. Automatically generating rhythmic verse with neural networks.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), 2017.

Wei-Ning Hsu and James Glass. Extracting domain invariant features by unsupervised learning

for robust automatic speech recognition. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 5614–5618. IEEE, 2018.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 7132–7141, 2018.

Xia Hu, Lingyang Chu, Jian Pei, Weiqing Liu, and Jiang Bian. Model complexity of deep

learning: A survey. Knowledge and Information Systems, 63(10):2585–2619, 2021. URL

https://doi.org/10.1007/s10115-021-01605-0.

https://doi.org/10.1007/s10115-021-01605-0


BIBLIOGRAPHY 165

Jiawen Huang, Emmanouil Benetos, and Sebastian Ewert. Improving lyrics alignment through

joint pitch detection. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2022.

Jui-Ting Huang, Jinyu Li, and Yifan Gong. An analysis of convolutional neural networks for

speech recognition. In 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4989–4993. IEEE, 2015.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning

deep structured semantic models for web search using clickthrough data. In ACM International

Conference on Information & Knowledge Management, pages 2333–2338, 2013.

Eric J Humphrey, Sravana Reddy, Prem Seetharaman, Aparna Kumar, Rachel M Bittner, Andrew

Demetriou, Sankalp Gulati, Andreas Jansson, Tristan Jehan, Bernhard Lehner, et al. An

introduction to signal processing for singing-voice analysis: High notes in the effort to

automate the understanding of vocals in music. IEEE Signal Processing Magazine, 36(1):

82–94, 2018.

Karim M Ibrahim, David Grunberg, Kat Agres, Chitralekha Gupta, and Ye Wang. Intelligibility

of sung lyrics: A pilot study. In International Society for Music Information Retrieval

Conference (ISMIR), 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International Conference on Machine Learning (ICML),

pages 448–456. PMLR, 2015.

Randolph B Johnson, David Huron, and Lauren Collister. Music and lyrics interactions and their

influence on recognition of sung words: An investigation of word frequency, rhyme, metric

stress, vocal timbre, melisma, and repetition priming. Empirical Musicology Review, 2013.

Naoyuki Kanda, Yusuke Fujita, and Kenji Nagamatsu. Lattice-free state-level minimum bayes

risk training of acoustic models. In Interspeech, pages 2923–2927, 2018.

Dairoku Kawai, Kazumasa Yamamoto, and Seiichi Nakagawa. Lyric recognition in monophonic



BIBLIOGRAPHY 166

singing using pitch-dependent DNN. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2017.

Kazuya Kawakami. Supervised sequence labelling with recurrent neural networks. Ph. D. thesis,

2008.

Patrick Kenny, Gilles Boulianne, and Pierre Dumouchel. Eigenvoice modeling with sparse

training data. IEEE Transactions on Speech and Audio Processing, 13(3):345–354, 2005.

Veton Këpuska and Gamal Bohouta. Comparing speech recognition systems (Microsoft API,

Google API and CMU Sphinx). Int. J. Eng. Res. Appl, 7(03):20–24, 2017.

Nikhil Ketkar. Introduction to pytorch. In Deep Learning with Python, pages 195–208. Springer,

2017a.

Nikhil Ketkar. Introduction to Keras. In Deep Learning with Python, pages 97–111. Springer,

2017b.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.

The Annals of Mathematical Statistics, pages 462–466, 1952.

Mirjam Killer, Sebastian Stüker, and Tanja Schultz. Grapheme based speech recognition. In

Interspeech, 2003.

Soohwan Kim, Sangchun Ha, and Soyoung Cho. Openspeech: Open-source toolkit for end-to-

end speech recognition. https://github.com/openspeech-team/openspeech,

2021.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint CTC-attention based end-to-end speech

recognition using multi-task learning. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 4835–4839. IEEE, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Reinhard Kneser and Hermann Ney. Improved backing-off for n-gram language modeling. In

International Conference on Acoustics, Speech, and Signal processing (ICASSP). IEEE, 1995.

https://github.com/openspeech-team/openspeech


BIBLIOGRAPHY 167

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. Audio augmentation for

speech recognition. In Sixteenth Annual Conference of the International Speech Communica-

tion Association, 2015.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev Khudanpur. A

study on data augmentation of reverberant speech for robust speech recognition. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep

convolutional neural networks. Advances in Neural Information Processing Systems, 25:

1097–1105, 2012.

Anna M Kruspe. Training phoneme models for singing with ‘songified’ speech data. In

International Society for Music Information Retrieval Conference (ISMIR), 2015.

Anna M Kruspe. Bootstrapping a system for phoneme recognition and keyword spotting in

unaccompanied singing. In International Society for Music Information Retrieval Conference

(ISMIR), 2016.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg,

Samuel Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, et al. Nemo: A toolkit for

building AI applications using neural modules. arXiv preprint arXiv:1909.09577, 2019.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple

subword candidates. arXiv preprint arXiv:1804.10959, 2018.

Vera Kurkova. Constructive lower bounds on model complexity of shallow perceptron networks.

Neural Computing and Applications, 29(7):305–315, 2018.

Paul Lamere, Philip Kwok, Evandro Gouvea, Bhiksha Raj, Rita Singh, William Walker, Manfred

Warmuth, and Peter Wolf. The CMU SPHINX-4 speech recognition system. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 1,

pages 2–5, 2003.

Duc Le, Xiaohui Zhang, Weiyi Zheng, Christian Fügen, Geoffrey Zweig, and Michael L Seltzer.

From senones to chenones: Tied context-dependent graphemes for hybrid speech recognition.



BIBLIOGRAPHY 168

In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages

457–464. IEEE, 2019.

R Leanderson, J Sundberg, and C Von Euler. Breathing muscle activity and subglottal pressure

dynamics in singing and speech. Journal of Voice, 1(3):258–261, 1987.

Akinobu Lee, Tatsuya Kawahara, and Kiyohiro Shikano. Julius - an open source real-time large

vocabulary recognition engine. In EUROSPEECH, pages 1691,1694, 2001.

Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. 163(4):845–848, 1965.

Daniel J Levitin. This Is Your Brain on Music: The Science of a Human Obsession. Penguin,

2006.

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Jonathan M Cohen,

Huyen Nguyen, and Ravi Teja Gadde. Jasper: An end-to-end convolutional neural acoustic

model. arXiv preprint arXiv:1904.03288, 2019a.

Jinyu Li. Recent advances in end-to-end automatic speech recognition. arXiv preprint

arXiv:2111.01690, 2021.

Jinyu Li, Rui Zhao, Zhong Meng, Yanqing Liu, Wenning Wei, Sarangarajan Parthasarathy,

Vadim Mazalov, Zhenghao Wang, Lei He, Sheng Zhao, et al. Developing RNN-T models

surpassing high-performance hybrid models with customization capability. arXiv preprint

arXiv:2007.15188, 2020.

Ruizhi Li, Xiaofei Wang, Sri Harish Mallidi, Shinji Watanabe, Takaaki Hori, and Hynek

Hermansky. Multi-stream end-to-end speech recognition. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 28:646–655, 2019b.

Yukun Li, Emir Demirel, Polina Proutskova, and Simon Dixon. Phoneme-informed note

segmentation of monophonic vocal music. In 2nd Workshop on NLP for Music and Audio

(NLP4MusA 2021), 2021.

Chien-Feng Liao, Yu Tsao, Hung-Yi Lee, and Hsin-Min Wang. Noise adaptive speech enhance-

ment using domain adversarial training. arXiv preprint arXiv:1807.07501, 2018.



BIBLIOGRAPHY 169

Björn Lindblom and Johan Sundberg. The human voice in speech and singing. In Springer

handbook of acoustics, pages 703–746. Springer, 2014.

Xunying Liu, Xie Chen, Yongqiang Wang, Mark JF Gales, and Philip C Woodland. Two efficient

lattice rescoring methods using recurrent neural network language models. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 24(8):1438–1449, 2016.

Yi Liu, Liang He, Jia Liu, and Michael T Johnson. Speaker embedding extraction with phonetic

information. arXiv preprint arXiv:1804.04862, 2018.

Andrej Ljolje, Fernando Pereira, and Michael Riley. Efficient general lattice generation and

rescoring. In Sixth European Conference on Speech Communication and Technology, 1999.

Liang Lu, Xingxing Zhang, and Steve Renals. On training the recurrent neural network encoder-

decoder for large vocabulary end-to-end speech recognition. 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5060–5064, 2016.

Raymond AR MacDonald, David J Hargreaves, and Dorothy Miell. Musical identities. OUP

Oxford, 2002.

Sri Harish Mallidi and Hynek Hermansky. Novel neural network based fusion for multi-

stream ASR. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5680–5684. IEEE, 2016a.

Sri Harish Reddy Mallidi and Hynek Hermansky. A framework for practical multistream ASR.

In Interspeech, pages 3474–3478, 2016b.

Matthias Mauch and Simon Dixon. pYIN: A fundamental frequency estimator using probabilistic

threshold distributions. In 2014 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2014.

Matthias Mauch, Hiromasa Fujihara, and Masataka Goto. Integrating additional chord informa-

tion into HMM-based lyrics-to-audio alignment. IEEE Transactions on Audio, Speech, and

Language Processing, 2011.



BIBLIOGRAPHY 170

Philip M McCarthy. An Assessment of the Range and Usefulness of Lexical Diversity Measures

and the Potential of the Measure of Textual, Lexical Diversity (MTLD). PhD thesis, The

University of Memphis, 2005.

Iain A McCowan, Darren Moore, John Dines, Daniel Gatica-Perez, Mike Flynn, Pierre Wellner,

and Hervé Bourlard. On the use of information retrieval measures for speech recognition

evaluation. Technical report, Technical Report, IDIAP, 2004.

Annamaria Mesaros and Tuomas Virtanen. Automatic recognition of lyrics in singing. EURASIP

Journal on Audio, Speech, and Music Processing, 2010a.

Annamaria Mesaros and Tuomas Virtanen. Recognition of phonemes and words in singing.

In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,

2010b.

Gabriel Meseguer-Brocal and Geoffroy Peeters. Content based singing voice source separa-

tion via strong conditioning using aligned phonemes. In International Society for Music

Information Retrieval Conference (ISMIR), 2020.

Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and Geoffroy Peeters. DALI: A large dataset of

synchronized audio, lyrics and notes, automatically created using teacher-student machine

learning paradigm. In International Society for Music Information Retrieval Conference

(ISMIR), 2019.

Gabriel Meseguer-Brocal, Rachel Bittner, Simon Durand, and Brian Brost. Data cleansing with

contrastive learning for vocal note event annotations. arXiv preprint arXiv:2008.02069, 2020.

Nima Mesgarani, Samuel Thomas, and Hynek Hermansky. A multistream multiresolution

framework for phoneme recognition. In Eleventh Annual Conference of the International

Speech Communication Association, 2010.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in

speech recognition. Computer Speech & Language, 2002.

Todd K Moon. The expectation-maximization algorithm. IEEE Signal Processing Magazine,

13(6):47–60, 1996.



BIBLIOGRAPHY 171

Omar Caballero Morales and Stephen Cox. Modelling confusion matrices to improve speech

recognition accuracy, with an application to dysarthric speech. In Eighth Annual Conference

of the International Speech Communication Association, 2007.

Andrew Cameron Morris, Viktoria Maier, and Phil Green. From WER and RIL to MER and

WIL: Improved evaluation measures for connected speech recognition. In Eighth International

Conference on Spoken Language Processing, 2004.

In Jae Myung. The importance of complexity in model selection. Journal of Mathematical

Psychology, 44(1):190–204, 2000.

Adrian North and David Hargreaves. The Social and Applied Psychology of Music. OUP Oxford,

2008.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-

Dickstein. Sensitivity and generalization in neural networks: An empirical study. arXiv

preprint arXiv:1802.08760, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,

and Michael Auli. Fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint

arXiv:1904.01038, 2019.

Caroline Palmer and Michael H Kelly. Linguistic prosody and musical meter in song. Journal

of memory and language, 31(4):525–542, 1992.

Jing Pan, Joshua Shapiro, Jeremy Wohlwend, Kyu J Han, Tao Lei, and Tao Ma. ASAPP-ASR:

Multistream CNN and self-attentive SRU for SOTA speech recognition. In Interspeech, 2020.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, 2009.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via

transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2010.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR

corpus based on public domain audio books. In 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.



BIBLIOGRAPHY 172

Hilman F Pardede, Asri R Yuliani, and Rika Sustika. Convolutional neural network and feature

transformation for distant speech recognition. International Journal of Electrical & Computer

Engineering (2088-8708), 8(6), 2018.

Bernardino Romera Paredes, Andreas Argyriou, Nadia Berthouze, and Massimiliano Pontil.

Exploiting unrelated tasks in multi-task learning. In Artificial Intelligence and Statistics,

pages 951–959. PMLR, 2012.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk,

and Quoc V Le. Specaugment: A simple data augmentation method for automatic speech

recognition. arXiv preprint arXiv:1904.08779, 2019.

Daniel S Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng Chiu, Bo Li, Yonghui Wu, and

Quoc V Le. Improved noisy student training for automatic speech recognition. arXiv preprint

arXiv:2005.09629, 2020.

Vishal Passricha and Rajesh Kumar Aggarwal. Convolutional Neural Networks for Raw Speech

Recognition. IntechOpen, 2018.

Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. A time delay neural network

architecture for efficient modeling of long temporal contexts. In 16th Annual Conference of

the International Speech Communication Association, 2015.

Terry F Pettijohn and Donald F Sacco Jr. The language of lyrics: An analysis of popular

Billboard songs across conditions of social and economic threat. Journal of Language and

Social Psychology, 28(3):297–311, 2009a.

Terry F Pettijohn and Donald F Sacco Jr. Tough times, meaningful music, mature performers:

Popular Billboard songs and performer preferences across social and economic conditions in

the USA. Psychology of Music, 37(2):155–179, 2009b.

Sarah F Poissant, Nathaniel A Whitmal III, and Richard L Freyman. Effects of reverberation

and masking on speech intelligibility in cochlear implant simulations. The Journal of the

Acoustical Society of America, 119(3):1606–1615, 2006.



BIBLIOGRAPHY 173

Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhuvana Ramabhadran, George Saon, and

Karthik Visweswariah. Boosted MMI for model and feature-space discriminative training.

In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pages

4057–4060. IEEE, 2008.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra

Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, and Petr Schwarz. The Kaldi speech

recognition toolkit. In IEEE - Workshop on Automatic Speech Recognition and Understanding.

IEEE Signal Processing Society, 2011.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal Manohar, Xingyu

Na, Yiming Wang, and Sanjeev Khudanpur. Purely sequence-trained neural networks for

ASR based on lattice-free MMI. In Interspeech, 2016.

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi, and

Sanjeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural networks.

In Interspeech, 2018a.

Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and Sanjeev Khudanpur. A time-

restricted self-attention layer for ASR. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 5874–5878. IEEE, 2018b.

Kaila C Putter, Amanda E Krause, and Adrian C North. Popular music lyrics and the covid-19

pandemic. Psychology of Music, 2021.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition. Prentice-Hall,

Inc., 1993.

Fika Hastarita Rachman, Riyanarto Sarno, and Chastine Fatichah. Music emotion classification

based on lyrics-audio using corpus based emotion. International Journal of Electrical &

Computer Engineering, 2018.
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