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ABSTRACT

This dissertation focuses on the problem of confounding in the design and analysis of mu-
sic classification experiments. Classification experiments dominate evaluation of music
content analysis systems and methods, but achieving high performance on such experi-
ments does not guarantee systems properly address the intended problem. The research
presented here proposes and illustrates modifications to the conventional experimental
pipeline, which aim at improving the understanding of the evaluated systems and meth-
ods, facilitating valid conclusions on their suitability for the target problem.

Firstly, multiple analyses are conducted to determine which cues scattering-based sys-
tems use to predict the annotations of the GTZAN music genre collection. In-depth sys-
tem analysis informs empirical approaches that alter the experimental pipeline. In par-
ticular, deflation manipulations and targeted interventions on the partitioning strategy,
the learning algorithm and the frequency content of the data reveal that systems using
scattering-based features exploit faults in GTZAN and previously unknown information
at inaudible frequencies.

Secondly, the use of interventions on the experimental pipeline is extended and sys-
tematised to a procedure for characterising effects of confounding information in the
results of classification experiments. Regulated bootstrap, a novel resampling strategy,
is proposed to address challenges associated with interventions dealing with partition-
ing. The procedure is demonstrated on GTZAN , analysing the effect of artist replication
and infrasonic information on performance measurements using a wide range of system-
construction methods.

Finally, mathematical models relating measurements from classification experiments
and potentially contributing factors are proposed and discussed. Such models enable de-
composing measurements into contributions of interest, which may differ depending on
the goals of the study, including those from pipeline interventions. The adequacy for clas-
sification experiments of some conventional assumptions underlying such models is also
examined.

The reported research highlights the need for evaluation procedures that go beyond
performance maximisation. Accounting for the effects of confounding information using
procedures grounded on the principles of experimental design promises to facilitate the
development of systems that generalise beyond the restricted experimental settings.
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MFCC Mel-Frequency Cepstral Coefficients

MGR Music Genre Recognition

NPR Near-Perfect Reconstruction (filterbank)
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dim(·) Dimensionality
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INTRODUCTION

1.1 Motivation and Goals

Artificial Intelligence (AI) is taking the world by storm. News of formidable achievements

by artificial systems breaks on an almost daily basis. From defeating human champions

in complex games1 to self-driving cars,2 from writing poetry3 to the discovery of novel

scientific theories,4 no field seems too challenging. Music is no exception. Not only do

streaming services increasingly rely on AI to tailor recommendations for their users based

on their taste and listening habits,5 but some companies also offer automatically com-

posed pieces on demand.6 These are all undoubtedly extraordinary feats, and extraordi-

nary feats demand extraordinary proof.

Much of the progress witnessed in recent times can be attributed to the widespread

adoption of data-driven approaches instead of the more traditional rule-based agents. Al-

gorithms that learn directly from data uncover complex patterns far beyond any human’s

capability. As a result, however, the internal models such algorithms create are similarly

complex for humans to comprehend, so the assessment of their success is often limited to

1https://deepmind.com/research/case-studies/alphago-the-story-so-far
2https://waymo.com/
3https://www.theguardian.com/technology/2016/may/17/googles-ai-write-poetry-stark-

dramatic-vogons
4https://now.tufts.edu/news-releases/planarian-regeneration-model-discovered-

artificial-intelligence
5https://www.androidpit.com/music-streaming-and-artificial-intelligence
6https://futurism.com/a-new-ai-can-write-music-as-well-as-a-human-composer
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whether they generate expected outputs given particular inputs. One either assumes that

the means to achieve such outputs, although obscure, must match what an intelligent

agent would have performed, or accepts that any means, no matter how alien, is equally

valid. A common argument for this latter position defends that engineers managed to

make planes fly only when they stopped trying to imitate the way birds fly — alternative

means may yield desired outcomes.

Nevertheless, an increasing number of authors have realised that data-driven models

may appear successful by exploiting cues that have little to do with the intended prob-

lem, but are incidentally associated with the target outcomes within the evaluation en-

vironment. Learning algorithms take advantage of any pattern they uncover in the data,

irrespective of whether such patterns would appear in real-life scenarios. Presumably ir-

relevant changes in the input data might cause apparently successful trained models to

change their outputs in unexpected ways. Articles in high-impact journals, such as the one

Heaven (2019) recently published in Nature, demonstrate an increasing concern about the

consequences of this phenomenon.

Music data poses particularly interesting challenges for artificial systems and their

evaluation. Since music is an inherently human construct, creating algorithms capable of

describing the contents of an audio file using musical concepts similarly to a human sug-

gests a sophisticated intelligence. Grasping musical concepts not only often requires ded-

icated education, but may also depend on cultural and social cues external to the sound

itself. Similar to other fields, some believe that generating outcomes indistinguishable

from those from humans evidences sufficient understanding of such musical concepts.

Others, such as Wiggins (2009) and Widmer (2016), defend that only methods that adhere

to specific cognitive processes and musical knowledge may lead to musical intelligence.

In practice, the answer may lie in between, with some use cases requiring different ap-

proaches. Conventional evaluation practices, however, fail to provide the information

necessary for developers, researchers and users to assess whether systems function in a

manner suitable for their intended use case.

The present dissertation discusses and addresses some of the most pressing issues in

the evaluation of music analysis systems and methods. Suitable evaluation is fundamen-

tal for any discipline, enabling to judge the success of proposed solutions, highlighting
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promising paths and contrasting them with alternatives, as well as to keep track of how

the discipline progresses. Unsuitable or insufficient evaluation, on the other hand, may

lead to completely misguided research paths or dead ends. Identifying the main limita-

tions of the conventional evaluation practices and proposing alternatives that overcome

such limitations is paramount. In particular, the research presented in this dissertation

targets the following goals:

1. To develop and showcase a systematic evaluation methodology that enables to un-

cover the reasons behind the performance of music analysis systems, providing

valid and relevant information to assess their suitability to specific use cases. Such

methodology will require in-depth analyses and domain knowledge to inform suit-

ably targeted experiments, grounded on the formal principles of experimental de-

sign. Moreover, the methodology should allow comparisons between alternative

systems and methods on their reliance upon particular sources of information.

This is essential to distinguish actual solutions from those that only appear to work

within the confined experimental setting.

2. To bridge the gap between the language and tools of the statistical Design of Exper-

iments and the evaluation machinery employed to assess systems and methods for

the automatic analysis of music data. Despite being vital to reach valid conclusions,

music analysis research largely lacks a formal experimental design framework. The

present dissertation thus intends to facilitate the translation between experimental

practices in the discipline and the concepts and mathematical formalism of statis-

tical Design of Experiments. This includes the identification of contributing fac-

tors and the formulation of models that relate them for the analysis of experimental

measurements.

Addressing these goals should provide a solid foundation for future empirical studies

conducted in the discipline and other applied Machine Learning fields, and, hopefully,

facilitate the development of truly impactful solutions.

1.2 Structure of this Dissertation

The remainder of this dissertation is grouped into two main parts plus an overall conclu-

sion. The first part reviews the background knowledge related to the topic of the present
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dissertation. It comprises the following chapters:

Chapter 2 reviews the goals of Music Content Analysis research and describes the main

evaluation practices employed in the discipline, highlighting their drawbacks and

presenting solutions proposed in the literature.

Chapter 3 introduces the fundamental principles and tools of statistical Design of Experi-

ments, presents a particular approach known as the Calculus of Factors, and reviews

common means to express and analyse the results of experiments in the evaluation

of learning algorithms. Additionally, Appendix A includes concrete examples of the

Calculus of Factors approach.

The second part of this dissertation reports the specific contributions achieved

through original research. It comprises the following chapters:

Chapter 4 describes multiple analyses conducted to determine which cues are used by

systems based on a particular feature representation (called the scattering trans-

form) to predict the annotations of the GTZAN music genre collection. In-depth

system analysis informs empirical approaches that alter the experimental pipeline

in two forms: deflation manipulations and targeted interventions. These reveal that

such systems exploit faults in the collection and previously unknown information

at inaudible frequencies.

Chapter 5 extends and systematises the use of interventions on the experimental

pipeline to a procedure for characterising effects of confounding information in the

results of classification experiments. Regulated bootstrap, a novel resampling strat-

egy, is proposed to address challenges associated with interventions dealing with

partitioning. The procedure is demonstrated on GTZAN , analysing the effect of

artist replication and infrasonic information on performance measurements using

a wide range of system-construction methods.

Chapter 6 proposes mathematical models that relate measurements from classification

experiments to potentially contributing factors. Such models enable the decompo-

sition of measurements into contributions of interest, which may differ depending

on the goals of the study, including those from pipeline interventions. The suit-

ability for classification experiments of some conventional assumptions underlying
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such models is also examined. Additionally, Appendix B develops an illustrative ex-

ample analysis.

Finally, Chapter 7 provides concluding remarks and suggests future research paths

following the work presented in this dissertation.

1.3 Contributions and Collaborations

Much of the research reported in this dissertation has been previously published in peer-

reviewed venues, and is the result of joint efforts with collaborators. The following lists

such publications and their corresponding contributions, and details who conducted

each part of the work.

� RODRÍGUEZ-ALGARRA, F., B. L. Sturm, and H. Maruri-Aguilar (2016). “Analysing

Scattering-Based Music Classification Systems: Where’s the Music?” In Proc. 17th

International Society for Music Information Retrieval Conference (ISMIR’16). New

York City, NY, USA, pp. 344–350

This article largely corresponds with the study reported in Ch. 4, with the exception

of the deflation analyses, which were not included in the paper. The main contribu-

tions of the study are the following:

(i) An in-depth analysis of a state-of-the-art approach for automatic Music Genre

Recognition (MGR).

(ii) An illustration of the use of non-conventional evaluation procedures, namely

deflation and intervention experiments, to illuminate the reasons behind per-

formance of prediction systems.

(iii) Evidence that MGR systems based on the state-of-the-art approach exploit

faults of the evaluation collection to perform predictions, including the

previously-unknown presence of information at inaudible frequencies.

I (Francisco Rodríguez-Algarra) performed the system analysis, assisted by Dr Bob

L. Sturm. I designed, implemented and conducted the experiments, analysed the

results, and wrote the article. Dr Bob L. Sturm supervised and edited the writing. Dr

Hugo Maruri-Aguilar provided advice and proofread the text.

� RODRÍGUEZ-ALGARRA, F., B. L. Sturm, and S. Dixon (2019). “Characterising

Confounding Effects in Music Classification Experiments through Interventions”.
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Transactions of the International Society for Music Information Retrieval, 2(1),

pp. 52–66

This article closely matches the research reported in Ch. 5, which includes the fol-

lowing contributions:

(i) A discussion regarding the concept of confounding in applied Machine Learn-

ing scenarios, and a proposal about its usage.

(ii) A systematic procedure for the analysis of the effects of confounding in the

evaluation of applied Machine Learning systems and methods.

(iii) A resampling strategy specifically designed to address certain types of con-

founding factors.

(iv) An analysis of the effects of confounding factors and their interactions on eval-

uations using a widely employed benchmarking collection for MGR.

I developed the procedure, defined the regulated bootstrap algorithm, designed,

implemented and conducted the case study, analysed the results, and wrote the ar-

ticle. Dr Bob L. Sturm and Prof. Simon Dixon supervised and edited the writing.

Finally, the research reported in Ch. 6 remains unpublished at the time of writing. The

main contributions of this study are the following:

(i) A translation of the language and tools of statistical Design of Experiments to the

analysis of measurements from applied Machine Learning classification experi-

ments, including illustrations of procedures from the so-called Calculus of Factors

approach to experimental design.

(ii) A thorough discussion of the suitability of different structural models for the analy-

sis of measurements from classification experiments in diverse scenarios.

(iii) An assessment of how introducing interventions in classification experiments im-

pacts the analysis of their measurements.

(iv) A proposal for the replacement of linear with logistic structural models to better suit

the data obtained from classification experiments.

I proposed the models, conducted the analysis and wrote the text. Dr Bob L. Sturm and

Prof. Simon Dixon supervised and edited the writing. Dr Hugo Maruri-Aguilar provided

advice and proofread the text.
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2
EVALUATION IN MUSIC CONTENT ANALYSIS

RESEARCH

This chapter reviews the goals of Music Content Analysis (MCA) research and the eval-

uation practices often employed in the field. Evaluation of any kind will only be appro-

priate as long as it provides information aligned with the purposes of the study in par-

ticular and the discipline in general. No discussion about evaluation methodologies can

thus succeed without first understanding which goals the objects to be evaluated aim to

achieve. It is paramount to determine which are such purposes in the field of interest to

assess whether current evaluation methodologies provide sufficiently valid and reliable

information, and which improvements might be necessary otherwise. Since the ultimate

goals of each particular study might widely differ, Sec. 2.1 first considers which ones ap-

pear most important and delimits the kinds of studies this dissertation covers. Sec. 2.2

then describes evaluation paradigms used in such studies, of which the most widely ac-

cepted one is detailed in Sec. 2.3. Sec. 2.4 reports the evaluation of a family of MCA systems

from the literature, upon which a case study is built later in this dissertation. Sec. 2.5 re-

views the main drawbacks of conventional evaluation practices and some ways forward

proposed in the literature. Finally, Sec. 2.6 briefly summarises this review and discusses

27
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its main implications for the research reported in this dissertation.

2.1 Brief Overview of Music Content Analysis Research

This section describes the goals of MCA research, which are first contextualised by briefly

reviewing the aims of the broader Music Information Retrieval (MIR) discipline. The par-

ticularities of MCA often highlighted in the literature lead to a formal representation of the

systems developed in the discipline that is later used throughout this dissertation.

2.1.1 Music Information Retrieval

Broadly speaking, MIR research aims to develop technologies that connect users (listen-

ers, composers, scholars, etc.) with the music, and information about music, that satisfies

their particular needs (Casey et al., 2008). MIR is a relatively young multidisciplinary field,

usually considered to have its starting point in the International Symposium for Music In-

formation Retrieval (ISMIR) held in 2000. One may trace its roots further back to computer

music research (Roads, 1996), but its consolidation as a discipline seems to be linked to

the vast amount of musical data that the Internet made widely available. This demands

tools that facilitate managing such data.

The data on which MIR focuses comes from various sources, which are usually

grouped in two categories (Schedl et al., 2014): music content and music context. Music

content largely refers to information that can be extracted directly from the audio signal.

Some authors, however, also include symbolic sources such as scores as belonging to the

music content space (Casey et al., 2008). Musical facets such as melody, harmony, rhythm,

timbre, and so on, naturally fit in this category. Conversely, music context comprises as-

pects related to the music item not intrinsically included in the audio signal or its notated

representation. This includes the biography of the artist, the cover art of the album, and

the position of the track in the charts.

According to Serra et al. (2013), MIR centers on developing methodologies for process-

ing, representing and understanding music digital data. They seem to agree with Herrera

et al. (2009) in considering pure “retrieval” applications secondary in the MIR literature

despite the conventional name of the discipline. In this sense, they propose using the

alternative denomination Music Information Research.
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Schedl et al. (2014), on the other hand, consider that the broad areas of concern of MIR

research are (i) the extraction and inference of meaningful features from music, (ii) the

indexing of music using these features, and (iii) the development of search and retrieval

schemes. They thus place final user applications of the methodologies developed within

the community as core targets. In this sense, Schedl et al. (2013) argue that user prop-

erties (characteristics of the listener, such as their musical preferences) and user context

(dynamic aspects of the current listening process, such as the listener’s location), deserve

as much attention as music content and context information.

The extraction of “meaningful features” that Schedl et al. (2014) mentions is key to au-

tomatic music analysis (or “description” (Sturm et al., 2014)). This aligns with the devel-

opment of “representations” to facilitate “understanding” that Serra et al. (2013) describe.

Much of MIR addresses this goal, especially from audio data.

2.1.2 Music Content Analysis

Music Content Analysis (MCA) is the branch of MIR concerned with the extraction of infor-

mation solely from the audio recordings of musical pieces. Other denominations for the

same body of research include Music Content Description (Schedl et al., 2014) or Content-

Based MIR (Casey et al., 2008). The study of audio data comprises a large, if not the largest,

part of the research conducted by the MIR community (Serra et al., 2013), as a quick review

of the works presented at ISMIR clearly reveals.

MCA studies target a range of musical, cultural and cognitive concepts, whose repre-

sentations might be the ultimate goals themselves or used as intermediate annotations for

various applications. These applications include music recommendation (Celma, 2010),

collection organisation (Stober, 2013), and music practice enhancement tools, such as tu-

toring systems (Dittmar et al., 2012).

MCA systems generate representations of target concepts automatically, as opposed to

the manual annotation adopted by some services, such as Pandora.1 Hiring human labour

is expensive, which makes manual annotation only feasible when dealing with limited

music collections. The number of users and size of music collections would often lead

1http://www.pandora.com

http://www.pandora.com
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to prohibitive costs both in monetary and temporal terms if one relied solely on human

effort.

The challenge in creating MCA systems lies to a large extent on the lack of unambigu-

ous links between what is measurable from the audio samples and how humans expe-

rience music. The former, usually referred to as low-level features or descriptors, can

be obtained through the application of more or less simple mathematical formulae, of-

ten developed within the context of Signal Processing research (Müller et al., 2011). This

generates deterministic representations that computers exploit effortlessly but humans

struggle to interpret (Serra et al., 2013).

The lower levels of abstraction provide the building blocks for descriptors of both mid-

and high-level concepts. The boundary between these is somehow arbitrary, with some

concepts belonging to one or the other depending on the particular application consid-

ered. Nevertheless, researchers often agree on regarding note pitches and onset locations

as mid-level features, placing concepts human employ for casual conversation about mu-

sic, such as genre (Sturm, 2014d) or emotion (Yang and Chen, 2012), at the top level.

Mapping lower level information becomes increasingly complex as the target concepts

approach human understanding levels, with many only feasibly addressed through Ma-

chine Learning approaches. Many studies focus on assessing combinations of low-level

features and Machine Learning algorithms for their suitability to capture and represent

high-level concepts. This is the case of Andén and Mallat (2014), who propose and eval-

uate Support Vector Machine (SVM) models trained on features derived from the Scat-

tering Transform (Mallat, 2012) for addressing music genre recognition. The case study

described in later chapters builds upon this work.

2.1.3 Formalising Music Content Analysis Problems and Systems

This dissertation largely focuses on methodologies to evaluate MCA systems that generate

descriptors of high-level concepts from audio signals of music pieces. Expressing formally

how such systems work helps disambiguate the problem they address. Sturm et al. (2014)

propose one such formalisation, which is represented schematically in Fig. 2.1 and de-

scribed here.2

2Some symbols introduced here differ from those in previous publications (i.e., Rodríguez-Algarra et al.,
2019; Sturm et al., 2014) to avoid clashes with well-established notation in the DoE literature.
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Figure 2.1: Schematic representation of a Music Content Analysis (MCA) system, adapted
from Rodríguez-Algarra et al. (2016). Θ is a music universe, with θ an element of that
universe; RΘ is a recording universe; UF,A′ is a semantic feature universe, defined by a
vocabulary of features F and semantic rules A′; UV,A is a semantic universe, defined by a
vocabulary of tokens V and semantic rules A. s is an MCA system, composed of a feature
extractor e and a predictor p.

The main goal of an MCA problem is to build a system s that addresses the use case

specified by a music universe Θ, a tangible music recording universe RΘ, a semantic uni-

verse UV,A , and a set of success criteria. Θ comprises all music pieces of interest for the

problem, such as Viennese music compositions from the late 18th Century; RΘ comprises

concrete realisations of the elements of Θ that follow particular specifications, such as

mono audio recordings in wav format. As Fig. 2.1 shows, each element in Θ may relate

to multiple elements in RΘ. This is the case if RΘ includes recordings of various perfor-

mances of the same piece, multiple excerpts sliced from the same recording, or even the

same excerpt exposed to diverse signal processing transformations.

The semantic universe UV,A determines the possible descriptions of the elements of

RΘ with respect to the concept (or concepts) of interest. It can be defined as:

UV,A := {v ∈Vn | n ∈N∧ A(v)} (2.1)

this is, those sequences v of tokens in the vocabulary V that satisfy a particular semantic

rule of the form A : Vn → {T,F}. To put it simply, UV,A represents all acceptable de-

scriptions, which may involve joining multiple tokens for some problems. This is clearly

the case in autotagging (Bertin-Mahieux et al., 2008), where multiple labels of distinct

nature associate with each instance, but may also apply in other less evident situations.

For instance, if the tokens in V correspond to artist names, then acceptable descriptions

should account for possible collaborations between them and permit multiple tokens per
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instance. Regarding the hypothetical example of Viennese music during late 18th Cen-

tury introduced above, collaborations were extremely rare but not unheard of — W. A.

Mozart apparently collaborated with J. M. Haydn and A. C. Adlgasser to compose “Die

Schuldigkeit des ersten Gebots”.3 For simplicity of illustration, however, we consider

in what follows descriptions formed by single tokens, such as “W. A. Mozart” and “F. J.

Haydn”.

An MCA system s is a map from RΘ to UV,A , i.e., s : RΘ → UV,A , such that s(rθ) = v ,

with rθ ∈RΘ a recording, and v an acceptable description according to the rules A defines.

In other words, s receives as input a music recording and outputs a semantic label that

describes it according to certain criteria. For instance, from recordings in RΘ as in the

example above, MCA systems may attempt to identify whether each piece was composed

by “W. A. Mozart”, “F. J. Haydn” or another member of UV,A solely from the audio signal.

We can decompose the map s into two maps, an extractor e :RΘ → UF,A′ and a predic-

tor p :UF,A′ → UV,A , where UF,A′ indicates the semantic feature universe defined by a vo-

cabulary of features F and semantic rules A′ : F → {T,F}. Describing the contents of a mu-

sic recording with respect to a concept of interest thus involves selecting and computing

which signal-level information e should obtain, as well as determining how to integrate

such information through the map defined by p — either a “classifier” or “regressor” —

to the conceptual domain defined by UV,A . For instance, an s may attempt to estimate

the harmonic content of recordings in RΘ using an e that generates Harmonic Pitch Class

Profile (HPCP) representations (Gómez, 2006), and then feeding such representations to a

p that links particular harmonic patterns with the composer tokens in UV,A .

This formalisation does not force any specific way of constructing systems, but it is

hereinafter assumed that p comes from the training of a supervised Machine Learning

algorithm, since implementations of this kind dominate the literature. Particularly when

targeting mid-level concepts, p can be defined instead as a set of explicit rules derived

from expert knowledge. As the level of abstraction increases, though, researchers tend

to rely on data-driven approaches. This means many solutions model representations of

a particular concept through fitting a learning algorithm ` on a sample of annotated in-

stances L⊂UV,A×UF,A′ . p thus originates from a learning process, i.e., p(·) = `(· |L). The

3https://en.wikipedia.org/wiki/Die_Schuldigkeit_des_ersten_Gebots

https://en.wikipedia.org/wiki/Die_Schuldigkeit_des_ersten_Gebots
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literature in the discipline explores a wide range of learning algorithms to this end, from

Nearest Neighbours and Gaussian Mixture Models (e.g., Tzanetakis and Cook, 2002) to

Support Vector Machines (e.g., Andén and Mallat, 2014) and Neural Networks (e.g., Costa

et al., 2017), among others.

Conventionally, predictors receive as input representations derived from explicitly en-

gineered (or “handcrafted”) audio features, but it is becoming increasingly popular to rely

on end-to-end deep learning architectures where e is implicit (Humphrey et al., 2013).

Handcrafted features may come from a standard set used across domains (e.g., Bogdanov

et al., 2013; McFee et al., 2015b; Peeters, 2004) or be tailored for the specific problem (e.g.,

Gómez, 2006). End-to-end architectures remove the need for selecting or designing fea-

ture representations, and appear to achieve comparable or superior performance to con-

ventional approaches in some domains (e.g., Korzeniowski and Widmer, 2017; Pons et al.,

2018; Sigtia and Dixon, 2014).

2.2 Evaluation Paradigms in Music Content Analysis Research

Conducting proper evaluation is essential to determine whether developed MCA systems

successfully address their intended problems (Sturm, 2016b). Designing such systems in-

volves a myriad of choices that researchers and developers face, and need to be properly

accounted for during evaluation. Proper evaluation practices enable comparison of alter-

native approaches, such as different implementations of e and p, and against the state of

the art, tracking progress in the discipline and avoiding dead ends (Sturm, 2016a). Estab-

lishing such practices is far from a trivial endeavour, with some authors considering it one

of the grand challenges of the discipline (Serra et al., 2013). This section reviews evaluation

approaches for MCA studies, first introducing those that explicitly embrace the subjective

nature of music and later focusing on those that aim to objectively assess success.

2.2.1 Embracing Subjectivity: Human Inspection and Judgment

Since music is a fundamentally human construct, assessing whether an artificial system

successfully addresses a music analysis problem is far from straightforward. Some eval-

uation strategies address this issue by acknowledging the subjective nature of music and
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introducing humans in the loop as judges. Although some members of the community re-

gard such strategies as “unscientific” (Downie, 2003b), others advocate recuperating hu-

man feedback within a broader evaluation framework (Schedl et al., 2013; Urbano et al.,

2013).

The most basic subjective strategy is what Hernández-Orallo (2017) calls “white box”

evaluation. This strategy basically relies on inspecting the components of a system to de-

termine whether they suit the target problem. For instance, given a rule-based agent or

the rules derived from a Decision Tree model, a panel of experts in the subject may judge

whether such rules capture the nature of the concept under study. The inherent biases this

strategy risks introducing, as well as the increasing complexity of the systems the com-

munity develops, makes white box evaluation seem weaker than behaviour-based “black

box” analyses (Cohen, 1995). A recent push for interpretable models, however, suggests

inspection may suitably complement other kinds of evaluation approaches (Doshi-Velez

and Kim, 2017; Lipton, 2016; Mishra et al., 2017).

An alternative to inspecting systems is to ask humans to judge the outcomes of such

systems. This so-called “perceptual evaluation” — since the evaluation relies on some

judges’ perception — is based on listening tests: given the outcomes of one or more sys-

tems on the same RΘ, people are asked to rate or rank the quality of each after listening to

the input the systems receive (Gupta et al., 2018; Jillings et al., 2016; Wierstorf et al., 2017).

Analyses of this kind dominated the literature in the early years of the discipline, but their

conclusions were soon deemed unreliable since the different judges involved made com-

parisons across studies impossible (Downie, 2003b). Some authors argue, however, that

abandoning perceptual evaluation ignores user satisfaction, the ultimate goal of any de-

ployed system, as success criterion (Schedl et al., 2013).

Aside from outcome quality, other factors may influence user satisfaction, such as the

speed and ease of use of the final system’s interface. Published studies, however, rarely as-

sess whole systems under near-working conditions despite some authors’ recommenda-

tions (Serra et al., 2013; Urbano et al., 2013). Holistic user-experience evaluation has been

called the “Grand Challenge” in MIR evaluation, and implemented alongside the more

conventional “objective” tasks in recent editions of the MIREX4 evaluation exchange (Hu

4http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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et al., 2017; Lee et al., 2015).

2.2.2 Seeking Objectivity: Cranfield Paradigm and Classification Experiments

The first editions of the ISMIR conference highlighted an urgent need to standardise eval-

uation procedures, with the aim to objectively compare systems (Downie, 2003b). The re-

search community then organised three workshops especially devoted to discussing and

agreeing on an evaluation paradigm suitable for the discipline, whose main insights were

gathered by Downie (2003a). The experimental methodologies developed by Text-IR re-

searchers (Jones, 1981; Tague-Sutcliffe, 1992), exemplified by the competitions held in the

Text REtrieval Conference (TREC)5 (Vorhees, 2007), served as a clear reference for the MIR

community during the early years of consolidation of the discipline (Downie, 2004). What

follows reviews how the MIR community has adapted the Cranfield paradigm, the most

common evaluation framework in Text-IR, to develop empirical practices not unlike those

adopted in Artificial Intelligence and related disciplines (Cohen, 1995; Hernández-Orallo,

2017). Such practices assess the suitability of solutions to MCA problems without human

intervention beyond collecting and annotating some recordings.

Evaluation in Text-IR has long relied on what is known as the Cranfield paradigm

(Cleverdon, 1991), where the role of humans shifts from judges to annotators. Instead

of appraising the outcomes of the systems to arbitrary inputs, in the Cranfield paradigm

someone selects a set of documents — an evaluation collection — associated with a prob-

lem — or domain — and annotates them on their expected relevance to specific topic

categories — or queries; the annotations are the ground truth of the collection. Once an

evaluation collection has been created, multiple studies can use them to assess different

systems, which reduces both biases in their comparison and evaluation costs from, e.g.,

recruiting judges.

A classic Cranfield experiment assesses systems using a selection of queries, for which

systems generate lists of documents from the collection that each deems relevant. The

lists are then compared against the ground truth for their corresponding query, consider-

ing which documents appear in the lists and, occasionally, the order in which they appear

5https://trec.nist.gov/

https://trec.nist.gov/
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as well. This procedure matches the Retrieve strategy that Sturm (2014b) identifies in some

MCA studies.

Inspired by the TREC competitions, the MIR community established the Music In-

formation Retrieval Evaluation EXchange (MIREX), whose tasks exemplify the commonly

accepted evaluation paradigm in the discipline. The annual MIREX campaigns started in

2005 alongside the ISMIR conference, with a pre-MIREX evaluation campaign held one

year earlier (Cano et al., 2006), and have since become a common forum for the assess-

ment of MCA systems and methods. They are considered to offer an objective comparison

between systems, and are often used to test novel evaluation procedures (Downie et al.,

2010). The positive impact of MIREX in MIR research is undeniable (Cunningham et al.,

2012). Some authors, however, have recently raised concerns about the sustainability of

these campaigns in their current format (McFee et al., 2016), proposing alternatives in

terms of the logistics involved.

The evaluation strategies that the MIREX tasks illustrate, despite their original TREC

inspiration, arguably differ from the Cranfield paradigm. Instead of asking systems to re-

trieve a list of relevant documents, evaluation in much MCA research is based on systems

attempting to predict the ground truth annotations of a given set of recordings. Sturm

(2014b) calls this strategy Classify, which prevails in several conventional MCA problems,

such as Music Genre Recognition (MGR) (Sturm, 2014d), and Music Emotion Recognition

(MER) (Sturm, 2013b). In this strategy, success relates to the proportion of ground truth

annotations that a system manages to reproduce.

McFee et al. (2016) summarise the evaluation procedure they consider standard in MIR

research, which essentially corresponds with the Classify strategy:

1. A human annotator observes an input, ri , generating a reference output, ai ;

2. An MCA system receives the same input ri and estimates the expected output, âi ;

3. ai and âi are compared;

4. Steps 1-3 are repeated over all input items from the collection;

5. Summary statistics (the overall performance metrics of the system) are computed.

In practice, the human annotation of all ri occurs previous to any system’s evaluation,

sometimes obtained as a consensus between multiple individuals instead of a single one

as the procedure above suggests. Urbano et al. (2013) consider that such a procedure
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implicitly reflects the query-answer nature of Cranfield-style Text-IR experiments, with

queries matching classes and the answers being the system’s predictions. In other words,

they regard Retrieve and Classify as two sides of the same coin.

The widespread adoption of the Classify strategy in MCA studies motivates consid-

ering “classification experiments” (or, maybe more generally, “prediction experiments”)

as the de facto evaluation apparatus in the discipline, so the discussion is hereinafter fo-

cused on this strategy. Sec. 2.3 reviews in more detail the elements that form the pipeline

of a music classification experiment, and Sec. 2.4 describes an example from the literature

upon which the illustrative examples in later chapters are built. Music classification ex-

periments implicitly assume that the capacity to reproduce the annotations of a curated

collection of recordings entails an underlying ability to capture and model the intricacies

of a musical concept. At face value, this interpretation seems sound; Sec. 2.5 argues this is

not necessarily the case.

2.3 The Music Classification Experiment Pipeline

Studies that rely on a Classify evaluation strategy follow a similar pipeline to assess and

compare systems and the methods that constructed them. This section first overviews the

pipeline of a generic music classification experiment, which Fig. 2.2 represents schemati-

cally, and later details its main components. The concepts and notation introduced here

appear throughout the rest of the dissertation.

2.3.1 Overview

Classification experiments compare systems on their ability to predict the annotations of

a collection6C = (
c1, . . . ,cN : cn = (rn , an)

)
, where rn ∈ RΘ is a recording or realisation

(the raw data) and an ∈ UV,A its annotation (the associated class label). Unless stated

otherwise, it is assumed here that an experiment deals with a single collection. The link

between recordings and labels in C intends to exemplify some concept of interest over the

abstract population of music instances Θ. Sec. 2.3.2 discusses common characteristics of

the collections used in MCA evaluation and some challenges that arise in their creation.

6This dissertation uses collection instead of the more common term dataset when referring to raw data
instances. For consistency with the Machine Learning literature, the latter is used only in Sec. 3.3 to refer to
tabulated data structures of extracted features ready to be used as inputs for learning algorithms.
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The systems to be evaluated are assumed to rely on training a supervised learning al-

gorithm ` to build a classifier (or regressor) p on a series of annotated instances from C . A

method m is the composition of a feature extractor e and a learning algorithm `; a system

s is a fixed actualisation of m through training. Most published MCA studies assess system

construction methods instead of final systems, with many focusing on feature representa-

tions for particular description problems (Schedl et al., 2014). In MIREX, the organisation

has recently grouped together several tasks that follow a similar pipeline and focus on the

system construction methods as “Audio Classification (Train/Test)” tasks,7 even though

they deal with entirely distinct underlying concepts.

When learning algorithms are involved, it is commonplace to ensure that systems do

not predict the annotations of recordings that were used in their training; otherwise, one

risks overfitting — systems learning and exploiting the particularities of specific instances,

instead of general patterns across the collection (Hastie et al., 2009). To avoid overlaps

between recordings used for training and prediction, classification experiments rely on

some partitioning (or assignment) functionψ. Section 2.3.3 describes common partition-

ing strategies, including some that rely on resampling — iteratively constructing multiple

splits (C t ,C p )k from C . A classification experiment on a collection C thus comprises mul-

tiple iterations, each defined by a combination of a method m and an assignment vari-

able k. The training data C t for each iteration is then used to construct s with m, i.e.,

s = m(C t ,k ), and obtain predictions on C p ,k , i.e., Âp = s(C p ,k ).

It is standard practice to use a further split of the training collection C t for optimising

hyperparameters of the learning algorithms. This process essentially follows the same

pipeline in Fig. 2.2 but at a smaller scale. For simplicity of exposition, however, it is

assumed that each optimisation round is a classification experiment in itself, with the

method m in each iteration representing a particular combination of hyperparameters

for a specific algorithm.

Given the predictions obtained in each iteration of a classification experiment, one

estimates the suitability of each system or method through computing one or more per-

formance metrics φ. These are almost always exclusively based on how closely predictions

Âp match the ground truth annotations Ap , but other success criteria, such as compu-

7http://www.music-ir.org/mirex/wiki/2017:Audio_Classification_(Train/Test)_Tasks

http://www.music-ir.org/mirex/wiki/2017:Audio_Classification_(Train/Test)_Tasks
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tation speed, could also influence the conclusions. Sec. 2.3.4 describes the most widely

used performance metrics in classification experiments. These metrics may suggest some

solutions outperform others. Statistical tests may then help distinguish between real and

spurious differences in performance. Some strategies for conducting these tests are re-

viewed later in Ch. 3 once the underlying statistical concepts have been introduced.

2.3.2 Evaluation Collections

The conventional evaluation paradigm in MCA studies requires annotated data collec-

tions to train and obtain predictions from the systems and methods to assess. Construct-

ing such collections, however, is far from trivial, and arguably to a larger extent than other

disciplines that adhere to a similar paradigm (Downie, 2003b). Challenges such as the

availability of suitable data and the often complex annotation process strongly impact the

quality and reproducibility of the research conducted in the discipline.

Data gathering Music data is costly to acquire and often restricted to share. Any modern

computer with Internet connection suffices to obtain an overwhelming number of freely

available text or image documents, to which anyone with a word processor or digital cam-

era can easily contribute; gathering music data is much more complex. Creating music

pieces is an extremely specialised skill that requires years of training and devoted equip-

ment, and existing data often requires some payment to obtain and is subject to copyright

regulations that severely limit the researchers’ ability to share them with the community.

As a consequence, many studies rely on data gathered from the researchers’ personal col-

lections, which do not necessarily represent the breadth of the intended scope of their

analysis. This process is called convenience sampling (Urbano et al., 2013), as opposed to

the random sampling that proper representation of the target population would require.

Moreover, such collections are often kept private and poorly described after the publica-

tion of the study, which hampers reproducibility and progress in the discipline (Peeters

and Port, 2012). Sturm (2012a), for instance, finds that in MGR almost 60% of published

studies use private collections, with 75% of those studies relying solely on such collections.

Despite the difficulties in gathering and sharing music data, some evaluation collec-

tions are made public. This often leads to the specific task defined by such a collection
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implicitly replacing the broader problem it intended to represent as research target for

part of the community (Schedl et al., 2014). Although standardised collections facilitate

comparisons across studies, their repeated use leads to what could be called “collection

overfitting”: solutions becoming increasingly more tailored to the specifics of the collec-

tion as opposed to the underlying problem (Drummond and Japkowicz, 2010). As dis-

cussed in Sec. 2.4.1, this is the case in MGR, where GTZAN (Tzanetakis and Cook, 2002)

dominates among the publicly available collections despite its flaws. GTZAN includes au-

dio recordings, but defies copyright regulations by providing only short excerpts of each

song; others rely on data with explicit sharing permission, such as the Jamendo collection

often used for the evaluation of Singing Voice Detection systems (Ramona et al., 2008).

Two main alternatives exist when sharing audio data is not feasible: providing pre-

computed feature representations or synthesising artificial audio. The collections that

adhere to the first option tend to be much larger than their audio counterparts. This is the

case, for instance, of the Million Song Dataset (Bertin-Mahieux et al., 2011) or the recent

AcousticBrainz genre collection used within the MediaEval competitions (Bogdanov et al.,

2018), which contains data from over two million recordings. As a comparison, GTZAN

includes 1000 excerpts. Lacking audio, however, seriously limits which kinds of studies

can benefit from those collections, since one can only evaluate learning algorithms in this

manner. Synthetic data, despite being common in some problems such as frequency con-

tent estimation (Klapuri, 2009), is unsuitable for many problems of interest. In addition,

even in those cases where synthetic data is feasible, its use for evaluation might lead to re-

sults that do not correspond with those one would get from real data (Niedermayer et al.,

2011). Sturm and Collins (2014), however, argue that creating data that strictly follows a

series of explicit rules might serve to evaluate algorithms in their ability to uncover such

rules, avoiding at the same time the usual challenges in data gathering and annotation.

Annotation Annotating music collections is a complex and time-consuming process,

the quality of which strongly impacts the development and evaluation of MCA systems

(Schedl et al., 2014; Urbano et al., 2013). Research teams often rely on their own expertise

to annotate private collections, which may introduce biases in the annotations that trans-

late into the results they obtain. If such collections later become public, as in the case of
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GTZAN , the original biases quickly spread across the community. When a collection is in-

tended to be publicly released, however, it is common practice to gather annotations from

multiple sources, such as a panel of experts, regular listeners, or a combination of both.

Various reasons may cause annotators to disagree in their perception (Flexer and Grill,

2016), such as differences in expertise, their listening environment, failure to phrase the

requested task unambiguously, or simply the subjective nature of music itself. Such dis-

agreements could be accounted for in the annotations as multiple weighted labels, but are

often resolved through a majority vote (Craft et al., 2007). Other practical issues, such as

the number of possible labels, also impact the quality of the annotations.

The research community has explored various strategies to facilitate and reduce the

costs of annotation beyond recruiting students and colleagues from their departments.

Some of those strategies aim at increasing the engagement of the annotators. Online plat-

forms that reward users for their effort, such as Amazon’s Mechanical Turk, offer an in-

expensive and efficient way to collect a large number of annotations that appear largely

consistent with other more controlled approaches (Lee, 2010). Games with a purpose

have also proven useful to engage the crowds to obtain annotations, with several of such

games being presented simultaneously at ISMIR’07 (Law et al., 2007; Mandel and Ellis,

2007; Turnbull et al., 2007). Some have also developed interactive tools to collect annota-

tions from live audiences (Page et al., 2015).

Instead of attempting to maximise the number of annotations on a budget, McFee

et al. (2016) propose the exact opposite: reduce the cost by annotating as little as possi-

ble. Their approach, which they call incremental annotation, assumes that only disagree-

ments between systems serve to compare their performances. They thus suggest limiting

the initial annotation to a subset of instances in the collection that will then be used to

train the systems, and choosing another subset for testing from which annotators will be

requested to annotate those that the systems predict differently. Apart from yielding esti-

mates of performance differences between systems, these newly annotated instances can

then be incorporated into the training collection for potential future evaluations. This

procedure seems particularly fitted for regular competitions such as MIREX, but can only

rank systems and not produce estimates of performance. It is also unclear whether it may

introduce undesirable biases in the systems by extending the training material from a par-
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ticular subset of instances that may have been distinctly predicted for a reason (e.g., their

higher “difficulty”).

2.3.3 Partitioning Strategies

Machine Learning-based systems are prone to overfit. It is thus standard practice to avoid

assessing their performance using instances that were previously used in their training

through partitioning collections into separate training and testing materials. This reduces

the possibility of obtaining overoptimistic performance estimates. The most common

partitioning strategies are the hold-out set, K -fold Cross-Validation, and bootstrap sam-

pling, which are described briefly below. The reader is referred to textbooks such as those

by Hastie et al. (2009), Alpaydin (2014) and Weihs et al. (2017) for more thorough reviews.

Any partitioning strategy may be modified to ensure stratification, so that the derived

collections maintain the same class distribution as the original one. In practice, this may

be accomplished by partitioning the instances of each class separately using the chosen

strategy and joining them at the end.

Hold-out The most basic partitioning strategy is to create what is usually known as a

hold-out set, which involves selecting a certain portion of the instances in the collection

and avoiding using those for training. The selection is often random, but curation other

than stratification might be necessary in some cases. No strict rule exists for the relative

sizes of derived collections, although studies often leave aside around 20-30% of the in-

stances for testing.

In this strategy, the partitioning is performed only once, which can be problematic.

One obtains a single performance estimate, so there is no way to distinguish between the

performance of the trained system and that of the method that was used to construct it,

which is usually the real target of the evaluation. Even if the ultimate goal is to estimate the

performance of a fixed system, this strategy does not utilise the whole collection to train

such system, so the measured performance may substantially differ from what a system

would have obtained had it been constructed using all instances in the collection. More-

over, a single measurement cannot suffice to determine if observed differences in perfor-
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mance between systems are due to actual superiority or an artifact of the split. To address

these issues, researchers often resort to resampling methods such as the ones below.

K -fold Cross-Validation Given a collection C of size N , K -fold Cross-Validation (K -CV)

creates K ≤ N pairs (C t ,C p ) using the following procedure: generate K “folds” randomly

from C , each containing N /K instances; then, iterate K times, each time selecting a dif-

ferent fold Ki and leaving it aside for testing, i.e., C p,i ; combine the remaining K −1 folds

for that iteration to create the corresponding training collection C t ,i ; train a system on

each C t ,i and obtain the corresponding performance estimate on C p,i . This procedure

thus yields K performance estimates per method to evaluate. These estimates are not

independent, however, since their respective training collections overlap (for K > 2).

The preferred value of K is somewhat arbitrary, but K = 10 appears often. The MIREX

classification tasks, however, use K = 3. Flach (2012) recommends adjusting K so that the

number of instances in each fold is at least 30. An extreme alternative is to set K = N ,

which is called Leave-One-Out Cross-Validation. In this case, the procedure yields N per-

formance estimates, each either a success or failure on a single instance of the collection.

This alternative, however, is costly and does not permit stratification. To avoid this issue,

some studies increase the number of measurements instead, conducting K -CV multiple

times and averaging the results, with K being 10 or lower, as performed by Tzanetakis and

Cook (2002). Dietterich (1998) recommends computing 5 rounds of 2-CV but, to the best

of our knowledge, this option has not been implemented in MCA studies.

Bootstrap The statistical learning literature often encourages the use of bootstrap sam-

pling over K -CV to obtain multiple train/test pairs (Hastie et al., 2009; Hothorn et al.,

2005). Bootstrap sampling is based on the bootstrap estimation technique by Efron (1977).

According to Alpaydin (2014), it constitutes the best resampling strategy for small collec-

tions. Nevertheless, the bootstrap has been virtually ignored by the MIR community to

this end with very few exceptions, such as Skowronek et al. (2007). In a bootstrap sam-

pling procedure, one draws uniformly N training instances with replacement from a col-

lection C of size N . A training collection C t ,i derived in this way comes from the empirical

distribution function of C , which makes the elements of C t ,i independent and identically
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distributed. Note C t can contain repeated elements.8 In fact, one expects C t ,i to con-

tain around 63.2% of the instances in C , so different C t ,i from the same C are likely to

overlap. To obtain the corresponding testing collection C p,i , one could also use sampling

with replacement, but it is preferable to derive it as C p,i = C \ C t ,i (i.e., the part of C not

included in C t ,i ) to ensure no overlaps occur between paired training and testing collec-

tions. Repeating this process an arbitrary number of times yields estimates with arguably

improved statistical properties over K -CV, such as a reduced variance (Efron, 1983; Efron

and Tibshirani, 1997).

2.3.4 Performance Metrics

Although there exist many different ways of estimating performance from the predictions

in a classification experiment, only those that commonly appear in multiple MCA prob-

lems are reported here. The reader is referred to the textbook by Japkowicz and Shah

(2011) for a thorough review of performance metrics in the context of the evaluation of

learning algorithms; in addition, Raffel et al. (2014) describe several problem-specific met-

rics in MCA.

The most common performance metrics are derived directly from a confusion matrix,

which records in each cell (x, y) the number of instances in the test collection with ground

truth Ax that have been predicted as Ay , with both Ax , Ay ∈V, the vocabulary of classes in

the collection. Let ai be the ground truth annotation of instance i in a test collection C p ,

âi its predicted annotation by a system, and Np = |C p | the size of the test collection. Then

the accuracy of the system in C p is:

acc =
∑Np

i=1 I (ai = âi )

Np
(2.2)

where I (·) is an indicator function that yields 1 only if its predicate input is true, and 0

otherwise. This metric thus captures the proportion of correct predictions over the whole

testing collection, and corresponds to the size of the diagonal in the confusion matrix

relative to the sum of all entries. The complementary value to the accuracy is the error

rate: err = 1−acc.

8Since “set” implies no repeated elements, the use of the alternative term “collection” when referring to the
training and testing materials is thus preferred here to encompass those created from bootstrap sampling.
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Accuracy provides an estimate of the probability that an arbitrary instance from the

collection will be predicted correctly. This, however, does not take into account the class

distribution in the collection, which may strongly affect how representative the measure-

ments are as estimates of performance. For instance, if a collection is highly imbalanced

(the instances of a single class substantially outnumber the rest), accuracy can reach val-

ues close to 1 if systems predict all instances as belonging to the majority class. This is-

sue motivates IR-related disciplines to prefer precision and recall over accuracy as perfor-

mance metrics. These two metrics are defined at class level. In particular, for an arbitrary

class Ax ∈V:

prec(Ax ) =
∑Np

i=1 I (ai = âi = Ax )∑Np

i=1 I (âi = Ax )
(2.3)

rec(Ax ) =
∑Np

i=1 I (ai = âi = Ax )∑Np

i=1 I (ai = Ax )
(2.4)

Precision thus reflects the proportion of instances predicted to belong to a class that ac-

tually belong to that class, whereas recall reflects the proportion of instances of a class

that are predicted to belong to that class. In terms of the confusion matrix, precision is

basically a marginalisation over columns and recall over rows.

The so-called F -score or F -measure summarises the precision and recall of a class us-

ing a harmonic mean to penalise values close to zero in either of the two metrics:

F (Ax ) = 2 · prec · rec

prec+ rec
(2.5)

One can then obtain a summary of any of these metrics by averaging over all classes in the

collection. The average recall, sometimes used as a sort of normalised accuracy, would

then simply be:

rec =
∑

∀Ax∈V rec(Ax )

|V| (2.6)

with |V| being the number of classes in the collection. This value coincides with the accu-

racy in the particular case of a completely balanced collection.
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2.4 Evaluation of Scattering-based Music Genre Recognition Systems

Having discussed the main characteristics of conventional MCA evaluation practices, this

section now explores how a particular study from the literature implements such practices

and the conclusions that its authors extract. The examined study was conducted by Andén

and Mallat (2014) and assesses the benefits of a signal processing technique called the

Scattering Transform in various audio classification problems. The focus lies here on the

experiments they perform on the MGR benchmark collection GTZAN , which is described

first.

2.4.1 Music Genre Recognition Evaluation using GTZAN

A widely studied problem in MCA is the automatic identification of the musical genre of a

piece solely from the acoustic information in an audio recording. Music Genre Recogni-

tion (MGR), as it is often called, is a complex (and sometimes troubling) problem, since the

concept of genre is largely a human construct and thus extremely challenging to define in

objective terms. This has not stopped researchers proposing and publishing a plethora of

approaches for MGR, the vast majority of which relying on Machine Learning techniques.

A particular music collection, known as GTZAN , appears in over a hundred publica-

tions (Sturm, 2014d), and remains a benchmark collection in recent studies (e.g., Choi et

al., 2017). The article by Tzanetakis and Cook (2002) that introduced GTZAN is often con-

sidered as the seminal work of MGR; Sturm (2012b), however, finds various papers on the

topic that precede it. The success of GTZAN is more likely due to it being the first MGR

collection publicly available for download.9

GTZAN consists of 1,000 30-second 22050 Hz mono 16-bit audio excerpts in au format,

each annotated with one of 10 music genre labels: blues, classical, country, disco,

hiphop, jazz, metal, pop, reggae, and rock. Sturm (2014d) provides a thorough anal-

ysis of the contents of GTZAN , reporting repetitions, distortions and mislabellings, and

highlighting the replication of artists in many classes. The collection was originally re-

leased without providing any information about its excerpts, and only recently the com-

munity has started identifying to which music recordings each belongs (Sturm, 2013c).

9http://opihi.cs.uvic.ca/sound/genres.tar.gz

http://opihi.cs.uvic.ca/sound/genres.tar.gz
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Figure 2.3: Artist distribution across classes in GTZAN , showing the number of unique
artists (Top) and the quantiles of the number of excerpts per artist (Bottom) in each class.
Dots indicate outliers.

At the moment of writing, all but 23 of the 1000 recordings in GTZAN have been identi-

fied.10 Figure 2.3 summarises the artist distribution for each class in GTZAN , assuming

all artists from still unidentified excerpts are unique. Queen is the only artist known to

appear across classes in the collection (rock and metal). blues remains the class with

highest artist replication, with all but one artist appearing in more than 10 excerpts. In

reggae, a single artist (Bob Marley) appears in more than a third of the excerpts.

MGR performance obtained on GTZAN has substantially increased since the collec-

tion was first introduced. Tzanetakis and Cook (2002) reported accuracies just over 60%;

less than a decade later, Guaus (2009) reached almost 100%. Sturm (2013c), however, sug-

gests that accounting for the faults in the collection leads to an “ideal” classification accu-

racy no higher than 94.5%. Systems evaluated on GTZAN that achieve accuracies higher

than this threshold might actually perform “worse” than some that appear inferior. Re-

cent studies, such as the one Choi et al. (2017) conducted, use this “ideal” threshold as

their target.

2.4.2 Systems based on the Scattering Transform

The Scattering Transform is a signal processing technique able to obtain feature represen-

tations of signals from diverse origins, such as image (Bruna and Mallat, 2013) or speech

10http://www.eecs.qmul.ac.uk/~sturm/research/GTZANindex.txt

http://www.eecs.qmul.ac.uk/~sturm/research/GTZANindex.txt
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(Andén et al., 2015). This technique generates audio features from a signal by means of a

cascade of wavelet transforms, in a structure that resembles that of a Convolutional Neu-

ral Network (CNN), but generating output in every layer instead of only in the deepest

one. In each layer, it applies a complex modulus to the wavelet transform of the input

received from the previous one. As Mallat (2012) demonstrates, this modulus captures

invariances to some perturbations, such as global time-shifts and local deformations like

time-warping, if applied on the time axis. Unlike other hierarchical representations, such

as CNNs, these invariances do not need to be learned from data but are inherent to the

feature representations. This comes at the cost of losing some high frequency informa-

tion in each layer, similarly to what happens in the computation of Mel-Frequency Cep-

stral Coefficients (MFCCs); unlike MFCCs, however, adding further layers to the cascade

can recover the lost information.

Andén and Mallat (2011, 2014) proposed leveraging representations derived from the

Scattering Transform to construct MGR systems. They claim such representations have

perceptual relevance. Scattering-based representations relate to modulation features (Chi

et al., 2005), which are potentially useful for timbre-related music classification problems,

such as instrument recognition (Siedenburg et al., 2016), or MGR (Lee et al., 2009), since

genres are often characterised by a particular ensemble of musical instruments. For that

purpose, they train Support Vector Machines (SVM) on GTZAN with different variants of

the features, mainly by changing the number of layers and whether such layers apply over

time or frequency dimensions.

In terms of the formalism introduced above, the MCA systems in Andén and Mallat

(2014) are as follows. RΘ consists of time-domain signals of duration about 30 seconds

uniformly sampled at Fs = 22050 Hz (the sampling rate of GTZAN). UV,A is the set of the

10 GTZAN labels. UF,A′ is a space consisting of sequences of 80 elements of a vector vocab-

ulary F. All systems trained by Andén and Mallat (2014) use the same UV,A and Gaussian-

kernel SVM as learning algorithm `, but extractor e with different UF,A′ . The excerpts are

split into 80 half-overlapping time frames, and the trained systems predict annotations for

each such a frame independently; the final prediction for each excerpt is obtained from

majority voting over the individual frame-wise predictions.
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Extractor Short Description Accuracy
Mel Sc. ∆-MFCC (T=740 ms) 82.0 ± 4.2
1-L Sc. Time Scattering, l = 1 80.9 ± 4.5
1&2-L Sc. Time Scattering, l = 2 89.3 ± 3.1
TF Sc. Time & Frequency Scattering, l = 2 90.7 ± 2.4
TF Adap. Sc. Time & Frequency Scattering, l = 2, Adaptive Q1 91.4 ± 2.2
1,2&3-L Sc. Time Scattering, l = 3 89.4 ± 2.5

Table 2.1: Classification accuracies (in % ± standard deviation) on GTZAN reported for
the scattering-based MGR systems by Andén and Mallat (2014)

Andén and Mallat (2014) describe the six feature extractors that they compare as fol-

lows, with the term “order” indicating the number of layers used in the Scattering Trans-

form cascade:

Mel Sc. : Mel-frequency spectrogram (84 coefficients, 740-ms frames, 50% overlap), con-

catenated with first- and second-order time derivatives over the sequence of feature

vectors, for a total of 252 feature dimensions.11

1-L Sc.: First-order (l = 1) time-scattering features (effective sampling rate 2.7 Hz), for a

total of 85 feature dimensions.

1&2-L Sc. : First- and second-order (l = 2) time-scattering features (effective sampling

rate 2.7 Hz), for a total of 747 feature dimensions.

TF Sc. : First- and second-order (l = 2) time-frequency scattering features, for a total of

1574 feature dimensions.

TF Adap. Sc. : First- and second-order (l = 2) time-frequency-adaptive scattering fea-

tures, for a total of 1907 feature dimensions.

1&2-L Sc. : First-, second-, and third-order (l = 3) time-scattering features (effective

sampling rate 2.7 Hz), for a total of 2769 feature dimensions.

To compare the different system-construction methods they consider, the authors per-

form 10-fold Cross-Validation (10-CV) on GTZAN . The article does not specify whether

the 10-CV is stratified, so we assume each of the 10 folds contains a unique but likely im-

balanced selection of recordings from the collection. The authors report as performance

metric the average error rates over the 10 folds plus/minus standard deviation, which cor-

respond to the classification accuracies shown in Tab. 2.1. Although they do not compute

11In reality, the analysis conducted for the study reported in Ch. 4 reveals that the implementation by Andén
and Mallat (2014) does not actually compute∆- and∆-∆-MFCCs, but instead cyclically time-shifts the sequence
of MFCCs ahead and behind by one frame, so that the predictor has flexibility in learning a transformation.
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any statistical test, the authors conclude that systems generating time-frequency-adaptive

scattering representations (i.e., TF Adap. Sc.) outperform the others they implement.

Moreover, they also claim that such systems achieve higher performance than the ones

proposed by Lee et al. (2009), which they consider the state-of-the-art at the moment of

publication with an accuracy of 90.6%±3.1. According to what Sturm (2013c) finds in his

systematic review, however, this claim seems questionable.

2.5 Critical Analysis of Conventional Evaluation Practices

The standardisation of evaluation practices that the MIR community undertook in the

early 2000s arguably improved over the previously inconsistent situation. The approach

most adopted, however, is not flawless. Researchers in the community realised that the

evaluation paradigm exemplified by the MIREX campaigns required some improvements

soon after it became widely accepted. This section summarises the most relevant criti-

cisms and ways forward proposed in the literature. First, however, the concepts of experi-

mental validity and reliability are briefly reviewed, since they are fundamental for judging

any empirical practice but have largely been ignored by the MIR community.

2.5.1 Experimental Validity and Reliability

To the best of our knowledge, only Urbano et al. (2013) have previously attempted to trans-

late the concepts of experimental validity and reliability to an MIR setting. Others, such

as Gouyon et al. (2014), later provide formal definitions of validity for some specific prob-

lems, but take the concept translations Urbano et al. (2013) make at face value. Some

such translations, however, are arguably not entirely accurate from an MCA perspective,

so what follows revisits this topic and provides alternative views where necessary.

2.5.1.1 Validity vs Reliability

Validity and reliability are both desirable properties of any empirical methodology, and

MCA evaluation is no exception. Roughly speaking, validity concerns how close to the

actual truth one can get from the results of an experiment, whereas reliability concerns

how close to each other multiple measurements are when conducted under similar con-

ditions. Inspired by Trochim and Donnelly (2007), Urbano et al. (2013) use a bullseye as
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a metaphor to clarify the distinction between validity and reliability. Suppose the centre

of the bullseye represents an underlying truth, and shooting arrows represents experi-

ments aimed at uncovering such truth. An experimental methodology leading to valid

conclusions would then appear as arrows hitting the target surrounding the centre of the

bullseye, on average, regardless of how scattered they end; a methodology leading to reli-

able conclusions, on the other hand, would appear as arrows hitting the target clustered

around the same spot, regardless of how far such a spot is from the centre. In statistical

terms, validity relates to bias and reliability to variance.

Ideally, one expects empirical methodologies to shoot the bullseye right in the cen-

tre — i.e., to produce both valid and reliable conclusions. Unfortunately, this is rarely

the case. Methodologies that yield both invalid and unreliable conclusions are obviously

harmful to any discipline. However, validity and reliability are often considered to require

a trade-off, since addressing one might harm the other, so one might wonder what to pri-

oritise when assessing and improving evaluation practices. The bullseye serves well for

this. Shooting arrows in a tight cluster far away from the centre of the bullseye seems to

require a straightforward adjustment: either move the shooter or the bullseye so that the

arrows hit right in the centre. One rarely knows where the actual truth is, such as how

successful a solution is in modelling a musical concept or even how well a particular sys-

tem performs in deployment conditions. Many studies thus implicitly place the bullseye

where the arrows hit, changing the question that the experiments answer after the fact to

something along the lines of “how many ground truth annotations does a system repro-

duce.” “Shooting more arrows” often overcomes the dangers of a lack of reliability, since a

conclusion becomes more trustworthy as more evidence packs around it; unfortunately,

no number of arrows can fix invalid conclusions. Compared to other disciplines, the ar-

tificial nature of the experiments in MCA makes them relatively cheap and adjustable.

Evaluation practices should arguably leverage these upsides to help locate the intended

goal instead of blindly shooting over and over towards a misplaced bullseye. Attempting

to make measurements more reliable without regarding their validity, or faking validity

by adjusting the question and not the mechanism to answer it, harms the progress of the

discipline.
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Another distinction that needs to be addressed is that between reliability and repro-

ducibility. In most academic disciplines, such a distinction does not exist: a result is re-

liable if it is reproducible. Those disciplines mostly deal with experiments in the physi-

cal world for which some conditions are beyond the control of the experimenter. Repro-

ducibility is thus defined as “closeness of the agreement between the results of measure-

ments of the same measurand carried out under changed conditions of measurement”

(Taylor and Kuyatt, 1994) (emphasis not in the original). In other words, reproducibility

in that sense associates with similar, but different, measurement conditions, as does the

definition of reliability above. In computer experiments, however, results tend to be deter-

ministic — the same conditions that yielded a specific result can be replicated to achieve

that same result. For MIR and associated disciplines, therefore, reproducibility involves

whether a third party has all resources available (and whether they are easy to use) to gen-

erate an exact copy of the results of an experiment (Peng, 2011; Six et al., 2018). This is

sometimes referred to as repeatability (Bartlett and Frost, 2008), even in some MIR publi-

cations such as by Page et al. (2013), or replicability (Drummond, 2009). Both senses are

undeniably important, but this dissertation assumes that reliability and reproducibility

mean different concepts.

2.5.1.2 Validity Threats and Campbellian Typology

Validity threats involve any circumstance that might lead to a false conclusion being ac-

cepted by producing an apparent but false effect, or obscuring a real one (Trochim and

Donnelly, 2007). These threats might work at different levels and require different tools

to reduce their potential impact, so it is useful to identify such levels and their particular

vulnerabilities. The most common way of categorising validity is usually called the Camp-

bellian validity typology, first introduced by Campbell (1957) more than half a century ago

and presented in its current form by Shadish et al. (2002). It consists of four types of va-

lidity: (statistical) conclusion, internal, construct, and external validity. These categories

are organised hierarchically, in the sense that no inference might be regarded as internally

valid if threats to statistical conclusion validity have not been properly tackled, and so on.

Despite some criticism and a few attempts to propose alternatives, such as by Reichardt
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(2011), the distinction between these four categories remains the default approach, espe-

cially in the social sciences.

Urbano (2011), and later Urbano et al. (2013), provide a thorough discussion of the

Campbellian validity typology applied to MIR research evaluation, but almost entirely

from a IR perspective. In their opinion, the truth to uncover is how satisfied a user would

be with a particular system, instead of whether such a system successfully captures a mu-

sical concept. Each of the four categories is here revisited, including a Machine Learning

(ML) perspective missing in previous analyses. Sec. 2.5.2 links some pitfalls of conven-

tional evaluation practices identified in the MCA literature with such categories, empha-

sising the underlying musical concept targeted instead of a hypothetical user.

(Statistical) Conclusion Validity The base of the validity staircase concerns whether one

can infer a covariation between independent and dependent variables in a study (Shadish

et al., 2002). One often intends to detect whether a differential effect exists on the response

when measurements are performed under different conditions. Assuming the indepen-

dent variable is the system (or the method to build a system) and the response variable is

a performance metric over a testing collection, in a classification experiment a researcher

might infer that a difference in the performance metric exists between systems. This con-

clusion is statistically valid if sufficient statistical rigour has been employed to reach it.

Typical threats to statistical conclusion validity involve the improper, or lack of, use

of statistical machinery suitable for the type of data one gathers from the measurements.

Lack of statistical power when the sample is too small also threatens this type of valid-

ity. ML and IR researchers have long encouraged fellows to perform statistical tests over

the results of their studies before publishing (Jones, 1981; Langley, 1988; Tague-Sutcliffe,

1992), similar to what some advocate in MIR (Flexer, 2006). Nevertheless, while inference

has become standard practice in the former disciplines (Japkowicz and Shah, 2011), even

to an excessive degree in some authors’ opinion (Drummond, 2006), the same cannot be

said of MIR research beyond evaluation forums such as MIREX (Downie et al., 2010; Ur-

bano et al., 2013).

Internal Validity An inference is internally valid if, within the study, an observed covari-

ation arises due to a causal relationship between the independent and dependent vari-



CHAPTER 2. EVALUATION IN MUSIC CONTENT ANALYSIS RESEARCH 55

ables (Shadish et al., 2002). In other words, one wants to ensure that observed differential

effects in the response appear because conditions have been purposely changed, and not

due to uncontrolled circumstances. Lack of control facilitates confounding, which leads

to invalid conclusions about causal relationships (Pearl, 2009). Two variables potentially

influencing measurements are confounded if the experimental design cannot disentangle

their effects (Cobb, 1998). Many experimental and quasi-experimental designs alleviate

confounding by controlling extraneous variables other than the target of the study — ex-

plicitly setting or accounting for their values in the different experimental conditions —

to avoid them impacting the measurements (Montgomery, 2013; Shadish et al., 2002).

Simple experimental design choices overcome the most obvious risks of confounding

in classification experiments (Langley, 1988). For instance, if one measures the perfor-

mance of multiple systems each on different instances, the influence of such systems (the

outcome of interest) becomes confounded with the selection of instances (an extraneous

variable). This is easily avoided by comparing measurements on the same instances, a

standard evaluation practice.

Construct Validity In a study, a construct is the ultimate concept about which one wants

to make conclusions, and an operationalisation is how one targets such a construct within

the study, i.e., what is measured. Construct validity thus concerns whether the conclu-

sions one makes about the operationalisations in a study generalise to the intended con-

structs (Shadish et al., 2002). In other words, construct validity concerns whether a study

measures what one intends to measure. In the context of classification experiments and

related practices, this often involves whether the metrics employed reflect the true perfor-

mance of the evaluated algorithms (Hand, 2012; Jamain and Hand, 2008; Law, 2008), or

whether such metrics capture user satisfaction (Carterette, 2011).

Some argue most forms of confounding arise due to breaches of construct validity

(Coolican, 2017): a variable becomes a confounder because of how a construct and its

operationalisation relate, or differ. This seems to be the sense some authors in ML-related

disciplines employ (e.g., Charalambous and Bharath, 2016). Understood in this manner,

confounding in classification experiments may occur when the explicit success criteria

— e.g., achieving a high value on a performance metric — can happen for reasons other
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than meeting the implicit success criteria — e.g., capturing the defining characteristics

of an underlying concept. Researchers in fields such as Computer Vision have realised

the risks that this kind of confounding provokes, leading to systems that appear success-

ful on benchmark collections but fail when exposed to minor perturbations in their input

(Nguyen et al., 2015). Since this interpretation of confounding is fundamental for the pur-

poses of this dissertation, subsequent chapters develop it further.

External Validity The upmost level of the validity ladder concerns how generalisable the

conclusions of a study are (Trochim and Donnelly, 2007). A conclusion is generalisable if

it applies to a broader population of interest than the specific settings of the study intend

to represent, or even beyond to further populations and settings (Shadish et al., 2002).

Breaches of external validity thus involve conclusions that fail to generalise as claimed, or

experimental settings that do not provide enough support to such claims.

Literature related with classification experiments defines generalisation restrictively

as performance estimates remaining stable when calculated on instances unseen during

model training (Hastie et al., 2009). In this sense, overfitting becomes the major threat

to external validity. This interpretation, however, assumes that the collection defines the

problem or, in the best case scenario, that all its instances are uniformly drawn from a

specific data generation process of interest. Although some industry environments might

face situations where evaluation and deployment data come from the same source, this is

arguably not the case in most published research. If one aims to evaluate a learning algo-

rithm in a domain-agnostic manner12 or a method on its ability to capture the character-

istics of an underlying concept, then generalisation must concern data from populations

yet to be considered. The term generalisation is used hereinafter in this sense. The se-

lection bias that convenience sampling often introduces thus becomes a major threat to

external validity in classification experiments, along with any breach in statistical rigour,

control and construct operationalisation that might compromise the lower validity levels.

12Domain-agnostic superiority is theoretically impossible according to the popular No Free Lunch theorems
(Wolpert and Macready, 1997). In practice, one often aspires to superiority for some realistic data distributions
within a restricted family of domains (Japkowicz and Shah, 2011).
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2.5.2 Pitfalls of Conventional Evaluation Identified in the Literature

Over the years, researchers have raised concerns about certain aspects of the conven-

tional evaluation practices in MCA, showcasing potential validity threats that the com-

munity faces. Many of those concerns appear within the context of music similarity anal-

ysis, which we consider an umbrella term for many MCA problems that deal with, or at

least are used as proxies for, modelling resemblances between recordings according to

some explicit or implicit criteria. Studies often address these problems from a classifica-

tion perspective, assuming that if a system predicts that two recordings belong to the same

category, then such system considers those recordings closer than those that end in differ-

ent categories. Regardless of whether a study addresses a problem such as MGR as a goal

in itself or as a proxy for music similarity, the evaluation machinery remains unchanged,

thus facing similar validity threats.

The main threat to statistical conclusion validity, as stated above, is neglecting or mis-

using statistical machinery when analysing measurements. Flexer (2006) claimed most

published MIR research at the time of writing missed statistical inferential analysis; sev-

eral years later, Urbano et al. (2013) still found that was the case. The size of the music col-

lections used for evaluation also poses a threat to statistical conclusion validity, since it re-

lates to the strength of the inferences one can derive from data. Urbano and Schedl (2013)

discuss this issue and propose a method to reach sufficient inferential power through col-

lection size at minimal cost. Whether the blind use of common inference tools, such as

frequentist statistical tests, leads to valid conclusions of practical importance is however

questionable (Urbano et al., 2012), especially in a scientific climate that seems increas-

ingly wary of some of those tools (Ioannidis, 2005; Wasserstein and Lazar, 2016).

As in other ML-related disciplines, threats to construct validity often relate to discrep-

ancies between performance metrics and the implicit success criteria they intend to rep-

resent. When multiple different metrics exist, it may be unclear which one, if any, best

operationalises success (e.g., Serrà, 2007). Even if a metric dominates the evaluation of a

particular problem, multiple implementations can exist, which may also hamper the re-

lationship between operationalisation and construct (Raffel et al., 2014). Metrics rarely

reflect human perception of success (Davies and Böck, 2014; Hu and Kando, 2012; Sey-

erlehner et al., 2010), thus some authors suggest incorporating user-specific information
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into the measurements (Hu and Liu, 2010; Schedl et al., 2013). Similarly, Widmer (2016)

argues that systems achieving high performance in conventional metrics often demon-

strate a complete lack of basic musical knowledge, such as the inherent temporal nature

of music. Metrics thus fail to operationalise the degree of musical knowledge systems ac-

quire.

Operationalisations other than performance metrics also compromise construct va-

lidity in classification experiments. These include, for instance, which RΘ and UV,A one

selects to reflect the Θ of interest and its intended descriptions. Craft et al. (2007) dis-

cuss unreliability in the annotations of music collections, an issue that others later echo

(Flexer and Grill, 2016; Pálmason et al., 2017; Wiering, 2009). Wiggins (2009) goes one

step further and claims that the concept of ground truth in music is misleading, since

music is a product of culture and the minds of those who interact with it, and thus intrin-

sically dynamic. Following the suggestion by Aucouturier and Pachet (2003) that MGR is

ill-defined, McKay and Fujinaga (2006) discuss the suitability of MGR tasks as a testbed

for MCA systems, encouraging researchers to rethink how they state, address and eval-

uate the problem. According to Sturm (2014d), little has changed recently: MGR is still

the most widely addressed problem in the literature, using virtually the same evaluation

strategy and collection as when it became popular almost two decades ago.

The faults of GTZAN mentioned in Sec. 2.4.1 highlight a further issue in the conven-

tional evaluation approach: both systems and the collections used in their evaluation are

often treated as pure black boxes. Until Sturm (2013c) independently created a partial in-

dex of its content, at least a hundred studies had already used GTZAN in their evaluation

completely disregarding which recordings appeared. Sturm (2013a) shows that analysing

the usually overlooked causes of success (or failure) provides information useful for im-

proving the proposed systems, an impossible endeavour if one ignores the contents of

the collection. Relying solely on the number of ground truth labels a system reproduces,

he argues, no matter how sophisticated the reported performance metrics are, does not

guarantee the validity of the experimental results. He conducts similar analyses for mood

classification problems, reaching the same conclusions (Sturm, 2013b, 2014c).

The partitioning of collections into training and testing materials affects validity in

classification experiments, as the MIR community has long acknowledged. For instance,



CHAPTER 2. EVALUATION IN MUSIC CONTENT ANALYSIS RESEARCH 59

the presence of the same artists or albums in both training and testing recordings artifi-

cially inflates performance estimates; this is known as artist or album effects, respectively

(Flexer and Schnitzer, 2010; Pampalk et al., 2005). In recent years, Sturm has repeatedly

identified systems that appear successful on benchmark collections but exploit informa-

tion extrinsic to the problem at hand (Sturm, 2014a, 2016b; Sturm et al., 2015). He refers

to such systems as “horses” as a homage to Clever Hans — a horse that appeared able to

solve mathematical problems but was instead relying on unintentional gestural cues by

its questioners (Pfungst et al., 1911). The Clever Hans metaphor is gaining increasing at-

tention in disciplines beyond MIR (e.g., Hernández-Orallo, 2019; Lapuschkin et al., 2019),

with authors such as Hand (2018) acknowledging the trust issues that “horses” cause in

data-driven research.

A major consequence of the issues above is that experimental results fail to generalise

to deployment scenarios. The usual convenience sampling procedure employed in both

constructing collections and selecting them for evaluation further reinforces this com-

mon failure. Bogdanov et al. (2016), for instance, shows that systems trained on record-

ings from one collection often substantially underperform when applied on different, but

related, collections. Moreover, the discrepancy between evaluation and deployment set-

tings, along with the black box nature of conventional evaluation, contributes to the fact

that disciplines that could benefit from insights obtained from MCA research largely ig-

nore its methods and outcomes (Aucouturier and Bigand, 2013; Siedenburg et al., 2016).

2.5.3 Improvements to Evaluation Practices

Researchers in the MIR community have proposed several modifications to the conven-

tional evaluation practices to address the issues summarised above. Some such proposals

have already been mentioned above, but those most relevant for the goals of this disserta-

tion are reviewed in more detail here. Despite their merit, user-centric proposals are left

aside, since they also require a solid underlying framework that current approaches fail

to provide. Proposals focused on implementation and logistic details (e.g., McFee et al.,

2016; Raffel et al., 2014) are also not covered.

Sturm (2016a) identifies and discusses what he considers the most commonly pro-

posed solutions, which largely correspond to improvements to each of the main compo-
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nents of the classification experiment pipeline reviewed in Sec. 2.3. Apart from the need

for transparent tool implementations that Raffel et al. (2014) suggest, he mentions increas-

ing the size of evaluation collections, generalising the use of resampling strategies such

as cross-validation, tailoring performance metrics and ensuring studies conduct formal

statistical testing. He argues these improvements are less pressing than ensuring exper-

iments answer the questions one actually intends to ask to avoid making errors “of the

third kind” — getting the correct answers to the wrong questions (Hand, 1994). In other

words, no matter how much data and how many folds you employ, and how sophisticated

are the performance metrics and tests you compute, the validity of any conclusion you

make will always be compromised unless the experimental procedure itself is properly re-

vised. Sturm advocates that the community should prioritise the principles of statistical

experimental design (Fisher, 1935; Montgomery, 2013), which he believes the literature in

the discipline largely ignores.

Sturm (2016a) mention filtered partitioning, irrelevant transformations, and inter-

pretable explanations as specific evaluation practices aimed at ensuring that experimen-

tal results actually address the intended research question of a study. These are reviewed

next, as is Item Response Theory, a promising evaluation approach that has been recently

explored in other ML-related disciplines but not in MIR research at the time of writing.

Filtered Partitioning Pampalk et al. (2005) introduced artist “filters” to counteract artist

effects in music similarity experiments — performance estimates becoming higher when

recordings of the same artist appear during both training and prediction than when they

do not. Their approach is referred to as “filtered partitioning” hereinafter, since it may

be applied to information other than the artist, such as the album to which each record-

ing belongs (Flexer and Schnitzer, 2010). The principle is simple: instead of randomly

assigning recordings to either the training or testing collections, one groups in one such

collection all those that share a particular piece of information that may cause problems

(e.g., their artist). Similar to stratification, this process introduces a regulation in the par-

titioning process, in this case ensuring that systems cannot exploit a particular source of

information to predict annotations on the “regulated” testing collection.

Comparing regulated results from filtered partitioning with those from a conventional
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random partitioning enables assessing the impact of leaving a factor unregulated. Using

this approach, some studies show not only that unregulated collections might bias perfor-

mance estimates, but also that the magnitude of such bias varies across feature represen-

tations and learning algorithms (Flexer, 2007; Sturm, 2014d). More commonly, studies use

filtered partitioning to alleviate overoptimistic performance estimates, such as in MIREX.

This increases the chances that the experimental results actually address the question of

interest — whether systems are able to capture the intricacies of the target concept (e.g.,

genre) instead of exploiting auxiliary information (e.g., artist characteristics).

Irrelevant Transformations Data augmentation techniques artificially increase the

amount of data available from a collection, either by transforming its original instances

— data warping — or creating new instances within the feature space — synthetic over-

sampling (Wong et al., 2016). Researchers from the MIR community have largely focused

on augmenting training data in a variety of problems, such as MGR (Li and Chan, 2011),

chord recognition (Humphrey and Bello, 2012) and singing voice detection (Schlüter and

Grill, 2015). Data augmentation of this kind intends to generate more generalisable sys-

tems by providing a wider variety of inputs than the real data permits, and software tools

such as the MUDA architecture developed by McFee et al. (2015a) facilitate this process.

Adversarial training (Goodfellow et al., 2015; Gu and Rigazio, 2014) is a particular type

of data augmentation where the incorporated instances, called “adversarial examples”,

are obtained through perturbations identified by maximising prediction error — i.e., min-

imal modifications of the input data that produce the largest increase in the system’s error

rate. Incorporating adversarial examples in their training makes systems more robust to

small perturbations that should not affect their predictions. Recent publications suggest

that this approach is gaining traction within the MIR community. Stoller et al. (2018), for

instance, apply adversarial training to singing voice extraction, whereas Kim and Bello

(2019) employ it to address music transcription.

Augmenting test data enables evaluating the effects of data perturbations. Adversarial

attacks employ adversarial examples created as mentioned above to determine the vul-

nerability of trained systems to small perturbations in their input (Goodfellow et al., 2015;

Kereliuk et al., 2015; Szegedy et al., 2014). Within the MIR community, the Audio Degrada-
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tion Toolbox by Mauch and Ewert (2013) provides several transformations mainly aimed

at assessing how robust prediction systems are to suboptimal acoustic conditions. The

evaluation paradigm first introduced by Sturm (2014a) goes a step further, employing “ir-

relevant transformations” on the testing data to uncover reasons behind performance.

The procedure that Sturm (2014a) proposes involves transforming input signals in a

manner strongly linked to a specific cue that systems could exploit, and observing whether

performance changes in relation to such a transformation. If the transformation is sup-

posedly irrelevant for the problem of interest, either because of the nature of the under-

lying concept or because human listeners retain their judgement of the annotations de-

spite the transformation, but performance estimates change as a consequence, systems

are likely exploiting the information being manipulated

A possible implementation of this idea is a deflation process, which attempts to force a

system to behave as if it was randomly assigning labels by iteratively modifying the record-

ings that it previously labels correctly. Given a system s and a collection C , a deflation

process involves the following steps:

1. Find the recordings in C that s maps “correctly”;

2. Create a transformation t (·);

3. Apply t (·) to all recordings found in step (1);

4. Have s map transformed recordings;

5. Find the transformed recordings that s maps “incorrectly”;

6. For each recording in (1) that s now maps “incorrectly” in (5), replace it in C with its

transformed version;

7. Return to (1); repeat until the performance estimate of s reaches a random baseline,

or a maximum number of iterations is reached.

Sturm (2014a) also proposes the reverse, an inflation process that attempts to reach per-

fect performance estimates by means of irrelevant transformations.

Combining irrelevant transformations with system analysis has revealed the reasons

behind the success of several systems on a variety of problems. Sturm (2016b), for in-

stance, shows that the systems proposed by Pikrakis (2013), which are apparently success-

ful in identifying rhythm patterns from audio, actually rely on the tempo of the recordings

(their “speed”) to predict correctly the annotations of the BALLROOM collection (Dixon
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et al., 2004). The relationship between tempo and annotations appears mainly because

dance competitions heavily regulate how fast or slow each dance style can be.

Interpretable Explanations Most Machine Learning algorithms yield trained models

with such an inherent complexity that is virtually impossible to discern how they make

predictions, leading to studies often relying on speculation to justify apparent success

(Lipton and Steinhardt, 2018). Realising stakeholders in some fields, such as finance or

healthcare, often mistrust predictions made by black boxes, researchers in ML-related dis-

ciplines have recently increased efforts to make models and their decisions more easily

“interpretable” (Doshi-Velez and Kim, 2017). These efforts have led to scientific meetings

devoted to the topic along with prestigious venues such as the ICML conference.13

Some researchers have proposed techniques to facilitate the interpretability of MCA

systems, such as for the auralisation (Choi et al., 2016) and visualisation (Schlüter, 2016)

of features that contribute to the predictions systems make. Mishra et al. (2017) propose

SLIME, a method to interpret the behaviour of MCA systems based on the post-hoc model-

agnostic local analysis developed by Ribeiro et al. (2016). Given a classifier built using any

learning algorithm, this technique aims to highlight which parts of a spectrotemporal rep-

resentation of an input signal contribute most towards a decision. As an example, Mishra

et al. (2017) analyse singing voice detection systems (Lehner et al., 2013), revealing that

some highly performing ones appear to use parts of the input that contain no voices to

correctly predict recordings as “vocal”. More recently, Mishra et al. (2018a,b) improve the

contiguity and efficiency of the explanations using feature inversion, a technique to de-

rive plausible representations in the form of the input from the intermediate representa-

tions that the layers of deep neural networks generate. Also based on Ribeiro et al. (2016),

Haunschmid et al. (2019) propose a method to explain the predictions of Music Emotion

Recognition systems. These works showcase an increasing interest in understanding what

MCA systems actually learn from data.

Item Response Theory In psychometrics, researchers attempt to devise better ways to

measure psychological traits and aptitudes. Hernández-Orallo and collaborators have

recently noticed the similarity between this goal and that of the evaluation of Machine

13https://sites.google.com/view/whi2018
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Learning and, more generally, Artificial Intelligence systems (Hernández-Orallo, 2017;

Martínez-Plumed et al., 2019). In particular, they propose leveraging the so-called Item

Response Theory (IRT) (Baker and Kim, 2017; de Ayala, 2009). This, in essence, entails

decomposing each individual measurement — i.e., the response to a test question — into

“latent” variables that capture characteristics of both the subject (or respondent), such as

their ability, and the question (or item) itself, such as its difficulty or discrimination capa-

bility. IRT thus aims to uncover reasons behind performance, gauging the extent to which

observed results arise from the actual capabilities of the evaluated entity and how much

they are influenced by the contents of the test itself. This information can then help make

ability judgements relieved from test artefacts.

In a Machine Learning context, Martínez-Plumed et al. (2016, 2019) illustrate the use

of an evaluation methodology inspired by IRT to compare classifiers. Classifiers corre-

spond to respondents in the IRT paradigm, with individual instances in test collections

as items on which one measures — i.e., the responses to be decomposed are single class

predictions. Martínez-Plumed et al. (2016, 2019) showcase how one can interpret the es-

timates of item-level parameters they consider (difficulty, discrimination, and guessing

— the probability of chance-like success) to gain insights lacking in conventional bench-

marking, and explore which classifiers should be included in the analysis to obtain suit-

able estimates. Lalor et al. (2016) instead propose using human raters to estimate IRT

item-level parameters, which can then be used to adjust performance measurements of

Natural Language Processing systems. More recently, Lalor et al. (2019) suggest replacing

humans with “artificial crowds” simulated via Deep Neural Networks. Regardless of how

parameter estimates are obtained, these works highlight how decomposing performance

measurements into latent contributions can provide insights on the behaviour of assessed

systems as well as uncover issues with the evaluation collections employed.

2.6 Summary and Forward Look

Research in Music Content Analysis (MCA) aims at developing systems that automatically

describe audio recordings according to some musically-related concept. The most widely

used evaluation strategy to assess the suitability of MCA systems is the classification ex-

periment, which relies on the predictions such systems make on some previously anno-
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tated collection of recordings. This evaluation approach is subject to a variety of valid-

ity threats and limitations. A major concern is the inability to discern whether a system

actually addresses the problem for which it was designed or suffers from confounding

instead. Proposed improvements to the classification experiment pipeline, such as intro-

ducing filtered partitioning or irrelevant transformations, illuminate the reasons behind

apparent success (or failure) and thus provide information necessary to improve devel-

oped systems. Later chapters build upon these ideas to propose a systematic evaluation

methodology that jointly assesses MCA systems and some possible confounding effects

that might impact their performance. Together with techniques aimed at providing inter-

pretable explanations to the predictions MCA systems make, the proposed methodology

suggests a falsificationist perspective to MCA evaluation: instead of attempting to confirm

a system’s success, which might be impossible, one should try as thoroughly as possible to

disprove it; each failed attempt then provides further evidence of success. First, however,

Ch. 3 introduces the fundamental principles and tools of statistical Design of Experiments

(DoE) on which the proposed methodology relies.
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STATISTICAL DESIGN AND ANALYSIS OF

EXPERIMENTS

Any discipline that aspires to be regarded as scientific must pursue the highest standards

of evidence in its studies. Design of Experiments (DoE) is a branch of statistics that aims at

precisely this. From the seminal work of Fisher (1935), DoE researchers develop method-

ologies to plan experiments in a way that ensures appropriate data collection and analysis,

so that they may provide valid evidence to answer the research questions one targets.

This chapter first introduces the fundamental principles and tools of DoE in Sec. 3.1,

including widely accepted methods to express and analyse experimental measurements.

Sec. 3.2 then reviews a particular approach to DoE based on what is known as the Calculus

of Factors. Sec. 3.3 finally reviews common mechanisms to express and analyse the results

of classification experiments.

The explanations in this chapter largely follow the traditional terminology and con-

ventions of frequentist statistics used in much DoE research. The core ideas presented,

however, would easily adapt to other approaches gaining traction in the community, such

as Bayesian inference (Benavoli et al., 2017), as a response to the limitations of Null-

Hypothesis Significance Testing (Berrar and Dubitzky, 2018).

66
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3.1 Experimental Design Fundamentals

This section introduces the fundamental concepts of DoE, as well as the expression of em-

pirical measurements as structural models, upon which the following sections build. The

many excellent textbooks from the DoE literature, such as those by Montgomery (2013),

Cobb (1998) and Mason et al. (2003), discuss more extensively these matters; Hinkelmann

(2015) overviews the main contributions to DoE from a historical perspective.

3.1.1 Terminology

In a DoE context, an experiment is an empirical study that deliberately changes one or

more independent variables to observe how the change affects dependent variables; the

deliberate change is an intervention. The set of conditions to compare are the treatments

of the study, and the outcome variable to observe is the response. Each run (iteration) of

the experiment yields a single measurement of the response. An effect is a difference in

response between treatments.

In a broad sense, the subjects of the study are called units or, for historical reasons,

plots. In many studies, each subject receives an individual treatment and is measured

once; however, this is not always the case. Consider, for instance, students who attend the

same lectures, but are examined individually — treatments (the lectures) and measure-

ments (the exams) target subjects at different levels of aggregation. Subjects that receive

treatments are experimental units, whereas those on which one performs measurements

are observational units.

Both treatments and units in a study might display structure: characteristics common

across multiple elements of those sets. Treatments may be combinations of basic compo-

nents, such as chemical and dosage in drug testing; units may form homogeneous groups,

such as sex or assigned physician in human patients. A characteristic that groups units is

a blocking variable, with each of the resulting groups being a block.

One jointly calls treatment and blocking variables the explanatory variables, or co-

variates, of the experiment. This dissertation assumes that covariates are categorical — a

categorical, or factor, variable takes one of a limited number of values, called levels. Each

observation i in a study takes a particular level F(i ) of each covariate factor F.
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3.1.2 Principles of Experimental Design

An experimental design is a particular plan to assign treatments to units, so that one can

isolate the effects of interest from nuisance variability introduced by auxiliary factors. Fol-

lowing the tradition of Fisher (1935), most experimental designs rely on the principles of

replication, randomisation, and blocking. Some also include factorisation as a fundamen-

tal principle of experimental design (e.g., Cobb, 1998). According to Mason et al. (2003),

adopting these principles mainly intends to eliminate known sources of bias and reduce

the impact of unknown ones on the inferences derived from experimental results.

Replication For each individual treatment or combination of treatment factors, one

should obtain multiple observations to capture and account for variability other than ef-

fect differences. This is directly related to the power calculations in statistical inference

tests. Replication should not be confused with repetition, however; a measurement is re-

peated if it is obtained more than once over the same observational unit. Due to natural

variations and possible measurement errors, one might encounter variation in responses

measured repeatedly on the same unit; these, however are false replications, since the ef-

fect of the treatment and that of the particular unit cannot be disentangled. In this disser-

tation, replicated measurements or replicates always refer to measurements on different

observational units with the same treatment.

Randomisation Decisions such as the assignment of treatments to units or the order-

ing of measurements should be made randomly when possible. Random does not mean

haphazard; true randomness requires the aid of specific devices, since one can never

guarantee that haphazard decisions are devoid of unconscious biases. Randomising thus

promotes the planned chance-like variability most statistical tests assume, as opposed to

unknown systematic variability that might bias results. In computer-based experiments,

however, randomisation appears less relevant. Digital environments can perfectly dupli-

cate all units, and subject each duplicate to a different treatment without risking side ef-

fects such as spillovers — the application of a treatment affecting measurements other

than the intended one. Ordering effects are also virtually non-existent.
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Blocking When one identifies closely similar units according to some variable, it is

preferable to group them into blocks and apply randomisation within each block sepa-

rately. This accounts for the systematic variability that each group introduces, thus re-

moving it from the effects of interest. Blocking hence controls the impact of a variable on

the measurements. Deciding which possible sources of homogeneity deserve being con-

trolled, however, is far from trivial. For any given experiment, widely different conclusions

could be reached depending on which blocks are considered for its design and analysis.

Factorisation If a study involves multiple treatment variables (i.e., multiple sets of con-

ditions, each of a different nature), one should consider, if feasible, all possible combi-

nations of the values such variables take as individual treatments to assign and compare

in a single experiment. The rationale behind this is twofold. First, factorisation makes

studies more efficient, since designing and conducting a single experiment targeting mul-

tiple treatments simultaneously is likely cheaper and faster than multiple separate exper-

iments. Second, including all possible combinations of values might illuminate interac-

tions between variables; two variables interact if the value one takes impacts the effect the

other has on the response.

These principles inform a large portion of the experimental designs that studies im-

plement. Of them, replication is probably the most important; no general conclusion can

arise from a single observation. Randomisation is beneficial in most settings, but largely

irrelevant in those of most interest here. Finally, both blocking and factorisation are op-

tional but highly recommended when feasible. Structural models, which are discussed

next, reflect the choices one makes in this regard.

3.1.3 Structural Models

Estimating effects of interest requires relating the responses to the explanatory variables

in some form. Structural models pose particular presumed relationships (Horton, 1978).

Authors often assume that the observed responses can be approximated as a linear com-

bination of the effects of relevant covariates. This provides a simple and well-established

paradigm for analysing experimental results.
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The structural models considered here are mixed-effects models, which means they

include parameters for both fixed and random effects. A fixed effect assumes all units

with the same level of the related factor contribute equally to the response; a random

effect allows the contribution to differ across units, coming from a random variable with

parameters that depend on the level of the factor. DoE usually associates fixed effects with

treatment factors, and random effects with blocking factors. This assumes the treatments

in the study include all one aims to compare, whereas the blocks only include a (random)

selection among all possible groups.

A linear mixed-effects structural model decomposes the response yi observed in each

unit i as the sum of (a) a value µ constant for all units, which Cobb (1998) calls the bench-

mark parameter, (b) the fixed-effects parameters τF(i ), (c) the random-effects parameters

βG(i ), and (d) a residual εi . Each factor contributes to the expected response adding (or

subtracting) an amount that depends on its level. The residual captures the difference

between expected and actual response for a particular unit.1

In the literature, the benchmark parameter µmight represent two different quantities:

a baseline (e.g., Eugster, 2011) or a global mean (e.g., Bailey, 2008). The interpretation of

the factor effects changes depending on which quantity µ represents, so researchers must

choose carefully and report clearly which one applies in their study. Unless stated oth-

erwise, this dissertation assumes µ in structural models represents a baseline. Estimated

effects should then be interpreted as differences against the expected response of some

reference combination of factor levels.

There are a few models based on some simple assumptions that appear often. When

one ignores all structure in both units and treatments, and these are assigned to the units

at random, one adopts a Completely Randomised Design (CRD). Its corresponding struc-

tural model only includes the fixed effect of a treatment factor F:

yi =µ+τF(i ) +εi . (3.1)

For instance, a clinical study might aim to compare the effects of several drugs on the

recovery of patients. In that case, the levels of F correspond to each such drug, with µ

1Traditional interpretation of εi usually associates this term with measurement error; in reality, it also re-
flects the effects of factors missing in the model and the natural variation among units. Some authors call this
term residual instead of error to avoid misinterpretations (Montgomery, 2013).
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possibly modelling the mean response measured in patients taking either a placebo or a

“gold-standard” drug.

If the treatment factor F reflects combinations of levels of various additional factors,

say G and H, the measurements can be expressed as a Factorial Design (FD), with model:

yi =µ+τG(i ) +τH(i ) +τGH(i ) +εi (3.2)

where GH represents the interaction between G and H. For instance, in the example

above, G and H might represent chemical compound and dosage, respectively.

Both Eqn (3.1) and (3.2) only include parameters for fixed effects. The opposite, mod-

els that only include random effects, have little practical use since one usually assumes

distributions with zero mean for such effects. Combinations of fixed and random effects,

on the other hand, are pervasive. If units group into blocksB, with at least one observation

per level of the treatment F in each block, one has a Complete Block Design (CBD):

yi =µ+τF(i ) +βB(i ) +εi . (3.3)

For instance, the levels of B might correspond to the hospitals the patients attend while

participating in the clinical study.

Well-established tools, such as least squares, provide estimates of the effects consid-

ered in such models from observed measurements. These estimates facilitate conclusions

about the particular effects one aims to evaluate, isolating them from possible nuisance

variables if accounted for through a suitable structural model. Although linear additive

models, such as those presented above, dominate much of the literature, more complex

relationships may also be considered. In particular, the family of models that Nelder and

Wedderburn (1972) called Generalised Linear Models (GLMs) extend ordinary linear addi-

tive models for non-normal responses. In GLMs, a link function transforms the response

variable in a manner depending on its assumed distribution, and this transformed re-

sponse is then related with a linear additive combination of explanatory variables. For the

particular case of binomial data, GLMs that use the logit link function are often called lo-

gistic models, although other link functions, such as the so-called probit are also suitable.

GLMs for responses with a Poisson distribution, on the other hand, are called loglinear

models and use a logarithm as link function. GLMs in which parameters for both fixed
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and random effects appear are called Generalised Linear Mixed-Effects Models (GLMMs).

Unless stated otherwise, however, this dissertation follows the usual convention of using

linear additive structural models for both theoretical explanations and concrete analyses.

3.1.4 Statistical Inference for the Hypothesis of Equality of Means

Researchers usually design and conduct experiments in order to determine whether var-

ious conditions yield different outcomes. In practice, this often boils down to comparing

the mean responses from observations grouped according to their treatment factor level.

In the presence of uncertainty, however, observed differences in such means may arise as

a product of chance. Statistical inference techniques aim at gauging whether a given set of

observations provide enough evidence for a particular claim. For instance, a common ap-

proach is to assume the observed responses come from populations with the same mean

— i.e., define a null hypothesis H0 of equality of means — and perform a test to determine

whether the measurements sufficiently support the assumption.

Most tests rely on calculating a specific test statistic from the measurements and com-

pare its value with a probability distribution of a particular family. To determine whether

a difference is statistically significant, then, one first fixes a target probability α, called sig-

nificance level. Many studies use α = 0.05, but this value is largely arbitrary. One then

obtains from the probability distribution of the test statistic the value that corresponds

to the α set and compares it with the calculated test statistic. If the test statistic exceeds

the threshold value from the distribution, one rejects the null hypothesis H0 of equality of

means.

Due to chance, however, it is still possible to reject the null hypothesis when it is ac-

tually true, or not reject it even if it is actually false. The former is called a Type I error,

and the latter a Type II error. The power or sensitivity of a test is the probability of cor-

rectly rejecting H0 when the alternative hypothesis H1 is true. Increasing the number of

replications in each group raises the power of the test.

The remainder of this section introduces tests conventionally conducted to assess the

equality of means between groups. These tests are parametric, which means they rely

on strong assumptions about the underlying population distribution. Some data types of

interest may not satisfy those assumptions, so Sec. 3.3 includes some alternatives. In any
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case, the following tests (and the frequentist inferential approach in general) are presented

not necessarily to advocate their use, but because they help understand the decomposi-

tion of measurements into contributions.

Two groups: t-test For the particular case of the equality of means between two groups,

it is common to use a t-test, which involves comparing a test statistic with a Student’s t

distribution. Under the null hypothesis H0 :µ1 −µ2 = 0, the statistic for a t-test is:

t = ȳ1 − ȳ2

S ȳ1−ȳ2

(3.4)

where ȳ1 and ȳ2 are the sample means (average of all measurements belonging to each

group), and S ȳ1−ȳ2 the sample standard error of the difference, obtained from:

S ȳ1−ȳ2 =
√

S2
( 1

N1
+ 1

N2

)
(3.5)

with N1 and N2 the number of observations in each group, and S2 a pooled estimate of

the unknown population variance σ2:

S2 =
∑

(yi 1 − ȳ1)2 +∑
(yi 2 − ȳ2)2

N1 +N2 −1
= SS1 +SS2

N1 +N2 −1
. (3.6)

SS refers to the sum of squares of a sample (or, more strictly of the deviations from the

mean of a sample), which captures its variability. The Student’s t distribution against

which one compares the statistic has N1 +N2 −1 degrees of freedom.

The procedure above, however, assumes that the population variances of the two

groups match. If this assumption is violated, and especially when the group sizes differ,

the test may yield invalid conclusions. To assess whether the data violates the assumption

of homogeneity of variance, one can test the null hypothesis H0 : σ1 = σ2 through the ra-

tio between sample variances; equivalently, H0 :σ1/σ2 = 1. The sample variance for each

of the groups is defined as the quotient between its sum of squares and the number of

elements in that group, S2
j = SS j /(N j −1). The test statistic is thus defined as:

F = S2
1

S2
2

(3.7)
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which follows a Fisher’s F distribution with N1 − 1 and N2 − 1 degrees of freedom under

the null hypothesis. If the F -statistic cannot reject the null hypothesis, then the formula

of the sample standard error in Eqn (3.5) changes to:

S ȳ1−ȳ2 =
√

S2
1

N1
+ S2

2

N2
(3.8)

and the degrees of freedom of the t distribution to:

df =
(

S2
1

N1
+ S2

2
N2

)
(

S2
1

N1

)2/
(N1 −1)+

(
S2

2
N2

)2/
(N2 −1)

. (3.9)

Multiple groups: ANOVA For the general case of g ≥ 2 groups, one could perform all

pairwise comparisons as above, but would need to introduce some correction to com-

pensate for the increased probability of error that this causes. Instead, the DoE literature

favours the Analysis of Variance (ANOVA) to test differences between the mean responses

of multiple groups. Multiple tests of the ANOVA family exist but, to facilitate the explana-

tion of the underlying principles, only the simplest of them (the so-called One Way Unre-

lated ANOVA) will be considered here.

Put very simply, ANOVA compares the variance between groups with the variance

within groups, since one expects observations in the same group to be more homoge-

neous among themselves than with the others if each group affects the response differ-

ently. If all observations within each group matched, then all the variation in the response

would be attributable only to the independent variable that defines the groups. In real-

ity, however, observations from the same group tend to vary due to natural differences

between units and other unavoidable circumstances affecting the measurements; these

differences are called residual variation.

Each observation deviates from the overall mean by some amount. Each individual

deviation can be split into two quantities: the amount by which the measurement de-

viates from its group mean, and the amount by which the group mean differs from the

overall mean. ANOVA relies on estimating the variance of each of these three compo-

nents — total variance, between groups variance, and within groups (or residual) variance.
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Given N observations yi j from g groups, each of size N j , with ȳ the overall sample mean

(ȳ =∑g
j=1

∑N j

i=1 yi j /N ) and ȳ j the sample mean of group j (ȳ j =∑N j

i=1 yi j /N j ), then the to-

tal sum of squares (SStot ), which captures the overall variability in the data, is:

SStot =
g∑

j=1

N j∑
i=1

(yi j − ȳ)2 =
g∑

j=1

N j∑
i=1

[(ȳ j − ȳ)+ (yi j − ȳ j )]2

=
g∑

j=1

N j∑
i=1

(ȳ j − ȳ)2 +
g∑

j=1

N j∑
i=1

(yi j − ȳ j )2 +2
g∑

j=1

N j∑
i=1

(ȳ j − ȳ)(yi j − ȳ j )

=
g∑

j=1

N j∑
i=1

(ȳ j − ȳ)2 +
g∑

j=1

N j∑
i=1

(yi j − ȳ j )2 +2
g∑

j=1
(ȳ j − ȳ)

N j∑
i=1

(yi j − ȳ j )

=
g∑

j=1

N j∑
i=1

(ȳ j − ȳ)2 +
g∑

j=1

N j∑
i=1

(yi j − ȳ j )2

(3.10)

because the cross-product term is 0:

N j∑
i=1

(yi j − ȳ j ) =
N j∑
i=1

yi j −N j ȳ j =
N j∑
i=1

yi j −N j

N j∑
i=1

yi j

N j
=

N j∑
i=1

yi j −
N j∑
i=1

yi j = 0.

Therefore, SStot can be expressed as the sum of two components, SSbet and SSres. These

correspond to the between groups and within groups variability mentioned above. The

quotient of SStot and the total degrees of freedom of the data (df tot = N − 1) is the total

sample variance S2
tot = SStot /df tot .

Since there are g groups, the variability between groups has df bet = g − 1 degrees of

freedom. Dividing SSbet by df bet yields the mean squares differences between groups:

MSbet =
SSbet

df bet
=

∑g
j=1

∑Ni
i=1 (ȳ j − ȳ)2

g −1
. (3.11)

The degrees of freedom of the residual are given by the difference between df tot and df bet :

df res = (N −1) − (g −1) = (N − g ). The residual mean squares are, thus:

MSres = SSres

df res
=

∑g
j=1

∑N j

i=1 (yi j − ȳ j )2

N − g
. (3.12)

Both mean squares follow the structure of a sample variance. In fact, the expectation

of MSres is precisely σ2 under the assumption that the residual variation is normally dis-

tributed with 0 mean and variance σ2. Moreover, if no actual difference exists between

groups, i.e., all observations come from a single population, the expectation of MSbet is

also σ2. This suggests comparing mean squares to test the null hypothesis H0 of no differ-
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ence between group means. More precisely, the variance ratio:

F0 = VR = MSres

MSbet
(3.13)

follows under H0 an F distribution with g −1 and N−g degrees of freedom. This value can

be used as test statistic for H0, similar to the ones presented in Eqn (3.4) and (3.7) but in

this case testing for all comparisons simultaneously. Although rejecting H0 suggests that

at least one group differs from the rest, this method alone does not inform which.

The One Way Unrelated ANOVA approach presented implicitly presumes a CRD model

such as the one in Eqn (3.1), assuming no structure relating units and a single treatment

factor defining all groups. Generalisations of ANOVA to more complex structures exist,

but standard statistics textbooks present each as a separate method. The next section de-

scribes a unified framework that permits generalising ANOVA-like analyses to structures

of arbitrary complexity subject to certain conditions.

3.2 The Calculus of Factors Approach to Experimental Design

The Calculus of Factors is a mathematical approach for the analysis of experimental

data assuming that both units and treatments can be expressed as factor variables. This

approach leverages the theory of vector spaces and matrix operations, with which re-

searchers in disciplines related with Signal Processing and Machine Learning may be fa-

miliar. Since the concepts related with this approach might appear obscure, Appendix A

includes some concrete numerical examples. Bailey (2008, 2015) and Cheng (2014) pro-

vide more detailed introductions to this topic.

3.2.1 Factors and their Relationships

Let F be a factor variable associated with an element of an experiment, where such an

element can be either a plot2 or a treatment. F(x) refers to the level of factor F on element

x. F[x] refers to the class (or part) ofF containing element x, formed by the set of elements

that share the same level of factor F with x; F[x] is called the F-class of x.

2The term “plot” is a historical name for “observational unit”, which is used here for brevity.
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The number of parts in which a factor F splits the set of all plotsΩ or treatments T is

denoted NF . This matches the number of levels of F if and only if all those levels occur

in the set. F is uniform if all NF F-classes include the same number of observations. All

classes in this case have equal size KF , so NFKF = N = |Ω|.
Let G be another factor variable. F and G are equivalent, or aliased, when all F-classes

are alsoG-classes (and vice versa); writingF≡G in this case. Two equivalent factors are es-

sentially the same, regardless of whether they are labelled differently. Conversely, if F and

G are not equivalent, all F-classes might also be G-classes, but not the other way around.

In this case, F is finer than G, which is denoted F ≺ G, and G is coarser than F, which is

denoted GÂF. If can be finer or equivalent to G, one writes F4G or, likewise, G<F.

The concepts of finer and coarser factors lead to a pair of fundamental factors. The

universal factor U consists of a single class that includes every plot in the experiment; U

thus contains the classes of all other factors, so F 4 U for any factor F. Conversely, the

equality factor E consists of one class for each plot in the experiment; E is thus contained

in the classes of all other factors, so E4F for any factor F. In general, then, for any factor

F we have E4F4U.

The infimum of two factors F and G is a factor I = F∧G whose classes are the (non-

empty) intersections between F-classes and G-classes. Hence, I 4 F and I 4 G, since

all classes of I are contained both in F and G, but not all classes of F and G need to be

contained in I. In addition, if another factor H 4 F and H 4 G, then H 4 I. The dual

concept of supremum is a factor S = F∨G such that F 4 S and G 4 S, and S 4 H for

every factor H that satisfies both F 4 H and G 4 H. The classes of S are the smallest

subsets of plots that join all units appearing in the same class either inF orG. The infimum

resembles an intersection between factors, and the supremum their union.

Graphical representations called Hasse diagrams can be used to express relationships

between factors. To this end, each factor in a set corresponds to a dot in the diagram,

whose connections capture their mutual coarseness or fineness, such as in Fig. 3.1. If

F ≺ G then the dot for G is drawn above the dot for F, joining both dots with a line. Since

the universal factor U is coarser than any other factor, its dot is drawn at the top of the

diagram; similarly, the dot for the equality factor E is drawn at the bottom. If neither F

nor G are finer than the other, one includes a dot for their supremum (F∨G) above and
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connected to both of them. A dot for their infimum (F∧G) is also included below and

connected to both of them (unless F and G are treatment factors and one knows that they

do not interact).

U

G

F

E

(a) F≺G

U

F∨G

G F

F∧G

E

(b) F⊀G

Figure 3.1: Hasse diagrams showing possible relationships between factors.

3.2.2 Subspaces defined by Factors

Let y be an N -dimensional real-valued vector containing the observations from an exper-

iment. This vector belongs to the R|Ω| vector space, which contains subspaces for each

factor F defined in the experiment. VF is the vector subspace of R|Ω| comprising vectors

with values constant within each F-class. The dimension of each such subspace equals

the number of partitions NF of the corresponding factor F.

The two fundamental factors introduced in Sec. 3.2.1 also have associated vector sub-

spaces. The subspace VE corresponding to the equality factor E coincides with the entire

vector space R|Ω|, hence VE can be constructed as the span of the set of standard vectors

inRN . The subspace VU of the universal factor U, on the other hand, is a one-dimensional

space of constant vectors — i.e., all vectors of size N with identical values in their coordi-

nates. VU is the span of 1N (a vector of N ones).

Relationships between factors correspond to relationships between their vector

spaces. In particular, ifF4G then VG is a subspace of VF — i.e., VF contains VG (VG ⊆VF).

Moreover, a vector is constant on each F-class and G-class if and only if it is constant on

each class of their supremum F∨G; the subspace VF∨G thus equals VF∩VG.
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For any factor F in an experiment, two matrices of size N ×N relate pairs of plots. The

relation matrix RF contains ones only in cells that correspond to pairs of plots in the same

F-class; all other cells are zero. The projection (or averaging) matrix PF is defined in ex-

actly the same way as RF , but containing 1/|F[ω| instead of ones in the non-zero cells.

This matrix projects orthogonally any vector v ∈R|Ω| onto VF .3 This property permits de-

composing data into different sources, which forms the basis of some statistical analyses

such as ANOVA. If F is uniform, converting between relation and projection matrices be-

comes trivial: RF = KFPF .

The projection matrices associated with the special factorsE andU appear in the anal-

ysis of all experiments. SinceE creates a class for every individual plot, and is thus uniform

with KE = 1, its projection matrix is PE = IN (the identity matrix of size N ×N ). U, on the

other hand, creates a single class that includes all plots, thus KU = N . Its projection matrix

is then PU = JN /N , where JN indicates a matrix of size N ×N containing ones in all cells.

3.2.3 Factor Orthogonality

The analysis of experimental data becomes much easier when all factors in an experiment

are mutually orthogonal, as is the case in most conventional experimental designs. The

concept of orthogonal factors is formally defined next from two distinct perspectives. This

provides methods to check whether the factors in an experiment satisfy this property, ei-

ther using their projection matrices or the relative sizes of their classes.

Definition from Subspaces Two factorsF andG are mutually orthogonal (writtenF⊥⊥G)

if the subspace VF∩V ⊥
F∨G is orthogonal to the subspace VG∩V ⊥

F∨G:

VF∩V ⊥
F∨G ⊥VG∩V ⊥

F∨G =⇒ F⊥⊥G. (3.14)

Equivalent definitions state that F and G are orthogonal if the subspace VF is orthogonal

to (VG∩V ⊥
F∨G), or VG is orthogonal to (VF ∩ V ⊥

F∨G). These definitions, however, are largely

impractical to check the orthogonality of factors in an experiment. Alternatively, one can

exploit that two factors F and G are mutually orthogonal if and only if the product of their

respective projection matrices is commutative:

3Bailey (2008) expresses the projection matrix as PVF , making explicit the subspace to which it corresponds.
As Bailey (2015) later does, however, we use this notation only when it is necessary to disambiguate matrices
related to diverse subspaces.
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F⊥⊥G ⇐⇒ PFPG = PGPF . (3.15)

In addition, if two factors are orthogonal, then the product of their projection matrices

equals the projection matrix of their supremum:

F⊥⊥G =⇒ PFPG = PGPF = PF∨G. (3.16)

A sequence of factors F1,F2, . . . ,Fn forms a chain if such factors all satisfy

F1 ≺F2 ≺ ·· · ≺Fn . Factors in a chain are all mutually orthogonal. Factors not forming

a chain can also be mutually orthogonal, but one would need to check specifically.

The equivalence in Eqn (3.15) leads to a somewhat surprising result: since the prod-

uct of PF by itself is trivially commutative, every factor is orthogonal to itself. This result

seems to defy the usual interpretation of orthogonality. The definition of orthogonal fac-

tors in Eqn (3.14) helps clarify this apparent contradiction. If F≡G, their supremum is the

factor itself, so VF∨G =VF =VG. Eqn (3.14) then becomes:

(VF∩V ⊥
F ) ⊥ (VF∩V ⊥

F ) =⇒ F⊥⊥F.

This may seem like a dead end, since it requires a subspace (i.e., VF∩V ⊥
F

) to be orthogonal

to itself, which is generally impossible. There is one exception, though. The only self-

orthogonal vector space that can be constructed is {0}: the vector space consisting of a

single vector filled with zeroes. It is trivial to check that {0} is orthogonal to itself, since the

scalar product 〈0,0〉 is obviously 0. This is exactly what happens here. The intersection

between any subspace (e.g., VF) and its orthogonal complement (e.g., V ⊥
F

) is limited to

{0}. The subspace VF∩V ⊥
F

= {0} is thus orthogonal to itself, which implies that factor F is

also orthogonal to itself.

Definition from Classes A further equivalent definition of factor orthogonality may be

useful in some circumstances. Two factors are orthogonal if, within each class of their

supremumF∨G, the size of the class ofF∧G that containsω is proportional to the product

of the sizes of the F- and G-classes that also contain ω. Formally, this is written:

|F[ω]|× |G[ω]| = c j ×|(F∧G)[ω]|× |(F∨G)[ω]| (3.17)

with c j ∈ R constant for all plots belonging to the same class j of the supremum. The

formulation in Eqn (3.17) differs slightly from the one Bailey (2015) reports. In particular,

the version here includes c j to further emphasise that both sides of the equation should
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keep the same proportionality ratio within each class of the supremum, which may differ

from 1. This point remains unclear in Bailey’s formulation.

Non-Orthogonality Including non-orthogonal factors in an experiment hampers the

analysis of its measurements. Re-arranging and/or adding experimental material before

actually conducting the experiment might suffice to make problematic factors become or-

thogonal to the rest. For instance, the boundaries of factor levels discretised from contin-

uous variables can often be redefined to generate groups orthogonal to those from other

variables. Alternatively, problematic factors can be ignored if expert knowledge suggests

that they are not relevant for the response. Otherwise, the Calculus of Factors approach

might need to be replaced by a less restrictive alternative, such as the method of least

squares, as Hinkelmann (2015) notes.

3.2.4 Orthogonal Decomposition

Orthogonal factors permit decomposing measurements into contributions from such fac-

tors using projections into derived subspaces. The general concepts of this procedure are

introduced in what follows.

W -subspaces The V subspaces capture all information from the measurements related

to the levels of a factor, both originated from itself and carried over from others to which

it is chained. WF is the subspace of VF containing the information that the factor F alone

contributes, removing any that other factors embed in its levels. Denote F a set of non-

equivalent factors including F. The WF subspace is then defined as:

WF =VF∩ (
∑
GÂF

VG)⊥ =VF∩ ⋂
GÂF

V ⊥
G (3.18)

where
∑

GÂF VG indicates the span of the union of the V -subspaces associated with all

factors in F coarser than F, while
⋂
GÂF V ⊥

G
refers to the intersection of all subspaces

orthogonal to those same VG.

Decomposing the whole data space into orthogonal pieces requires all W -subspaces

from non-equivalent factors to be mutually orthogonal. If all (F,G) ∈F satisfy (a) F ⊥⊥ G,
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and (b) (F∨G) ∈F , then (i) WF is orthogonal to WG, and (ii) VF is the orthogonal direct

sum of all WG for G<F.

Effects Given an arbitrary data vector y, the effect of factor F on y is defined as the pro-

jection of the data vector onto the W -subspace of F (i.e., PWF
y). Since all W -subspaces

are mutually orthogonal, the projection of the data vector onto WF is orthogonal to the

projection onto the W -subspace associated with any other factor in the set. The projec-

tion of y onto the V -subspace, on the other hand, accumulates the individual effects of all

factors coarser or equivalent:

PVF
y = ∑

G<F
PWG

y. (3.19)

Unlike V -subspaces, no shortcut method exists to obtain projection matrices onto W -

subspaces, so it is necessary to rely on the general method for constructing a projection

matrix from the vector basis of a subspace. In particular, given a matrix W containing as

columns a vector basis for the subspace W , one obtains its associated projection matrix

by computing:

PW = W(WTW)
−1

WT. (3.20)

Connection with ANOVA The decomposition of observed data into a set of orthogonal

contributions directly links to the procedure for ANOVA described in Sec. 3.1.4. ANOVA

splits the variability of the data into different sources, and uses their ratio to test whether

such sources are distinct. The simplified version presented before only considers two pos-

sible sources of variability: the groups or conditions to compare and the residual. The

Calculus of Factors provides a more general approach that considers multiple factors as

potential sources of variability.

Similar to the procedure in Sec. 3.1.4, the variability attributable to each factor can be

estimated by dividing its sum of squares by its degrees of freedom. These values directly

relate with the W subspaces. Given the subspace WF associated with factor F:

� the degrees of freedom dF coincide with the dimensionality of WF
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dF = dim(WF); (3.21)

� the sum of squares SSF is the square norm of the projection of the data y onto WF

SSF = ∥∥PWF
y
∥∥2 . (3.22)

The mean squares associated with factorF are, then, MSF = SSF/dF , and the variance

ratio is VRF = MSF/MSE, since WE captures the residual variability not associated with

any other factor in the experiment. The steps followed to calculate degrees of freedom

and sums of squares, however, are far from immediate, requiring to obtain subspaces and

their projection matrices. The procedure described next streamlines such calculations.

3.2.5 Calculations on the Hasse diagram

The relationships between factors that Hasse diagrams capture facilitate calculations of

degrees of freedom and sum of squares of such factors. This requires two temporary dis-

tinct Hasse diagrams, one including only factors related with the plot structure and an-

other including only factors related with the treatment structure. To make it easier to dis-

tinguish both diagrams, it is common to use filled (black) dots to indicate plot factors and

empty (white) dots to indicate treatment factors, as Fig. 3.2 shows.

U

E

(a) Plots

U

E

(b) Treatments

Figure 3.2: Representation of factors in the plot and treatment sets.

Calculations are based on diagrams merging plot and treatment structures, in which

double dots represent factors that belong to both. Since usually more than one subject

receives each combination of treatment factors, however, the equality factors from each

structure often differ and thus do not appear in the merged diagram with a double dot.

In that case, the treatment equality factor can be labelled T, placing its node above E and

connected to the other treatment factors for which it is infimum.

To compute the degrees of freedom, one first identifies the number of classes in each

factor. It is often useful to write each such number close to the corresponding node in the
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Hasse diagram. Then, the degrees of freedom for any factor F equal the number of classes

of that factor minus the sum of the degrees of freedom of all factors above (and linked to)

the one under consideration in the Hasse diagram. This calculation corresponds to the

formula:

dF = NF− ∑
GÂF

dG. (3.23)

Starting from the universal factor U, all degrees of freedom can be computed by iteratively

descending through the factors at each level of the diagram. One then writes the resulting

degrees of freedom together with the number of classes in each node.

Similar to the degrees of freedom, a cascade of calculations yields the sums of squares.

The square norm of PVF
y is called the crude (or preliminary) sum of squares of F, which

is denoted CSSF . Due to the W -subspaces being orthogonal, CSSF can be decomposed

into a sum of sums of squares:

CSSF = ∥∥PVF
y
∥∥2 = ∑

G<F

∥∥PWG
y
∥∥2 = ∥∥PWF

y
∥∥2 + ∑

GÂF

∥∥PWG
y
∥∥2 = SSF+ ∑

GÂF
SSG. (3.24)

Rearranging this formula provides a method to calculate the sum of squares of F:

SSF = ∥∥PWF
y
∥∥2 = ∥∥PVF

y
∥∥2 − ∑

GÂF

∥∥PWG
y
∥∥2 = CSSF− ∑

GÂF
SSG. (3.25)

The starting point of the cascade is always CSSU, which is immediate to compute:

CSSU = ∥∥PVU
y
∥∥2 = ∥∥1N y

∥∥2 =
(∑N

i=1 yi
)2

N
= SSU. (3.26)

The remaining crude sums of squares can be calculated using:

CSSF =
NF∑
j=1

(∑NF j

i=1 yi j
)2

NF j

(3.27)

where NF j represents the size of the j -th F-class; if F is uniform, NF j = KF ∀ j .

3.2.6 Analysis of Conventional Experimental Designs

The Calculus of Factors framework permits analysing the measurements from any exper-

imental design whose factors are mutually orthogonal, This includes the widely adopted

designs described in Sec. 3.1.3, whose handling within such framework is described next.
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Completely Randomised Design A Completely Randomised Design (CRD) assumes no

structure in both plots and treatments, which leads to a Hasse diagram as the one shown

in Fig. 3.3. In vectorial form, the structural model in Eqn (3.1) changes into:

y =µ+τ+ε (3.28)

where τ is an unknown vector in WT , the W -subspace associated with the treatment fac-

torT. This representation is often called an effects (or null) model, whose implicit question

of interest is reflected in the following hypotheses pair:

H0 : τ1 = τ2 = . . . = τT = 0

H1 : τi 6= 0 for at least one i .

In other words, the effects model tests whether the effect of at least one of T treatments

differs from the average. When all treatments have the same mean effect, all deviations

from the overall mean must be 0. The effects model assumes a split of the data space into

three orthogonal subspaces:

V =V0 ⊕WT ⊕V ⊥
T . (3.29)

U

E

(a) Plots

U

T

(b) Treatments

U

T

E

(c) Combined

Figure 3.3: Hasse diagrams of a generic CRD.

Computing in cascade, starting from the top of the combined Hasse diagram, the de-

grees of freedom in a CRD are:

dU = nU = 1

dT = nT −dU = T −1

dE = nE− (dU+dT) = N − (1+ (T −1)) = N −T

(3.30)

and the sums of squares:
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SSU = ∥∥PWU
y
∥∥2 = ∥∥PVU

y
∥∥2

SST = ∥∥PWT
y
∥∥2 = ∥∥PVT

y
∥∥2 −SSU

SSE = ∥∥PWE
y
∥∥2 = ∥∥PVE

y
∥∥2 − (SSU+SST) = ∥∥PVE

y
∥∥2 −∥∥PVT

y
∥∥2 = ∥∥y

∥∥2 −∥∥PVT
y
∥∥2 .

(3.31)

Complete Block Design In a Complete Block Design (CBD), such as the one reflected in

Eqn (3.3), plots are grouped into blocks of similar characteristics, with at least one plot per

block receiving each treatment. Its structural model in vectorial form is:

y =µ+τ+β+ε. (3.32)

This splits the data space as the direct sum of four subspaces, each corresponding to one

term in the model:

V =V0 ⊕WT ⊕WB⊕WE.

Note that, aside from the appearance of the W -subspace associated with the blocking

factor, the subspace partition includes WE instead of V ⊥
T

. The residual variance captures

all the variability in the data not explained by either treatment or blocking effects, which

means that WE = (VT +VB)⊥.

The most common implementation of a CBD considers blocks of constant size equal

to the number of treatments T , so one and only one instance receives each treatment for

each block. For simplicity of exposition, the following derivation assumes the experiment

includes B blocks all of fixed size T : KB = T . The infimum between the blocking factor B

and the treatment factor T in this case corresponds to the equality factor E in the plot set.

Figure 3.4 shows the Hasse diagrams constructed under this assumption.

U

B

E

(a) Plots

U

T

(b) Treatments

U

B T

E

(c) Combined

Figure 3.4: Hasse diagrams of a CBD, in the particular case of all B blocks of size equal to
the number of treatments T .

For a CBD with KB = T , the degrees of freedom are:
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dU = NU = 1

dB = NB−dU = B −1

dT = NT −dU = T −1

dE = NE− (dU+dT +dB) = N − (1+ (T −1)+ (B −1))

= N −T −B +1 = T ·B −T −B +1 = (T −1)(B −1)

(3.33)

since the total number of observations coincides with all pairwise combinations of treat-

ments and blocks, and the sums of squares:

SSU = ∥∥PWU
y
∥∥2 = ∥∥PVU

y
∥∥2

SSB = ∥∥PWB
y
∥∥2 = ∥∥PVB

y
∥∥2 −SSU

SST = ∥∥PWT
y
∥∥2 = ∥∥PVT

y
∥∥2 −SSU

SSE = ∥∥PWE
y
∥∥2 = ∥∥PVE

y
∥∥2 − (SSU+SSB+SST)

= ∥∥y
∥∥2 +∥∥PVU

y
∥∥2 −∥∥PVB

y
∥∥2 −∥∥PVT

y
∥∥2

(3.34)

Factorial Design Any Factorial Design (FD) with equal number of replications per factor

combination, such as the one Eqn (3.2) reflects, is orthogonal. For the particular case of

F = 2, with F representing the number of treatment factors, the vectorial structural model

is:

y =µ+τF+τG+τFG+ε (3.35)

where FG represents the interaction between treatment factors F and G. Each term of the

effects model corresponds to an orthogonal subspace of the data space V :

V =V0 ⊕WF⊕WG⊕WT ⊕WE (3.36)

where WT =WF∧G. Note the subspace for the supremum of the two factors is not included

explicitly. In an orthogonal factorial design with equal replication per factor combination,

the supremum of the treatment factors coincides with the universal factor U — the sub-

space of the supremum matches the subspace of the overall mean.

Adding a third factor, H, leads to the following effects model:

y =µ+τF+τG+τH+τFG+τFH+τGH+τFGH+ε. (3.37)

The number of terms in the model increases quickly as soon as further factors are con-

sidered. Figures 3.5 and 3.6 show the Hasse diagrams corresponding to F = 2 and F = 3,



CHAPTER 3. STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS 88

respectively.
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Figure 3.5: Hasse diagrams of a factorial design with F = 2 treatment factors.
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Figure 3.6: Hasse diagrams of a factorial design with F = 3 treatment factors.

The cascading procedure to obtain the degrees of freedom and the sums of squares

works exactly as before. For instance, for F = 2:

dU = NU = 1

dF = NF−dU = NF−1

dG = NG−dU = NG−1

dT = NT − (dU+dF+dG) = NFNG− (1+ (NF−1)+ (NG−1))

NFNG−NF−NG+1 = (NF−1)(NG−1)

dE = NE− (dU+dF+dG+dT)

= N − (1+ (NF−1)+ (NG−1)+ (NF−1)(NG−1)) = N −NFNG

(3.38)

and
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SSU = ∥∥PWUy
∥∥2 = ∥∥PV Uy

∥∥2

SSF = ∥∥PWFy
∥∥2 = ∥∥PV Fy

∥∥2 −SSU

SSG = ∥∥PWGy
∥∥2 = ∥∥PV Gy

∥∥2 −SSU

SST = ∥∥PWTy
∥∥2 = ∥∥PV Ty

∥∥2 − (SSU+SSF+SSG)∥∥PV Ty
∥∥2 +∥∥PV Uy

∥∥2 −∥∥PV Fy
∥∥2 −∥∥PV Gy

∥∥2

SSE = ∥∥PWEy
∥∥2 = ∥∥PV Ey

∥∥2 − (SSU+SSF+SSG+SST)∥∥y
∥∥2 − (SSU+SSF+SSG+SST)

(3.39)

To derive these values for F ≥ 3, it can be useful to keep in mind that NF∧G = NF ×NG in

orthogonal factorial designs.

3.3 Design and Analysis of Classification Experiments

Despite being pervasive in many disciplines, classification experiments have not received

much attention from an experimental design perspective. Langley (1988) argued that ex-

periments in Machine Learning (ML), as a discipline “of the artificial”, demand less ef-

fort to achieve the necessary rigour compared with sciences subject to the uncertainty of

the physical world. Information Retrieval (IR), on the other hand, already had a long tra-

dition of relying on statistical methods in their evaluations (Jones, 1981). Cohen (1995)

reviews empirical practices for both expert systems and learning algorithms, including

experiments that largely follow the paradigm described in Sec. 2.3 and statistical tools

for analysing their results. The classification experiment paradigm has remained virtu-

ally unchanged since despite some authors having discussed the soundness of some con-

ventional choices (e.g., Hand, 2006; Salzberg, 1999), including particular components of

the pipeline such as resampling strategies (Dietterich, 1998) and performance metrics

(Hand, 2012), and even the rationale for experimental performance assessment as a whole

(Drummond, 2006, 2008).

Having previously introduced the necessary statistical concepts, this section describes

the core experimental design and inference practices that underlie conventional classifi-

cation experiments. The focus largely lies on the evaluation of learning algorithms, since

much of the analysis in that regard has been conducted in that context (e.g., Alpaydin,

2014; Eugster, 2011; Hothorn et al., 2005). This means that, unless explicitly stated other-
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wise, the pipeline in Fig. 2.2 simplifies, since the feature extractor e works previous to the

experiment to create the input data. These data take the form of a dataset D comprised

of N instances dn = ( fn , an), with fn = e(rn). Similar to Sec. 3.1.4, the review below first

deals with the particular case of pairwise comparisons between learning algorithms and

later generalises to pools of algorithms of arbitrary size. Aside from reporting inferential

tests common in the literature, as most texts in the topics usually do, this review also at-

tempts to relate assumptions about the measurements with the fundamental concepts in

experimental design.

3.3.1 Comparing Two Algorithms with Unstructured Measurements

A naive approach for comparing two learning algorithms, `1 and `2, on D would be to

both train and test systems using the whole dataset. This would yield two performance

measurements, y1 and y2, that one could directly compare. From an experimental design

perspective, this naive approach is obviously problematic, failing to hold the principle of

replication. Only one observation exists for each treatment in the experiment, the learn-

ing algorithms. This would be true even if one considered the responses as vectors of

N losses instead of summary metrics, since a single realisation of each treatment would

yield all measurements. Responses of this kind conflate the effect of the treatments with

that of their particular realisations, thus precluding disentangling the contribution of the

learning algorithms and the instances of the dataset — i.e., they are confounded.

A common approach to counter the lack of replication is to train multiple systems

from each learning algorithm, with each system using a different subset of instances from

D . Let K1 be the number of systems trained with `1, and K2 with `2, each yielding a per-

formance measurement. Assume one ignores any possible relationship between mea-

surements other than their associated learning algorithm, i.e., their level in the factor L,

with L(i ) ∈ {`1,`2}. This then implicitly corresponds to a Completely Randomised Design

(CRD), whose structural model mirrors the one in Eqn (3.1):

yi =µ+τL(i ) +εi . (3.40)

One could then use a two-group t-test such as the one in Sec. 3.1.4 to check for differences

in performance between the two algorithms, replacing the group sizes N1 and N2 in the



CHAPTER 3. STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS 91

formulas with the number of systems K1 and K2.

Readers familiar with classification experiments might find assuming lack of structure

in the measurements unsettling. As shown next, common practices enforce relationships

between measurements, yet one often ignores such relationships when analysing results

(e.g., computing and reporting mean and standard deviation for each group).

3.3.2 Comparing Two Algorithms with Related Measurements

The resampling strategies commonly used in classification experiments introduce an in-

herent structure into the observations. Such strategies generate pairs of training and test-

ing materials, each contributing to one measurement per learning algorithm. Given two

response vectors y1 and y2 of equal size K , this means each dimension in y1 directly re-

lates with one in y2, since they share all their experimental material. In the language of

DoE, these relationships form K blocks of units, with one replicate of each treatment level

per block — a Complete Block Design (CBD). The structural model thus mirrors the one

in Eqn (3.3):

yi =µ+τL(i ) +βK(i ) +εi (3.41)

with K a factor with K levels, one per train/test pair — e.g., the folds of a K -fold Cross-

Validation resampling.

Matched Samples t-test The standard approach for comparing the performance of two

learning algorithms on a single dataset acknowledges the inherent structure in the mea-

surements, replacing the test statistic in Eqn (3.4) with a version of the t-test targeted for

matched (or dependent) samples. In particular, the test statistic is defined as:

t = ȳ1 − ȳ2

S̄d/
p

K
(3.42)

with the standard deviation of the differences S̄d being:

S̄d =
√∑K

k=1

(
(y1k − y2k )− (ȳ1 − ȳ2)

)
K −1

=
√∑K

k=1

(
y1k − y2k

)2 − (∑K
k=1 (y1k − y2k )

)2/K

K −1
.

(3.43)
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As before, to determine whether differences in mean performance are statistically signif-

icant, the test statistic is compared with a Student’s t distribution, in this case with K −1

degrees of freedom.

The t-test makes strong assumptions about the distribution of the measurements and

the underlying experimental material, such as normality and equal variance. These as-

sumptions may not hold in performance measurements from classification experiments,

regardless of the number of such measurements one collects. Some thus argue that non-

parametric alternatives making no assumptions regarding the underlying distributions

are necessary. One such alternative is McNemar’s test (Dietterich, 1998; McNemar, 1947),

which is described next.

McNemar’s Test Japkowicz and Shah (2011) and Alpaydin (2014) present the McNemar’s

test as assuming a single hold-out train/test partition, with the related measurements be-

ing the predictions on each of Np test instances. A contingency table counts the number

of such instances according to whether the systems trained with each learning algorithm

reproduce the ground truth labels. Let Yg h be the number of instances in each cell of the

contingency table, with g ,h ∈ 0,1, g indicating the response from the first algorithm and

h the second, and 0 representing an error and 1 a success (e.g., Y01 is the number of in-

stances that the first algorithm missclassifies but the second predicts correctly). The test

statistic in a McNemar’s test is, then:

χ2
M = (|Y01 −Y10|−1)2

Y01 +Y10
(3.44)

which follows a χ2 distribution with 1 degree of freedom under the null hypothesis of

equal error rates.

An issue often overlooked with the use of the McNemar’s test in this manner is the lack

of replicates, since the algorithms and their particular realisations are completely con-

flated. To the best of our knowledge, no generalisation of such test exists for predictions

obtained after a resampling process. It thus remains unclear whether one could simply

join all individual predictions from K train/test pairs associated with each algorithm (N

in the case of K -fold Cross-Validation) and construct a contingency table relating suc-

cesses and errors as in the conventional test. According to Dietterich (1998), however, a
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McNemar’s test on a single testing sample may have lower Type I error probability than

various configurations of cross-validated t-tests.

Sign and Signed-Rank Tests Tests based on local superiority provide a way to compare

algorithms on multiple samples without requiring the strong assumptions of parametric

tests. The most basic of these is the Sign Test, in which the performance measurements

over K testing samples are compared, counting the number of times each algorithm out-

performs the other. Under the null hypothesis of equal expected performance, the counts

follow a Binomial distribution, on which one compares the number of “victories” with the

expected critical value for a given significance level.

The Wilcoxon’s Signed-Rank test loosens the strict local superiority restrictions of the

Signed Test, acknowledging that small local inferiority is compatible with overall superi-

ority. The test works as follows. For each of K testing samples, one obtains the local differ-

ence in performance dk = y1k − y2k and ranks them according to their absolute value. The

test statistic TW is the minimum between two values, W1 and W2, such that:

W1 =
K∑

k=1
I (dk > 0) rank(dk )+ 1

2

K∑
k=1

I (dk = 0) rank(dk )

W2 =
K∑

k=1
I (dk < 0) rank(dk )+ 1

2

K∑
k=1

I (dk = 0) rank(dk )

where I (·) is an indicator function. The critical value of TW is tabulated for K ≤ 25; other-

wise, its distribution can be treated as approximately normal.

3.3.3 Comparing Multiple Algorithms

For the general case of an experiment comparing L ≥ 2 learning algorithms, it is not un-

common for studies to compute all pairwise comparisons using t-tests. As mentioned in

Sec. 3.1.4, this is problematic since as the number of tests increases, also does the prob-

ability of Type I error. Adjustments to the significance level, such as the Bonferroni cor-

rection, aim to compensate for this issue. Alternatively, one can use a two-step process

that only checks for pairwise differences (contrasts) if an omnibus test identifies any such

difference exists.

Both parametric and non-parametric methods exists for this process, but the focus

here is on the former, since they permit estimating contributions to measurements and
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not only determining whether differences are significant. Parametic approaches, how-

ever, rely on strong assumptions that data from classification experiments might violate.

If the reader is interested, Japkowicz and Shah (2011) provide a thorough overview of non-

parametric alternatives, such as the Friedman-Nimenyi tests. These rely on a principle

similar to the Wilcoxon test described above.

Omnibus Test: ANOVA The most widely accepted procedure for assessing the differ-

ences in performance between multiple algorithms on a classification experiment is to

conduct an Analysis of Variance (ANOVA) of the measurements. ANOVA was previously in-

troduced in its simplest form in Sec. 3.1.4, and the analysis approach described in Sec. 3.2

extends it to arbitrary factor structures as long as they satisfy orthogonality conditions.

The models in Eqn (3.40) and (3.41) are orthogonal and properly represent the case of

multiple algorithms if NL = L — i.e, if the number of levels of the treatment factor is L.

Assume the measurements come from a resampling strategy generating K train/test

pairs, and one acknowledges the structure this embeds in the measurements by modelling

them as a CBD such as the one in Eqn (3.41). The hypothesis pair of interest considers no

difference between the effects of the algorithms in the performance measurements:

H0 : τ j = τg ∀ j , g

HA : ∃ j , g : τ j 6= τg .

with 1 ≤ j , g ≤ J , and τ j the parameter associated with the fixed effect of algorithm ` j .

Eugster (2011) suggests modelling the parameters for the blocking variables βk as random

effects with βk ∼N(0,σ2
k ), and the residuals εi ∼N(0,σ2). He justifies assuming normality

in the residuals, and adopting parametric analysis in general, if one uses a resampling

strategy that permits generating an arbitrarily high number of train/test pairs, such as

the bootstrap that Hothorn et al. (2005) advocate. In that case, the process described in

Sec. 3.2.6 for the analysis of CBD experiments can be followed to obtain variance ratios.

The flexibility of ANOVA permits analysing structures of arbitrary complexity. This

means other factors of interest can be incorporated into the analysis. In the evaluation of

learning algorithms, this is often the case with a dataset factor D, since so-called multi-

domain experiments are common. Eugster (2011) considers this introduces further ran-

dom effects that interact with the effects of the particular samples. In applied Machine
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Learning scenarios, such as in MCA studies, the effect of the feature extractors is likely of

interest as well.

Post-Hoc Contrasts: Tukey’s HSD Inferential analysis with ANOVA illuminates whether

the levels of a factor differentially affect a response variable, but not which levels cause

those differences. To identify such differences, one needs to compare all pairs. Tukey’s

Honestly Significant Differences (HSD) is an alternative to multiple pairwise t-tests to this

end that keeps constant a standard error level for all comparisons, which avoids the in-

creased risk of Type I error that multiple comparisons usually cause.

The procedure to identify differences in performance of learning algorithms with HSD

is as follows. First, one computes the average of the performance measurements corre-

sponding to each learning algorithm, ȳ j , and the standard error SEHSD as:

SEHSD =
√

MSE
K

(3.45)

with MSE the mean squares of the residual (see Sec. 3.2.5). Then, for each pair of algo-

rithms ` j and `g , one obtains a test statistic:

Q j g = ȳ j − ȳg

SEHSD
(3.46)

whose absolute values are compared to the critical values compiled in devoted tables for

particular significance levels. The degrees of freedom of the test match the degrees of

freedom of the residual (dE). One rejects the null hypothesis of equal mean performance

in those pairs for which |Q j g | exceeds the critical value.

3.4 Summary and Forward Look

Statistical Design of Experiments offers language and tools that facilitate the rigorous

planning and analysis of empirical studies. Identifying the inherent structures in an ex-

perimental pipeline illuminates how various factors affect the measurements. The Cal-

culus of Factors provides a general procedure to determine effects and assess differences

between conditions as long as such structures only contain mutually orthogonal factors.
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This seems to be the case in a conventional classification experiment, at least when as-

sessing differences in performance between learning algorithms. Later chapters deal with

similar analyses for the particular case of MCA experiments.

Applying the fundamental principles of experimental design helps prevent the most

evident confounding issues, such as conflations between algorithm and sample effects in

classification experiments. They cannot, however, directly fix the issues with the conven-

tional evaluation in MCA and related disciplines that Sec. 2.5.2 highlighted. Those issues

largely stem from a disconnection between the intended and actual outcomes of classifi-

cation experiments, which requires more than statistical rigour to be suitably addressed.

The following chapters report efforts targeted towards extending the conventional eval-

uation methodology in ways that illuminate the reasons behind the behaviour of the as-

sessed systems and methods. The principles and tools of experimental design inform the

systematisation of such extended methodology.
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4
UNCOVERING REASONS BEHIND

PERFORMANCE OF SCATTERING-BASED

MUSIC GENRE RECOGNITION SYSTEMS

Music Content Analysis (MCA) systems trained and tested by Andén and Mallat (2014)

reproduce a large amount of the ground-truth of the GTZAN Music Genre Recognition

collection (Tzanetakis and Cook, 2002), achieving accuracies that are among the highest

reported in the literature (Sturm, 2014d). As described in Sec. 2.4, they use Support Vec-

tor Machine (SVM) classifiers trained on features extracted from audio by the scattering

transform, a non-linear spectrotemporal modulation representation using a cascade of

wavelet transforms (Mallat, 2012). The mathematical derivation of the scattering trans-

form enforces invariances to local time and frequency shifts, a desirable property for mu-

sic description. Due to the complex representations they generate, however, it remains

unclear on which cues such systems rely to predict genre labels on GTZAN .

Sturm (2014a, 2016b) proposes an evaluation methodology aimed at identifying

whether systems rely on information presumably irrelevant for the problem they tar-

get to appear successful — whether they act as “horses”. This chapter reports work in-

spired by such methodology, intended to uncover the reasons behind the performance

that scattering-based systems achieve on GTZAN . The analyses here largely correspond

to those reported by Rodríguez-Algarra et al. (2016), and include some previously un-

98
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published results. In particular, system analysis (Sec. 4.1) and deflation manipulations

(Sec. 4.2) inform concrete targeted interventions on the partitioning strategy, the learning

algorithm and the frequency content of the audio data (Sec. 4.3). These analyses reveal

that SVM systems using scattering-based feature representations exploit previously un-

known information present at inaudible frequencies to reproduce GTZAN annotations.

4.1 System Analysis

Inspecting inside the “black box” of MCA systems helps illuminate which sources of in-

formation such systems likely exploit to reproduce the ground-truth of a collection. In

particular, one can dissect systems into their feature extraction and classifier components

to understand how each contributes to the overall behaviour. Due to the inherent com-

plexity of trained systems, “white box” evaluation of this kind alone rarely suffices to as-

sess their suitability. The insights that inspection provides, however, help target empirical

approaches, as Sec. 4.3 shows.

The analysis here is mainly based on closely inspecting the code that Andén and Mal-

lat (2014) provide, since the concrete implementation of their systems does not always

reflect exactly the theoretical description that the authors provide. For simplicity, the

analysis focuses on systems built using first- and second-layer time-scatering features

(i.e., those that Table 2.1 calls 1-L Sc. and 1&2-L Sc. extractors). Systems built using

1,2&3-L Sc.representations can be understood as a further iteration of the process de-

scribed here. Moreover, time-frequency scattering feature representations (i.e., TF Sc.

and TF Adap. Sc.) append dimensions to those 1&2-L Sc. extracts, so any information

present in the latter will also be available in systems based on the former. The main goal

of the analysis is to identify sources of information from the raw data that SVM systems

may exploit to make predictions.

4.1.1 1-L Sc. and 1&2-L Sc. Feature Extractors

The procedure to obtain 1-L Sc. and 1&2-L Sc. feature representations from audio sig-

nals first extends a recording to be of length 221 = 2,097,152 samples using what the imple-

mentation by Andén and Mallat (2014) refers to as “symmetric boundary condition with

half-sample symmetry” padding: the N ≈ 5 · 217 samples of an r ∈ RΘ are concatenated
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with the same samples but time-reversed, then concatenated with its first ∼50,000 sam-

ples, and its last ∼50,000 samples, and finally the time-reversed samples again. The au-

thors do not provide any justification for this procedure. A Fast Fourier Transform (FFT)

then converts this “padded” signal into the frequency domain. Subsequently, the com-

plex spectrum is multiplied by the magnitude response of each of 85 filters of a filterbank

designed using the scaling function and dilations of a one-dimensional Gabor mother

wavelet with 8 wavelets per octave, up to a maximum dilation of 273/8. (The bandwidth

of the lowest 11 bands are made constant.) Figure 4.1(a) shows the magnitude responses

of the bands of this first filterbank (FB1). Each spectrum product is then reshaped (equiv-

alent to a decimation in the time-domain), transformed to the time domain by the in-

verse FFT, and then windowed to the portion corresponding to the original signal r in the

padded sequences.

Next, the time-series output of each band of FB1 is rectified, padded using the same

padding method as above, and transformed into the frequency domain by the FFT. This

transformed representation is then multiplied by the magnitude response of each of 25 fil-

ters of a filterbank FB2. Figure 4.1(b) shows the magnitude responses of the bands of FB2.

These filters are designed with the scaling function and dilations of a one-dimensional

Morlet mother wavelet, with 2 wavelets per octave, up to a maximum dilation of 223/2.

Each FB2 spectrum product is then reshaped (again, equivalent to decimation in time-

domain), transformed to the time domain by the inverse FFT, and then windowed corre-

sponding to the original forward-going sequence in the padded sequences. This results in

80 feature vectors of size dependent on the number of scattering layers for each 30-second

excerpt.1 1-L Sc. retains only the 85 values related to the DC filter of FB2, computing the

natural log of all values (added with a small positive value). 1&2-L Sc. subsequently takes

FB2 time-series outputs with non-negligible energy,2 “renormalises” each non-zero fre-

quency band (to account for energy captured in the first layer of scattering coefficients),

and takes the natural log of all values (added with a small positive value).

Figure 4.2 relates the dimensions of feature vectors extracted with 1-L Sc. and

1The number of output vectors for each excerpt relates with the size of the employed mother wavelet being
8192 samples. In simple terms, this would be obtained as 30 ·22050 / 8192 ≈ 80.74, whose closest inferior integer
is 80.

2In fact, not every rectified FB1 band output is filtered by all FB2 bands because filtering by FB1 will remove
all frequencies outside its band.
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(a) Filterbank 1 (FB1)
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(b) Filterbank 2 (FB2)

Figure 4.1: Magnitude responses of the filterbanks in 1-L Sc. and 1&2-L Sc. feature ex-
tractors.

1&2-L Sc. with the centre frequencies of FB1 and FB2 bands. The bottom-most row is

from the scaling function of FB2. The 85 dimensions of a 1-L Sc. vector are at the bot-

tom, with dimensions [1, 75:85] coming from FB1 bands with centre frequencies below

20 Hz; dimensions [1, 75:85, 737:747] of 1&2-L Sc. vectors also come from such bands.

These are infrasonic frequencies, i.e., frequencies below the threshold of human hearing.

Dimensions [2:12] of a 1-L Sc. vector, and [2:12, 86:268] of a 1&2-L Sc. vector, are from

FB1 bands with centre frequencies above 4186 Hz (pitch C8). All other dimensions are

from bands that span the fundamental frequency range of the modern piano.
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4.1.2 SVM Classifier

Define the number of support vectors of a trained SVM as |SV |. Classifiers p of the MCA

systems by Andén and Mallat (2014) are characterised by a set of support vectors S ∈ F|SV |,

a Gaussian kernel parameter γ, a weight matrix M ∈ R|SV |×45, and a bias vector ρ ∈ R45.

(45 is the number of pair-wise combinations of the 10 elements in UV,A , i.e., label 1 vs.

label 2, label 1 vs. label 3, etc.) p maps UF,A′ to UV,A by majority vote from the individual

mappings of all elements f j ∈ F of a sequence from r ∈RΘ by an SVM classifier p ′. p ′, thus,

maps F to UV,A by computing 45 pair-wise decisions by means of sign(MT e−γK( f ) −ρ),

where K( f ) is a vector of squared Euclidean norm of differences between f and all v j ∈ S.

p ′ then maps f to UV,A by majority vote from the 45 pair-wise decisions.

Andén and Mallat (2014) employ LibSVM3 to build p ′ using a Gaussian kernel with a

subset of the feature vectors (downsampled by 2). They optimise the SVM parameters by

grid search and 5-fold Cross-Validation on some training recordings. LibSVM uses a 1 vs. 1

strategy to deal with multiclass classification, so each support vector receives a weight

for each of the nine possible pair-wise decisions involving the class associated with the

support vector. The matrix M contains weights associated with all possible 45 pair-wise

decisions. The training of the SVM also generates the vector ρ containing a bias term for

each pair-wise decision.

SVM classifiers trained by Andén and Mallat (2014) use all dimensions from their input

feature vectors, regardless of the centre frequency of the band from which they originate.

This means systems could exploit infrasonic information to predict labels if such informa-

tion was available. Although this is not normally the case, the faults identified in GTZAN

(see Sec. 2.4.1) motivate investigating further the potential impact of such frequencies.

4.2 Deflation Manipulations

The system analysis above suggests that scattering-based SVM systems rely on the relative

energy levels between spectral bands to discriminate between classes, especially those

systems with extractors consisting of a single layer of wavelet transforms. This closely

relates to the timbral properties of the audio. Adding further layers and transforms over

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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ID Extractor Original ER Final ER
a Mel Sc. 0.22 0.784
b 1-L Sc. 0.208 0.684
c 1&2-L Sc. 0.12 0.416
d TF Sc. 0.128 0.368
e TF Adap. Sc. 0.144 0.44
f 1,2&3-L Sc. 0.164 0.36

Table 4.1: Overall change in error rate (ER) over 30 steps of random filtering deflation for
scattering-based SVM systems in GTZAN . (See Table 2.1 for a short description of each
feature extractor.)

the frequency domain creates more complex relationships that are less obviously related

to musical facets.

Sturm’s (2014a) procedure to investigate whether systems exploit particular sources

of information may help determine how reliant each scattering configuration is on the

spectral shape of the audio. As mentioned in Sec. 2.5.3, this procedure involves iteratively

manipulating the input signals in order to break the correlation between the information

source of interest and the labels. If the manipulation affects the performances that sys-

tems achieve, then such systems must rely on the manipulated information to predict

annotations. The exploratory analyses reported here follow this principle.

Random Filtering Figure 4.3 and Table 4.1 summarise the error rates obtained on

GTZAN over 30 deflation steps with SVM systems using each of the feature representations

in Table 2.1. Each data point in the figure corresponds to a single error measurement on a

random train/test split used by Kereliuk et al. (2015). Step 1 is unfiltered; the remaining 29

steps each transform recordings predicted correctly on the previous step with randomly

modified Near Perfect Reconstruction (NPR) filterbanks. A NPR filterbank splits an input

signal into frequency subbands. In this case, 96 subbands are created, each with 129 filter

taps, using Lubberhuizen’s (2010) implementation. The energy in some randomly selected

bands is attenuated a small random amount, changing the energy distribution across the

spectrum in a mostly imperceptible manner.

As expected, the results in Figure 4.3 and Table 4.1 suggest that systems using any scat-

tering feature representation rely on the relative energy at various frequency bands of the

input to predict the GTZAN classes. The transformations, however, affect the systems’

performances to different extents, forming two separate groups. The performance of both
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Figure 4.3: Change in error rate over 30 steps of random filtering deflation for scattering-
based SVM systems in GTZAN . The letters labelling each line correspond to the shortcut
identifiers presented in Table 4.1.

Mel Sc.and 1-L Sc.systems decreases quickly, reaching high error rates within the 30 de-

flation steps. According to Andén and Mallat (2011, 2014) and the system analysis above,

these two feature representations should differ only in the scaling of their underlying fil-

terbanks, so it stands to reason that they suffer similarly from changes in the spectral con-

tent of the input recordings. The performance of all higher-order scattering features, on

the other hand, seems to converge around 40% error rate. This suggests that deeper scat-

tering layers capture information from the audio beyond the “surface” spectral shape.

Incremental Attenuation A modification of the deflation procedure helps illuminate

how robust systems are to the scale of the transformations. Instead of transforming com-

pletely randomly, one can force all deflation steps to be of the same magnitude, at least on

average. One can then gradually increase such magnitude, completing all deflation steps

each time. Sturm (2016b) conducts a procedure of this kind changing the scale of a pitch-

preserving time-stretching transformation, which shows how performances on distinct

classes of the BALLROOM collection change differently as the scale increases.

The plots in Fig. 4.4 illustrate deflations of increasing magnitude for scattering-based

SVM systems on GTZAN . Each measurement corresponds to the final error rate of one
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of 10 deflation processes like the one in Fig. 4.3 for a given mean attenuation level (±0.01

dB), up to 9 dB. Error rates tend to increase as the mean attenuation level gets higher for all

systems, with those relying on a single filterbank layer (i.e., Mel Sc.and 1-L Sc.) reaching

virtually 100% error rate much faster than others. Nevertheless, the trajectories followed

by the average error rates are not always monotonic, with a few values being lower than

those obtained at previous steps.

Focusing on some particular classes separately, as in Fig. 4.4, reveals that transfor-

mations do not affect all equally. Not only the average error rates differ at each atten-

uation level, with those in disco excerpts (red) apparently higher at lower attenuation

levels but lower at higher levels, but also the individual measurements for the same sys-

tem at the same level vary widely. This variability suggests that deflation processes with

random transformations might not reliably capture whether a system exploits a particular

source of information. Repeating the procedure multiple times with various magnitudes

helps, but requires a possibly excessive number of computations without necessarily re-

vealing the specific source of information that the systems exploit. Leveraging the specific

knowledge gained during system analysis, on the other hand, often enables a much more

focused approach, as shown below.

4.3 Targeted Interventions

This section reports experiments aimed at illuminating whether a particular factor con-

tributes to the results of scattering-based SVM systems in GTZAN . The code for such ex-

periments is available online.4 Each experiment modifies the classification experiment

pipeline in a specific manner. Comparing the results obtained using such a modified

pipeline with those from a conventional one reveals whether the modified element con-

tributed to the original results. Each modification thus acts as an intervention (as defined

in Sec. 3.1.1), introducing additional evaluation conditions to compare. Chapter 5 system-

atises and extends this idea.

The experiments here adapt the code implemented by Andén and Mallat (2014) (avail-

able online5). The original implementation ignores the known faults of GTZAN (see

4https://code.soundsoftware.ac.uk/projects/scatter-analysis
5http://www.di.ens.fr/data/software

https://code.soundsoftware.ac.uk/projects/scatter-analysis
http://www.di.ens.fr/data/software
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(a) Mel Sc.

(b) 1-L Sc.

(c) TF Sc.

(d) 1,2&3-L Sc.

Figure 4.4: Final error rates at different mean filter attenuation levels across 10 itera-
tions of 30 deflation steps for scattering-based SVM systems, considering both disco and
metal GTZAN excerpts. Shapes indicate individual error measurements of each deflation
process; lines track average error rates across iterations for each attenuation level.
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Sec. 2.4.1), and it is unclear whether scattering-based systems exploit such faults. The

experiment reported in Sec. 4.3.1 uses two different train/test partitioning conditions to

address this. The experiment in Sec. 4.3.2 replaces the SVM classifier with a Binary Deci-

sion Tree (BDT), which helps identify the impact of specific feature dimensions. Finally,

the experiment in Sec. 4.3.3 alters the spectral content of test recordings in specific bands,

revealing that scattering-based SVM systems trained and tested on GTZAN exploit acous-

tic information below 20 Hz.

4.3.1 Partitioning Intervention

As mentioned in Sec. 2.4.1, the GTZAN music collection contains faults, such as rep-

etitions, distortions and mislabellings (Sturm, 2013c). Controlling the faults available

through a curated “fault-filtered” train/test partition, such as the one Kereliuk et al. (2015)

use, often reduces the amount of ground truth reproduced (see Fig. 4.5). This suggests

that the faults in the collection affect the apparent success of evaluated systems (Sturm,

2014d). Therefore, the intervention experiment described here attempts to determine

whether such faults also affect scattering-based systems.

Instead of relying on 10-fold stratified Cross-Validation, as Andén and Mallat (2014)

do, the two evaluation conditions compared here employ hold-out train/test partition-

ing to facilitate controlling their contents. The first evaluation condition is RANDOM, which

mimics the partitioning procedure Andén and Mallat (2014) use: 75% of the recordings

of each GTZAN class are assigned to the training collection, leaving the remaining 25%

for testing. The second is CURATED, which employs the “fault-filtered” partitioning pro-

cedure that Kereliuk et al. (2015) adopt, but merging training and validation collections.

This partitioning procedure accounts for various GTZAN faults, removing 70 replicated or

distorted recordings, assigning by hand 640 of the remaining recordings to the training

collection and the other 290 to testing, avoiding repetition of artists across partitions such

as in filtered partitioning (Pampalk et al., 2005). Figure 4.6 shows the number of recordings

of each class contained in the CURATED partitions.

Due to memory constraints, aside from the partitioning strategy the implementation

here also differs from the one Andén and Mallat (2014) use in that it decreases by a factor
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Figure 4.6: Number of recordings from each GTZAN class in the training and testing col-
lections of the CURATED evaluation condition.

of 4 the number of scattering features in the pre-computation of the Gaussian kernel of

the SVM. This reduces the computational cost without sacrificing much performance.6

Table 4.2 compares the normalised accuracies (mean recall) of the SVM systems

trained here along with those Andén and Mallat (2014) report for the six scattering-

based feature representations in Table 2.1. The use of mean recall as metric intends

to compensate for class imbalances in the CURATED partitioning condition. The results

that Andén and Mallat (2014) report differ slightly from those in RANDOM, but most of

them are within reason considering the standard deviations — only TF Adap. Sc.and

1,2&3-L Sc.systems differ more than two standard deviations. Performance increases

in RANDOM when including second-order scattering features (1-L Sc.to 1&2-L Sc.). Con-

trary to what Andén and Mallat (2014) report, however, including third-order features

(1&2-L Sc.to 1,2&3-L Sc.) decreases performance.

Regarding the consequences of the intervention, all systems decrease perfor-

mance considerably between RANDOM and CURATED. Systems using TF Adap. Sc.features

achieve the highest normalised accuracy in CURATED, which is almost 20 percentage

points lower than the highest in RANDOM. The decrease across conditions is of a similar

magnitude in all other systems, suggesting these systems exploit the faults of GTZAN to

artificially inflate their apparent performance.

Figure 4.7 details the per-class performances of 1-L Sc.SVM systems in RANDOM and

6This was suggested by Joakim Andén, whose advice deserves acknowledgment.
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(a) RANDOM

(b) CURATED

Figure 4.7: Performance measurements (in %) obtained by SVM systems using
1-L Sc.feature representations on the (a) RANDOM and (b) CURATED GTZAN partitioning
conditions. Column is ground truth, row is prediction. Far-right column is precision,
diagonal is recall, bottom row is F-score, lower right-hand corner is overall normalised
accuracy. Off-diagonals are confusions.
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Original Recordings Filtered Recordings

Extractor
Andén and

Mallat (2014)
RANDOM CURATED RANDOM CURATED

Mel Sc. 82.0 % ± 4.2 78.00 % 53.29 % 39.20 % 30.09 %
1-L Sc. 80.9 % ± 4.5 79.20 % 54.96 % 31.60 % 22.42 %
1&2-L Sc. 89.3 % ± 3.1 88.00 % 66.46 % 50.80 % 44.47 %
TF Sc. 90.7 % ± 2.4 87.20 % 68.49 % 62.40 % 55.11 %
TF Adap. Sc. 91.4 % ± 2.2 85.60 % 68.61 % 64.80 % 44.52 %
1,2&3-L Sc. 89.4 % ± 2.5 83.60 % 68.32 % 64.80 % 53.16 %

Table 4.2: Normalised accuracies (mean recall) obtained on GTZAN by scattering-based
SVM systems by Andén and Mallat (2014) and systems using RANDOM and CURATED parti-
tioning conditions, trained and tested with the original GTZAN recordings (left) and ver-
sions with information below 20 Hz attenuated (right).

Figure 4.8: Interaction between partitioning conditions and GTZAN classes in recall mea-
surements (in %) from SVM systems using TF Adap. Sc.feature representations. bl is
blues, cl is classical, co is country, di is disco, hi is hiphop, ja is jazz, me is metal,
po is pop, re is reggae, and ro is rock. Trends are similar across feature representations.

CURATED as confusion matrices. All performance measurements for every GTZAN class

decrease, except for recall and F-measure in classical, which increase. Recall in metal

recordings also increases for systems using TF Adap. Sc., as Fig. 4.8 shows. classical

moves to perfect recall for every feature representation, with an average increase of 8.8

percentage points. These observations suggest that the faults in GTZAN affect the overall

performance of scattering-based SVM systems in ways unique to each system and each

GTZAN class.

A principal components decomposition helps to pinpoint the differences between the

information available in each condition. Figure 4.9 shows the eigenvectors of the first
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N RANDOM CURATED
1 52.99 % 51.82 %
2 65.05 % 65.27 %
3 71.42 % 71.62 %
4 75.53 % 75.80 %
5 79.48 % 79.74 %

Table 4.3: Cumulative percentage of variance captured by each of the first five principal
components of the 1-L Sc.feature representations extracted from the training recordings
in (a) RANDOM and (b) CURATED partitioning conditions of GTZAN .

five principal components of first-layer time-scattering feature representations extracted

from the training recordings in RANDOM and CURATED partitioning conditions of GTZAN .

Table 4.3 includes the cumulative percentage of variance captured by each of such com-

ponents. The feature dimensions considered match the input of 1-L Sc.systems, and are

also included in all higher order time-scattering representations. The most striking differ-

ences appear in the lowest and highest dimensions of the fourth component, suggesting

that these dimensions of the scattering feature representations capture information that

differs between the recordings of each condition and may play a role in the performance

differences highlighted above. These dimensions correspond to filters centred at frequen-

cies below 20 Hz (See Fig. 4.2). The faults of GTZAN seem to relate, at least in part, with

acoustic information at inaudible frequencies. Similar to the system analysis in Sec. 4.1,

however, this does not mean that the systems actually exploit such information, only that

the information is available and differs between conditions. The characteristics of SVM

classifiers, however, make it difficult to determine the influence that each individual input

feature dimension (or subset of dimensions) has in the overall performance of a system.

Replacing the learning algorithm with a more interpretable one, such as the Decision Tree

employed next, facilitates linking such dimensions with class predictions.

4.3.2 Classifier Intervention

SVM classifiers generate decision boundaries in multi-dimensional spaces, which benefits

prediction but hampers their interpretability. The relevance of each individual dimension

of the scattering feature vectors is therefore unclear for SVM systems. The experiments

reported here replace the SVM with Binary Decision Trees (BDT), which construct a set of

rules defined by linear splits of the feature space one dimension at a time. This construc-
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Figure 4.9: Eigenvectors of the first five principal components (labelled) of the
1-L Sc.feature representations extracted from the training recordings in (a) RANDOM
(79.74% of variance captured) and (b) CURATED (79.48% of variance captured) partitioning
conditions of GTZAN .

tion method makes BDT systems particularly useful to illuminate which input features

are relevant to distinguish between classes. Systems relying on BDT classifiers are con-

sidered to be among the easiest to construct and interpret (Alpaydin, 2014), at the cost of

potentially less accuracy.

Table 4.4 summarises the normalised accuracies that systems trained with Matlab’s

BDT algorithm7 obtain under the two partitioning conditions of GTZAN defined in

Sec. 4.3.1 for each scattering-based feature representation in Table 2.1. Overall, BDT sys-

tems achieve normalised accuracies around 8 percentage points lower in RANDOM than

the SVM systems in Table 4.2. The results clearly differ between conditions, with falls in

performance similar, if not larger, than those measured for SVM systems. SVM classifiers

7http://uk.mathworks.com/help/stats/classificationtree-class.html

http://uk.mathworks.com/help/stats/classificationtree-class.html
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Extractor RANDOM CURATED
Mel Sc. 72.80 % 45.70 %
1-L Sc. 71.60 % 42.35 %
1&2-L Sc. 80.00 % 49.91 %
TF Sc. 79.20 % 46.81 %
TF Adap. Sc. 79.60 % 44.77 %
1,2&3-L Sc. 79.20 % 46.48 %

Table 4.4: Normalised accuracies (mean recall, in %) obtained in GTZAN by scattering-
based BDT systems usingRANDOM and CURATEDpartitioning conditions, trained and tested
with original GTZAN recordings. The description of the feature extractor related with each
system is as in Table 2.1.

actually appear to mitigate the potential performance decrease in systems using scatter-

ing feature representations with more than one layer. The impact of the GTZAN faults in

performance measurements thus seems to relate to the feature representations, but the

choice of learning algorithm also appears to contribute to the scale of such impact.

In a BDT classifier, each node splits the data according to a threshold value of a single

input feature dimension. This permits ranking the input dimensions according to their es-

timated importance on the class predictions using the following method (Nembrini et al.,

2018; Perner, 2011). Define the Gini impurity of a node ν as Γ̂(ν) =∑
∀a∈A P̂a(ν)(1− P̂a(ν)),

where P̂a(ν) represents the proportion of instances of class a among those that reach node

ν. The importance of a node is assumed to relate to the decrease in impurity that it causes,

i.e., the difference between the impurity at node ν and the weighted sum of the impuri-

ties of its two child nodes. Summing the impurity importance values of all nodes in a tree

that split using an input dimension thus estimates the importance of such a dimension.

Though in different order, the five most important dimensions according to this criterion

coincide (1, 2, 4, 84, and 85) in BDT systems using time-scattering feature representations

(i.e., 1-L Sc., 1&2-L Sc., and 1,2&3-L Sc.), regardless of the partitioning condition. Di-

mensions 1, 2 and 85 also appear within the top five in systems including frequency scat-

tering features (i.e., TF Sc.and TF Adap. Sc.). All these dimensions correspond to filters

centred below 20 Hz or above 4,186 Hz, as Fig. 4.2 shows, with dimensions 1 and 85 being

those closest to the DC component of the signal.

Since BDT classifiers are relatively fast and inexpensive to construct, an alternative

procedure to estimate feature dimension importance involves training and testing mul-

tiple systems using a single dimension each time. Figure 4.10 shows the proportion of
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Figure 4.10: Proportion of ground truth annotations from test recordings that BDT sys-
tems using single dimensions from a 1-L Sc.feature extractor correctly predict under
RANDOM and CURATED partitioning conditions of GTZAN .

recordings in the test collection of both RANDOM and CURATED conditions that BDT sys-

tems using each of the 85 dimensions of 1-L Sc.feature representations correctly pre-

dict. The most striking differences seem to occur at both extremes of the x-axis, in bands

close to or outside the limits of normal human hearing (namely [1, 70:85]). As mentioned

above, dimensions 1 and 85 appear highly important according to the Gini impurity cri-

terion for all BDT systems, regardless of the partitioning condition (except maybe those

using Mel Sc.feature representations, since the scaling of their filterbanks differ). Con-

versely, systems using exclusively these dimensions differ widely in their performance de-

pending on whether the known faults of GTZAN are available. This suggests that patterns

at frequencies below 20 Hz exist in GTZAN associated with the classes within the train-

ing recordings of both partitioning conditions, which the trees capture. Ensuring that no

artists appear in both training and testing recordings, among other corrections, seems to

break such association in the testing recordings of CURATED, leading to more frequent er-

rors.

The conjecture that GTZAN recordings contain information at frequencies below

20 Hz linked with the genre labels is further supported by the results that BDT systems

obtain using exclusively scattering feature dimensions 1 and 75 to 85. Figure 4.11 shows

that such systems achieve a normalised accuracy of 60.40% in RANDOM, which is virtu-

ally identical to the performance that Tzanetakis and Cook (2002) originally reported for
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GTZAN . In CURATED, however, the normalised accuracy drops to 39.37%. Adding dimen-

sions 737:747 from 1&2-L Sc.feature representations (modulations from FB2 of informa-

tion below 20 Hz) only marginally increases the performance in both conditions.

Overall, the analyses conducted using BDT classifiers strongly suggest that the perfor-

mance of scattering-based systems benefits from the presence of infrasonic information

(i.e., below 20 Hz) in GTZAN . The intervention reported next addresses whether this hy-

pothesis holds in SVM systems as well.

4.3.3 Filtering intervention

Informed by the previous interventions, the analysis here focuses on assessing the effects

of infrasonic information on the results of scattering-based SVM systems in GTZAN . Sim-

ilar to the filtering manipulations reported in Sec. 4.2, an intervention targeted to this end

should alter the spectral content of the recordings. In this case, the intervention attenu-

ates by at least 30 dB frequencies below 20 Hz of the test recordings in both RANDOM and

CURATED partitioning conditions using a fifth-order Butterworth high-pass filter. The at-

tenuation does not cause any perceptible change in the audio, but affects the amount of

ground truth that systems are able to reproduce. This may motivate manipulating the data

in a similar manner directly on the training recordings before constructing the systems to

avoid the effect appearing in the first place, a possibility that we briefly explore at the end

of this section.

Filtered Test Recordings The same SVM systems trained under the partitioning inter-

vention reported in Sec. 4.3.1 are used to predict genre labels on high-pass filtered test

recordings corresponding to their partitioning condition. The two right-most columns

of Table 4.2 show the normalised accuracies these systems obtain on the filtered record-

ings. The figures clearly drop for all systems compared to those reported in Sec. 4.3.1, with

systems using 1-L Sc.feature representations under RANDOM suffering the most striking

performance decrease (close to 50 percentage points). The decrease in performance of

systems using deeper scattering layers is smaller but still notable. Systems trained in the

CURATEDpartitioning condition also suffer drops in performance when tested with filtered

recordings.
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(a) RANDOM

(b) CURATED

Figure 4.11: Performance measurements (in %) obtained by BDT systems using exclu-
sively dimensions [1, 75:85] from 1-L Sc.feature representations on the (a) RANDOM and
(b) CURATED GTZAN partitioning conditions. Column is ground truth, row is prediction.
Far-right column is precision, diagonal is recall, bottom row is F-score, lower right-hand
corner is overall normalised accuracy. Off-diagonals are confusions.
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Figure 4.12: Performance measurements (in %) obtained in GTZAN by SVM systems
trained on recordings from the RANDOM partitioning using 1-L Sc.feature representations
tested on recordings with content below 20 Hz attenuated. Column is ground truth, row is
prediction. Far-right column is precision, diagonal is recall, bottom row is F-score, lower
right-hand corner is overall normalised accuracy. Off-diagonals are confusions.

Figure 4.12 details the per-class performances that an SVM system trained in RANDOM

with 1-L Sc.features obtains when tested with high-pass filtered recordings. Compared

with the measurements presented in Fig. 4.7(a), most figures decrease drastically when

introducing the filtering. Nevertheless, specific measurements for some classes increase,

although none in both precision and recall simultaneously (and thus never in terms of

F-score). Although changes in performance between RANDOM and CURATED previously

seemed closely linked to the presence of infrasonic information, the magnitude and in

some cases the direction of the differences between Figs. 4.7(a) and 4.12 do not always

match those between Figs. 4.7(a) and 4.7(b). More precisely, both recall and F-measure

decrease instead of increase in classical, and the reverse in country. This suggests that

partitioning and filtering interventions affect different factors influencing the amount of

ground truth that systems reproduce, notwithstanding an interaction between them, as

Figs. 4.9 and 4.10 suggest.

The results here, together with the previously reported interventions, seem to confirm
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Original Recordings Filtered Recordings
Extractor Learn. Alg. RANDOM CURATED RANDOM CURATED
Mel Sc. SVM 44.80 % 31.07 % 74.00 % 55.45 %

BDT 62.80 % 37.25 % 68.80 % 43.38 %

1-L Sc. SVM 30.40 % 23.20 % 73.60 % 52.59 %
BDT 63.20 % 41.62 % 68.80 % 45.59 %

1&2-L Sc. SVM 62.00 % 55.65 % 84.00 % 64.92 %
BDT 68.00 % 50.80 % 72.80 % 50.18 %

TF Sc. SVM 61.60 % 52.76 % 86.00 % 69.32 %
BDT 70.40 % 49.44 % 80.00 % 53.17 %

TF Adap. Sc. SVM 59.20 % 52.11 % 85.20 % 69.59 %
BDT 71.20 % 56.80 % 80.80 % 54.00 %

1,2&3-L Sc. SVM 64.80 % 57.02 % 86.00 % 66.15 %
BDT 72.80 % 48.92 % 75.60 % 49.85 %

Table 4.5: Normalised accuracies (mean recall) obtained in GTZAN by scattering-based
SVM and BDT systems using RANDOM and CURATED partitioning conditions, trained on
recordings with information below 20 Hz attenuated and tested on both original (left) and
filtered recordings (right).

that scattering-based SVM systems benefit from the faults of GTZAN and exploit infra-

sonic information to reproduce a large amount of ground truth. Overall, the infrasonic

content seems to impact measurements more severely, especially in systems using scat-

tering feature representations of lower order. Conducting both filtering and partitioning

interventions jointly, as the right-most column of Table 4.2 shows, leads to substantial per-

formance drops. Every system, however, achieves performances clearly above the random

baseline even under such combined evaluation condition.

Filtered Training Recordings As the interventions above show, altering the spectral con-

tent at frequencies below 20 Hz of test GTZAN recordings affects the apparent perfor-

mance of scattering-based systems. A reasonable countermeasure could involve high-

pass filtering all recordings before training, since one expects a manipulation of this kind

to remove all possible infrasonic information and thus lead to systems that avoid relying

on such information. The brief analysis here attempts to elucidate whether this expecta-

tion holds for scattering-based systems.

Table 4.5 shows the normalised accuracies that SVM and BDT scattering-based sys-

tems achieve under the same partitioning conditions as above on both original and high-

pass filtered GTZAN recordings, when trained using recordings filtered in the same way.
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The performance of such systems on filtered test recordings is similar to what systems

trained on original recordings achieve on their test counterparts in the partitioning in-

tervention, as Tables 4.2 and 4.4 reflect. On the other hand, figures drop when tested

on original recordings, particularly for SVM systems. The decrease is much smaller for

BDT systems, leading to normalised accuracies higher than those of all their correspond-

ing SVM systems under RANDOM partitioning condition, despite SVM systems consistently

outperforming BDT systems whenever they are trained with original recordings and/or

tested with filtered ones.

The changes in performance derived from the different acoustic conditions of the test

recordings suggest that systems still identify and attempt to exploit patterns in the infra-

sonic dimensions of the scattering features regardless of whether the training recordings

have been filtered. Although some might find this counter-intuitive, it actually makes

sense in hindsight. Assume that the relative energy levels of two frequency bands, b1

and b2, is consistent across recordings of a class. If both b1 and b2 are attenuated in the

same manner for all recordings, then their relative energy levels stay unchanged despite

their magnitudes being lower. On the other hand, if only b1 is attenuated, then the rela-

tive energy levels change but a new consistent relationship with b2 appears in the class.

Although in reality the patterns captured by scattering features are likely more complex

than described here, a similar principle applies, especially in the dimensions correspond-

ing to lower-order representations. As a consequence, regardless of whether recordings

have been filtered, the same acoustic condition in training and testing permits systems to

exploit infrasonic patterns if they originally exist.

4.4 Discussion

The analyses reported in this chapter illustrate the importance of extending the evalua-

tion of MCA systems beyond counting the amount of ground truth that they reproduce in

a benchmark collection. The various steps conducted illuminate, at least partially, the rea-

sons behind the performance of scattering-based SVM systems on GTZAN . The systems

that Andén and Mallat (2014) propose for MGR seem to rely heavily on some infrasonic

information apparently linked with the genre labels in the collection. The presence of
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this previously unknown information source, together with the known faults of GTZAN ,

caution against taking reported performance measurements at face value.

System analysis guides the design and implementation of appropriate empirical anal-

yses that illuminate reasons behind performance, both through deflations and targeted

interventions. The system analysis of time-scattering systems relates feature dimensions

with energy levels at specific frequency bands. The results of deflation processes affecting

the spectral content of the recordings show that such systems rely on the relative band

energy levels to predict genre annotations, but to a different extent depending on both

extractor configuration (e.g, its depth and domain) and GTZAN class. Analyses based on

deflations, however, may prove excessively demanding in computational resources with-

out necessarily clarifying much beyond what the system analysis alone reveals. This is

largely the case in the analysis reported in Sec. 4.2.

Targeted interventions permit a much more precise and efficient probing procedure

than deflations, leveraging the specific knowledge acquired in past studies and during

system analysis to design sounder experiments. The partitioning intervention reported in

this chapter suggests that, similar to other previous re-evaluations, scattering-based sys-

tems decrease their performance on GTZAN when they cannot exploit the known faults of

the collection. The decrease in performance for each feature representation is similar be-

tween SVM and BDT systems. This indicates that each evaluation condition contains dis-

tinct acoustic information that each feature representation captures to a different degree,

driving performance changes across conditions to a larger extent than the learning algo-

rithms. Both a principal components analysis and the performance of single-dimension

BDT systems suggest feature dimensions corresponding to frequencies below 20 Hz as

possible causes of such changes, motivating further analysis.

The results of the filtering intervention provide compelling evidence that GTZAN con-

tain infrasonic information, inaudible to human listeners but linked to the classes of the

collection, thus available for systems to exploit despite being arguably unrelated with the

concept of music genre. Scattering-based systems, such as those Andén and Mallat (2014)

propose, seem to rely on such infrasonic information to reproduce a large amount of

the GTZAN ground truth. Although the infrasonic information appears to relate to the

faults of the collection (e.g., recordings by the same artist likely contain similar infrasonic
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patterns), introducing both filtering and partitioning interventions jointly reduces perfor-

mance even further than each separately, which suggests that they affect distinct factors.

Moreover, a simple BDT classifier using exclusively information below 20 Hz achieves vir-

tually the same performance on GTZAN as the one originally reported by Tzanetakis and

Cook (2002). All this evidence puts into question the results of classification experiments

on GTZAN as valid estimates of the ability of systems to recognise music genre.

Attenuating the problematic frequencies before training does not seem to suffice to

completely remove the impact of infrasonic patterns when systems are trained and tested

under different acoustic conditions. More complex filtering methods would be necessary

to break all possible correlations between the information at different bands and thus in-

crease the likelihood of trained systems ignoring the patterns specific to the recordings in

GTZAN . Alternative training procedures could involve mixing original and filtered record-

ings for training, or even augmenting the training collection using multiple copies of each

recording exposed to a variety of subtle spectral manipulations.

Although training procedures that aim to minimise the impact of infrasonic informa-

tion during training might lead to more generalisable systems, it is unlikely that systems

trained on GTZAN are deployed in real-life scenarios. GTZAN is largely used as a bench-

marking tool that permits comparisons with most of the literature devoted to the problem

of music genre recognition. As Sturm (2013c) suggests, uncovering faults in a collection

does not necessarily make it unsuitable for evaluation as long as such faults are properly

leveraged. Some faults seem to affect differently systems constructed with different meth-

ods, so introducing evaluation conditions that account for such faults enable comparing

their robustness. Moreover, understanding how and why a system works is essential to de-

termine its suitability for a specific problem, not to mention its future improvement, and

the faults of a collection appear particularly appropriate candidates for targeted analyses.

The interventions reported in this chapter follow a factorial structure, since they affect

different factors that can be combined in a single joint experiment, such as the one in Ta-

ble 4.5. The factors considered here are feature extractor, learning algorithm, partitioning

condition and filtering condition, but the procedure could be extended further if more

interventions were deemed necessary. Despite this sound structure, a major drawback of

these experiments is that they disregard resampling, thus only yielding a single measure-
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ment per factor combination. Moreover, due to the limitations of manual curated par-

titioning, systems evaluated under RANDOM and CURATED differ both in their training and

testing materials. The following chapter introduces a systematic evaluation approach that

addresses these issues. Analyses similar to those presented here serve as an exploratory

first step that informs such a systematic approach, illuminating potentially confounding

factors whose impact on the results of conventional evaluations using a specific collection

can be assessed together with the benchmarking of various system-construction methods.
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CHARACTERISING CONFOUNDING EFFECTS

IN MUSIC CLASSIFICATION EXPERIMENTS

WITH INTERVENTIONS

Analyses such as those presented in the previous chapter highlight that systems might

exploit extraneous cues from an evaluation collection to appear successful on a problem.

This brings into question the relevance and validity of the results of classification exper-

iments. The present chapter extends and systematises the intervention approach used

in Ch. 4, proposing and illustrating a procedure to assess how failing to control for par-

ticular sources of information in evaluation collections affects experimental results for a

wider range of system-construction methods. The work presented here largely mirrors

what Rodríguez-Algarra et al. (2019) report.

Interventions introduced in the classification experiment pipeline create regulated

evaluation conditions that can be used to characterise how the outcomes of music classifi-

cation experiments are affected by “confounding”, a validity threat we examine in Sec. 5.1.

Sec. 5.2 introduces a procedure for combining multiple interventions that overcomes the

limitations discussed in Sec. 4.4, including a novel resampling strategy aimed at gauging

confounding effects. The approach described here focuses on the effects of particular

sources of confounding information on test results, as this is paramount for MIREX1 and

1http://www.music-ir.org/mirex/wiki/MIREX_HOME
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similar evaluation exchanges. Sec. 5.3 illustrates the proposed procedure analysing two

known confounders in the GTZAN music genre collection (Tzanetakis and Cook, 2002):

artist replication and infrasonic content. Extending the proposed procedure would per-

mit its use to assess effects in the training of systems, as well as its application to other

domains. Sec. 5.4 discusses the main limitations and broader implications of the work

reported here.

5.1 Confounding in Classification Experiments

Confounding as a validity threat involves the inability of an experimental design to disen-

tangle the effects of different variables on the measurements, as mentioned in Sec. 2.5.1.

A clear example of such a phenomenon in classification experiments occurs if each eval-

uated system predicts annotations on a different selection of instances. Subtler forms

of confounding affecting the conclusions of classification experiments are receiving in-

creasing attention in the applied Machine Learning literature (e.g., Charalambous and

Bharath, 2016; Chen and Asch, 2017). In particular, information not intrinsically linked

with the problem of interest might incidentally relate with the annotations of evaluation

collections, providing alternative means for systems to predict annotations on classifica-

tion experiments. Causes of this phenomenon include selection bias (e.g., Mendelson et

al., 2017) and leakage (Kaufman et al., 2011), which induce confounding by conflating suc-

cess in addressing the target problem — the outcome of interest — with the exploitation

of auxiliary information — an extraneous influence (Sturm, 2016a). This chapter focuses

on identifying and analysing the effects of these forms of confounding information.

If a collection is used for the evaluation of diverse problems and use cases, each case

implicitly determines which content is potentially confounding. For instance, tempo in-

formation in a collection may be legitimate for identifying dance style, since the speed of

a piece influences which dance moves are feasible, but not for identifying rhythmic pat-

terns, since these should be invariant to reasonable variations in speed (Dixon et al., 2004;

Sturm, 2014a). Furthermore, artists tend to compose or perform music pieces of one or

a few genres, yet artist properties are not essential to those genres (Flexer and Schnitzer,

2010). If one’s sole aim is to attach genre tags to a fixed set of recordings, artist information

will likely help; if one aims to assess whether a system captures the defining characteris-
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tics of music genres instead, then artist-specific content is extraneous. Other properties,

such as the infrasonic content present in GTZAN that the experiments in Ch. 4 identified,

are unlikely to be legitimately informative for most problems.

This interpretation of confounding as dependent on a target use case implicitly distin-

guishes two different goals for classification experiments. In the first case, the collection

on which one conducts the experiments is the actual target — i.e., one wants to find the

representation that more closely resembles the process that generated that specific set

of instances. This is the goal of pure Machine Learning research, and much of Informa-

tion Retrieval as well, since the collection is considered as given and fixed, or randomly

sampled from a larger one of interest. The task that the algorithms are required to per-

form matches what they will be asked to do if deployed, with generalisation being limited

to unseen instances from the same data generating process. Confounding as described

above would likely not apply in this case, other than possibly in the form of leakage (Kauf-

man et al., 2011), since any information associated with the classes in the test instances

is assumed to also appear in deployment. In the second case, however, the collection is a

proxy for an underlying target problem, and not the target itself — i.e., one wants to find

the best representation to capture the defining traits of a particular concept that extends

beyond the instances in the collection. This is arguably the case in much MIR research,

as discussed in Sec. 2.1. For instance, it seems unlikely that MGR research evaluated on

GTZAN intends to develop systems meant to work only on GTZAN , but instead to build

systems that are able to “recognise genre” both within and beyond that specific collec-

tion. Therefore, which information is potentially confounding in such scenarios depends

entirely on the intended application of the evaluated systems and not necessarily on the

proxy task on which performance is estimated.

The performance of systems that rely on information about a potential confounder

being present are unlikely to generalise, since there is no guarantee that the observed

association between such information and the problem will remain outside the exper-

imental setting. The research community has adopted practices to counter this pitfall.

Filtered partitioning, for instance, yields performance estimates free of the influence of

the regulated potential confounder (Pampalk et al., 2005). Others suggest leveraging data

augmentation to avoid confounding information influencing the training process (Char-
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alambous and Bharath, 2016; Stowell et al., 2019). This synthetically generates combina-

tions of background information and target categories that force systems to learn general

concepts rather than incidental correlations. These countermeasures certainly benefit the

generalisability of trained systems, but obscure evaluation feedback necessary to improve

such systems in the future. Creating and comparing both regulated and unregulated con-

ditions, on the other hand, illuminates the effects of potential confounders.

5.2 Characterising Confounding Effects

As Ch. 4 illustrates, comparing results obtained under regulated and unregulated evalu-

ation conditions with regards to a potential confounder reveals whether systems exploit

its confounding information. The partitioning intervention there relied on filtered par-

titioning to this end. Nevertheless, a major limitation of filtered partitioning is that the

regulated training and testing collections it creates likely contain different instances than

those included in their unregulated counterparts. No single trained system is thus ex-

posed to both regulated and unregulated testing conditions, which impedes disentangling

the effects of training and testing. Moreover, as Marques et al. (2011) note, the makeup of

some collections constrains how many disjoint regulated partitions one can create (e.g.,

the number of Cross-Validation folds cannot exceed the number of artists per class). This

may conflate the effect of the particular instances — their “difficulty” — with that of the

(lack of) regulation. This section extends and systematises the analysis approach based

on targeted interventions presented in Ch. 4 to gauge how confounding impacts the out-

comes of classification experiments, overcoming the limitations of filtered partitioning via

a novel partitioning strategy.

5.2.1 Interventions on the Experimental Pipeline

In empirical studies, an intervention is the act of explicitly fixing a factor to one of its lev-

els (Pearl, 2009). A conventional music classification experiment involves intervening on

the system creation method, as Fig. 2.2 represents with a double-bordered node. This

specifies evaluation conditions to compare, each with different feature extraction and/or

learning algorithms, yielding estimates of differences in performance. Apart from such



CHAPTER 5. CHARACTERISING CONFOUNDING EFFECTS IN MUSIC
CLASSIFICATION EXPERIMENTS WITH INTERVENTIONS 129

conventional intervention, one might also intervene on other steps of the pipeline to cre-

ate further evaluation conditions. These may reveal information unavailable otherwise,

such as the impact of a potential confounder.

Consider the train/test pipeline of a classification experiment, with training and test-

ing materials drawn from a collection C . Let z be a potential confounder. If z correlates

with the classes in some way within C , legitimately or not, then such correlation should

appear in both training and testing instances unless a regulation is introduced, making

z available for both training and prediction. Interventions regulating z thus impede its

availability in such steps by breaking its correlation with the classes.

A classification experiment pipeline offers many opportunities for intervening. One

might intervene on training or prediction, altering methods and systems to avoid relying

on z. For instance, knowing which dimensions of the feature representations capture in-

formation related with z, one might regulate by removing or masking such dimensions

in the feature extractor. This is the case in the tempo-invariant features of Dixon et al.

(2004). Previous studies, however, often intervene on the creation of training and testing

materials, through either “instance assignment” or “data manipulation” interventions.

Instance Assignment interventions regulate ψ, the criterion for assigning instances to ei-

ther training (C t ) or testing (C p ), taking z into account. These interventions thus require

knowledge of z, i.e., the value that z takes for each instance. Properties such as artist,

album, file format, or recording device are suitable for this approach.

Filtered partitioning belongs to this category, with the intervention involving an as-

signment function ψ′(C ) that creates C ′
t and C ′

p both containing different instances than

their unregulated counterparts. Other strategies may distinguish between regulated and

unregulated conditions only for testing, using the exact same training materials in both

(i.e., ψ′(C ) = (C t ,C ′
p )). This enables isolating the potential effect of z in the evaluation

of fixed systems. If one aims to estimate the impact of z in system construction instead, a

suitable intervention might fix the testing collection and create regulated and unregulated

conditions distinguished only in the selection of training instances (i.e., ψ′(C ) = (C ′
t ,C p )).

Data Manipulation interventions alter the raw data (e.g., audio recordings) in a way that

preserves their membership to a class, but modifies the correlation between z and the



CHAPTER 5. CHARACTERISING CONFOUNDING EFFECTS IN MUSIC
CLASSIFICATION EXPERIMENTS WITH INTERVENTIONS 130

classes. Manipulations such as pitch-preserving time-stretching (Sturm, 2016b) and high-

pass filtering (Rodríguez-Algarra et al., 2016) have been used to this end. These interven-

tions do not require instance-level knowledge of z, and permit comparing predictions on

the same instances (manipulated and not). Nevertheless, they require identifying and im-

plementing suitable manipulations.

Similar to instance assignment interventions, data manipulation interventions may

create regulated conditions in different ways. Given a class-preserving manipulation, one

might transform instances in both C t and C p in the same way, thus obtaining a pair of

regulated collections (C ′
t ,C ′

p ). This, however, may not break correlations if the manipula-

tion is deterministic, failing to regulate z. It is more appropriate to keep either C t or C p

unaltered and manipulate the other.

Different types of interventions are often complementary, since they affect different

steps of the experimental pipeline, but it is feasible to stack various interventions af-

fecting the same step (e.g., time-stretching and filtering recordings). They might be in-

tegrated into the experiment using a Factorial Design (Montgomery, 2013), where each

intervention creates an additional treatment factor with at least two levels: regulated and

unregulated. Comparing measurements under combinations of such levels reveals the

marginal and joint impact of the interventions, illuminating the effects of the potential

confounders.

5.2.2 Analysing Confounding with Interventions

To date, interventions on the experimental pipeline have been used to reveal whether a

potential confounder affects the evaluation of particular methods or systems. This ap-

proach can be extended to assess how such a potential confounder impacts evaluations

conducted on an annotated music collection C over multiple methods, and how several

potential confounders interact, using the following steps.

a) Identify potential confounders

As a prerequisite of the analysis, one should determine which potential confounders are

worth considering for the collection and problem at hand. This may come from ex-

ploratory analyses of collections, published systems and/or domain knowledge.
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b) Design interventions

For each identified potential confounder z, one should specify at least one suitable inter-

vention to distinguish regulated and unregulated evaluation conditions with respect to z.

The appropriate type of intervention depends on the nature of z.

c) Create train/test materials

Let C t be a training collection drawn from C , and C p and C ′
p a pair of testing collections

associated with C t that differ only in whether they regulate a potential confounder z. In

particular, C p is drawn from C (usually C \C t ), and C ′
p comes from an intervention on the

experimental pipeline. For instance, C ′
p might be a pruned version of C p with instances

whose value of z appears in C t removed, or the result of a manipulation on the recordings

in C p for regulating z. If the analysis considers J interventions simultaneously, then one

creates (at least) 2J testing collections associated with C t , one for each combination of

regulation condition.

To avoid the performance estimates being confounded with the selection of instances,

it is advisable to create multiple training collections through a resampling strategy (Weihs

et al., 2017). In this case, one would draw K training collections C t ,k and derive the test-

ing collections associated with each as above. Conventional resampling strategies, how-

ever, cannot ensure testing collections from instance assignment interventions fulfil the

intended regulation. The strategy we propose later in Sec. 5.2.3 addresses this issue.

d) Select methods

Characterising the impact of a potential confounder z requires a wide range of perfor-

mance estimates. One may then train multiple systems on each C t ,k using diverse combi-

nations of feature extraction and learning algorithms, for a total of M combined methods.

These methods should cover a broad spectrum of modelling approaches and expected

performance values. Optimisation is not essential if the goal is to gauge how different ap-

proaches behave when exposed to particular perturbations on the data and not to max-

imise performance, but plays an important role if one aims to identify the most suitable

systems for deployment.

e) Obtain performance estimates

For each trained system s j , 1 ≤ j ≤ K ·M , one can then compute figures of merit (e.g., ac-
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curacy, mean recall) in the corresponding testing collections. ŷ and ŷ ′ refer to the generic

unregulated and regulated performance estimates, respectively.

f ) Relate regulated and unregulated estimates

Since ŷ and ŷ ′ differ only in their regulation of z, one assumes any observed difference

reflects an effect of z. Given enough (ŷ, ŷ ′) pairs, one might estimate the expected rela-

tionship between regulated and unregulated measurements ŷ ′ ∼ f (ŷ).2 Fitting a model of

f (ŷ) from data pairs (ŷ, ŷ ′) describes the confounding effect of z in evaluations using C .

This reflects how a potential confounder tends to affect performance estimates of trained

systems evaluated in the collection. For simplicity, one may use a linear model, such as

ŷ ′ ∼ f (ŷ) =α · ŷ +κ (5.1)

though other relationships (e.g., quadratic, exponential) could be preferable. If α≈ 1 and

|κ|À 0, the confounding effect of z is mostly additive (i.e., the relationship between ŷ and

ŷ ′ appears as a fixed effect); if α 6≈ 1 and κ ≈ 0, it is mostly multiplicative (i.e., a gain). To

estimate κ in the former case, one could average performance differences between con-

ditions per iteration. Denote ŷm,k the performance of a system trained with C t ,k using

method m measured on a test collection C p,k , and ŷ ′
m,k the measurement on the associ-

ated regulated test collection C ′
p,k , then:

κ̂=
∑K

k=1

∑
∀m (ŷm,k − ŷ ′

m,k )

K ·M
(5.2)

with K and M defined as above.

In the general case, ŷ and ŷ ′ will not keep a simple relationship over all observations.

Different system-construction methods can exploit a potential confounder differently,

and the effect might also differ across classes. One may thus analyse the data marginally

to identify clearly distinct behaviours.

If the analysis involves multiple interventions, comparing marginal and joint mea-

surements can elucidate whether the different confounders (or approaches to the same

2The symbol ∼ indicates “modelled as”.
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confounder) interact. Let ŷ be the performance estimated in the original testing collec-

tion, ŷ ′
1 and ŷ ′

2 the performances in testing collections from two different interventions,

and ŷ ′
1,2 the performance on a testing collection subjected to both interventions. Apart

from relating ŷ with both ŷ ′
1 and ŷ ′

2 to analyse the effects of each confounder separately,

one might compare the sum of those two marginal effects with the difference between ŷ

and ŷ ′
1,2. Let ∆A be the “accumulated” variation, defined as:

∆A = (ŷ − ŷ ′
1)+ (ŷ − ŷ ′

2) (5.3)

and ∆R be the “real” variation:

∆R = (ŷ − ŷ ′
1,2). (5.4)

The difference ∆R −∆A indicates whether the two confounding effects under study re-

inforce each other, do not interact, or overlap. This can be generalised to higher-order

interactions if more interventions coexist.

5.2.3 Regulated Bootstrap Resampling

The procedure above requires multiple distinct train/test pairs. Various resampling strate-

gies address this, but none is entirely suitable for instance assignment interventions. In

particular, the fixed size of the partitions in K -fold Cross-Validation (K -CV) impedes ad-

justing to imbalances in the presence of the potential confounder z. Bootstrap sampling

(Efron, 1977), drawing |C | training instances with replacement from the whole collection

C , overcomes this issue. Sampling with replacement is often preferred in the statistical

learning literature (Hastie et al., 2009; Hothorn et al., 2005), since it enhances the statis-

tical properties of the generated samples over K -CV, such as reducing the variance of the

derived estimates (Efron, 1983; Efron and Tibshirani, 1997). Nevertheless, training collec-

tions generated with bootstrap sampling may not permit suitable regulations if, e.g., too

many instances in C p =C \C t have values of z also in C t .

Regulated bootstrap, a novel multi-phase resampling strategy expressed in Alg. 1, ad-

dresses the limitations of conventional strategies for instance assignment interventions.

The algorithm takes as input a collection C (sequence of instances, each a tuple (r, a, z)i
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Algorithm 1 Regulated Bootstrap resampling strategy, given a collection C and a threshold
nr ∈N.

RegulatedBootstrap(C , nr ):
- Initialise: C t ← (;), C p ← (;)
- For each a ∈ A:

0. Define Ca as the instances in C with ai = a;
1. Phase 1: Stratified Bootstrap Sampling

a) Create ct by uniformly sampling with replacement |Ca| instances from Ca;
b) Create cp ←Ca \ ct ;

2. Phase 2: Size Verification
a) Define Zt as the union of all zi in ct ;
b) Create c ′p by selecting all instances (r, a, z)i in cp with zi not in Zt ;
c) If |c ′p | < nr , proceed to Phase 3, as it lacks enough regulated instances; other-

wise, go to Phase 4;
3. Phase 3: Curated Sampling

a) Define Za as the union of all zi in Ca;
b) Initialise a hold-out collection ch ← (;);
c) Randomly select a z ∈ Za, and remove it from Za;
d) Define cz as the instances in Ca with z ∈ zi ;
e) Append cz to ch : ch ← ch

_cz;
f ) If |ch | < nr , go to (3c), as ch still lacks enough instances;
g) Create ct by uniformly sampling with replacement |Ca| instances from Ca \ch ;
h) Create cp ←Ca \ ct ;
i) Go to Phase 2 to check size requirements;

4. Phase 4: Concatenation
a) Append ct to C t : C t ←C t

_ct ;
b) Append cp to C p : C p ←C p

_cp ;
- Return: train/test pair (C t , C p )

of data element ri , class annotation ai from the set A, and attribute zi from the set Z ) and

the desired number of recordings per class nr . It first attempts to create a pair (C t ,C p )

using stratified bootstrap — sampling with replacement from each class separately. If this

cannot derive a regulated testing collection C ′
p of size nr , it then proceeds to a partially-

curated approach. This may be repeated an arbitrary number of times. The output of each

sampling run can then be used to generate a C ′
p through pruning: removing all instances

in C p with z also in C t . Although the pruned instances do not appear in C ′
p , they cannot

be added to C t since they remain in C p .

As an illustration of the regulated bootstrap algorithm, consider a collection C with

5 instances per class, aiming to create a pair (C t ,C p ) from which to derive a C ′
p with

nr = 2 instances per class. For a given class a ∈ A, assume C contains {(r1,a, {“E”}),

(r2,a, {“E”, “F”}), (r3,a, {“F”}), (r4,a, {“G”}), (r5,a, {“H”})}. The set of values of z is thus

Z = {“E”,“F”,“G”,“H”}, with some instances sharing values of z and one that takes two.
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For simplicity, each instance is referred hereinafter by its index (i.e., 1, 2, 3, 4, 5).

i) Assume the bootstrap sampling in Phase 1 creates the pair ct = {1,3,3,4,5}, cp = {2}.

Since the size of the test collection is smaller than nr , failing the check in Phase 2,

the procedure continues with the curated sampling in Phase 3.

ii) Assume z= “F” is drawn and thus instances ch = {2,3} are held out. Since the size of

the hold-out collection matches nr , we create a train/test pair avoiding instances in

ch for training, such as ct = {1,1,4,5,5}, cp = {2,3}.

iii) Even though cp contains 2 instances, only one of them (3) is regulated, since the

other (2) shares value of z (“E”) with an instance in ct (1). Therefore, the check in

Phase 2 fails, so the curated sampling in Phase 3 is attempted again.

iv) Assume now z= “G” is drawn, thus holding out instance 4 (ch = {4}). As the hold-out

collection includes only one instance, further values are then drawn from Z .

v) Assume z= “H” is drawn and thus instance 5 is appended to the hold-out collection

(ch = {4,5}).

vi) Since |ch | = nr = 2, a new train/test pair is created avoiding instances in ch for train-

ing, such as ct = {1,1,3,3,3}, cp = {2,4,5}.

vii) The number of regulated instances in the testing collection now meets the thresh-

old, so the pair is accepted, finally proceeding to Phase 4.

One would repeat these steps for all other classes in the collection to create C t and C p ,

and then C ′
p through pruning.

Some aspects of the algorithm deserve clarification. First, it does not immediately

accept the pair generated after Step (3h), since instances might relate with more than one

value of z (e.g., a song might be a collaboration between two artists), making different cz

overlap. In that case, the number of unique elements of dh might fall short of the specified

minimum, requiring multiple attempts until finally succeeding. Second, the algorithm

does not impose any restriction regarding the same value of z appearing across different

classes to avoid benefiting systems exploiting z. For instance, if a system relied on artist-

specific cues to predict class annotations, its estimated performance would benefit from

removing recordings from a particular artist from the pruned test collection who appears

in a different class on training recordings, since the system would tend to mislabel those

in test. Finally, the sampling is performed at instance level to favour scalability of the
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algorithm, allowing future regulations over multiple z simultaneously.

Although class-wise computations ensure stratification in the training collections, the

associated testing collections will likely be imbalanced and of different size across itera-

tions. Moreover, pruning causes regulated and unregulated testing collections to differ in

size. If these issues raise reliability concerns, it might prove useful to randomly prune test

collections under both conditions to a fixed size per class, such as nr or a larger value if

suitable. The choice of nr depends on the context, but aiming at a number of regulated

instances at least equal to the size of a fold in 10-CV might be a good rule of thumb, both

overcoming these issues and avoiding sample size concerns. In case nr is too high and it

becomes impossible to create C ′
p , it is trivial to include an exit condition in the algorithm.

Along with collecting instance-level information about z, if missing, only the choice of nr

requires human involvement in this otherwise automated resampling strategy.

5.3 Application to GTZAN

The study reported in this section illustrates the analysis procedure proposed in Sec. 5.2,

applying it to investigate the confounding effects of artist replication and infrasonic con-

tent in classification experiments involving the GTZAN music genre collection (Tzanetakis

and Cook, 2002). The presence of multiple known confounders that can be regulated using

different intervention types makes this collection ideal to showcase the factorial analysis

approach proposed. In particular, the recent identification of most excerpts in the collec-

tion reveals that a few artists dominate most classes, as Fig. 2.3 shows. The highly imbal-

anced artist distributions impede the use of conventional resampling strategies to create

multiple train/test pairs regulated by artist; the regulated bootstrap algorithm overcomes

this issue. Moreover, the infrasonic content uncovered in Ch. 4 permits showcasing how

interventions of different type can be integrated and used to analyse the interaction be-

tween potential confounders. To this end, the case study here trains and tests systems

built using multiple feature extraction and learning algorithms under evaluation condi-

tions derived from both instance assignment and data manipulation interventions. The

code is available online.3

3https://code.soundsoftware.ac.uk/projects/confint

https://code.soundsoftware.ac.uk/projects/confint
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Class % Samples
blues 99.99 %
classical 98.62 %
country 01.93 %
disco 00.11 %
hiphop 79.19 %
jazz 99.22 %
metal 71.40 %
pop 98.31 %
reggae 98.11 %
rock 99.70 %

Table 5.1: Estimated percentage of train/test samples requiring curated sampling for each
GTZAN class if drawn using Alg. 1 to regulate over artists, from 100,000 simulations with
nr = 10.

Figure 5.1: Distribution of the number of unique excerpts (Top) and artists (Bottom) per
class in the training and testing collections sampled from GTZAN using bootstrap regu-
lated over artists.

5.3.1 Evaluation Conditions

A total of K = 40 training and testing collection pairs are drawn from GTZAN using the

regulated bootstrap resampling strategy described in Sec. 5.2.3, with nr = 10. This ensures

that at least 10 recordings per GTZAN class in each testing collection feature no artist that

appears in its corresponding training collection. Table 5.1 includes estimates of the pro-

portion of train/test samples that require curated sampling to achieve this for each GTZAN

class. Consistent with the distributions in Fig. 2.3, the artist imbalance in some classes de-

mands curation to ensure proper artist separation.

Figure 5.1 shows the distribution of the number of unique excerpts per class across

iterations. Although all training collections contain exactly 100 excerpts per class, some

of them are repeated. The expected number of unique instances in a bootstrap sample

drawn from 100 elements is 63.2 (Efron and Tibshirani, 1997), approximately what Fig. 5.1
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(Top) shows for the training collections despite the curation. The size of the testing col-

lections (with and without pruning) matches their number of unique excerpts, as they

contain no duplicates. Figure 5.1 (Top) also shows that training collections generally in-

clude more unique excerpts than their corresponding testing collections. Some outliers

in reggae appear to be the exception due to the large proportion of Bob Marley record-

ings. Figure 5.1 (Bottom) highlights the expected decrease in artist variety after pruning.

As suggested by Fig. 2.3, blues suffers from the lowest variety among all collections.

Every recording in GTZAN is also manipulated similarly to the audio filtering interven-

tion by Rodríguez-Algarra et al. (2016) described in Ch. 4, but in this case using a high-pass

Infinite Impulse Response (IIR) filterbank, with stop-band frequency at 19 Hz, pass-band

frequency at 20 Hz, 60 dB attenuation in the stop-band, and maximum 1 dB ripple allowed

in the pass-band. Combining which recordings are included in the collections with their

audio filtering status defines six distinct evaluation conditions for each iteration. These

conditions are hereinafter referred to as train, test, and pr. test, which stands for

“pruned test”, appending “(filt.)” to their name (e.g., train (filt.)) when their

recordings have been high-pass filtered.

5.3.2 Feature Extraction and Learning Algorithms

Multiple prediction systems are built using various combinations of feature representa-

tions and learning algorithms. The learning algorithms employed cover a wide range of

supervised learning approaches, both parametric and non-parametric. In particular, the

analysis involves scikit-learn4 implementations of: Naive Bayes (NB), 1- and 5-Nearest

Neighbours (1-NN and 5-NN), Decision Trees with and without AdaBoost (ABDT and DT),

Random Forests (RF), Support Vector Machines (SVM), and Multi-layer Perceptrons (MLP).

These use out-of-the-box implementations and avoid hyperparameter tuning, since the

goal is not to maximise performance but gauge how confounding affects measurements

for a wide range of modelling approaches and performance values, including those at the

lower end of the performance axis that are only feasible from suboptimal systems. Ig-

noring tuning here permits increasing the number of methods and resampling iterations

considered without requiring an excessive amount of time and computational resources.

4http://scikit-learn.org/stable/

http://scikit-learn.org/stable/
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Nevertheless, this means that the performances reported should not be taken as represen-

tative of the potential of each method.

The multiple feature representations selected focus on different aspects of the au-

dio signals and come from two sources: the Essentia music extractor (Bogdanov et

al., 2013) and the scattering-based audio features by Andén and Mallat (2014). The fea-

tures extracted from Essentia are grouped into 8 disjoint sets for the analyses here

— Rhythm, Tonal, Tim+Dyn (i.e., timbre plus dynamics), MFCC, GFCC, Barkbands, Mel-

bands, and Erbbands —, referred jointly as non-scattering features hereinafter. Re-

garding the scattering-based features, Mel-scaled (Mel Sc.), first-layer (1-L Sc.), and

joint first- and second-layer time-scattering features (1&2-L Sc.) are computed. Unlike

non-scattering features, these express frame-level information, so excerpt-level sum-

mary statistics of first-layer time-scattering features (Des. 1-L Sc.) are also included.

5.3.3 Instance Assignment: Artist Information

The first analysis conducted compares measurements obtained on test and pr. test

to assess the effect of artist replication. Other than size, these conditions differ only in

whether their artist content is regulated. Systems are trained using every combination of

the selected feature extractors and learning algorithms on each of the K training collec-

tions drawn, yielding 40× 12× 8 = 3840 distinct systems. Figure 5.2 shows performance

statistics across iterations, using mean recall as metric to compensate for class imbal-

ances derived from the resampling strategy employed. The performances are systemat-

ically lower on pr. test than on test, agreeing with results that Sturm (2014d) reports.

Systems thus tend to decrease their performance when the artist-specific cues of GTZAN

are unavailable.

Since the pruning process that creates pr. test collections from their test counter-

parts also changes their size, it might be argued that size differences and not the regulation

drive the performance drops that Fig. 5.2 show. Simulations suggest this is not the case.

Only 12.8% of all measurements in pr. test are equal or superior to their counterpart

in test. If size explained differences in performance, one would expect that percentage

to be similar when computed on any subset of instances from test of the same size as

pr. test. On 100 simulations using randomly generated subsets of test with identical
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Figure 5.2: Mean recall (± standard deviation) on train, test, and pr. test for each
regulated bootstrap iteration over all combinations of feature extraction and learning al-
gorithms on original GTZAN recordings. Position 0 represents the mean recall over all
iterations.

class sizes as pr. test, an average of 53.7% (± 2.3) of the performance measurements on

the subsets are equal or superior to their test counterpart. Moreover, 15.6% (± 0.5) of

measurements in pr. test are equal or superior to their counterpart in the simulations,

compared to an average of 54.4% (± 2.3) between simulations (see Fig. 5.3) — i.e., perfor-

mance is lower on a regulated subset than any other of the same size substantially more

often than between two randomly generated ones. These observations suggest the regu-

lation, and not the size differences, explain the differences in performance between test

and pr. test evaluation conditions.

An estimate of κ according to Eq. (5.2) yields a decrease in mean recall of approxi-

mately κ̂ ≈ 0.085 (8.5 percentage points). A closer look at the measurements reveals

the naivety of this approach. Figure 5.4 shows that, despite consistently lower results

on pr. test than test, the distribution of the performance measurements varies widely

when marginalised over class, feature set or learning algorithm. This suggests the con-

founding effect of artist replication in GTZAN does not impact performance measure-

ments as an additive fixed effect, i.e., that there exist interactions between that metric

and the classes, features, and learning algorithms.

As the Top row of Fig. 5.4 shows, the differences in performance distribution between



CHAPTER 5. CHARACTERISING CONFOUNDING EFFECTS IN MUSIC
CLASSIFICATION EXPERIMENTS WITH INTERVENTIONS 141

Figure 5.3: Proportion of mean recall measurements equal or superior to their corre-
sponding one calculated on a different subset of test with identical number of instances
per class. The solid black line represents the measurements on pr. test (i.e., regulated for
artist replication) compared with measurements on 100 simulated subsets (mean 0.1586,
standard deviation 0.0046); the grey lines represent the 100× 100 pairwise comparisons
between the measurements on simulated subsets, with the dashed black line representing
their average (mean 0.544, standard deviation 0.0228). Each simulation involves a sam-
pled set of instances for each of the 40 test collections drawn from GTZAN using regulated
bootstrap.

test and pr. test vary across GTZAN classes. The largest difference by far occurs on

blues recordings, with an average drop due to regulation of 19 percentage points — a

relative decrease of more than 53%. This behaviour might be expected, since blues is the

GTZAN class with the least artist variety. Similarly, the average recall on reggae recordings

drops 9.7 percentage points with regulation (almost 30% relative decrease), which may

relate to one artist dominating the class. The relative decrease on pop recordings is even

higher (32.4%), and might arise from duplicate recordings in that class (Sturm, 2014d).

At the other end of the spectrum, metal, classical and disco suffer average relative

decreases in recall below 10% (7.7%, 8.1%, and 9.6%, respectively). Fig. 2.3 shows disco

is the class in GTZAN with largest artist variety. Despite having less than half the num-

ber of unique artists, however, metal and classical not only suffer the smallest relative

average decrease, but also yield the highest average on both test and pr. test. This sug-

gests these classes are so different from others in GTZAN that they are distinguished even

without artist-specific information.
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Figure 5.5: Relationship between mean recall on test and pr. test obtained by systems
constructed with different combinations of feature representations and learning algo-
rithms on training collections sampled from GTZAN with bootstrap regulated over artists,
represented both as individual values for each system (Left) and averages across iterations
(Right). The dashed line indicates the case of equal mean recall on test and pr. test;
the solid line indicates the linear regression model fitting the data as in Eq. (5.1).

Marginalising over feature extraction method, Fig. 5.4 shows systems using scattering-

based features tend to obtain higher performances than non-scattering, both on test

and pr. test. Overall, differences in mean recall between test and pr. test are highest

for both Mel Sc. and 1-L Sc. features, with a decrease of approximately 15.8 percent-

age points in both — a decrease of 27.7% from test. The lowest drop, both in absolute

and relative terms, occurs for Tim+Dyn systems (4 percentage points, 12% decrease from

test).

Marginalising over learning algorithm also reveals clear differences in performance

distribution. Systems constructed using the suboptimal MLP architecture tend to perform

close to the random baseline of 0.1 mean recall. For every single learning algorithm, in-

cluding MLP, performance tends to decrease between train and test, and between test

and pr. test. Apart from MLP, NB is the only other algorithm that shows an average rela-

tive difference in mean recall between test and pr. test below 20%. It is also the algo-

rithm that seems to suffer the least from overfitting. Despite a far lower performance on

train, NB systems perform on average equivalently to 1-NN systems on test, and slightly

superior on pr. test, with substantially lower variance in both cases. Systems from all

other algorithms decrease on average around 20.5% to 23.5% between test and pr. test,

with DT having the largest drop.
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Figure 5.5 relates the performance trained systems achieve on test to that on

pr. test, both individually (left) and grouped by feature representation and learning al-

gorithm (right). A linear fit gives a slope α̂= 0.712±0.003 and an intercept κ̂= 0.034±0.001

(R2 = 0.929). The slope is thus lower than the case of no confounding, represented with

a dashed line in Fig. 5.5. This suggests regulating by artist on GTZAN attenuates the esti-

mated performance to around 70% of its unregulated value. This equates to considering

the confounding effect of artist replication in GTZAN as a gain in mean recall of approxi-

mately 1/0.712 ≈ 1.4.

The data points at the higher end of performance measurements in Fig. 5.5 deviate

from the estimated regression line. This may suggest using more complex models, but

exponential and polynomial models up to third degree do not substantially improve the

fit. A model including both third degree polynomial and exponential terms increases R2

to 0.932, but at the cost of hard to interpret coefficients and the risk of overfitting.

5.3.4 Data Manipulation: Infrasonic Content

The analysis reported in Ch. 4 suggests that previously unknown infrasonic content

in GTZAN recordings affects performance estimates of scattering-based SVM systems

(Rodríguez-Algarra et al., 2016). The results reported here extend such analysis to include

non-scattering feature representations and a wider range of learning algorithms to gauge

the extent of that effect. The performance measurements are obtained from the same sys-

tems in Sec. 5.3.3 and compared under test and test (filt.) evaluation conditions,

which differ exclusively in sub-20 Hz content. Overall, the average decrease in mean re-

call between these two conditions calculated as in Eq. (5.2) is κ̂≈ 0.098, slightly larger than

the one observed for artist replication.

Figure 5.6 shows the observed performances, marginalised by GTZAN class, feature

representation, and learning algorithm. The figure includes measurements on the training

recordings and their filtered equivalents, revealing that performance estimates decrease

between train and train (filt.) across system-construction methods and classes.

Overall, the average decrease in mean recall between these two conditions is of 28 per-

centage points. Regardless of whether they exploit class-specific patterns of infrasonic

content to predict annotations in unseen instances, systems trained on GTZAN seem to
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rely often on such content (or related information, such as the overall energy level) to

identify recordings previously seen during training and predict their class.

The GTZAN class with largest relative average decrease in recall between test and

test (filt.) is jazz, with 37.2%, followed by pop, the largest drop in absolute terms,

and blues, with 34.9% and 33.7%, respectively. The smallest decrease by far occurs for

hiphop recordings, with an average 5.5% relative decrease. The closest classes are reggae

and classical, both with over 16.5% relative decrease on average. Some might speculate

these reductions in performance originate from removing information legitimately char-

acteristic of some music genres, such as sub-bass kick drums in Hip-Hop recordings. See-

ing how measurements in GTZAN ’s hiphop are barely affected by the intervention com-

pared to other classes that should not present any pattern at those frequencies (such as

jazz), seems to disprove this explanation.

Marginal analysis of measurements by feature representation reveals two clearly dis-

tinct behaviours, and suggests models such as Eqn (5.1) might not apply in this case. The

mean recall of scattering-based systems decreases on average between 41% (1&2-L Sc.)

and 57% (1-L Sc.) when comparing test and test (filt.). On the other hand, no av-

erage decrease of non-scattering features exceeds 4%, one order of magnitude lower.

This brings the average performance of all scattering-based systems except those using

1&2-L Sc. to the bottom of the list on test (filt.), despite appearing substantially

more successful than any non-scattering feature set on test. Feature representations

such as MFCC discard infrasonic information, with all filters centred at frequencies above

the human hearing threshold (Davis and Mermelstein, 1980). Scattering-based features,

even those supposedly Mel-scaled, have multiple filters centred below 20 Hz, as it was

described in Sec. 4.1.1. Figure 5.7 shows the distinct behaviour of each group, where

measurements from systems using non-scattering feature representations follow quite

closely the ideal behaviour indicated by the dashed line, whereas those from scattering-

based systems tend to create clusters away from that line.

Among the considered learning algorithms, SVM is the one with largest drop in perfor-

mance between test and test (filt.) — an average decrease of 42.6% in mean recall.

Other than MLP, NB is the algorithm that suffers the lowest average decrease (10.5%), with

the remaining algorithms decreasing between 16.7% and 31.7% mean recall on average.
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Figure 5.7 separates measurements from systems using Des. 1-L Sc.because the

clusters they form suggest interactions with learning algorithms different from frame-level

scattering systems. Leaving MLP systems aside, the clusters close to the dashed line in

the middle panel only contain measurements from NB systems. Their average decrease

in mean recall is of 9 percentage points, corresponding to a 19% drop. NB systems with

Des. 1-L Sc. feature representations, however, suffer an average 52% decrease. Con-

versely, the clusters closer to the ideal case for Des. 1-L Sc. systems correspond to al-

gorithms of a similar kind: DT, ABDT, and RF. The average drop in performance for these

algorithms is between 15% and 25% with Des. 1-L Sc. feature representations, but DT is

the algorithm with the largest drop for the rest of the scattering-based representations,

with an average 61.5% decrease in mean recall; ABDT follows with 55.8% decrease.

5.3.5 Factorial Integration of Interventions

The separate analyses above highlight the particularities of each confounding effect. Both

interventions are now conducted simultaneously in a factorial way, exposing every trained

system to all evaluation conditions. In particular, pr. test (filt.) contains the same

instances as pr. test but high-pass filtered.

Figure 5.8 summarises the performance distributions on test and pr. test, both un-

der original and filtered audio conditions, marginalised by GTZAN class, feature represen-

tation and learning algorithm. The distribution on pr. test (filt.) is centred around

lower values than those on any other evaluation condition for scattering-based represen-

tations. Systems using non-scattering feature representations only suffer drops when

regulating over artist, but not due to high-pass filtering.

Combining multiple interventions permits analysing interactions between con-

founders. Using the notation in Sec. 5.2.2, let ŷ, ŷ ′
1, ŷ ′

2, and ŷ ′
1,2 be the mean recall a

system obtains on test, pr. test, test (filt.), and pr. test (filt.), respectively.

Let ∆A be the “accumulated” variation of mean recall, defined as in Eq. (5.3), and ∆R be

the “real” variation, defined as in Eq. (5.4). Figure 5.9 shows the distribution of ∆R −∆A ,

grouped by origin of feature set. This difference is centred around 0 for systems using

non-scattering feature representations, since the overall confounding effect in those

systems originates mainly from artist replication. On the other hand, the difference tends
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Figure 5.9: Distribution of differences between the real variation∆R and the accumulated
variation ∆A in mean recall for artist and infrasonic regulation interventions on GTZAN ,
grouped by the source of feature set.

to be negative for systems using scattering-based feature representations. This suggests

the two confounding effects overlap for those systems, which stands to reason since the

recording conditions of excerpts from the same artist are likely similar.

Confounders not only impact the magnitude of performance estimates, as seen be-

fore, but also alter their ranking. For instance, Fig. 5.10 shows that, for systems trained

using 1&2-L Sc., NB goes from the lowest (ignoring MLP) to the highest position depend-

ing on whether one manipulates the data; similar interactions arise in other methods.

Sturm (2014d) also observes that Naive Bayes systems seem less vulnerable to the faults of

GTZAN .

The overall ranking of systems depends on the evaluation condition, as Fig. 5.11 re-

flects. Kendall’s τ provides estimates of concordance between rankings, with 1 meaning

exact match, −1 completely reversed match, and 0 non-correlation (Kendall, 1938). The

value of τ between test and pr. test is fairly high (0.91), which aligns with our inter-

pretation that artist information biases performance estimates in a similar way across

methods (i.e., without substantially altering their ordering). τ decreases between test

and test (filt.) (0.52) and between test and pr. test (filt.) (0.45), reflecting the

fact that infrasonic content affects ranking to a higher degree.

5.4 Discussion

The proposed procedure for characterising confounding effects in music classification ex-

periments helps to understand how particular confounders impact evaluation outcomes.
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Figure 5.10: Interaction between learning algorithm and evaluation condition in average
mean recall for systems constructed using training collections sampled from GTZAN with
bootstrap regulated over artists across feature sets.
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Figure 5.11: Interaction between system-construction method and evaluation condition
in rank of average mean recall for systems constructed using training collections sampled
from GTZAN with bootstrap regulated over artists. Ties in average mean recall are resolved
by assigning the minimum possible rank to all involved methods.

It extends well-established practices in MIR, such as filtered partitioning, overcoming

their limitations. In particular, the approach presented here enables to integrate multi-

ple types of interventions, targeted to the same or distinct potential confounders (but not

necessarily multiple interventions of the same type). Introducing a suitable resampling

strategy, such as the described regulated bootstrap, is key to this integration. This pro-

vides a distribution of regulated/unregulated measurement pairs instead of single sample

comparisons, such as those found in previous studies (e.g., Rodríguez-Algarra et al., 2016).

It also enables to disentangle the effects of confounding between training and prediction.

The example application using GTZAN showcases the benefits of the proposed pro-

cedure. The factorial structure across runs of the experiment enables both marginal and

joint analyses, revealing distinct behaviours when systems are exposed to each poten-
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tial confounder, as well as their interactions. These observations, however, are subject to

some caveats discussed next.

Systems in the case study underperform due to the lack of hyperparameter tuning.

Variety is deliberately prioritised over optimisation to gather performance estimates of

different magnitude and susceptibility to confounding. The evidently unsuitable MLP ar-

chitecture chosen is a clear example of this, yielding measurements close to the random

baseline that could still be affected by the regulations. Alternatives to achieve measure-

ments in the lower end, such as random or systematic classifiers, would by definition re-

main unaffected regardless of the condition. Tuning model hyperparameters, while rele-

vant for benchmarking studies, would likely concentrate performances at the high end of

the axis, thus hampering the intended illustration of the proposed methodology. Further

studies could incorporate additional treatment conditions in the experimental design re-

lated with hyperparameter optimisation, which may help illuminate how tuning impacts

the susceptibility to confounding effects.

The analysis suggests the confounding effect of artist replication in GTZAN appears

multiplicative rather than additive. This might seem obvious knowing that the perfor-

mance metric used is bounded between 0 and 1. As Carterette (2012) mentions, additive

effects could easily make predicted values exceed those boundaries. In reality, current

proposals for modelling measurements from classification experiments, such as those re-

ported in Sec. 3.3, assume additive effects for all components of the experiment, ignor-

ing the boundary problem. This motivates revising those models, potentially using logit

transformations to convert multiplicative effects into unbounded additive components,

although it might be unnecessary if one’s only concern is the ranking between systems.

The clear divergence between the proposed linear model and the observations of the

highest end of performance measurements in Fig. 5.5 might require collecting further

data, either from not yet considered methods or through the optimisation of existing ones.

That divergence, however, illuminates a substantial difference in slope between observa-

tions using a particular feature representation and the overall trend. This seems to reflect

Simpson’s paradox (Pearl, 2014; Simpson, 1951), in which behaviour per group diverges

from, or even completely reverses, the aggregated pattern. Together with the clusters

suggested in Fig. 5.7 for the case of infrasonic content, this highlights the need to study
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interactions between learning algorithms and feature representations under various po-

tentially confounding environments.

A general limitation of the proposed method regards its scope, since it neither illumi-

nates previously unknown confounders nor prevents confounding from affecting perfor-

mance estimates. It is actually impossible to guarantee that confounding does not appear

at all, as there might be a plethora of yet unknown potential confounders still affecting ob-

servations to some extent. Devoted exploratory analyses informed by both domain knowl-

edge and system analysis are necessary to uncover further potential confounders before

assessing their impact using intervention-type approaches. This enables to design or im-

prove system-construction methods accounting for that risk and devise train/test mech-

anisms that prevent them from appearing. To this end, it is of paramount importance for

MIR researchers to devote efforts to expose such potential confounders and assess their

effects.

The study reported in this chapter does not consider all possible effects of confound-

ing, focusing on characterising its effects on evaluation results, but leaving aside other

equally relevant research questions for the moment. In particular, by introducing and

comparing new conditions only at the prediction stage, the effects of confounding on the

training of systems are ignored. This might be easily addressed for data manipulation in-

terventions by adding training conditions with manipulated recordings, thus multiplying

the number of models to consider and experimental conditions to analyse. In the case

of instance assignment interventions, however, it would require modifying the regulated

bootstrap resampling strategy to enable the creation of regulated and unregulated collec-

tions for both training and testing simultaneously. This is a promising research path for

the future.

The threshold number of recordings nr , as presented in Alg. 1, poses a further limita-

tion to the current implementation of the regulated bootstrap resampling strategy. Since

its value is absolute, all classes in the collection must adhere to it regardless of their size.

For imbalanced collections, this might be problematic. Further implementations of the

algorithm can easily overcome this issue by replacing the nr parameter in the function

definition with a relative threshold ηr , with value between 0 and 1. It would then suffice to

append nr ←bηr · |Ca|c in step 0 of Alg. 1 to retain the original class size distribution. The
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symbol pair b c represents a floor function, but any other rounding transformation would

be equally suitable. Since the classes in GTZAN are balanced, modifying the resampling

algorithm in this manner would not alter the results reported in Sec. 5.3.

Some may argue the curation process inherent to regulated bootstrap resampling in-

troduces biases in the performance estimates, and thus in the comparisons between con-

ditions, questioning the validity of the extracted conclusions. This process, however, in-

creases control over the measurements, not unlike the stratification performed in conven-

tional classification experiments, as well as blocking in statistical Design of Experiments

(Montgomery, 2013). In particular, stratification preserves the distribution of annotations

present in the original collection, thus facilitating performance estimates within the col-

lection that approximate what systems would have achieved had they used the whole col-

lection, but does not account for the likely imbalances that real life data could have. This

favours internal over external validity, a methodological trade-off often encouraged to cre-

ate experimental conditions that differ only in the factor under study and warrant against

external factors affecting the conclusions (Shadish et al., 2002).

The size of the testing collections generated might also cause concern, since there is

no guarantee that the original class balance remains and, by definition, the number of

instances decreases after pruning. The use of mean recall as performance metric should

compensate for imbalances, and, in the case study conducted here, the differences in per-

formance between collections of the same iteration clearly exceed the differences across

iterations. This suggests unequal size should not affect the conclusions reached here. As

mentioned before, in the general case, one might want to introduce a further control step

that forces all original and pruned testing collections, and all classes within those col-

lections, to match in size, such as randomly selecting a fixed number of instances. This

might also alleviate the likely lack of independence between instances from the curation

involved in their sampling. Due to the infeasibility of pure random sampling from the

whole population, the convenience sampling often involved in the construction of evalu-

ation collections hampers independence in the first place. Curation thus does not neces-

sarily affect in this regard.

The analysis approach described and exemplified in this chapter can be applied to a

wider range of collections, Machine Learning methods and potential confounders than
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the ones considered here. Published studies and evaluation exchanges, such as MIREX,

could incorporate similarly extended pipelines to assess the susceptibility of proposed

systems to a set of interventions. Domains other than music would also benefit from sim-

ilar analysis approaches. Despite its caveats, the insights obtained through this kind of

analysis should help building more robust systems and obtaining performance estimates

that generalise to deployment scenarios.



C
H

A
P

T
E

R

6
STRUCTURAL MODELLING OF

MEASUREMENTS IN CLASSIFICATION

EXPERIMENTS

The extensions of the conventional classification experiment proposed in previous

chapters leverage fundamental principles of experimental design, especially factorisation

and replication, to better understand evaluated systems through interventions. The ex-

ample analyses largely focused on comparing regulated and unregulated conditions, but,

similar to what one would commonly find in benchmarking studies, also highlighted dif-

ferences between system-construction methods. For the sake of simplicity, however, such

analyses did not explicitly express the underlying structural models leading to the decom-

position of measurements into contributions.

This chapter introduces structural models suitable for the analysis of classification ex-

periments in applied Machine Learning scenarios, including those with pipeline interven-

tions. These models help distinguish between relevant and nuisance contributions to the

performance measurements, and are fundamental for any inferential analysis one aims

to conduct. Although the nomenclature used here follows the conventions of frequentist

statistics, the ideas behind the presented models could easily be adapted to a Bayesian

context. This chapter also discusses the suitability of the assumptions underlying linear

additive models for the analysis of measurements from classification experiments, com-

157
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paring them with alternative logistic approaches. Finally, based on the insights gained

from the structural models discussed, this chapter revisits some implementation deci-

sions from the case studies in previous chapters, and suggests steps that readers might

want to undertake when conducting their own studies.

6.1 Fundamental Structural Models for Classification Experiments

The pipeline illustrated in Fig. 2.2 shows that each measurement in a classification exper-

iment depends on at least five components: the collection C , the assignment function ψ,

the iteration k, the system construction method m, and a performance metric function

φ, i.e., ŷ = f (C ,ψ,k,m,φ), even though C , ψ, and φ are likely to be fixed in a particular

study. The relationship between those components is anything but trivial. Successively

substituting backwards from the performance estimate ŷ yields:

ŷ =φ(Âp , Ap )

=φ(p(F p ), Ap )

=φ(`(F p | F t , At ), Ap )

=φ(`(e(R p ) | e(R t ), At ), Ap )

=φ(`(e(ψp,R (C ,k) | e(ψt ,R (C ,k)),ψt ,A(C ,k)), ψp,A(C ,k)))

(6.1)

where the subindices in ψ indicate which parts of the output of the assignment at an it-

eration k to keep in each case (t for training, p for prediction, R for raw data, and A for

annotations), and the composition of e and ` forms m. The relationship in Eqn (6.1) is

excessively complex for most practical purposes. Instead, analyses implicitly or explicitly

presume simpler relationships between the effects of each component of interest and the

measurements in the form of structural models.

The models presented here follow the same basic assumptions as those in Sec. 3.3 for

the particular case of the evaluation of learning algorithms. They are mixed-effects linear

additive models, meaning they express the measurements as the sum of parameters for

both fixed and random effects, plus a residual that captures the variability not explained

by the other considered parameters. Fixed-effects parameters represent factors whose

impact on the measurements is of interest, whereas random-effects parameters represent

nuisance factors. Which ones should be considered as one type or the other largely de-

pends on the research question one aims to answer.

Classification experiments can be conducted for several reasons, such as to select a
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fixed system for deployment, to compare the suitability of different methods, or to assess

specific components or hyperparameters of such methods. Although the computational

machinery employed in any of those scenarios is virtually identical, which information is

of interest differs, implicitly demanding different structural models. What follows intro-

duces various of these possible structural models, starting from the simplest scenario and

subsequently increasing complexity.

6.1.1 Assessing Fixed Systems

Consider J fixed systems, s j ( j = 1, . . . , J ), are assessed on their performance in repro-

ducing the annotations of a given collection C . These systems are treated as pure black

boxes, with their evaluation completely ignoring how they are constructed. Assume that

the whole C remains available to perform predictions, either because the systems are ex-

pert agents or have all been trained using a separate set of instances, so overfitting is not

a concern and no further partitioning is necessary.1 The goal is to determine whether any

system appears superior with regards to how predictions Â = (â1, . . . , âN ) match the anno-

tations A, with ân = s(rn) — the output of the system to the raw data instance rn .2 The

measurements are then derived from a performance metric φ(Â, A), which can be anal-

ysed treating the whole collection as a single observational unit, or splitting the collection

into multiple smaller subsamples and obtaining separate performance measurements for

each. These two options are discussed next.

Single Sample One approach for comparing multiple systems involves measuring the

overall prediction performance of each on a collection C . Each run of a classification ex-

periment, then, fixes a system factor variable S to a particular level S(i ) = s. The different

conditions to compare correspond to the J systems, hence the levels of S comprise the

treatment set. In the simplest situation J = 2, with one of the treatment levels represent-

ing a single actual system and the other a baseline.

Each system corresponding to a level s ∈ S produces a single sequence of predictions

from C , with each run of the experiment yielding a response y = φ(Â, A). C as a whole

1If only part of a collection remained available, then that part would become C for the purposes of the
present analysis.

2For simplicity, the subindex j is removed hereinafter, writing s instead to express a generic level in S, unless
necessary to disambiguate.
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acts as observational unit. Note no structure is considered in either treatments or units.

This means that any common characteristics that would group treatments into factors or

units into blocks are ignored. The structural model that describes this scenario includes a

single parameter related to the system factor S, which is assumed to produce a fixed effect

τS(i ):

yi =µ+τS(i ) +εi . (6.2)

This mirrors the CRD model in Eqn (3.1).

This setting omits some of the principles of DoE introduced in Sec. 3.1.2. In particular,

randomisation is unnecessary, since the batches of instances considered as observational

units are duplicated in multiple runs of the experiment, applying every distinct treatment

to every unit. Problematically, replication is also ignored, since a single observation is ob-

tained for each treatment level in the study, i.e., only one measurement per system. Since

the number of observations N matches the number of treatments J , the degrees of free-

dom of the equality factor E, computed as in Eqn (3.30), are dE = N − J = N −N = 0. This

means the effect of the systems, if any, cannot be disentangled from the particular sample

used in the study.3 No statistical machinery can overcome this issue. One might try to

address this issue by computing multiple prediction sequences Âk , obtaining K perfor-

mance measurements φ(Âk , A) for each system. These, however, are “false replications”

since they are not independent observations, and so do not provide any extra degrees of

freedom for isolating the system effect in Eqn (6.2).

Multiple Samples To overcome the issue above, one may consider multiple distinct

batches of instances as observational units instead of a single one. Splitting C into K dis-

joint samples and performing (at least) one measurement in each sample for each system

avoids conflating the effect of particular samples with that of the systems.

Ignoring structure in the units, thus considering only the system factor S as relevant,

leads to a structural model identical to that in Eqn (6.2), but with J ×K “true” measure-

ments in this case. Since N = J ×K , the degrees of freedom of the equality factor are

3Incidentally, this also means the residual parameter ε could be dropped from the model in Eqn (6.2) with-
out loss of information, since the estimated treatment effect alone suffices to explain completely the variability
of the measurements.
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dE = N − J = (J ×K )− J = J × (K −1) > 0, ∀K > 1

unlike in the single sample case above. Fitting such a model to the observed performances

yields estimates of the overall system effects on C , enabling comparisons.

Not considering structure assumes that the K samples affect all measurements in ex-

actly the same way (or none at all). In other words, it does not account for possible differ-

ences in “difficulty” among samples that may consistently introduce variability into the

observations not explained by the systems. The k-th run associated with each system

yields a performance measurement on exactly the same sample, C k , which exposes a clear

structure in the units. This suggests considering samples as blocking variables.

If the effect of particular samples on the measurements is unimportant, with only that

of the systems being deemed relevant, it may be assumed that the samples introduce a

random effect with zero mean and unknown variance, as Eugster (2011) suggests for the

evaluation of learning algorithms. The structural model that reflects this situation is:

yi =µ+τS(i ) +βK(i ) +εi . (6.3)

This only differs from Eqn (6.2) in that it adds the parameter βK(i ) to represent the ran-

dom effect of the samples. The model matches the one usually considered for a CBD in

conventional DoE, such as in Eqn (3.3). Fitting (6.3) enables to estimate system effects,

while controlling for the variability introduced by the samples.

This approach assumes the effect of each sample introduces the same variability in-

dependently of the system. In other words, this model does not permit estimates of the

potential interaction between systems and samples. The total number of observations

in this approach matches the number of possible combinations of systems and samples

(J×K ). The infimum S∧K between the system and sample factors is thus equivalent to the

equality factor E. This means only one measurement is obtained per combination, hence

one lacks replicates to conclude anything with regards to the effect of such combinations.

Although assuming no interaction might often be reasonable, previous research shows

that particular samples may affect the performance of distinct systems differently (e.g.,

Pampalk et al., 2005; Rodríguez-Algarra et al., 2016). Regarding fixed systems as the treat-

ments of the study completely obscures this circumstance. Repeating measurements
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would not help in this case either, since, with rare exceptions, systems yield the same

predictions for the same samples and thus lead to the same performance measurements.

Therefore, obtaining more measurements for the same combinations of systems and sam-

ples would not add any power to the analysis. Pipeline interventions might serve to ad-

dress this issue, introducing further evaluation conditions for each combination.

6.1.2 Assessing System-Construction Methods

Suppose each of J systems comes from the application of one of M ≤ J distinct meth-

ods, and one is interested in assessing differences in performance between such methods.

Each of the methods is represented by a level of a factor variable M, which becomes the

main treatment variable of the experiment instead of the systems. In here, entire methods

are considered as indivisible entities, but Sec. 6.1.3 later deals with the particular contri-

butions of the feature extraction and learning algorithms that form such methods.

Similar to Sec. 6.1.1, one can formulate structural models with varying complexity to

assess system-construction methods. Adapting Eqns (6.2) and (6.3) to this case leads to

the following models:

yi =µ+τM(i ) +εi (6.4)

yi =µ+τM(i ) +βK(i ) +εi . (6.5)

The parameter τM(i ) represents the fixed effect of the method M(i ), and replaces τS(i ).

The main difference lies in which units have the same treatment factor level, since all

units with the same level in S necessarily have the same level in M, but not the other way

around. The factor S is thus nested in M.

The difference between system and method levels stands out in a conventional K -

fold Cross-Validation (K -CV) setting. In K -CV, one constructs K distinct systems for any

particular method m ∈ M, each associated with one of K train-test sample pairs. This

means K measurements are made at each level of M. Using the approach in Sec. 6.1.1, on

the other hand, only yields a single observation per level of S regardless of the number of

splits in C , leading to the issues highlighted above.

Resampling schemes, such as K -CV or the bootstrap, produce economic estimates of

method rather than system effects. These conventional resampling schemes do not over-



CHAPTER 6. STRUCTURAL MODELLING OF MEASUREMENTS IN CLASSIFICATION
EXPERIMENTS 163

come the lack of interaction replications previously discussed, however, since the total

number of observations is M ×K . This means there are exactly as many observations as

combinations of levels of M and K, hence leaving no room for estimating interaction ef-

fects between methods and samples.

Note that the formalisation here not only resembles the models introduced above

for the evaluation of fixed systems, but it is also almost identical to those presented in

Eqns (3.40) and (3.41) for the evaluation of learning algorithms. When comparing learn-

ing algorithms, one conventionally assumes all such algorithms receive identically repre-

sented data — i.e., features have been extracted from the raw data using the same extrac-

tor. In that case, each system-construction method corresponds with a particular learning

algorithm, henceL≡M. This is not generally true in applied Machine Learning scenarios,

where multiple feature extraction and learning algorithms might appear simultaneously

in a single study. What follows considers this situation.

6.1.3 Assessing Method Components

Researchers often intend to evaluate particular components of methods, such as feature

extractors and/or learning algorithms, rather than entire methods. The structural models

below address this under various assumptions with increasing complexity. Similar models

would also apply in the case of hyperparameter tuning, replacing (or nesting) the factor

variables for each component with a variable for each hyperparameter, whose levels rep-

resent the distinct values that one wishes to consider (such as in a grid-search optimisa-

tion strategy).

No interaction between components Denote X a factor variable with levels represent-

ing feature extraction algorithms; similarly, denote L a factor representing the learning

algorithms. Both X and L are treatment factors, since their effects constitute the evalu-

ation conditions to compare. A simple modelling approach that considers both factors

only includes parameters for the fixed effects of X and L:

yi =µ+τX(i ) +τL(i ) +εi . (6.6)
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This implicitly assumes that neither the samples nor the interaction between components

affect the measurements.

In practice, much published research simplifies this even further. Studies often at-

tempt to assess one or more feature extraction algorithms on a collection using a single

learning algorithm. This is the case, for instance, of the study conducted by Andén and

Mallat (2014) described in Sec. 2.4. Such a study compares a series of feature extraction

techniques against what they consider a state-of-the-art baseline algorithm on a bench-

mark collection. For this purpose, the authors solely use a Support Vector Machine (SVM)

as learning algorithm. This situation mirrors the CRD model in Eqn (6.4), with a structural

model such as:

yi =µ+τX(i ) +εi (6.7)

implicitly assuming that the measurements depend solely on the feature extractors to

compare. Conversely, some other studies fix the feature representation and compare

learning algorithms, which would entail replacing τX(i ) with τL(i ) in the model, but would

be otherwise equivalent.

Neither of these cases produces completely generalisable estimates. Measurements

that fix one component do not provide any support for conclusions beyond the combina-

tion with that particular component. For instance, differences between feature extractors

in the study conducted by Andén and Mallat (2014) could have arisen merely as a conse-

quence of their combination with SVM, and not appear if used alongside other learning

algorithms.

A straightforward alternative involves comparing various combinations of feature ex-

tractors and learning algorithms. The structural model in Eqn (6.6) seems to suit this

situation, since it separates the effects of X and L. Note, however, that both effects are

presumed fixed. This implicitly assumes that the particular selection of levels covers all

possibilities of interest, which rarely holds when evaluating a component irrespective of

the choice of the other. If the levels of one component factor only cover a narrow selection

among a wide range of possibilities, it may be more appropriate to treat their effects as

random instead of fixed. The following models express this situation:
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yi =µ+τX(i ) +βL(i ) +εi (6.8)

yi =µ+βX(i ) +τL(i ) +εi . (6.9)

They both take the same form as the CBD in Eqn (6.5), though modelling different effects.

While technically part of the treatment, the factor whose effect is modelled as random

acts as a blocking variable. These models remove the variability associated with the blocks

from the estimate of interest. For instance, Andén and Mallat (2014) could have included a

selection of learning algorithms beyond SVM in their study, obtaining measurements for

all combinations of feature extractors and algorithms but focusing their analysis on the

feature extractors by modelling the effects of the learning algorithms as random, such as

in Eqn (6.8).

Method effects The previous models ignore possible interactions between components,

even though it is often interesting to determine whether particular combinations appear

more successful than others. A classification experiment that includes all possible combi-

nations of the levels of X and L matches an FD, such as the one in Eqn (3.2). This allows

estimates of both individual and interaction effects:

yi =µ+τX(i ) +τL(i ) +τXL(i ) +εi

=µ+τX(i ) +τL(i ) +τM(i ) +εi .
(6.10)

The effect of the interaction XL is expressed as the contribution of the methods, τM(i ),

because each combination of a feature extractor e and a learning algorithm ` defines a

different method. The use of fixed effects here reflects that one focuses on the particular

selection of feature extractors and learning algorithms considered in the study.

Estimating interaction effects may provide relevant information even when the par-

ticular combinations included in the study are irrelevant. Say one wants to compare a

feature extraction technique with a state-of-the-art approach. To this end, one trains a

number of common learning algorithms, but the aim is to assess whether there exists a

differential effect between approaches regardless of the learning algorithm. Considering

interaction effects may reveal that differences only hold under particular circumstances

and not others. In this scenario, both the effect of the learning algorithms as well as that
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of the interaction should be modelled as random, suggesting a so-called generalised block

design (GBD) model:

yi =µ+τX(i ) +βL(i ) +βM(i ) +εi . (6.11)

Furthermore, swapping the parameter for fixed and random effects compares learning

algorithms regardless of the feature representations:

yi =µ+βX(i ) +τL(i ) +βM(i ) +εi . (6.12)

These GBD models thus permit focusing on the effects of a single component controlling

for both the effects of another and their interaction.

Regardless of whether one uses an FD or a GBD model in the analysis, the factors in

all these cases follow the same structure as the one depicted in Fig. 3.5(c), albeit with dif-

ferences in which factors belong to the treatment set and which to the plot set. The cal-

culation of the degrees of freedom matches the procedure that Eqn (3.38) reflects. In that

case, for dE to be positive, the number of observations must exceed the number of com-

binations between feature extractors and learning algorithms. Therefore, including the

interaction effects in the analysis is only feasible if multiple performance measurements

are obtained from each method, such as with a resampling strategy.

Sample effects and interactions All models discussed so far in this section ignore the

effects of the particular samples on the measurements — i.e., they assume that the par-

ticular instances employed to obtain each measurement do not affect the performance

estimates. To account for the random effect of the samples, including a parameter βK(i )

in the FD in Eqn (6.10) results in a so-called blocked factorial design (BFD):

yi =µ+τX(i ) +τL(i ) +τM(i ) +βK(i ) +εi (6.13)

with K denoting a factor variable whose levels represent train/test samples, such as in

Eqns (6.3) and (6.5). Figure 6.1 shows the factorial structure of a BFD. Models of this kind

enable estimating the fixed effects of both method components as well as their interac-

tions, controlling at the same time for the nuisance contribution of the particular samples

employed. The GBD models in Eqn (6.11) and (6.12) would require similar modifications.
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Figure 6.1: Hasse diagram of a blocked factorial design for the analysis of measurements
from a classification experiment.
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Figure 6.2: Schematic representation of the factor levels corresponding to each observa-
tion i in a 2-CV experiment with two feature extractors and two learning algorithms.

Note the model in Eqn (6.13) implicitly assumes that each sample affects the measure-

ments in exactly the same way regardless of its combination with method components.

Conventional resampling schemes replicate the different combinations of method com-

ponents and samples, which enables estimating their possible interactions. Take, for in-

stance, Fig. 6.2 and Table 6.1, which both represent all possible combinations of the levels

of X, L, and K in a 2-CV experiment (i.e., K(i ) ∈ {k1,k2}), with two feature extractors and

two learning algorithms (i.e., X(i ) ∈ {e1,e2} and L(i ) ∈ {`1,`2}). Each row in the table and

node in the figure represents an observation i . There are two observations per level of the

interaction factors M, XK, and LK, and no two columns follow the same "pattern". All

factors are thus mutually orthogonal, which ensures that their effects can be disentangled.
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i X L K M XK LK MK

1 e1 `1 k1 e1`1 e1k1 `1k1 e1`1k1

2 e1 `1 k2 e1`1 e1k2 `1k2 e1`1k2

3 e1 `2 k1 e1`2 e1k1 `2k1 e1`2k1

4 e1 `2 k2 e1`2 e1k2 `2k2 e1`2k2

5 e2 `1 k1 e2`1 e2k1 `1k1 e2`1k1

6 e2 `1 k2 e2`1 e2k2 `1k2 e2`1k2

7 e2 `2 k1 e2`2 e2k1 `2k1 e2`2k1

8 e2 `2 k2 e2`2 e2k2 `2k2 e2`2k2

Table 6.1: Factor levels and their interactions for each observation of a 2-CV classification
experiment with two feature extractors and two learning algorithms.

No two entries of the column corresponding to MK in Table 6.1 match, which indi-

cates that every single observation corresponds with a unique combination of feature ex-

tractor, learning algorithm and train/test sample. This means there are no replications left

available for estimating possible three-way interaction effects (i.e., between entire meth-

ods and samples). As usual, this leads to non-positive degrees of freedom for the equality

factor. Including the factor MK in the analysis would lead to a factor structure like the

one in Fig. 3.6(c), other than possibly the set to which each factor belongs. Let L, X and

K be the number of levels of factors L, X and K, respectively. Following the cascading

procedure to obtain the degrees of freedom for each factor yields:

dU = 1

dL = L−dU = L−1

dX = X −dU = X −1

dK = K −dU = K −1

dM = L ·X − (dU+dL+dX) = L ·X − (1+ (L−1)+ (X −1)) = (L−1)(X −1)

dLK = L ·K − (dU+dL+dK) = L ·K − (1+ (L−1)+ (K −1)) = (L−1)(K −1)

dXK = X ·K − (dU+dX+dK) = X ·K − (1+ (X −1)+ (K −1)) = (X −1)(K −1)

dMK = L ·X ·K − (dU+dL+dX+dK+dM+dLK+dXK)

= L ·X ·K − (1+ (L−1)+ (X −1)+ (K −1)+ (L−1)(X −1)+ (L−1)(K −1)+ (X −1)(K −1))

= L ·X ·K −L ·X −L ·K −X ·K +L+X +K −1 = (L−1)(X −1)(K −1)

dE = N − (dU+dL+dX+dK+dM+dLK+dXK+dMK)

= N − ((L ·X ·K −dMK)+dMK) = N −L ·X ·K = 0

since N = L · X ·K . Including a parameter for the interaction MK would thus cause the

model to be saturated, leading to a perfect fit of the measurements but leaving no variance

to conduct statistical analyses.
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Figure 6.3: Hasse diagram of a generalised blocked factorial design for the analysis of mea-
surements from a classification experiment.

Suitable models for the analysis of measurements from conventional classification ex-

periments thus cannot include the three-way interaction between learning algorithms,

feature extractors and train/test samples. All pair-wise interactions, however, are feasible.

A generalised blocked factorial design (GBFD) with model:

yi =µ+τX(i ) +τL(i ) +τM(i ) +βK(i ) +βXK(i ) +βLK(i ) +εi (6.14)

reflects this. Figure 6.3 shows the factorial structure of a GBFD, which largely resembles

the treatment structure of a factorial design with F = 3, as in Fig. 3.6(b). Removing the

interaction MK from the analysis means that the degrees of freedom of the equality factor

are now dE = (L −1)(X −1)(K −1) (formerly the value of dMK), and the other remain as

above.

Some authors, however, seem to disagree on whether structural models including in-

teractions between plot and treatment factors are suitable. Bailey (2008), for instance,

rejects such possibility. She argues that the effects of plot factors are modelled as ran-

dom because their levels generally cover only a subset of all possible values, so interac-

tions between such a subset and the treatment factors would distort the generalisation

of conclusions beyond the selected subset. This is a reason why in the Calculus of Fac-

tors approach one usually constructs separate Hasse diagrams for plot and treatment sets,

and joins them only after each has been finalised. Experimental designs including plot-

treatment interactions, however, have long been employed (e.g., Shuster and Eys, 1983).

Eugster (2011) uses a similar model when discussing domain-based classification experi-

ments for the evaluation of learning algorithms.
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Since it has been shown before that interactions between algorithms and samples exist

in classification experiments, what follows assumes that models including parameters for

such interactions are acceptable. Models such as:

yi =µ+τX(i ) +βL(i ) +βM(i ) +βK(i ) +βXK(i ) +βLK(i ) +εi (6.15)

if one is only interested in the effect of the feature extractors, and:

yi =µ+βX(i ) +τL(i ) +βM(i ) +βK(i ) +βXK(i ) +βLK(i ) +εi (6.16)

if the focus lies on the learning algorithms, would therefore be suitable. Including the pa-

rameters for the interaction effects in these models removes all nuisance variability from

the effects of interest on the measurements. Bailey’s (2008) argument, however, encour-

ages a careful interpretation of any estimate of such parameters that could be obtained.

6.2 Design and Analysis of Intervened Classification Experiments

The models presented above permit a more thorough and controlled analysis of measure-

ments obtained from conventional classification experiments. Nevertheless, they do not

consider the consequences of modifying the experimental pipeline, as presented in the

previous chapters. This section discusses how pipeline interventions translate into the

language of experimental design and introduces structural models for the analysis of mea-

surements from classification experiments that include such interventions.

6.2.1 Pipeline Interventions as Factors

As introduced in Sec. 5.2.1, interventions on the experimental pipeline provide global ex-

planations of performance by comparing measurements obtained through the conven-

tional pipeline with those resulting from a specific manipulation designed to alter, or even

block, the way systems exploit some source of information. A manipulated pipeline yields

a regulated evaluation condition, in contrast with the unregulated conventional one. To

distinguish between these two conditions, an apostrophe represents regulated elements

(e.g., ψ′ indicates a regulated partitioning function).

Unlike physical experiments, the artificial nature of a classification experiment en-

ables the duplication of any raw data point (a “subject” of the study) an arbitrary number
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ŷi

. . .
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Figure 6.4: Schematic representation of a pipeline intervention creating unregulated
(solid arrow path) and regulated (dashed arrow path) evaluation conditions regarding the
availability of information source z. Ŷ and Ŷ′ represent the distributions of performance
measurements ŷi and ŷ ′

i , respectively.

of times. Each such duplication may be exposed to any number of distinct pipelines with-

out fear of “spills” occurring between measurements. Therefore, the same raw data points

may be safely exposed to both unregulated and regulated conditions. Each such condition

can be expressed as a level of a factor variable, e.g., Z(i ) ∈ {z, z ′}. Figure 6.4 schematically

represents this, with one path consisting of all measurements for which the factor Z is z

(unregulated) and the other z ′ (regulated). The goal is for such conditions to differ only

in the availability of a particular source of information. In that case, differences in mea-

surements must come from differences in the exploitation of such information. Studies

involving pipeline interventions can then assess whether the distributions of measure-

ments under both conditions coincide to conclude whether the considered information

source explains the original performance estimates.

From a Calculus of Factors perspective, introducing a pipeline intervention is thus

equivalent to adding a further factor Z. For instance, for the artist regulation in the case

study of Sec. 5.3, each level ofZ coincides with a different implementation of the partition-

ing function ψ, i.e., Z(i ) ∈ {ψ,ψ′}. Since each level of the new factor essentially copies the

entire previous factor structure, the orthogonality of the experimental design is preserved.

Not every manipulation regulating a particular information source is equally suitable

as a pipeline intervention, however. Consider a manipulation that, directly or indirectly,

alters the makeup of the training and/or testing materials. This results in two factor vari-

ables, Ct (for training) and Cp (for testing) including one or two levels depending on

whether the regulation affects them. Both instance assignment and data manipulation

interventions act in this manner. Figure 6.5 shows how different choices in the design
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Figure 6.5: Common combinations of regulated and unregulated collections for training
and testing in pipeline interventions, depending on which manipulations are introduced.
The axes represent the possible levels of the factor variables governing training (Ct ) and
testing (Cp ); each dot represents an evaluation condition present in the study.

of the regulations impact the resulting training and testing collections; these choices are

briefly discussed next.

Simultaneous In Fig. 6.5(a), the manipulation affects both training and testing simul-

taneously, meaning that in each evaluation condition either both the training and

testing collections are regulated, or neither is. The regulated level of the factor Z

then corresponds to the combination (C ′
t ,C ′

p ), and the unregulated to (C t ,C p ). The

measurements in each evaluation condition are thus obtained from both different

systems (different level in Ct ) and on different data (different level in Cp ). The ef-

fects of the regulation on each are confounded, and thus cannot be disentangled.

As stated previously, this is the main drawback of filtered partitioning for creating

suitable pipeline interventions.

Marginal Affecting a single collection permits the analysis to focus on the effects of

the regulation on either system construction or prediction. A suitable interven-

tion would, for instance, fix C t for every iteration sharing the level K(i ), yet differ

in which instances C p includes depending on whether they are regulated or not
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(Fig. 6.5(b)). In other words, the regulated level of Z would correspond to the com-

bination (C t ,C ′
p ), and the unregulated to (C t ,C p ). The reverse, fixing C p and dis-

tinguishing conditions only in C t (Fig. 6.5(c)), would, for example, illuminate the

extent to which limiting the information available during system construction ben-

efits generalisation.

Factorial Finally, one could design experiments combining regulations on training and

testing in a factorial way, thus creating four associated evaluation conditions

(Fig. 6.5(d)). This may reveal potential interactions between conditions.

Note that in the factorial option above, the factor governing the intervention would

consist of four different levels, each corresponding to a dot in Fig. 6.5(d). It might be better

to express this as two distinct factors, each governing either training or testing, combined

factorially (hence the name). In general, a single study might include multiple pipeline in-

terventions simultaneously, as long as their corresponding manipulations are not in con-

flict. Chapter 5 shows an example of this, including both an instance assignment interven-

tion to regulate artist information and a data manipulation intervention to regulate infra-

sonic content on an MGR classification experiment with GTZAN . This not only illuminates

the effect that each individual information source has on the performance estimates, but

also their potential interaction.

Altering the raw data, whether through alternative partitioning or directly affecting

the contents, is not the only possible approach for introducing suitable pipeline interven-

tions. Any element of the classification experiment pipeline is suitable for manipulation

if necessary to target some specific source of information, albeit their use might be less

common. For instance, one could design an intervention on the feature extraction func-

tion e that removes or masks some specific dimensions (or directly modifies the extracted

feature representations used for training and/or testing). It may even be feasible to modify

the trained classifier p under certain circumstances, or tweak the annotations At and/or

Ap . The most suitable intervention will depend on the specific information source one

wants to affect. In any case, the philosophy remains the same: create additional evalu-

ation conditions through a regulation that reveals whether an information source affects

the performance estimates from a benchmark classification experiment.
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Figure 6.6: Hasse diagrams corresponding to experimental designs for the analysis of
measurements from a classification experiment with a single pipeline intervention, ig-
noring its interactions with other factors in the experiment.

6.2.2 Structural Models for Intervened Classification Experiments

Introducing pipeline interventions in benchmark classification experiments requires re-

visiting the structural models in Sec. 6.1 to account for the additional evaluation condi-

tions. Pipeline interventions may be introduced in studies targeting any of the analysis

levels reviewed previously. To avoid excessive redundancy, the explanation here builds

upon the model in Eqn (6.14), since it provides the most detailed and generally suitable

analysis level — i.e., estimates from any of the simpler models can be derived from it.

No Interactions with the Intervention Factor As described above, any pipeline inter-

vention can be represented as an additional factor variable in the experiment. Let Z be

one such variable, with Z its number of levels. Since only the differences in measurement

between these specific levels are of interest, their effects are considered as fixed. This

means the resulting structural model should include a parameter τZ(i ). Adding such a

parameter to the GBFD in Eqn (6.14), then, would lead to a model such as:

yi =µ+τX(i ) +τL(i ) +βK(i ) +τM(i ) +βXK(i ) +βLK(i ) +τZ(i ) +εi (6.17)

whose corresponding Hasse diagram is shown in Fig. 6.6(a).
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If Z is the only pipeline intervention in an experiment, then the total number of mea-

surements is Z ×L ×X ×K . Using the cascading procedure, the degrees of freedom of the

equality factor are, in this case:

dE = N − (dU+dL+dX+dK+dM+dLK+dXK+dZ)

= Z ·L ·X ·K − (1+ (L−1)+ (X −1)+ (K −1)+
(L−1)(X −1)+ (L−1)(K −1)+ (X −1)(K −1)+ (Z −1))

= Z ·L ·X ·K − (L ·X ·K − (L−1)(X −1)(K −1)+ (Z −1))

= (Z −1)(L ·X ·K )+ (L−1)(X −1)(K −1)− (Z −1)

= (Z −1)(L ·X ·K −1)+ (L−1)(X −1)(K −1)

which is positive for any combination of factor sizes greater than 1. Note that, for Z = 1,

dE takes the same value as for the GBFD in Eqn (6.14).

As a side effect of the pipeline intervention, then, the overall degrees of freedom of the

experiment increase, creating replicates of previously unreachable three-way interactions,

such as MK. This means that one could include in the model a parameter βMK(i ) for the

random effect of the interaction between the methods and the samples, such as in the

following model:

yi =µ+τX(i ) +τL(i ) +τM(i ) +βK(i ) +βXK(i ) +βLK(i ) +βMK(i ) +τZ(i ) +εi (6.18)

whose corresponding Hasse diagram is represented in Fig. 6.6(b). The degrees of freedom

of the equality factor E are in this case:

dE = N − (dU+dL+dX+dK+dM+dLK+dXK+dMK+dZ)

= Z ·L ·X ·K − (L ·X ·K −dMK+dMK+dZ)

= Z ·L ·X ·K −L ·X ·K + (Z −1) = (Z −1)(L ·X ·K )− (Z −1)

= (Z −1)(L ·X ·K −1)

which, again, is positive for all factor sizes greater than 1.

Building upon the 2-CV example above may help see how the introduction of a

pipeline intervention increases the number of replicates and thus the degrees of freedom.

Table 6.2 includes all combinations of factor levels when an intervention with two levels,

regulated (z ′) and unregulated (z), is added to the 2-CV experiment in Table 6.1. The only

combination left out is the four-way interaction ZMK, since it lacks replicates. The in-

teraction MK now has two replicates for each of its levels, thanks to the doubling of the

number of observations that the intervention causes.
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i X L K M XK LK MK Z ZX ZL ZK ZM ZXK ZLK

1 e1 `1 k1 e1`1 e1k1 `1k1 e1`1k1 z ze1 z`1 zk1 ze1`1 ze1k1 z`1k1

2 e1 `1 k2 e1`1 e1k2 `1k2 e1`1k2 z ze1 z`1 zk2 ze1`1 ze1k2 z`1k2

3 e1 `2 k1 e1`2 e1k1 `2k1 e1`2k1 z ze1 z`2 zk1 ze1`2 ze1k1 z`2k1

4 e1 `2 k2 e1`2 e1k2 `2k2 e1`2k2 z ze1 z`2 zk2 ze1`2 ze1k2 z`2k2

5 e2 `1 k1 e2`1 e2k1 `1k1 e2`1k1 z ze2 z`1 zk1 ze2`1 ze2k1 z`1k1

6 e2 `1 k2 e2`1 e2k2 `1k2 e2`1k2 z ze2 z`1 zk2 ze2`1 ze2k2 z`1k2

7 e2 `2 k1 e2`2 e2k1 `2k1 e2`2k1 z ze2 z`2 zk1 ze2`2 ze2k1 z`2k1

8 e2 `2 k2 e2`2 e2k2 `2k2 e2`2k2 z ze2 z`2 zk2 ze2`2 ze2k2 z`2k2

9 e1 `1 k1 e1`1 e1k1 `1k1 e1`1k1 z ′ z ′e1 z ′`1 z ′k1 z ′e1`1 z ′e1k1 z ′`1k1

10 e1 `1 k2 e1`1 e1k2 `1k2 e1`1k2 z ′ z ′e1 z ′`1 z ′k2 z ′e1`1 z ′e1k2 z ′`1k2

11 e1 `2 k1 e1`2 e1k1 `2k1 e1`2k1 z ′ z ′e1 z ′`2 z ′k1 z ′e1`2 z ′e1k1 z ′`2k1

12 e1 `2 k2 e1`2 e1k2 `2k2 e1`2k2 z ′ z ′e1 z ′`2 z ′k2 z ′e1`2 z ′e1k2 z ′`2k2

13 e2 `1 k1 e2`1 e2k1 `1k1 e2`1k1 z ′ z ′e2 z ′`1 z ′k1 z ′e2`1 z ′e2k1 z ′`1k1

14 e2 `1 k2 e2`1 e2k2 `1k2 e2`1k2 z ′ z ′e2 z ′`1 z ′k2 z ′e2`1 z ′e2k2 z ′`1k2

15 e2 `2 k1 e2`2 e2k1 `2k1 e2`2k1 z ′ z ′e2 z ′`2 z ′k1 z ′e2`2 z ′e2k1 z ′`2k1

16 e2 `2 k2 e2`2 e2k2 `2k2 e2`2k2 z ′ z ′e2 z ′`2 z ′k2 z ′e2`2 z ′e2k2 z ′`2k2

Table 6.2: Factor levels and their interactions in a 2-CV experiment with two feature ex-
tractors and two learning algorithms, including a pipeline intervention with two levels.

Interactions with the Intervention Factor As Table 6.2 suggests, introducing an inter-

vention on a classification experiments yields replicates of all two- and three-way in-

teractions with the intervention factor Z. This may provide insights on, for instance,

whether the pipeline intervention affects differently each considered system-construction

method. Introducing a pipeline intervention in this way does not affect the orthogonality

of the design — i.e., each column in the table still follows a different pattern. Only the

four-way interaction ZMK (omitted in the table) lacks replicates.

A complete model that accounts for all possible interactions would then be as follows:

yi =µ+τX(i ) +τL(i ) +βK(i ) +τM(i ) +βXK(i ) +βLK(i ) +βMK(i )+
τZ(i ) +τZX(i ) +τZL(i ) +βZK(i ) +τZM(i ) +βZXK(i ) +βZLK(i ) +εi

(6.19)

whose corresponding Hasse diagram appears in Fig. 6.7. Since all factor combina-

tions appear, this model is also a GBFD. The calculation of the degrees of freedom

follows exactly the same pattern as in the previous cases, such as in Eqn (6.14), thus

dE = (Z −1)(L−1)(X −1)(K −1). Adding the four-way interaction ZMK to the analysis

would cause the degrees of freedom of the equality factor to be 0.

It may be argued that including parameters for the interactions makes the model ex-

cessively convoluted and impractical. Moreover, recall that authors such as Bailey (2008)
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Figure 6.7: Hasse diagram of a generalised blocked factorial design for the analysis of mea-
surements from a classification experiment with a single pipeline intervention.

discourage the use of plot-treatment interactions. In this sense, one could simplify the

structural model by ignoring all interactions that involve K, accumulating all their po-

tential effects on a single parameter βK(i ). The structural model expressing this situation

would be:

yi =µ+τX(i ) +τL(i ) +βK(i ) +τM(i ) +τZ(i ) +τZX(i ) +τZL(i ) +τZM(i ) +εi (6.20)

which keeps the effects most likely to be of interest in a study. The corresponding factor

structure shown in Fig. 6.8 largely resembles the one in Fig. 6.6(b), but swapping the lo-

cations of Z and K, which keeps the plot and treatment factors separate. The degrees of

freedom also follow the same pattern, swapping Z with K , so dE = (K −1)(L ·X ·Z −1).

Multiple Interventions As mentioned in Sec. 6.2.1, multiple pipeline interventions can

coexist in a single study. Let W be a second pipeline intervention with W levels. The

total number of observations then increases to Z ×W ×L × X ×K , which again permits

higher-order interactions to have replicates. However, to avoid excessive complexity of

exposition, it will be assumed that the only three-way interactions of interest are those

that relate to M. In that case, one could express a structural model such as:

yi =µ+τX(i ) +τL(i ) +βK(i ) +τM(i ) +τZ(i ) +τW(i )+
τZX(i ) +τZL(i ) +τZM(i ) +τWX(i ) +τWL(i ) +τWM(i ) +τZW(i ) +εi .

(6.21)
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Figure 6.8: Hasse diagram corresponding to an experimental design for the analysis of
measurements from a classification experiment with a single pipeline intervention, ig-
noring all plot-treatment interactions.

This would enable analyses of not only the effect of each intervention separately, but also

their interaction with the methods and between them. The same approach could be ex-

tended to any number of complementary interventions targeting different information

sources, or even the same one but through distinct manipulations.

An obvious alternative to the complex models above would entail focusing solely on

the interventions and their mutual interaction, disregarding their effects on the system-

constructing methods. This would correspond to a factorial structural model such as:

yi =µ+τZ(i ) +τW(i ) +τZW(i ) +εi (6.22)

which could incorporate random effect parameters βL(i ), βX(i ) and/or βK(i ) to account

for the variability that such components introduce in the measurements. Analyses of this

kind would be suitable if one’s sole interest is characterising the effects of potentially con-

founding information on evaluation results, without checking whether such effects differ

across algorithms.

6.3 Logistic Structural Models

The structural models presented so far reflect some implicit assumptions often found in

the literature. In particular, they are all linear additive models, which means they assume
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that performance estimates can be expressed as the sum of a fixed number of contribu-

tions. This, however, ignores that measurements obtained from classification experiments

intend to be estimates of probability, either of success or of failure. There is no guarantee

that the sum of a number of unconstrained values, such as the ones obtained from esti-

mating the parameters of the model, will be bounded to the range [0,1], as any probability

must. This clearly violates the linear nature of such models. This has been noted before,

such as by Carterette (2012), who suggests that p-values of performance differences be-

tween systems in some Information Retrieval (IR) tasks remain largely unaltered despite

the violation. It is not clear the extent to which estimates themselves may be affected, es-

pecially when decomposing the measurements into a multitude of potentially contribut-

ing factors.

The Item Response Theory (IRT) paradigm mentioned in Sec. 2.5.3 goes a step further.

In IRT, each measurement is not an aggregation of individual successes and/or failures,

but the individual successes and/or failures themselves. In the context of this chapter, this

means that each measurement would not be a summary performance metric over a whole

test collection, but instead a binary value {0,1} indicating whether a particular prediction

matches the expected annotation or not. Directly using the linear models introduced so

far in this case would lead to an even clearer violation of the linearity assumption: the

sum of some arbitrary real-valued numbers will very unlikely lead to exactly 0 or 1. To

overcome this issue, IRT relies on logistic models, i.e., models that employ a logit transfor-

mation of the independent variable, with the logit link function being:

logit(x) = log
( x

1−x

)
(6.23)

where log(·) represents the natural logarithm, and its inverse:

logit−1(x) = ex

1+ex = 1

1+e−x . (6.24)

Let ui be the loss of a particular prediction, ui ∈ {0,1}. The goal is to estimate the

contribution of some specific factors, such as the system construction method em-

ployed M(i ), to the probability that ui equals 1. Let π(i ) be such probability, i.e.,

π(i ) = P (ui = 1 |M(i ), . . . ). The logit transformation then relates π(i ) with a linear combi-

nation of contributing parameters, such as:
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logit
(
π(i )

)=µ+τM(i ) (6.25)

which follows the convention of removing the residual term εi in this type of model, since

they explicitly model probabilities and not exact values. Existing software implementa-

tions of Generalised Linear Models, such as R’s lme4 package (Bates et al., 2015), provide

the necessary functionality to obtain the desired parameter estimates automatically.

One can make logistic structural models as simple or as complex as the situation re-

quires. For instance, in a benchmark classification experiment involving a single pipeline

intervention, the model in Eqn (6.20) can be easily converted to:

logit
(
π(i )

)=µ+τX(i ) +τL(i ) +βK(i ) +τM(i ) +τZ(i ) +τZX(i ) +τZL(i ) +τZM(i ) (6.26)

where all parameters are identically expressed as before, but now represent contributions

to a logit-converted probability of success. All structural models introduced previously

would solely require this simple transformation to overcome the violation of linearity. Al-

though the effect estimates may not substantially change, this transformation enhances

the statistical rigour of the analysis and thus improves the validity of its conclusions.

A major consequence of increasing the granularity of the observational units on the

experiment is that factors that were previously unreachable are now available to be

parametrised in structural models to estimate their effects and account for the variabil-

ity they introduce. Similar to the “difficulty” and “discrimination” latent variables in IRT,

this includes instance-specific characteristics as well as other potentially interesting fac-

tors, such as the class to which an instance belongs. This can be reflected through the

inclusion of a parameter βA(i ) in the structural model, with the levels of A corresponding

to the different class annotations in the collection. The variability associated with the dis-

tinct classes would then be removed from the estimates of interest. Other factors, such as

artists for the case study described in Sec. 5.3, may also be worth considering.

The improvement in both rigour and resolution that logistic models provide obviously

comes at a cost. The number and complexity of the computations required to calculate

parameter estimates increases, which may complicate analyses on very large collections.

Although the procedure to obtain measurements remains the same, since systems pre-

dict at instance level regardless of how one estimates performance, the increased number
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of data points with which the structural model needs to be fit, as well as the inclusion of

the logit transformation, hinder the process. Nevertheless, the hardware resources com-

monly available nowadays should more than suffice in most cases.

A second drawback of logistic structural models is that the parameter estimates lose

their straightforward interpretation, so one needs to make additional effort to determine

the effects of interest. As an illustration, consider the following toy example. Assume one

wants to compare two methods, say m1 and m2, using the structural model in Eqn (6.25),

with m1 acting as baseline. Assume as well that predictions from multiple systems built

using both methods are obtained, using the measured losses to fit the structural model.

Imagine that the estimated parameters are µ̂= 0.9 and τ̂m2 = 0.2. If the model was linear,

such as the one in Eqn (6.4), µ̂ would directly correspond to the baseline effect of m1 (i.e.,

its estimated mean performance), and τ̂m2 to the differential effect of m2 (i.e., its increase

or decrease in mean accuracy with respect to m1). This is obviously not the case here,

since these estimates sum far above 1. Instead, it is necessary to reverse the logit trans-

formation to obtain estimates of πm1 and πm2 . More precisely, π̂m1 = logit−1(µ̂)≈ 0.71 and

π̂m2 = logit−1(µ̂+ τ̂m2

)≈ 0.75. Nevertheless, the differential effect of m2 does not corre-

spond to logit−1(τ̂m2

)
, as one may have expected (π̂m2 − π̂m1≈ 0.04 6= logit−1(τ̂m2

)≈ 0.55).

Individual parameter estimates from logistic structural models, such as τ̂m2 here, do not

directly reflect the differential effects of the factors they represent. Careful interpretation

of parameter estimates is thus necessary (Agresti, 2002).

Logistic modelling thus offers a valuable resource to model measurements from clas-

sification experiments, improving both statistical rigour and resolution. These benefits,

however, come at the cost of increased computational demands and harder interpretabil-

ity of the estimates obtained from fitting the structural models.

6.4 Implications for Intervention-based Evaluation Studies

The insights gained throughout this chapter shed new light on the analysis approaches

presented previously in this dissertation. This section thus first revisits the case studies

in Ch. 4 and 5 employing the experimental design tools presented in this chapter, and

later adapts and extends the procedure in Sec. 5.2.2 to combine both benchmarking and

confounding analysis.
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6.4.1 Revisiting Case Study Experiments

The case studies in Ch. 4 and 5 provided compelling evidence of confounding and show-

cased the need for enhanced evaluation practices. The analysis approaches employed

there, however, did not take full advantage of the tools presented in this chapter. The

discussion here thus considers which improvements could be introduced to achieve a co-

herent analysis plan, focusing first on the deflation manipulations described in Sec. 4.2

and later on the targeted interventions from both Sec. 4.3 and 5.3.

Deflation Manipulations Strictly speaking, deflation manipulations do not adhere to

the comparative experiment framework assumed in this chapter, at least when analysed as

in Fig. 4.3 and 4.4. The performance measurements at the final iteration, such as the Final

ER values in Table 4.3, could be used to compare methods, but that would not accurately

reflect the purpose of the analysis. Alternatively, measurements could be ratios between

final and original performance or, if the maximum number of iterations is not fixed, the

iteration in which a particular performance threshold is reached. Nevertheless, multiple

distinct measurements would be necessary for each method. Since the deflations in Ch. 4

focus on raw data manipulation, and not instance assignment, conventional resampling

strategies would suffice to both increase the number of replicates and disentangle method

and sample effects. The CBD model in Eqn (6.5) would be suitable in this case. If various

combinations of feature extractors and learning algorithms are involved, a BFD such as

in Eqn (6.13) (or a GBFD such as in Eqn (6.14) if component-sample interactions are of

interest) would suit best.

Since deflations naturally involve several iterations per method, one might be tempted

to use such iterations to replace those that resampling generates. In other words, one

could use each step in the deflation process as level of a blocking factor taking the role

of K. Although this would generate multiple measurements per method, method and

sample effects would remain confounded, with conclusions thus being at system level.

Nevertheless, for exploratory analyses such as those in Ch. 4, system-level results often

suffice to inform further experiments. A more systematic approach could involve consid-

ering resampling and deflation iterations as levels from separate blocking factors. Each

system of method m ∈M originally trained from the sample corresponding to k ∈K will
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undergo all deflation steps, hence yielding a measurement for every level of this hypothet-

ical variable. Orthogonality would thus be preserved. It remains to be seen whether the

information that this additional factor provides compensates the increased complexity

that it would introduce in the analysis.

The framework presented in this chapter permits scaling the analysis even further and,

for instance, including multiple manipulations. This might be useful when system anal-

ysis fails to clearly indicate which elements of the input signals are most likely exploited.

The levels of a factor Z could each correspond to a different manipulation. The same

structural models as those presented in Sec. 6.2.2 would then hold, with an additional fac-

tor for the deflation steps if deemed necessary. To avoid excessive complexity, however, it

might be advisable to regard Z as the only treatment factor, ignoring all possible interac-

tions. Noting the factor variable governing the deflation steps as Q, this would correspond

to a structural model such as:

yi=µ+βM(i ) +βK(i ) +βQ(i ) +τZ(i ) +εi (6.27)

with logistic version:

logit
(
π(i )

)=µ+βM(i ) +βK(i ) +βQ(i ) +τZ(i ). (6.28)

Future studies might benefit from comparisons between alternative manipulations in this

way during their exploratory phases.

Targeted Interventions Both Ch. 4 and 5 largely focused on the concept of targeted in-

terventions: alterations of the conventional classification experiment pipeline that create

regulated and unregulated evaluation conditions according to a particular factor, often a

potential confounder of interest. The structure of the corresponding experiments adheres

to the models presented in Sec. 6.2. Some of their implementation details, however, may

be suboptimal according to the practices illustrated throughout this chapter.

The interventions in Sec. 4.3 serve well as exploratory precursors to more systematic

experiments, with a structure that adheres to common orthogonal designs. For instance,

the measurements in Table 4.2 reflect a factorial design with F = 3 factors: the feature ex-

tractor X, with X= 6 levels; the partitioning condition Z, with Z = 2 levels; and and the fil-

tering condition W, with W = 2 levels. As previously shown, structures of this kind permit



CHAPTER 6. STRUCTURAL MODELLING OF MEASUREMENTS IN CLASSIFICATION
EXPERIMENTS 184

all pairwise interactions without becoming saturated, with dE = (X−1)(Z −1)(W −1) = 5.

Nevertheless, the evaluation conditions associated with the levels in Z rely on filtered par-

titioning, which simultaneously alters training and testing materials, impeding disentan-

gling their effects. More importantly, Z andCt (or, equivalently, Cp ) are aliased — for every

observation i , the elements of Z[i ] coincide with the elements of Ct [i ] (and Cp [i ]). The ef-

fect of the partitioning condition and that of the particular recordings used for training

and testing in each such condition are thus conflated. Since the training and testing col-

lections result from applying the partitioning conditions themselves, their conflation is

unlikely to be misleading in an exploratory setting. From a strict DoE perspective, how-

ever, the design choices in the targeted interventions of Sec. 4.3 are suboptimal.

The enhancements introduced in Ch. 5 tackle the drawbacks above to make conclu-

sions from targeted interventions statistically valid. The regulated bootstrap resampling

strategy is key to achieve this. First, as any resampling strategy, it creates multiple repli-

cates for every combination of method and evaluation condition, which avoids aliasing

between Z and Ct . Instead, Ct becomes equivalent to the sampling factor K, which is

not part of the treatment set. Moreover, the particularities of bootstrap resampling result

in two distinct test conditions per training collection (one regulated and another unregu-

lated), meaning Ct and Cp are no longer aliased — Cp becomes the infimum between Ct

and Z (or, equivalently, between K and Z).

Although introducing a resampling strategy such as the regulated bootstrap addresses

issues with the statistical validity of targeted interventions, their implementation and sug-

gested analysis in Sec. 5.3 could be further enhanced. The regulation in the instance as-

signment intervention is applied marginally, such as in Fig. 6.5(b). A factorial approach

combining regulated and unregulated versions of both training and testing collections

would make the most of the limited resources in the study. This would facilitate infer-

ences about the effects of potential confounders, such as artist information, in training as

well as testing, similar to what Fig. 5.6 reflects for infrasonic content.

The analysis approach proposed in Sec. 5.2.2(f) provides an intuitive way of assess-

ing confounding effects and their possible interactions. As showcased in this chapter,

however, defining a suitable structural model and estimating its associated parameters

achieves the same purpose through a unified methodology grounded on well-established
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DoE practices. Instead of defining separate ad-hoc formulas to obtain estimates for con-

founding effects and their interactions, structural models cleanly integrate those within

a broader comparative analysis. Benchmarking and confounding analysis can be con-

ducted at once. For the particular case of Sec. 5.3, the model suggested in Eqn (6.21), or its

logistic version:

logit
(
π(i )

)=µ+τX(i )+τL(i ) +βK(i ) +τM(i ) +τZ(i ) +τW(i )+
τZX(i )+τZL(i ) +τZM(i ) +τWX(i ) +τWL(i ) +τWM(i ) +τZW(i )

(6.29)

would suit analyses similar to the case study presented there. This jointly provides esti-

mates for method and confounding effects, as well as their mutual interactions. If aggre-

gate levels are of interest, such as the “source of feature set” in Fig. 5.9, additional fac-

tors nesting current ones can be included. This would discriminate effects arising from

a whole group, such as scattering-based extractors, from the particularities of each indi-

vidual method. As mentioned before, increasing the granularity of the observations could

even allow for the inclusion of further parameters, such as class-specific effects. The scope

of each study determines the levels of aggregation and detail that should be considered for

its analysis, always taking into account the trade-off between how exhaustive and inter-

pretable results become.

6.4.2 Conducting Intervention-based Evaluation Studies

The structural models introduced and discussed in this chapter show that it is possible to

combine within a single experiment conventional benchmarking and confounding anal-

ysis through interventions. The procedure in Sec. 5.2.2 was presented and exemplified

as mainly targeting confounding effects, and some of its implementation details reflected

that. As shown above, however, the structure of the derived experiments largely matches

the general framework here. This section provides some guidelines on how researchers

may apply a similar approach to more conventional evaluation scenarios. Although the

structural modelling advocated in this chapter applies mainly within comparative exper-

iments, preliminary analyses are fundamental to decide which factors and with which

levels one should include in the experiments. The guidelines thus include the preliminary

steps that inform the whole procedure.
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Consider the following situation, akin to the work by Andén and Mallat (2014) that the

case studies in this dissertation build upon and a myriad other MCA studies. A team of

researchers intends to assess the suitability of a novel method they have developed for a

problem with existing alternative approaches. They would like to know how their method

compares against the alternatives, so they employ for their evaluation a widely adopted

evaluation collection. In addition, since they wish their solution to be as generalisable as

possible, they would like to determine whether extraneous factors affect the performance

of their method. To address these goals, they could proceed as follows.

1. Problem formulation: Identifying goals and challenges

Although rarely considered part of the evaluation, acquiring domain knowledge about the

targeted use case is essential to establish the suitability of any method. This includes de-

termining which cues are considered legitimate and which transformations of the input

should not affect predictions. Previous publications examining the chosen evaluation col-

lection or related ones may help identifying potential confounders that should be taken

into account in both exploratory and comparative analyses.

2. Exploratory analyses: Uncovering reasons behind performance

Before proceeding to more systematic comparisons against alternative approaches, it is

advisable to gather as much information as possible about the proposed method’s be-

haviour. Researchers may train one or at most a few systems using their method and at-

tempt to explain the causes of the performance these achieve. As showcased in Ch. 4,

diverse strategies serve to this end, with each complementing and informing the rest. In

depth system analysis may reveal unexpected potential confounder candidates, as Sec. 4.1

demonstrated, which can then be checked alongside previously identified candidates us-

ing brute-force approaches, such as deflations. Other approaches not explored in this

dissertation, such as interpretable explanations, can also be used in this step to deter-

mine which potential confounders to prioritise. These can be further narrowed down

through interventions, each designed to alter the pipeline according to a specific potential

confounder candidate. Targeted interventions can include alternative feature extractors

and/or learning algorithms to assess the contribution of the original components, but are
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best kept simple in this phase since this can be further emphasised through comparative

experiments.

3. Comparative experiments: Benchmarking performance and confounding effects

Once the problem formulation and exploratory analyses have illuminated which informa-

tion sources deserve further attention, researchers can incorporate interventions target-

ing those sources within a conventional benchmarking experiment. As discussed in this

chapter, this first requires deciding which structural model best suits the desired analy-

sis. If the study focuses on both the feature extractor and learning algorithm components

of the proposed method, then both their contributions and their interaction should be

modelled as fixed-effects parameters. Otherwise, if only one component is of interest,

researchers may assume the other introduces random effects.

Regardless of the modelling choice, a wide range of alternative system-constructing

methods should be considered. Unlike the procedure suggested in Sec. 5.2.2, which rec-

ommended including low-performing methods to cover a range of performance values

as wide as possible, benchmarking should focus on methods whose comparisons are of

interest. For instance, Andén and Mallat (2014) could have included in their study non-

scattering feature extractors and learning algorithms other than SVM, even if their interest

lay in the former and not the latter, to reach conclusions generalisable beyond the partic-

ular learning algorithm employed.

All combinations of feature extractor and learning algorithm should then be exposed

to both regulated and unregulated conditions from each considered intervention for K

samples generated from the evaluation collection. If possible, interventions should be

applied factorially, which may require using a resampling strategy such as the regulated

bootstrap if they include instance assignment interventions. Although using a factorial

design permits scaling the experiment to an arbitrary number of interventions, in practice

any analysis might become unbearable with more than two potential confounders unless

devoted software tools emerge. Therefore, researchers should carefully consider which to

include according to preliminary analyses.

Finally, successes or failures in prediction that each trained system makes can be used

as performance measurements themselves or aggregated into sample-wise metrics de-
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pending on the granularity of the structural model. Researchers can then fit the structural

model using these measurements and obtain estimates for each parameter, suggesting

the extent to which each factor contributes to the measurements. Appendix B presents

an example of how such analysis could be conducted from hypothetical data, which may

help readers implement a pipeline to obtain estimates of interest and reach conclusions

about them on their own studies.

6.5 Discussion

The myriad structural models presented in this chapter illustrate the wide variety of ap-

proaches available for analysing experiments. Each model reflects a particular set of im-

plicit assumptions, potentially leading to disparate conclusions. When planning a study,

or when intending to analyse the results of an already conducted one, it may feel over-

whelming to choose a particular approach among so many options. Unfortunately, there

seems to be no one-size-fits-all solution. The analysis reported in this chapter intends to

highlight the tools that researchers have at their disposal to make informed decisions.

The foremost decision that needs to be made is whether the goals of the study demand

analyses at system, method and/or component aggregation level. The first option suits

pre-deployment analyses, where a single fixed system needs to be selected. Method level

may befit evaluation challenges in which organisers have no control over the compatibil-

ity between the different components proposed — i.e., each proposed method includes

distinct feature extraction and learning algorithms, but it is infeasible to study all their

combinations since they have been separately implemented. When a study focuses on a

particular component, the latter level should always be the first choice, since it provides

the most cost-effective amount of information. This choice informs which factors should

be considered on the structural model employed.

It is also important to determine which factors are of interest to the study and which

introduce nuisance variability. Modelling undesired effects explicitly as random variables

instead of simply averaging them out has the distinct advantage of estimating the vari-

ability present in the data, as well as providing more accurate estimates of the effects of

interest. Moreover, representing as fixed only the effects of those factors one intends to
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compare within the study facilitates reaching valid conclusions about what the measure-

ments actually imply.

It is good practice in statistical modelling to pursue model parsimony — i.e., propos-

ing models with as little complexity as possible. This theoretically favours generalisation,

since it introduces fewer restrictions. For the purposes of analysing the measurements

from classification experiments, however, it may be argued that providing more conser-

vative estimates of differences between effects can outweigh the benefits of parsimony.

In other words, controlling for undesired variability through an exhaustive accounting of

multiple potentially contributing factors, and therefore sacrificing parsimony, may yield

more generalisable conclusions about differences in performance at the expense of the

generalisability of the structural model itself. Such a structural model should be aimed

at truthfully capturing the particular settings of the experiment. One should be aware,

however, that the number of replications available limits which sources of variation can

be included without saturating the model.

Introducing pipeline interventions not only facilitates uncovering reasons behind per-

formance, as exemplified in previous chapters, but also provides additional replicates that

enable analysing previously unreachable factors. Properly designed interventions could

be used to generate further evaluation conditions similar, but not identical, to the unreg-

ulated conventional one to increase the degrees of freedom available for inference. Iden-

tical conditions, on the other hand, would not actually increase the degrees of freedom

despite the number of observations apparently doubling, since the new ones would be

false replications — i.e., the number of real observations would remain the same. Never-

theless, no amount of inferential power would be able to solve the issues in the evaluation

of systems and methods that motivate this dissertation. Understanding why systems per-

form in the way they do arguably trumps introducing further parameters in the structural

model if one aims to assess the success of such systems on a particular problem.

A major downside of exhaustive structural models, especially when incorporating in-

terventions, is that they quickly become cumbersome, hampering their practicality. In

addition to that, it is important to keep in mind the recommendation of authors such as

Bailey (2008) against plot-treatment interactions. Therefore, it might be advisable to adopt

simplified models such as the one in Eqn (6.20) unless there are specific reasons to target
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the interactions ignored there.

Logistic models might better suit the type of data that classification experiments gen-

erate. Their widespread adoption could help improve the validity of the conclusions about

the performance of systems and methods. It is important to keep in mind, however, that

any adopted model is a simplification. As the aphorism attributed to Box (1976) states, “all

models are wrong, but some are useful.” A manageable model can often be more useful

than a more precise but impractical one, as long as one is aware of the limitations that it

introduces in the conclusions.

Applying the tools presented in this chapter to the previously presented case studies

reveals possible improvements in their implementation that future studies could mirror.

Many of the specific discussions within this chapter, however, arise largely from a fre-

quentist perspective, such as the distinction between fixed and random effects or the cal-

culation of degrees of freedom. The underlying issues, such as which factors to consider

in the analysis and whether there are sufficient replicates, would remain pertinent under

alternative approaches, such as Bayesian inference. Bayesian evaluation approaches are

becoming increasingly popular (e.g., Benavoli et al., 2017), likely due to the controversy

surrounding conventional frequentist statistics (Wasserstein and Lazar, 2016). Adapting

the analysis presented in this chapter to a Bayesian context, for instance through the use of

Multilevel Logistic Models (Sommet and Morselli, 2017), is a promising research avenue.
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CONCLUSIONS AND FUTURE WORK

To conclude this dissertation, Sec. 7.1 overviews the main contributions of the pre-

sented research and their overarching implications. Next, Sec. 7.2 proposes future re-

search paths that could be pursued to extend the work here. Finally, Sec. 7.3 provides

some closing remarks.

7.1 Summary of Contributions

The research reported in this dissertation has addressed what is arguably the most press-

ing limitation of classification experiments: systems appearing successful by exploiting

supposedly irrelevant information. This issue demands revisiting conventional evalua-

tion practices, which has been tackled here through the incorporation of pipeline inter-

ventions and the adoption of principles and tools of the statistical Design of Experiments

(DoE). Incorporating targeted interventions into the experimental pipeline in a factorial

way facilitates obtaining additional evaluation information with minimal modifications

to the conventional procedures.

The study reported in Ch. 4 illustrates the procedure one might undertake to not only

understand the reasons behind some particular systems’ behaviour but also to identify

possible sources of confounding affecting similar evaluations. In-depth system analysis

of scattering-based SVM systems highlights details of their implementation that were not

evident from their theoretical description, informing potential interventions. Similar to
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what other studies had reported before, the known faults of the GTZAN genre collection

appear to affect the estimated performance of scattering-based systems. Furthermore,

such systems appear to exploit previously unknown information at inaudible frequencies

to predict genre annotations. Although this revelation arises from an analysis specific to

scattering-based systems, the potential confounder that it illuminates can then be probed

in more systematic comparisons between system-construction methods, providing infor-

mation about their vulnerability to such a confounder.

Analyses similar to the one in Ch. 4 serve as exploratory precursors to benchmarking

experiments that go beyond counting the number of reproduced annotations. The pro-

cedure presented in Ch. 5 relies on such exploratory analyses and domain knowledge to

identify potential confounders and integrate interventions that target them. Factorially

combining interventions that target various potential confounders simultaneously en-

ables to compare performance of multiple system-construction methods and to assess

the effects of those confounders on performance estimates, including possible interac-

tions between confounders. The combination of multiple interventions is possible in part

due to the regulated bootstrap resampling strategy, which addresses some of the limita-

tions of filtered partitioning for designing valid data assignment interventions.

The case study included in Ch. 5 illustrates the proposed procedure, training several

system-construction methods to assess the effect of artist replication and infrasonic in-

formation on performance estimates obtained on GTZAN . The results of the study sug-

gest that each considered potential confounder impacts performance results distinctively,

although they partially interact. Whereas artist replication appears to affect most per-

formance estimates in a similar manner, inflating test results proportionally, the infra-

sonic information present on GTZAN only affects estimates from particular methods. This

means that ignoring some potential confounders during evaluation might lead to over-

optimistic expectations about the state-of-the-art solutions to a problem. More worry-

ingly, ignoring other potential confounders could cause the community to prefer specific

solutions largely due to them exploiting confounding information that others correctly

dismiss. The widespread adoption of an evaluation procedure such as the one proposed

would help to avoid such pitfalls.

Regardless of whether classification experiments incorporate pipeline interventions
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or not, the use of structural models to express their measurements illuminates the often

implicit presumed relationships between contributing factors and facilitates conducting

statistically valid analyses. The study presented in Ch. 6 highlights the choices researchers

have on which contributions to consider in their analyses, and illustrates the use of the

Calculus of Factors approach to determine the suitability of a selected model. Although

classification experiments often permit obtaining information about the contributions of

multiple factors, excessively complex models consume all degrees of freedom and thus

impede inference. Using the cascading procedure for calculating degrees of freedom from

Hasse diagrams that is exemplified throughout the chapter helps avoid such an issue.

The use of experimental design tools to decompose performance measurements re-

veals a further benefit of introducing pipeline interventions in classification experiments

beyond estimating confounding effects. The evaluation conditions that interventions add

increase the total number of degrees of freedom, enabling estimates of contributions that

would otherwise be unreachable. Furthermore, using each individual prediction as ob-

servation instead of summary metrics permits including further factors, such as the class

or the artist, whose contributions to the overall results might be of interest. Due to the

binary nature of the measurements in this case, it is strongly recommended to replace

conventional linear models with logistic ones.

Overall, the methodological modifications proposed throughout this dissertation can

be viewed as affecting the three phases of most empirical studies: exploration, experimen-

tation and analysis. All three phases are fundamental to obtain valid and relevant evalu-

ation information. Systematically introducing targeted interventions in the classification

experiment pipeline following the fundamental principles of experimental design, as pre-

sented in this dissertation, is a promising avenue to address the most pressing challenges

in the evaluation of Music Content Analysis systems and methods.

7.2 Future Research Directions

The contributions of this dissertation hopefully raise awareness of the pitfalls of conven-

tional evaluation practices in Music Content Analysis and related disciplines, and provide

ways forward for the community to adopt. Due to the complexity of the topic, however,
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several research paths remain open, a few of which are described in the following para-

graphs.

Analyse further systems and collections The illustrative examples presented in this dis-

sertation focused on a particular evaluation collection (GTZAN) and largely on a particular

family of systems (based on the scattering transform). Several music description problems

beyond MGR rely on machine learning solutions and, as demonstrated in the reported

studies, failing to understand the reasons behind the success of such solutions might be

distorting which ones the community embraces. It is thus fundamental to conduct in the

future similar analyses on a wider variety of systems and collections, to better gauge the

actual state-of-the-art of the discipline and uncover yet unknown confounding factors.

Create a repository of interventions Identifying potential confounder candidates and

implementing suitable pipeline interventions to assess their impact is often complicated

and not necessarily rewarding according to common standards in academic research. De-

veloping a system that achieves a higher performance than alternative approaches is more

likely to have immediate recognition in the community than understanding the reasons

behind such performance. In the long term, however, the community is likely to bene-

fit from a deeper understanding of both the upsides and downsides of any possible ap-

proach. To encourage authors to include intervention analyses in their studies, as well

as to facilitate the comparison between systems, the community could maintain a col-

laborative online repository of standardised interventions. Authors who identify potential

confounders and implement interventions that target them could contribute to the repos-

itory, which would then be reused in future studies addressing similar problems. Some

interventions, such as the pitch-preserving time-stretching of Sturm (2016b) or the high-

pass filtering here, could be applicable in a wide variety of problems and become standard

practice in future publications and evaluation exchanges.

Adapt regulated bootstrap for training One of the major limitations of the regulated

bootstrap algorithm in the version introduced in Ch. 5 is that it intervenes solely on test-

ing. This means that studies that adopt it can only assess whether trained systems predict

differently when exposed to regulated and unregulated collections of recordings, but not
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whether methods construct distinct systems, thus accounting only for half of the story.

A modified version of the algorithm that creates the four possible combinations of levels

of Ct and Cp , as shown in Fig. 6.5(d), remains to be implemented. Such implementation

would permit not only to assess the impact of potential confounders on training, but also

the possible interactions between training and testing.

Incorporate hyperparameter tuning The case study included in Ch. 5 explicitly avoided

the optimisation of hyperparameters to ensure that low performance measurements

could be achieved. In most practical scenarios, however, authors are interested in com-

paring methods in their most suitable versions for the target problem. Therefore, bench-

marking evaluations with pipeline interventions are likely to include hyperparameter tun-

ing processes for each considered method and data partition. To gain further insights on

the consequences of tuning, however, devoted studies could incorporate combinations of

hyperparameters as levels of an additional factor variable (nested to the method factor)

and explicitly assess how tuning affects the vulnerability of each approach to confound-

ing. In other words, future research could address the question of whether tuning reduces

or increases the dependency of systems on the presence of confounding information.

Implement automatic analysis tools The MIR community has at its disposal specialised

software libraries such as mir_eval (Raffel et al., 2014) to facilitate and standardise eval-

uation in a variety of scenarios that differ from the conventional case. Such tools, how-

ever, are often focused on the calculation of performance estimates and not on the anal-

ysis of the resulting measurements. The complexity of the models presented in Ch. 6,

particularly when incorporating interventions, may discourage some of their use. The

implementation of software tools able to decompose measurements automatically into

contributions and assess their effects would likely facilitate the widespread adoption of

formal analyses. Großmann (2014) provides an algorithm for the automatic analysis of

measurements from orthogonal designs with arbitrary structure, but it is implemented in

Mathematica,1 a language with which most researchers in the field would not be familiar,

1https://www.wolfram.com/mathematica/

https://www.wolfram.com/mathematica/
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and it is not optimised for the subset of structures that are feasible in classification exper-

iments. mir_eval and similar libraries could incorporate tools tailored for the analysis of

measurements from classification experiments.

Examine non-frequentist analysis approaches Much of the language and tools used

throughout this dissertation come from the frequentist tradition of experimental design

dominant since the seminal work of Fisher (1935). Recent trends, however, suggest a shift

towards alternative approaches, especially in the form of Bayesian inference. Although the

main ideas presented in Ch. 6 with regards to the modelling of measurements as the sum

of factor effects would hold, some of the specific details, such as the distinction between

fixed and random effects, would need to be revisited under a different paradigm. In the

future, the community would benefit from devoted studies comparing frequentist and

non-frequentist modelling approaches on the validity of the inferences they yield.

Integrate interventions and local explanations Aside from pipeline interventions, the

use of evaluation methods based on local explanations has a strong potential to uncover

reasons behind performance. They complement interventions by providing interpretable

explanations for particular predictions instead of overall changes in performance. This is

particularly helpful when attempting to identify potential confounders in the exploratory

phase. Nonetheless, to date there have been no attempts to systematically join both per-

spectives into a unified methodology, which offers opportunities for future research.

Explore the use of IRT latent variables Adapting Item Response Theory (IRT) tools for

the evaluation of Machine Learning systems shares, to a large extent, the underlying goals

of this dissertation. The use of item-level IRT latent variables, such as difficulty and dis-

crimination, can help uncover reasons behind performance and inform targets for in-

terventions. For instance, systems appearing particularly successful on instances at the

high-end of the difficulty scale, or instances with negative discrimination — i.e., on which

supposedly poor systems perform better than those with high ability — suggest suspicious

behaviours that deserve further analysis. To date, the MIR literature has not yet explored

the use of IRT evaluation approaches. Incorporating them into a more comprehensive

framework is a promising research avenue.
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7.3 Closing Remarks

Evaluation in Music Content Analysis and other applied Machine Learning disciplines

may appear to some researchers as a necessary burden, an inescapable formality with

which they must comply to see the fruits of hard work finally published. Fortunately for

them, the bar is not that high. If a well-established public collection for the problem they

intend to tackle does not exist yet, gathering and annotating new data might become la-

borious; otherwise, the procedure is quite straightforward: they should get hold of eval-

uation data, chop it into smaller pieces, train their proposed method using some of the

pieces, and ask each trained model to predict the annotations of the rest. If, on average,

the number of predictions that match the annotations exceeds previously reported values

(or is close enough), the likelihood of being accepted for publication increases dramati-

cally; otherwise, they tweak their method and repeat the procedure until finally succeed-

ing. As this dissertation has hopefully shown, however, evaluation is much more than such

a necessary burden.

The main goal of evaluation practices is not gatekeeping (or, at least, it should not

be). Proper evaluation provides feedback, informing the authors about the virtues and

drawbacks of their proposed method. Classification experiments, in their conventional

form, provide a single piece of information: how closely predictions match annotations.

This feedback suffices for many. Computational disciplines are inherently deterministic,

avoiding the uncertainty that hampers physical experiments. The estimates of perfor-

mance that classification experiments yield can thus appear sufficient to reveal the suc-

cess of evaluated methods. Examples here and elsewhere show otherwise. Black box mod-

els can often rely on unexpected (and undesirable) cues to predict, and blindly trusting

that such cues will appear beyond the experimental setting can be extremely detrimental.

Understanding why methods work is essential for the discipline to progress and avoid mis-

leading research paths. The evaluation methodology presented in this dissertation aims

to achieve precisely that.

The effort that identifying potential confounders, designing targeted interventions

and formulating suitable structural models require undeniably exceeds what publications

currently demand. Some can see such an effort as counterproductive, stealing time from

developing and sharing novel solutions. This cannot be farther from the truth. Devoting
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more effort in the short term pays off later, making it easier to improve solutions in the

future. Moreover, the methodology proposed here is intended to be highly reusable, with

much of the work requiring only minor modifications to be adapted to further studies.

Collaborative efforts from the community, including the sharing of intervened pipelines,

should facilitate the transition towards a paradigm in which more complex evaluation is

not seen as a waste of resources but as the valuable tool that it can become.

In some respects, the approach to evaluation advocated in this dissertation follows the

ideas of Popper (1959). Determining whether some lines of code, some bits in a computer,

are able to achieve the extraordinary feat of understanding something so complex as a

musical concept feels daunting, almost inconceivable. In truth, it is impossible to confirm;

there can always be alternative explanations not yet considered. Interventions provide a

falsificationist perspective: methods that survive falsification attempts are more likely to

be successful. Hopefully, building upon these ideas leads to the development of methods

that truly address the challenging and fascinating problems of Music Content Analysis.

Although much of the research reported in this dissertation has focused on Music Con-

tent Analysis problems, especially in the illustrative examples employed, nothing about its

underlying principles is exclusive to the analysis of music data. Similar issues related to

confounding information arise in other applied Machine Learning disciplines (e.g., Chen

and Asch, 2017; Nguyen et al., 2015), recently leading to an increased awareness of its

risks (e.g., Heaven, 2019; Hernández-Orallo, 2019; Lapuschkin et al., 2019). Apart from the

design of specialised interventions, which require domain knowledge, the methodology

developed here can prove useful for problems dealing with data other than music audio.

Society increasingly relies on Machine Learning systems to break the boundaries of hu-

man capabilities. Adopting a systematic evaluation methodology incorporating pipeline

interventions will help to understand how these systems behave. Such an understanding

is fundamental to gain trust and avoid potentially harmful consequences, so that society

can fully embrace the almost unbelievable opportunities that Machine Learning offers for

the future.
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ILLUSTRATIVE EXAMPLES OF THE

CALCULUS OF FACTORS

This appendix presents some hypothetical examples that might help the reader un-

derstand the Calculus of Factors approach to experimental design introduced in Sec. 3.2.

Sec. A.1 illustrates the general concepts and methods of the Calculus of Factors, from the

definition of factor variables and their relationships to the calculations that Hasse dia-

grams facilitate, while Sec. A.2 showcases the analysis of conventional designs according

to such approach.

A.1 Factors and Subspaces

Factors and their Relationships

Imagine some researchers conduct an experiment with only 8 plots (N = |Ω| = 8). ω in-

dexes the plots, such that 1 ≤ ω ≤ 8. They identify two factors of interest, F and G, with

NF = 4 and NG = 2 respectively (i.e., F has 4 levels in Ω, while G has 2). In particular,

F(ω) = dω/2e and G(ω) = dω/4e — i.e., plots 1 and 2 share the same level of F, 3 and 4 another

one and so on; G splits the plot space in half, with plots 1 to 4 sharing one level, and plots

5 to 8 the other. The equivalence classes of such factors are F(ω) := {{1,2}, {3,4}, {5,6}, {7,8}}

and G(ω) := {{1,2,3,4}, {5,6,7,8}}. All F-classes are contained within G-classes, because ev-

ery plot contained in each of the classes of F belongs to the same class of G. For instance,
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plots 5 and 6 share the same level of F (i.e., F(5) =F(6)), and they also share the same level

of G (i.e., G(5) = G(6)). The opposite does not hold, though. Plots 5 and 7 share the same

level of G (i.e., G(5) =G(7)), but differ in F (i.e., F(5) 6=F(7)). Therefore, F is finer than G.

The universal and equality factors of the experiment are quite easy to construct, since

their structure is always the same. In particular, U(ω) := {1,2,3,4,5,6,7,8} — a single class

containing all eight plots — andE(ω) := {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} — one class per plot.

Since F is finer than G, obtaining their infimum and supremum is immediate. F∧G

is equivalent to the finer factor F, since its classes match the intersection between

the F-classes and the G-classes. Take, for instance, the F-class that includes plots 1

and 2. Intersecting it with each of the two G-classes yields {1,2} for the one including

{1,2,3,4}, and ; for the other. Repeating this process over all four F-classes confirms that

(F∧G)(ω) := {{1,2}, {3,4}, {5,6}, {7,8}}, so F∧G≡F.

The supremum, on the other hand, is equivalent to the coarser factor G, since its

classes completely contain the F-classes. Again, starting with the F-class including plots

1 and 2, its matching class in F∨G also includes these same two plots, as well as any other

plot within G[1] and G[2]. G[1] and G[2] coincide and include plots 3 and 4, which should

then be added to (F∨G)[1]. Adding new plots to a set entails returning to the former fac-

tor and checking whether it is necessary to include further plots that share an F-class with

any of these new ones. In the example, however, all plots in the F-classes including plots

1, 2, 3, or 4 have been already covered, so no other plot needs to be added to (F∨G)[1]. To

complete the classes in the supremum, one would iterate between factors until no further

plot remained unassigned. In this case, one would create another class in F∨G contain-

ing all remaining plots. This process yields a supremum factor that partitions the plots as

(F∨G)(ω) := {{1,2,3,4}, {5,6,7,8}}, so F∨G≡G.

Subspaces defined by Factors

The plot space VE coincides with R8, since there are 8 plots in the experiment. VU

includes all vectors constant on all 8 plots, such as (1,1,1,1,1,1,1,1).1 Recall that the

factors F and G partition the set of plots such that F(ω) := {{1,2}, {3,4}, {5,6}, {7,8}} and

G(ω) := {{1,2,3,4}, {5,6,7,8}}. The vector subspaces these factors define thus consist of:

1Parentheses indicate column vectors, so (1,1,1,1,1,1,1,1) = [1,1,1,1,1,1,1,1]T.
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VF = span{(1,1,0,0,0,0,0,0), (0,0,1,1,0,0,0,0), (0,0,0,0,1,1,0,0), (0,0,0,0,0,0,1,1)}

VG = span{(1,1,1,1,0,0,0,0), (0,0,0,0,1,1,1,1)}

— i.e., as many vectors as classes, each one constant on the components associated with

the plots in a class. Vectors in VG can be expressed as a linear combination of the vectors

generating VF , implying that VG is a subspace of VF . Moreover, the intersection of both

subspaces coincides with VG, so VF∨G =VG.

If two factors are not nested, finding the intersection between their subspaces be-

comes less trivial. For instance, consider the factor H over the same plots, such that

H(ω) := {{1,2,3}, {4,5,6}, {7,8}}. Its associated subspace is:

VH = span{(1,1,1,0,0,0,0,0), (0,0,0,1,1,1,0,0), (0,0,0,0,0,0,1,1)}.

The subspace corresponding to the supremum of F and H is:

VF∨H =VF∩VH = span{(1,1,1,1,1,1,0,0), (0,0,0,0,0,0,1,1)}

which has dim(VF∨H) = 2 and differs from any subspace considered so far.

The relation and projection matrices associated with factor F are:

RF =



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


, PF =



1/2 1/2 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2


.

Since F is uniform with KF = 2, the relationship RF = KFPF = 2PF holds; this would

not be the case for factor H, for instance. For any arbitrary vector in R|Ω|, such as

y = (1,8,2,4,5,−4,2,8), applying the linear transformation defined by PF generates its pro-

jection into the subspace VF :

PF(y) = PFy =



1/2 1/2 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2





1
8
2
4
5
−4
2
8


=



4.5
4.5
3
3

0.5
0.5
5
5


.
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Factor Orthogonality

Definition from Subspaces Since the factors F and G in the example form a chain, with

F ≺ G, their orthogonality is guaranteed. The product as in Eqn (3.15) confirms this. The

matrices PF and PG are:

PF =



1/2 1/2 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2


, PG =



1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4


with their product yielding:

PFPG =



1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4


= PGPF = PF∨G = PG.

Exactly the same result is obtained regardless of the order in which one performs the prod-

uct. Moreover, the result of the product matches PG, the projection matrix associated with

the subspace VF∨G.

Conversely, the factor H defined above does not form a chain with any other factor. Its

projection matrix PH is:

PH =



1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2


whose two products with PF are:
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PFPH =



1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6 0 0
1/6 1/6 1/6 1/6 1/6 1/6 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2


, PHPF =



1/3 1/3 1/6 1/6 0 0 0 0
1/3 1/3 1/6 1/6 0 0 0 0
1/3 1/3 1/6 1/6 0 0 0 0
0 0 1/6 1/6 1/3 1/3 0 0
0 0 1/6 1/6 1/3 1/3 0 0
0 0 1/6 1/6 1/3 1/3 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2


.

These products yield different results, implying that that F and H are not orthogonal. G

leads to a similar conclusion.

Factors not forming chains can also be mutually orthogonal. Consider an additional

factor K such that K(ω) := {{1,3}, {2,4}, {5,7}, {6,8}}, with projection matrix:

PK =



1/2 0 1/2 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0

1/2 0 1/2 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0
0 0 0 0 1/2 0 1/2 0
0 0 0 0 0 1/2 0 1/2

0 0 0 0 1/2 0 1/2 0
0 0 0 0 0 1/2 0 1/2


.

Although K is neither finer nor coarser than F, the product of their projection matrices is

commutative and its result coincides with PG:

PFPK =



1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4


= PKPF = PF∨K = PG.

F and K are thus mutually orthogonal despite none being nested to the other. Moreover,

they are both finer than G, which is their supremum, so K is also orthogonal to G.

Definition from Classes The definition in Eqn (3.17) is quite obscure, so its applica-

tion to the example may clarify how it can be leveraged. Both F and K are uniform with

KF = KK = 2, so |F[ω]| = |K[ω]| = 2 ∀ω. Their supremum is G, which is also uniform with

KG = 4, so |(F∨K)[ω]| = 4 ∀ω. Only information about the infimum is missing. Since

F- and K-classes share only one element each, the largest intersections between classes

one can construct are the eight subsets containing a single plot. F∧K is thus the equality
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factor E, so |(F∧K)[ω]| = 1 ∀ω. Since all four components of Eqn (3.17) are uniform, one

only needs to check whether the equality holds once. |F[ω]|× |K[ω]| = 2×2 = 4 matches

|(F∧K)[ω]|× |(F∨K)[ω]| = 1×4 = 4 for any plot within any of the two G-classes. There-

fore, F and K are orthogonal according to the alternative definition of orthogonality.

Factors F and H are not mutually orthogonal, so one might wonder what the defini-

tion from classes yields in that case. Recall that H(ω) := {{1,2,3}, {4,5,6}, {7,8}}, which is

evidently not uniform. This means it is necessary to distinguish the size of each H-class

with respect to ω:

|H(ω)| =
{

3 ∀ω,1 ≤ω≤ 6
2 if ω= 7,8

Computing the infimum and supremum factors of F and H is not as sim-

ple as previously, but following the procedure suggested in Sec. 3.2.1 generates

(F∧H)(ω) := {{1,2}, {3}, {4}, {5,6}, {7,8}}, and (F∨H)(ω) := {{1,2,3,4,5,6}, {7,8}}. Neither

the infimum nor the supremum are uniform, so it is again necessary to distinguish the

sizes of their classes depending on ω:

|(F∧H)(ω)| =
{

2 if ω= 1,2,5,6,7,8
1 if ω= 3,4

|(F∨H)(ω)| =
{

6 ∀ω,1 ≤ω≤ 6
2 if ω= 7,8

Consider the class of the supremum containing plots 1 to 6. For the factors to be

orthogonal it is required that the proportionality ratio remains constant for any plot

belonging to this class. For instance, for ω = 1, |F[ω]| × |H[ω]| = 2 × 3 = 6 and

|(F∧H)[ω]|× |(F∨H)[ω]| = 2×6 = 12. The proportionality ratio for class j = 1 obtained

from plot 1 is then c1 = 2. For ω = 3, on the other hand, |F[ω]| × |H[ω]| = 2× 3 = 6 and

|(F∧H)[ω]|× |(F∨H)[ω]| = 1×6 = 6, so c1 = 1 instead. This mismatch suffices to ensure

that factors F and H are not mutually orthogonal.

Non-orthogonality

Imagine factor H represents the height of the participants in a study, and its three classes

group short ({1,2,3}), medium ({4,5,6}), and tall ({7,8}) individuals, respectively. Realis-

ing this split causes the factors in the experiment to become non-orthogonal, researchers

could examine the heights in their original continuous scale, finding that the individuals
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U

G

F K

E

Figure A.1: Hasse diagram showing relationships between factors in the example.

are ordered, from shortest to tallest, in the following way: 1,3,2,4,6,5,8,7. Many alterna-

tive ways exist to set level boundaries, with some of them allowing H to become orthogo-

nal to all other factors in the experiment. Fixing a single boundary between plots 4 and 6,

for instance, would split all individuals into two categories: short and tall. Regardless of

which concepts they represent, however, this splitting forcesH≡G in the experiment. Set-

ting boundaries after plots 3, 4, and 5, on the other hand, would make H orthogonal with

all other factors without aliasing. In what follows, however, it is assumed that researchers

have decided to ignore H in their analysis.

Orthogonal Decomposition

Let F be a set that includes all factors in the experiment other than the non-orthogonal

H. Figure A.1 shows the relationships between such factors using a Hasse diagram, with

factors coarser than another placed above and connected to that other one. No factor is

thus coarser than U, only U is coarser than G, both U and G are coarser than F and K,

and all other factors are coarser than E. Using the definition in Eqn (3.18), the following

calculations then yield the W -subspaces:

WU =VU

WG =VG∩V ⊥
U

WF =VF∩ (V ⊥
U ∩V ⊥

G )

WK =VK∩ (V ⊥
U ∩V ⊥

G )

WE =VK∩ (V ⊥
U ∩V ⊥

G ∩V ⊥
F ∩V ⊥

K)

Recall the V -subspaces associated with each factor are obtained through:
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VU = span{(1,1,1,1,1,1,1,1)}

VG = span{(1,1,1,1,0,0,0,0), (0,0,0,0,1,1,1,1)}

VF = span{(1,1,0,0,0,0,0,0), (0,0,1,1,0,0,0,0), (0,0,0,0,1,1,0,0), (0,0,0,0,0,0,1,1)}

VK = span{(1,0,1,0,0,0,0,0), (0,1,0,1,0,0,0,0), (0,0,0,0,1,0,1,0), (0,0,0,0,0,1,0,1)}

VE = span{(1,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0),

(0,0,0,0,1,0,0,0), (0,0,0,0,0,1,0,0), (0,0,0,0,0,0,1,0), (0,0,0,0,0,0,0,1)}

Computing the W -subspaces requires the orthogonal complement vector spaces to VU,

VG, VF , and VK.2 The orthogonal complement of VE is not necessary since, by definition,

E is finer than every other factor in the experiment.

V ⊥
U = span{(−1,1,0,0,0,0,0,0), (−1,0,1,0,0,0,0,0), (−1,0,0,1,0,0,0,0), (−1,0,0,0,1,0,0,0),

(−1,0,0,0,0,1,0,0), (−1,0,0,0,0,0,1,0), (−1,0,0,0,0,0,0,1)}

V ⊥
G = span{(−1,1,0,0,0,0,0,0), (−1,0,1,0,0,0,0,0), (−1,0,0,1,0,0,0,0), (0,0,0,0,−1,1,0,0),

(0,0,0,0,−1,0,1,0), (0,0,0,0,−1,0,0,1)}

V ⊥
F = span{(−1,1,0,0,0,0,0,0), (0,0,−1,1,0,0,0,0), (0,0,0,0,−1,1,0,0), (0,0,0,0,0,0,−1,1)}

V ⊥
K = span{(−1,0,1,0,0,0,0,0), (0,−1,0,1,0,0,0,0), (0,0,0,0,−1,0,1,0), (0,0,0,0,0,−1,0,1)}

The following intersections are necessary:3

V ⊥
U ∩V ⊥

G = span{(1,0,0,−1,0,0,0,0), (0,1,0,−1,0,0,0,0), (0,0,1,−1,0,0,0,0),

(0,0,0,0,1,0,0,−1), (0,0,0,0,0,1,0,−1), (0,0,0,0,0,0,1,−1)}

V ⊥
U ∩V ⊥

G ∩V ⊥
F ∩V ⊥

K = span{(1,−1,−1,1,0,0,0,0), (0,0,0,0,1,−1,−1,1)}

These complete the necessary pieces to calculate the W -subspaces:

WU = span{(1,1,1,1,1,1,1,1)}

WG = span{(1,1,1,1,−1,−1,−1,−1)}

WF = span{(1,1,−1,−1,0,0,0,0), (0,0,0,0,1,1,−1,−1)}

WK = span{(1,−1,1,−1,0,0,0,0), (0,0,0,0,1,−1,1,−1)}

WE = span{(1,−1,−1,1,0,0,0,0), (0,0,0,0,1,−1,−1,1)}

The factors considered in the experiment satisfy both conditions for orthogonal de-

composition: they are all mutually orthogonal and their pairwise supremums belong to

2The orthogonal complement of the associated subspaces is computed using Matlab’s native null func-
tion (http://uk.mathworks.com/help/matlab/ref/null.html), with the 'r' option enabled to obtain a
“rational” basis suitable for pedagogical purposes.

3The function findIntersect (downloaded from https://www.mathworks.com/matlabcentral/
fileexchange/32060-intersection-of-linear-subspaces/content/findIntersect.m) is used to in-
tersect linear subspaces.

http://uk.mathworks.com/help/matlab/ref/null.html
https://www.mathworks.com/matlabcentral/fileexchange/32060-intersection-of-linear-subspaces/content/findIntersect.m
https://www.mathworks.com/matlabcentral/fileexchange/32060-intersection-of-linear-subspaces/content/findIntersect.m
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E

F F F

K K G K

G G G G G

U U U U U

Table A.1: Supremum factors of all possible combinations of non-equivalent factors in our
example.

the set F (see Table A.1). The implications (i) and (ii) from those conditions mentioned

in Sec. 3.2.4 thus hold:

(i) Two vector spaces are mutually orthogonal if the scalar product of any vector from

one with any from the other is zero. To check if two W -subspaces are orthogonal,

then, one can multiply the matrices formed by their bases; a resulting matrix with

zeroes in all cells entails the subspaces are indeed orthogonal. For instance, in the

case of F and K:

WT
FWK =

[
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

]


1 0
−1 0
1 0
−1 0
0 1
0 −1
0 1
0 −1


=

[
0 0
0 0

]

which ensures their orthogonality. Any other combination of W -subspaces yields a

similar result.

(ii) The direct sum of orthogonal subspaces can be obtained by spanning the union of

their basis, such as:

WG⊕WF = span{(1,1,1,1,−1,−1,−1,−1), (1,1,1,1,1,1,1,1)}.

This subspace should coincide with VG, since G and U are the factors coarser or

equivalent to G in the experiment. The vectors that form the bases just obtained,

however, differ from those presented previously. On the other hand, the reduced

echelon form4 of both bases coincides. More precisely,

WG⊕WF = span{(1,1,1,1,−1,−1,−1,−1), (1,1,1,1,1,1,1,1)}

= span{(1,1,1,1,0,0,0,0), (0,0,0,0,1,1,1,1)} =VG.

4Matlab provides the function rref (http://uk.mathworks.com/help/matlab/ref/rref.html) for
this purpose.

http://uk.mathworks.com/help/matlab/ref/rref.html
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The remaining direct sums also match the associated vectors. The direct sum of all

W -subspaces yields:

WE⊕WF⊕WK⊕WG⊕WU = span{(1,−1,−1,1,0,0,0,0), (0,0,0,0,1,−1,−1,1),

(1,1,−1,−1,0,0,0,0), (0,0,0,0,1,1,−1,−1),

(1,−1,1,−1,0,0,0,0), (0,0,0,0,1,−1,1,−1),

(1,1,1,1,−1,−1,−1,−1), (1,1,1,1,1,1,1,1)}

whose reduced echelon form matches the canonical basis of R8.

The projection matrix of the W -subspace associated withF can be obtained as follows:

(WT
FWF)

−1 =


[

1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

]


1 0
1 0
−1 0
−1 0
0 1
0 1
0 −1
0 −1





−1

=
[

1/4 0
0 1/4

]

PWF
= WF(WT

FWF)
−1

WT
F =



1 0
1 0
−1 0
−1 0
0 1
0 1
0 −1
0 −1


[

1/4 0
0 1/4

][
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

]

=



1/4 1/4 −1/4 −1/4 0 0 0 0
1/4 1/4 −1/4 −1/4 0 0 0 0
−1/4 −1/4 1/4 1/4 0 0 0 0
−1/4 −1/4 1/4 1/4 0 0 0 0

0 0 0 0 1/4 1/4 −1/4 −1/4

0 0 0 0 1/4 1/4 −1/4 −1/4

0 0 0 0 −1/4 −1/4 1/4 1/4

0 0 0 0 −1/4 −1/4 1/4 1/4


.

Recall the data vector that the researchers obtain is y = (1,8,2,4,5,−4,2,8), whose orthogo-

nal projection onto VF is PVF
y = (4.5,4.5,3,3,0.5,0.5,5,5). Hence, the projection of y onto

the WF subspace is:
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PWF
y =



1/4 1/4 −1/4 −1/4 0 0 0 0
1/4 1/4 −1/4 −1/4 0 0 0 0
−1/4 −1/4 1/4 1/4 0 0 0 0
−1/4 −1/4 1/4 1/4 0 0 0 0

0 0 0 0 1/4 1/4 −1/4 −1/4

0 0 0 0 1/4 1/4 −1/4 −1/4

0 0 0 0 −1/4 −1/4 1/4 1/4

0 0 0 0 −1/4 −1/4 1/4 1/4





1
8
2
4
5
−4
2
8


=



0.75
0.75
−0.75
−0.75
2.25
2.25
−2.25
−2.25


.

Similarly, one can project y onto the remaining W :

PWU
y = (3.25,3.25,3.25,3.25,3.25,3.25,3.25,3.25)

PWG
y = (0.5,0.5,0.5,0.5,−0.5,−0.5,−0.5,−0.5)

PWK
y = (−2.25,2.25,−2.25,2.25,0.75,−0.75,0.75,−0.75)

PWE
y = (−1.25,1.25,1.25,−1.25,3.75,−3.75,−3.75,3.75)

Computing all pairwise scalar products between the projection vectors confirms all are

mutually orthogonal. Moreover, summing all projections into W -subspaces associated

with factors coarser or equivalent to one particular factor yields the projection into the

V -subspace of that same factor. For instance, for F:

PWF
y+PWG

y+PWU
y =



0.75
0.75
−0.75
−0.75
2.25
2.25
−2.25
−2.25


+



0.5
0.5
0.5
0.5
−0.5
−0.5
−0.5
−0.5


+



3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25


=



4.5
4.5
3
3

0.5
0.5
5
5


= PVF

y

Summing the projections onto all W -subspaces generates:

PWE
y+PWF

y+PWK
y+PWG

y+PWU
y =



−1.25
1.25
1.25
−1.25
3.75
−3.75
−3.75
3.75


+



0.75
0.75
−0.75
−0.75
2.25
2.25
−2.25
−2.25


+



−2.25
2.25
−2.25
2.25
0.75
−0.75
0.75
−0.75


+



0.5
0.5
0.5
0.5
−0.5
−0.5
−0.5
−0.5


+



3.25
3.25
3.25
3.25
3.25
3.25
3.25
3.25


=



1
8
2
4
5
−4
2
8


which matches the original data vector y. The projections onto W -subspaces thus decom-

pose measurements into contributions for each factor.

Connection with ANOVA The results obtained previously lead directly to both the de-

grees of freedom and the sum of squares for each factor. Counting the number of vectors
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in the basis of each W -subspace, then:

dU = dim(WU) = 1

dG = dim(WG) = 1

dF = dim(WF) = 2

dK = dim(WK) = 2

dE = dim(WE) = 2

and the projections of y onto each W -subspace yield:

SSU(y) = ∥∥PWU
y
∥∥2 = 84.5

SSG(y) = ∥∥PWG
y
∥∥2 = 2

SSF(y) = ∥∥PWF
y
∥∥2 = 22.5

SSK(y) = ∥∥PWK
y
∥∥2 = 22.5

SSE(y) = ∥∥PWE
y
∥∥2 = 62.5

Calculations on the Hasse Diagram

For the sake of simplicity, plot and treatment factors have not been distinguished so far,

grouping them all together in a single set. Assume now that the plots are unstructured —

only U and E relate with the plot structure —, and G, F, and K describe the treatments.

Figure. A.2 shows the resulting Hasse diagrams.

U

E

(a) Plot struc-
ture

U

G

F K

E

(b) Treatment structure

U

G

F K

E

(c) Combined structure

Figure A.2: Plot, treatment and combined factor structures in the example.

The number of classes of each factor are NU = 1, NG = 2, NF = 4, NK = 4, and NE = 8.

Starting from the top of the diagram, one can then calculate the degrees of freedom for

each factor in cascade:
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dU = NU = 1

dG = NG −dU = 2−1 = 1

dF = NF − (dU+dG) = 4− (1+1) = 2

dK = NK − (dU+dG) = 4− (1+1) = 2

dE = NE− (dU+dG+dF+dK) = 8− (1+1+2+2) = 2

As Fig. A.3 shows, both the number of classes and the degrees of freedom are often written

next to their corresponding factors in the diagram, separated by a comma. As expected,

the degrees of freedom coincide with the dimensionality of the W -subspace associated

with each factor.

U1,1

G2,1

F
4,2

K
4,2

E8,2

Figure A.3: Hasse diagram of the factor structure in the example including class sizes and
degrees of freedom.

The crude sums of squares for each factor are as follows:

CSSU = (1+8+2+4+5+ (−4)+2+8)2

8
= 262

8
= 84.5

CSSG = (1+8+2+4)2

4
+ (5+ (−4)+2+8)2

4
= 152

4
+ 112

4
= 346

4
= 86.5

CSSF = (1+8)2

2
+ (2+4)2

2
+ (5+ (−4))2

2
+ (2+8)2

2
= 92

2
+ 62

2
+ 12

2
+ 102

2
= 218

2
= 109

CSSK = (1+2)2

2
+ (8+4)2

2
+ (5+2)2

2
+ ((−4)+8)2

2
= 32

2
+ 122

2
+ 72

2
+ 42

2
= 218

2
= 109

CSSE = 12 +82 +22 +42 +52 + (−4)2 +22 +82 = 194

which can then be used to calculate the sums of squares:
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SSU = CSSU = 84.5

SSG = CSSG−CSSU = 86.5−84.5 = 2

SSF = CSSF− (CSSG+CSSU) = 109− (84.5+2) = 22.5

SSK = CSSK− (CSSG+CSSU) = 109− (84.5+2) = 22.5

SSE = CSSE− (CSSG+CSSU+CSSF+CSSK) = 194− (84.5+2+22.5+22.5) = 62.5

These values coincide with those we obtained before using projection matrices, as ex-

pected. The Hasse diagram thus provides a shortcut for calculating the values necessary

to perform inferential analysis based on the variance ratios.

A.2 Analysis of Conventional Designs

The example analyses in this section are all based on the same hypothetical situation,

which is adapted slightly to the particularities of each of the three conventional experi-

mental designs.

Completely Randomised Design

Consider a wine tasting contest in which N = 8 judges are asked to rate the quality of

T = 4 wines from a minimum of 0 (disgusting) to a maximum of 5 (magnificient). The

organisers of the contest decide that each judge will taste a single wine, so each wine will

get exactly two scores. More precisely, the random assignment of wines to judges isT(ω) :=
{{1,2}, {3,4}, {5,6}, {7,8}}. The organisers also decide that no particular characteristic of the

judges or the wines will be taken into consideration for the analysis of the results. The

experiment matches the characteristics of a CRD, so its Hasse diagrams correspond to

those shown in Fig. 3.3.

The organisers are mainly interested in answering two questions. Due to the small

budget available, they are concerned about the overall quality of the selected wines. More

precisely, they want to make sure that they are not completely disgusting — i.e., they want

to check that the mean effect µ is significantly higher than 0. Since all selected wines

belong to the same (low) price range, the organisers are also interested in knowing if the

judges perceive differences in quality. They also agree that they will use a significance level

of α= 0.05 to test the hypotheses.
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Experienced in experimental design, the organisers check before the tasting starts that

they have enough degrees of freedom to perform the analysis, obtaining:

dU = NU = 1

dT = NT −dU = T −1 = 4−1 = 3

dE = NE− (dU+dT) = N − (1+ (T −1)) = N −T = 8−4 = 4

This ensures that the analysis is feasible, since all values are larger than 0.

Aware that projection matrices simplify the computation of the sums of squares, the

organisers obtain the following:

PVT
=



1/2 1/2 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 1/2 1/2


.

They also know that PVU
= J8/8 and PVE

= I8.

They then conduct the experiment, obtaining the following scores from the judges:

y = (0,4,1,2,2,4,1,4). This allows them to compute the sums of squares corresponding to

each factor:

SSU = ∥∥PWU
y
∥∥2 = ∥∥PVU

y
∥∥2 = 40.5

SST = ∥∥PWT
y
∥∥2 = ∥∥PVT

y
∥∥2 −SSU = 43−40.5 = 2.5

SSE = ∥∥PWE
y
∥∥2 = ∥∥y

∥∥2 −∥∥PVT
y
∥∥2 = 58−43 = 15

so the mean squares are:

MSU = SSU/dU = 40.5/1 = 40.5

MST = SST/dT = 2.5/3 = 0.83

MSE = SSE/dE = 15/4 = 3.75

Last but not least, the organisers compute the necessary variance ratios:

VRU = MSU/MSE = 40.5/3.75 = 10.8

VRT = MST/MSE = 0.83/3.75 = 0.2

With these calculations completed, they can finally test their hypotheses of interest.

First, they compare the variance ratio of the global mean (VRU) with an F distribution of 1
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and 4 degrees of freedom with α= 0.05. Looking at the tables, they see that VRU = 10.8 >
F0.05;1;4 = 7.71. They thus reject the null hypothesis that the global mean equals 0. Second,

they compare the variance ratio of the treatment factor (VRT) with an F distribution of

3 and 4 degrees of freedom with α = 0.05. Again, they look at the tables and see that

VRT = 0.2 < F0.05;3;4 = 6.59. This indicates that they cannot reject the null hypothesis of

equal treatment effects — the wines appear of similar quality.

Complete Block Design

Imagine now that the organisers of the wine tasting contest realise that the judges they

selected come from two schools with very different tasting traditions. Concerned that this

difference might affect the conclusions they extract from the experiment, they decide to

introduce a blocking factor in the analysis. More precisely, B(ω) := {{1,3,5,7}, {2,4,6,8}} to

ensure that each kind of wine is tasted by one member of each school. The Hasse diagrams

of the experiment thus match those shown in Fig. 3.4.

The organisers recompute the degrees of freedom in this new situation, obtaining:

dU = NU = 1

dB = NB−dU = B −1 = 2−1 = 1

dT = NT −dU = T −1 = 4−1 = 3

dE = NE− (dU+dT) = N −T −B +1 = 8−4−2+1 = 3

After including a blocking factor, all values are still larger than 0, so the analysis is still

feasible. They also need to compute the projection matrix associated with B:

PVB
=



1/4 0 1/4 0 1/4 0 1/4 0
0 1/4 0 1/4 0 1/4 0 1/4

1/4 0 1/4 0 1/4 0 1/4 0
0 1/4 0 1/4 0 1/4 0 1/4

1/4 0 1/4 0 1/4 0 1/4 0
0 1/4 0 1/4 0 1/4 0 1/4

1/4 0 1/4 0 1/4 0 1/4 0
0 1/4 0 1/4 0 1/4 0 1/4


.

Assuming that the response vector is the same as previously (y = (0,4,1,2,2,4,1,4)),

the sums of squares for each factor in the experiment are now:
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SSU = ∥∥PWU
y
∥∥2 = ∥∥PVU

y
∥∥2 = 40.5

SSB = ∥∥PVB
y
∥∥2 −SSU = 53−40.5 = 12.5

SST = ∥∥PWT
y
∥∥2 = ∥∥PVT

y
∥∥2 −SSU = 43−40.5 = 2.5

SSE = ∥∥y
∥∥2 +∥∥PVU

y
∥∥2 −∥∥PVB

y
∥∥2 −∥∥PVT

y
∥∥2 = 58+40.5−53−43 = 2.5

so the mean squares are:

MSU = SSU/dU = 40.5/1 = 40.5

MST = SSB/dB = 12.5/1 = 12.5

MSB = SST/dT = 2.5/3 = 0.83

MSE = SSE/dE = 2.5/3 = 0.83

The variance ratios necessary for testing the hypotheses all need to be recomputed as well:

VRU = MSU/MSE = 40.5/0.83 = 48.5

VRB = MSB/MSE = 12.5/0.83 = 15

VRT = MST/MSE = 0.83/0.83 = 1

which they then compare with the appropriate values in the tables for the F distribution:

Overall mean VRU = 48.5 > F0.05;1;3 = 10.13

School VRB = 15 > F0.05;1;3 = 10.13

Wine VRT = 1 < F0.05;3;3 = 9.28

They thus find significant differences between the scores granted by the members of

the two schools. The possible differences in the quality of the wines, however, are still not

significant.

Factorial Design

The judges now have a more detailed information about the wines they bought for the

contest, and they are interested in extracting as many conclusions as they can with the

material they have currently available. They have completely consumed the whole bud-

get, however, so they are not able to acquire more bottles. They identify two factors of

interest: the brand of the wine and its type. More precisely, two of their bottles are from

“A”, while the other two are from “B”, being one of each brand “red” and the other “white”.
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Hence, F = {A,B} and G= {red,white}. This reflects an orthogonal factorial design with 2

factors of 2 levels each (often expressed in the literature as a 22 factorial design).

After assigning randomly bottles to judges, the equivalence classes of the treatment

factors are:

F(ω) := {{1,2,3,4}, {5,6,7,8}}

G(ω) := {{1,2,5,6}, {3,4,7,8}}

which implies T(ω) = (F∧G)(ω) := {{1,2}, {3,4}, {5,6}, {7,8}}. The projection matrices asso-

ciated which each factor are:

PVF
=



1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0
0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/4 1/4 1/4 1/4


, PVG

=



1/4 1/4 0 0 1/4 1/4 0 0
1/4 1/4 0 0 1/4 1/4 0 0
1/4 1/4 0 0 1/4 1/4 0 0
1/4 1/4 0 0 1/4 1/4 0 0
0 0 1/4 1/4 0 0 1/4 1/4

0 0 1/4 1/4 0 0 1/4 1/4

0 0 1/4 1/4 0 0 1/4 1/4

0 0 1/4 1/4 0 0 1/4 1/4


.

The Hasse diagrams of the factor sets match perfectly those shown in Fig. 3.5, so the

organisers calculate the degress of freedom using the cascading process:

dU = NU = 1

dF = NF−1 = 2−1 = 1

dG = NG−1 = 2−1 = 1

dT = (NF−1)(NG−1) = (2−1)(2−1) = 1

dE = N − (dU+dF+dG+dT) = 8− (1+1+1+1) = 8−4 = 4

Assuming that the measurements are still y = (0,4,1,2,2,4,1,4), the sums of squares cor-

responding to each factor in the experiment are:

SSU = ∥∥PVU
y
∥∥2 = 40.5

SSF = ∥∥PVF
y
∥∥2 −SSU = 42.5−40.5 = 2

SSG = ∥∥PVG
y
∥∥2 −SSU = 41−40.5 = 0.5

SST = ∥∥PVT
y
∥∥2 +∥∥PVU

y
∥∥2 −∥∥PVF

y
∥∥2 −∥∥PVG

y
∥∥2 = 43−40.5 = 2.5

SSE = ∥∥y
∥∥2 − (SSU+SSF+SSG+SST) = 58−40.5−2−0.5−2.5 = 12.5

leading to the mean squares:
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MSU = SSU/dU = 40.5/1 = 40.5

MSF = SSF/dF = 2/1 = 2

MSG = SSG/dG = 0.5/1 = 0.5

MST = SST/dT = 2.5/1 = 2.5

MSE = SSE/dE = 12.5/4 = 3.125

whose corresponding variance ratios are:

VRU = MSU/MSE = 40.5/3.125 = 12.96

VRF = MSF/MSE = 2/3.125 = 0.64

VRG = MSG/MSE = 0.5/3.125 = 0.16

VRT = MST/MSE = 2.5/3.125 = 0.8

Comparing these values with the appropriate values in the tables for the F distribution,

they observe:

Overall mean VRU = 12.96 > F0.05;1;4 = 7.71

Brand VRB = 0.64 < F0.05;1;4 = 7.71

Type VRT = 0.16 < F0.05;1;4 = 7.71

Wine VRT = 0.8 < F0.05;1;4 = 7.71

Therefore, the only hypothesis the organisers can reject from the judges’ scores is that all

wines are “disgusting”.
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EXAMPLE ANALYSIS OF MEASUREMENTS

FROM AN INTERVENTION-BASED STUDY

This appendix exemplifies proposed steps for the analysis of performance measure-

ments from a hypothetical study involving targeted interventions with simulated data.

The code for the example is available online.1 This will hopefully help readers implement

their own analysis pipelines.

Figure B.1 shows the distribution of simulated performance measurements for a clas-

sification experiment with X = 2 feature extractors (X(i ) ∈ {e1,e2}) and L = 2 learning algo-

rithms (L(i ) ∈ {`1,`2}) on a collection from which K = 40 train/test sample pairs have been

generated. The pipeline for this experiment has been factorially subjected to two interven-

tions, identified by the factor variables Z and W. The combination of levels (z, w) at the

top left corner of the figure reflects the completely unregulated measurements, with the

combination (z ′, w ′) at the bottom right corresponding to the measurements under simul-

taneous regulation. This hypothetical example thus resembles the case study in Sec. 5.3

but with fewer evaluated methods.

Assume the structural model in Eqn (6.21) — or its logistic version in Eqn (6.29) — is

adopted to analyse the measurements. To this end, one can employ the R package lme4

suggested in Sec. 6.3, since it can deal with both linear and logistic mixed-effects models.

The procedure below illustrates its usage in both cases. Nevertheless, the lme4 package

1https://github.com/franrodalg/logistic_struct_model

220

https://github.com/franrodalg/logistic_struct_model


APPENDIX B. EXAMPLE ANALYSIS OF MEASUREMENTS FROM AN
INTERVENTION-BASED STUDY 221

Figure B.1: Distribution of simulated performance measurements from a hypothetical
study with two feature extractors, two learning algorithms, and two interventions, each
with regulated and unregulated evaluation conditions (Z(i ) ∈ {z, z ′} and W(i ) ∈ {w, w ′}).

is not entirely consistent in how it presents its output, lacking frequentist statistical sig-

nificance analysis for its linear estimates. If such information is of interest, the output of

lme4 can be extended using the lmerTest package (Kuznetsova et al., 2017). Since the

data have been simulated with the sole purpose of illustrating the procedure and not to

adhere to any real data generating process, no conclusion should be taken from this ex-

ample on whether linear or logistic approaches are more suitable for inferential analyses

from classification experiments. Devoted studies are necessary to this end.

a) Format measurements

In order to use the model-fitting functions in lme4, the input data should be stored in a

data frame with one observation per row and columns for each factor variable of interest,

plus one for the response. Although logistic estimation should accept probability values

— ranging from 0 to 1 — as response, its implementation in lme4 behaves unexpectedly

unless response values are exactly 0 or 1. Hence, if one intends to use a logistic approach

in lme4, each observation should correspond to an individual success or failure in predic-

tion. In the example, the data frame containing these binary values is named observa-

tions. Conversely, for the linear approach, continuous-valued aggregates work best. In

the example, the data frame containing such aggregates is named measurements.

Both observations and measurements contain the following columns: samp refers



APPENDIX B. EXAMPLE ANALYSIS OF MEASUREMENTS FROM AN
INTERVENTION-BASED STUDY 222

to the train/test pair K(i ), with values 1 to 40, feat_ext refers to the feature extractor

X(i ), with values e1 or e2, learn_alg refers to the learning algorithm L(i ), with values

l1 or l2, conf_1 refers to the intervention Z(i ), with values z or z’, conf_2 refers to the

intervention W(i ), with values w or w’, and y refers to the response yi , with either binary

values in observations or their aggregate mean per sample in measurements. Moreover,

observations contains three additional columns (ability, difficulty and prob) used

to generate the simulated success or failure values for each observation. These would not

be available on a real study, but here serve to assess the estimates lme4 calculates.

b) Define model formula

The structural model intended for the analysis can be defined in R using a “formula” —

an unevaluated expression that relates symbols. Regardless of whether one intends to use

the linear or logistic capabilities of the lme4 package, the formulae capturing the under-

lying structural models are identical. In particular, a complete formula for the models in

Eqn (6.21) and (6.29) would be expressed as:

1 model_complete <- y ∼ feat_ext + learn_alg +
2 feat_ext*learn_alg + conf_1 + conf_2 + conf_1*conf_2 +
3 feat_ext*conf_1 + feat_ext*conf_2 +
4 learn_alg*conf_1 + learn_alg*conf_2 +
5 learn_alg*feat_ext*conf_1 + learn_alg*feat_ext*conf_2 +
6 (1 | samp)

All terms from the structural models are included in the formula separated by plus

signs, except for the benchmark parameter µ and residual εi , which are implicit, and the

response yi , whose corresponding column name is written on the left-hand side of a tilde

sign to mark it as the dependent variable. Fixed-effect parameters are represented by the

name of the column that encodes its associated variable, with asterisks representing their

mutual interactions. Random-effect parameters, on the other hand, follow the more com-

plex notation ( expr | factor ). As Bates et al. (2015) illustrate, expr can be used to

define relationships between intercepts and slopes for the levels of random-effect factors.

In the simplest case, expr is set to 1, indicating that the intercepts for each level are ran-

dom with a fixed mean to be estimated. More complex expressions could be employed in

the future to represent presumed hierarchical relationships between factors.

The model fitting functions in the lme4 package make some implicit assumptions that

make several terms in the formula above redundant. In particular, for every single high-

order interaction term in a formula, it is assumed that all its partial interactions and in-
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dividual constitutive elements are also part of the underlying model and thus need to be

estimated, regardless of whether they are explicitly expressed or not. For instance, from

the three-way interaction learn_alg*feat_ext*conf_1, the lme4 functions will infer

that estimates should be calculated for learn_alg, feat_ext and conf_1, as well as for

their mutual pair-wise interactions. This means that the same underlying model can be

expressed using a much more concise formula:

1 model <- y ∼ conf_1*conf_2 +
2 learn_alg*feat_ext*conf_1 +
3 learn_alg*feat_ext*conf_2 +
4 (1 | samp)

c) Fit model

Once measurements are properly formatted and the intended structural model has been

defined as an R formula, functions from lme4 provide parameter estimates. These func-

tions differ for linear and logistic approaches, so they are illustrated separately below.

Linear fit The lmer function from the lme4 package enables fitting linear mixed-effects

models, with the package lmerTest offering a version of this function with the same sig-

nature but with extended output. To use lmer, one simply needs to run the following:

1 linear_fit <- lmerTest ::lmer(model , data=measurements)

To inspect the result of the model fitting, one can then use the summary function:

1 summary(linear_fit)

which, for the example data, produces the following output:

Scaled residuals:
Min 1Q Median 3Q Max

-3.3901 -0.5891 0.0618 0.5991 2.8693

Random effects:
Groups Name Variance Std.Dev.
samp (Intercept) 0.003732 0.06109
Residual 0.002313 0.04809

Number of obs: 640, groups: samp , 40

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.535016 0.011844 80.648050 45.173 < 2e-16 ***
learn_algl2 0.242500 0.009313 588.000000 26.038 < 2e-16 ***
feat_exte2 0.297062 0.009313 588.000000 31.897 < 2e-16 ***
conf_1z ' -0.086531 0.008502 588.000000 -10.178 < 2e-16 ***
conf_2w ' 0.004219 0.008502 588.000000 0.496 0.6199
learn_algl2:feat_exte2 -0.142437 0.013171 588.000000 -10.815 < 2e-16 ***
learn_algl2:conf_1z ' -0.099250 0.010754 588.000000 -9.229 < 2e-16 ***
feat_exte2:conf_1z ' -0.001375 0.010754 588.000000 -0.128 0.8983
learn_algl2:conf_2w ' 0.016500 0.010754 588.000000 1.534 0.1255
feat_exte2:conf_2w ' -0.294625 0.010754 588.000000 -27.397 < 2e-16 ***
conf_1z ':conf_2w ' -0.060937 0.007604 588.000000 -8.014 6.02e-15 ***
learn_algl2:feat_exte2:conf_1z ' 0.032625 0.015209 588.000000 2.145 0.0323 *
learn_algl2:feat_exte2:conf_2w ' 0.020625 0.015209 588.000000 1.356 0.1756
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The lmer function thus estimates all parameters from the structural model, even if

they were not explicitly included in the formula, separating those with random and fixed

effects. The two right-most columns for fixed-effects parameters are added by lmerTest

and indicate the level of statistical significance of the corresponding parameter — three

asterisks represent p-values smaller than 0.001, whereas a single asterisk indicates a p-

value between 0.01 and 0.05. The output also includes a correlation matrix for fixed-effect

parameters, but the matrix does not appear in here due to the high number of parameters

in the model. To retrieve it, one can use vcov(linear_fit).

Logistic fit The lme4 package provides the glmer function to fit Generalised Linear

Mixed-effects Models (GLMMs), including logistic ones. The call is similar to lmer, only

requiring to specify the random variable family assumed for the data, which, in turn, sets

the link function that will be employed. For a logistic analysis, the family argument

should be set to "binomial". In addition, to ensure convergence of the estimates, it might

be necessary to replace the default optimiser and increase the maximum number of iter-

ations. The glmerControl function enables users to make such changes. The following

instructions were used to fit the model in the example:

1 logistic_fit <- lme4::glmer(
2 model ,
3 family="binomial",
4 data=observations ,
5 control=lme4:: glmerControl(optimizer="bobyqa",
6 optCtrl=list(maxfun =1e6)))

whose summary produces the following output:

AIC BIC logLik deviance df.resid
75984.3 76111.3 -37978.2 75956.3 63986

Scaled residuals:
Min 1Q Median 3Q Max

-3.4503 -0.9309 0.4476 0.7646 1.7443

Random effects:
Groups Name Variance Std.Dev.
samp (Intercept) 0.08743 0.2957

Number of obs: 64000 , groups: samp , 40

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.18430 0.05510 3.345 0.000824 ***
learn_algl2 1.15023 0.04291 26.803 < 2e-16 ***
feat_exte2 1.43976 0.04436 32.459 < 2e-16 ***
conf_1z ' -0.43668 0.03686 -11.849 < 2e-16 ***
conf_2w ' -0.06446 0.03680 -1.752 0.079856 .
learn_algl2:feat_exte2 -0.38817 0.06887 -5.636 1.74e-08 ***
learn_algl2:conf_1z ' -0.56059 0.04810 -11.654 < 2e-16 ***
feat_exte2:conf_1z ' -0.09470 0.04800 -1.973 0.048514 *
learn_algl2:conf_2w ' 0.06956 0.04779 1.455 0.145544
feat_exte2:conf_2w ' -1.38597 0.04838 -28.646 < 2e-16 ***
conf_1z ':conf_2w ' -0.08993 0.03602 -2.496 0.012546 *
learn_algl2:feat_exte2:conf_1z ' 0.09791 0.07132 1.373 0.169833
learn_algl2:feat_exte2:conf_2w ' -0.15012 0.07210 -2.082 0.037328 *
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This approach also provides estimates for all parameters in the structural model, both

for fixed and random effects. Note that residuals are not included as parameters to esti-

mate. As mentioned in Sec. 6.3, this is conventional in logistic models. Goodness of fit

metrics are also included to facilitate comparisons between alternative models.

As expected, the computational complexity of logistic estimates is substantially higher

than in the linear case. From 10 replications, it took an average of 0.57 seconds to fit the

model using lmer and 375.89 seconds using glmer, almost 700 times longer.

d) Interpret estimates

Both linear and logistic approaches generate a single estimate for each fixed-effect pa-

rameter in the example because, for simplicity, all factors have exactly 2 levels. In gen-

eral, one would obtain F − 1 estimates per parameter, where F represents the number

of levels of the corresponding factor variable. If, for instance, a third learning algorithm

`3 was included, an additional estimate learn_algl3 would be computed. In addi-

tion, every single interaction involving L would also feature an additional estimate, such

as learn_algl3:feat_exte2 or conf_1z’:learn_algl3:feat_exte2. The level from

each factor not receiving an estimate acts as baseline, with the F −1 estimates directly or

indirectly expressing differential effects against such a baseline.

Average performance estimates The (Intercept) estimate in both linear and logistic

cases reflects the estimated average performance of systems with X(i ) = e1 and L(i ) = `1

under completely unregulated conditions (i.e., Z(i ) = z and W(i ) = w). The linear esti-

mate directly matches such value, meaning the accuracy estimated for (e1,`1) systems

under unregulated conditions is around 53.5%. To obtain the corresponding value from

the logistic estimate, however, it is necessary to transform the estimate using the inverse

logit operation in Eqn (6.24). In particular, logit−1(0.184) ≈ 0.546. Linear and logistic esti-

mates of performance are thus quite similar to each other as well as to the “ability” value

of 0.55 set in the simulation as base probability for this combination of factor levels.

To obtain average performance estimates for level combinations other than the base-

line, it is necessary to reconstruct them adding parameter estimates to the (Intercept)

according to the levels on which they differ. For instance, for (e1,`2) systems under un-

regulated conditions, performance estimates require adding the learn_algl2 parame-

ter estimate only, since they only differ from the baseline in that L(i ) = `2. In the lin-
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ear case, this yields an average performance estimate for these systems of approximately

0.535+0.243 = 0.778. Adding a further level change, such as X(i ) = e2, would require not

only to add the feat_exte2 parameter estimate but also the learn_algl2:feat_exte2

interaction parameter, thus yielding approximately 0.535+0.243+0.297−0.142 = 0.933.

The emmeans function, from the package of the same name,2 provides a simple interface

to obtain all performance estimates:

1 emmeans :: emmeans(linear_fit ,
2 c('feat_ext', 'learn_alg', 'conf_1', 'conf_2'))

feat_ext learn_alg conf_1 conf_2 emmean SE df lower.CL upper.CL
e1 l1 z w 0.535 0.0118 80.7 0.511 0.559
e2 l1 z w 0.832 0.0118 80.7 0.809 0.856
e1 l2 z w 0.778 0.0118 80.7 0.754 0.801
e2 l2 z w 0.932 0.0118 80.7 0.909 0.956
e1 l1 z' w 0.448 0.0118 80.7 0.425 0.472
e2 l1 z' w 0.744 0.0118 80.7 0.721 0.768
e1 l2 z' w 0.592 0.0118 80.7 0.568 0.615
e2 l2 z' w 0.778 0.0118 80.7 0.754 0.801
e1 l1 z w' 0.539 0.0118 80.7 0.516 0.563
e2 l1 z w' 0.542 0.0118 80.7 0.518 0.565
e1 l2 z w' 0.798 0.0118 80.7 0.775 0.822
e2 l2 z w' 0.679 0.0118 80.7 0.655 0.702
e1 l1 z' w' 0.392 0.0118 80.7 0.368 0.415
e2 l1 z' w' 0.393 0.0118 80.7 0.369 0.416
e1 l2 z' w' 0.552 0.0118 80.7 0.528 0.575
e2 l2 z' w' 0.463 0.0118 80.7 0.440 0.487

Degrees -of-freedom method: kenward -roger
Confidence level used: 0.95

The logistic performance estimates are obtained similarly, summing the correspond-

ing parameter estimates and, in this case, computing the inverse logit of the sum. For

instance, the logistic performance estimate for (e1,`2) systems under unregulated con-

ditions are calculated as logit−1((Intercept)+learn_algl2
)
, which is approximately

logit−1(0.184+1.15) = logit−1(1.334) ≈ 0.792. The remaining performance estimates are

calculated in the same way, and can also be obtained using the emmeans function:

1 emmeans :: emmeans(logistic_fit ,
2 c('feat_ext', 'learn_alg', 'conf_1', 'conf_2'),
3 type='response ')

feat_ext learn_alg conf_1 conf_2 prob SE df asymp.LCL asymp.UCL
e1 l1 z w 0.546 0.01366 Inf 0.519 0.573
e2 l1 z w 0.835 0.00816 Inf 0.819 0.851
e1 l2 z w 0.792 0.00957 Inf 0.772 0.810
e2 l2 z w 0.916 0.00499 Inf 0.905 0.925
e1 l1 z' w 0.437 0.01357 Inf 0.411 0.464
e2 l1 z' w 0.749 0.01075 Inf 0.727 0.769
e1 l2 z' w 0.584 0.01347 Inf 0.557 0.610
e2 l2 z' w 0.801 0.00939 Inf 0.782 0.819
e1 l1 z w' 0.530 0.01372 Inf 0.503 0.557
e2 l1 z w' 0.543 0.01373 Inf 0.516 0.570
e1 l2 z w' 0.792 0.00955 Inf 0.773 0.811
e2 l2 z w' 0.702 0.01188 Inf 0.678 0.724
e1 l1 z' w' 0.400 0.01327 Inf 0.374 0.426
e2 l1 z' w' 0.390 0.01322 Inf 0.364 0.416
e1 l2 z' w' 0.563 0.01362 Inf 0.536 0.589
e2 l2 z' w' 0.443 0.01372 Inf 0.416 0.470

Confidence level used: 0.95
Intervals are back -transformed from the logit scale

2https://github.com/rvlenth/emmeans

https://github.com/rvlenth/emmeans
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Figure B.2: Correlation between average performance estimates from a hypothetical
study using linear and logistic models (Left), as well as correlations between “ability” val-
ues used for data simulation and such linear (Middle) and logistic (Right) estimates.

The type=‘response’ argument causes the estimates to be automatically converted

from the logit scale to probabilities, facilitating their interpretation. The Inf values in the

“degrees of freedom” (df) column of emmeans for logistic models is expected, indicating

that estimates have been tested against a standard normal distribution.3

Performance estimates in this example — the emmean and prob columns for the linear

and logistic cases, respectively — are almost identical. As Fig. B.2 shows, their estimates

correlate almost perfectly with each other (R2 = 0.997) and with the “ability” values used

to seed the simulated observations (R2 = 0.999 in the linear case and R2 = 0.997 in the

logistic case). Nevertheless, there is no guarantee that such concordances will happen on

real data, since they might be artefacts derived from the simplistic simulation procedure.

Although presented in columns with different names, emmeans provides bound-

aries for 95% confidence intervals of the estimates from both linear and logistic cases

(lower.CL and upper.CL in the former, and asymp.LCL and asymp.UCL in the latter).

Confidence intervals are often regarded as more suitable than raw p-values to report fre-

quentist inferential analyses (Cormack and Lynam, 2006; Urbano et al., 2013), and might

be used as bases for ranking benchmarked methods.

Factor relevance A major motivation for expressing measurements as structural mod-

els is to determine which contributions to the measurements appear more relevant. The

output tables that summary generates from the fitted models include significance levels

3See https://cran.r-project.org/web/packages/emmeans/vignettes/FAQs.html for further in-
formation.

https://cran.r-project.org/web/packages/emmeans/vignettes/FAQs.html
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Figure B.3: Comparison between factor F-values obtained from fitting linear and logistic
models with observations from a hypothetical study.

for the estimated parameters, but these do not necessarily reflect the relevance of the pa-

rameter as a whole. As mentioned in Ch. 3, the usual approach to this end is to conduct

an Analysis of Variance (ANOVA). Base R provides the anova function to this end, which

produces the following from the linear fit:

1 anova(linear_fit)

Type III Analysis of Variance Table with Satterthwaite 's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

learn_alg 3.2819 3.2819 1 588 1418.8823 < 2.2e-16 ***
feat_ext 1.3295 1.3295 1 588 574.8037 < 2.2e-16 ***
conf_1 4.0529 4.0529 1 588 1752.2417 < 2.2e-16 ***
conf_2 4.1040 4.1040 1 588 1774.3301 < 2.2e-16 ***
learn_alg:feat_ext 0.5365 0.5365 1 588 231.9517 < 2.2e-16 ***
learn_alg:conf_1 0.2751 0.2751 1 588 118.9566 < 2.2e-16 ***
feat_ext:conf_1 0.0089 0.0089 1 588 3.8587 0.0499588 *
learn_alg:conf_2 0.0288 0.0288 1 588 12.4326 0.0004548 ***
feat_ext:conf_2 3.2333 3.2333 1 588 1397.9078 < 2.2e-16 ***
conf_1:conf_2 0.1485 0.1485 1 588 64.2179 6.018e-15 ***
learn_alg:feat_ext:conf_1 0.0106 0.0106 1 588 4.6018 0.0323474 *
learn_alg:feat_ext:conf_2 0.0043 0.0043 1 588 1.8391 0.1755724

and from the logistic fit:

1 anova(logistic_fit)

Analysis of Variance Table
npar Sum Sq Mean Sq F value

learn_alg 1 1088.42 1088.42 1088.4204
feat_ext 1 325.96 325.96 325.9619
conf_1 1 1503.10 1503.10 1503.0966
conf_2 1 1654.05 1654.05 1654.0480
learn_alg:feat_ext 1 181.45 181.45 181.4490
learn_alg:conf_1 1 195.22 195.22 195.2159
feat_ext:conf_1 1 0.35 0.35 0.3527
learn_alg:conf_2 1 0.08 0.08 0.0849
feat_ext:conf_2 1 1646.94 1646.94 1646.9395
conf_1:conf_2 1 5.90 5.90 5.8958
learn_alg:feat_ext:conf_1 1 2.24 2.24 2.2409
learn_alg:feat_ext:conf_2 1 4.33 4.33 4.3293

Th latter table not only does not include significance values but also populates the

Sum Sq and Mean Sq columns with the test statistic values. At the moment of writing,
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Figure B.4: Contrasts between combinations of potential confounder factor levels for each
method from a hypothetical study, expressed in terms of Effect Size for those from fitting
a linear model (Left) and Odds Ratio for those from a logistic model (Right).

no widely adopted solution exists in R for these kinds of analyses using logistic models,

so its development might be worth considering in the future if such analyses are deemed

necessary. Moreover, for the linear case, anova relies on standard ANOVA templates, such

as the Type III mentioned in the output. A more generic approach based on the Calculus

of Factors, such as the one implemented in Mathematica by Großmann (2014), might also

prove useful. Nevertheless, the test statistics in the column named “F value” can serve

to rank the relevance of contributions and, for instance, discern whether confounding

factors affect the results. As Fig. B.3 shows, the test statistics generated from the example

data largely agree on which factors appear most relevant (i.e., those that contribute the

most to the variability within the measurements), with an R2 = 0.978.

Contrasts Aside from the global relevance of factors, it might be useful to compare par-

ticular combinations of factor levels. The contrasts function from the emmeans package

computes such comparisons. With no arguments other than the output of emmeans (such

as linear_means above), it provides effect sizes for all combinations of fixed-effects factor

levels. These are deviations from a global mean, expressed in terms of odds ratio for logis-

tic models. Otherwise, including the method=‘pairwise’ argument causes contrasts

to compute relative differences for every combination of level pairs, 120 in the example.
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In an intervention-based study, it might be relevant to determine whether potential

confounders affect, and to which extent, different system-constructing methods. This can

be achieved using the emmeans functions as follows:

1 emmeans :: contrast(
2 emmeans :: emmeans(linear_fit , c('conf_1', 'conf_2'),
3 by=c('learn_alg', 'feat_ext')))

learn_alg = l1, feat_ext = e1:
contrast estimate SE df t.ratio p.value
z,w effect 0.0564 0.0057 588 9.888 <.0001
z',w effect -0.0301 0.0057 588 -5.285 <.0001
z,w' effect 0.0606 0.0057 588 10.627 <.0001
z',w' effect -0.0869 0.0057 588 -15.230 <.0001

learn_alg = l2, feat_ext = e1:
contrast estimate SE df t.ratio p.value
z w effect 0.0978 0.0057 588 17.142 <.0001
z' w effect -0.0880 0.0057 588 -15.433 <.0001
z w' effect 0.1185 0.0057 588 20.775 <.0001
z' w' effect -0.1282 0.0057 588 -22.485 <.0001

learn_alg = l1, feat_ext = e2:
contrast estimate SE df t.ratio p.value
z w effect 0.2044 0.0057 588 35.838 <.0001
z' w effect 0.1165 0.0057 588 20.424 <.0001
z w' effect -0.0860 0.0057 588 -15.082 <.0001
z' w' effect -0.2349 0.0057 588 -41.180 <.0001

learn_alg = l2, feat_ext = e2:
contrast estimate SE df t.ratio p.value
z w effect 0.2191 0.0057 588 38.424 <.0001
z' w effect 0.0646 0.0057 588 11.329 <.0001
z w' effect -0.0341 0.0057 588 -5.986 <.0001
z' w' effect -0.2496 0.0057 588 -43.767 <.0001

Degrees -of-freedom method: kenward -roger
P value adjustment: fdr method for 4 tests

and similarly for the logistic case. Figure B.4 represents these contrasts, and suggest that,

in this hypothetical study, the potential confounders affect the considered methods dif-

ferently, with the largest differences occurring when both are regulated in systems using

feature extractor e2.
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