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Abstract

This thesis is concerned with determining similarity in musical audio, for the purpose of ap-

plications in music content analysis. With the aim of determining similarity, we consider the

problem of representing temporal structure in music. To represent temporal structure, we pro-

pose to compute information-theoretic measures of predictability in sequences. We apply our

measures to track-wise representations obtained from musical audio; thereafter we consider the

obtained measures predictors of musical similarity. We demonstrate that our approach benefits

music content analysis tasks based on musical similarity.

For the intermediate-specificity task of cover song identification, we compare contrasting

discrete-valued and continuous-valued measures of pairwise predictability between sequences.

In the discrete case, we devise a method for computing the normalised compression distance

(NCD) which accounts for correlation between sequences. We observe that our measure im-

proves average performance over NCD, for sequential compression algorithms. In the continu-

ous case, we propose to compute information-based measures as statistics of the prediction error

between sequences. Evaluated using 300 Jazz standards and using the Million Song Dataset,

we observe that continuous-valued approaches outperform discrete-valued approaches. Further,

we demonstrate that continuous-valued measures of predictability may be combined to improve

performance with respect to baseline approaches. Using a filter-and-refine approach, we demon-

strate state-of-the-art performance using the Million Song Dataset.

For the low-specificity tasks of similarity rating prediction and song year prediction, we pro-

pose descriptors based on computing track-wise compression rates of quantised audio features,

using multiple temporal resolutions and quantisation granularities. We evaluate our descriptors

using a dataset of 15 500 track excerpts of Western popular music, for which we have 7 800

web-sourced pairwise similarity ratings. Combined with bag-of-features descriptors, we obtain

performance gains of 31.1% and 10.9% for similarity rating prediction and song year prediction.

For both tasks, analysis of selected descriptors reveals that representing features at multiple time

scales benefits prediction accuracy.
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Maksim Khadkevich, Holger Kirchhoff, Şefki Kolozali, Katerina Kosta, Pamela Lawson, Ar-

mand Leroi, Shengchen Li, Robert Macrae, Boris Mailhé, Martin Morrell, Tim Murray-Browne,
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Chapter 1

Introduction

The proliferation of music in digital formats poses considerable challenges and opportunities

for organising and navigating collections of recorded music. Coinciding with the growth and

increasing ubiquity of internet services since the new millennium, online music services are re-

placing physical formats such as CDs as a mechanism for disseminating recorded music. Online

services allow users to purchase audio tracks for download, akin to a conventional music store.

Alternatively, music may be streamed in real-time, akin to a conventional radio station. However,

in both such cases, users are offered near-instantaneous and personalised access to large collec-

tions: the online music store iTunes reports a collection of more than 40 million tracks1, whereas

the streaming service Spotify reports a collection of more than 20 million tracks2. For download

and streaming services, the Recording Industry Association of America reports respective rev-

enues of $1305 million and $859 million, for the first half of 2014 (Friedlander, 2014). For the

same period, downloads and streaming account for 41% and 27% of all revenues, compared to

28% of all revenues for physical formats. These revenue statistics suggest that compared to the

pre-internet age, the dissemination of recorded music has been transformed.

The field of music information retrieval (MIR) is concerned with investigating methods for

providing access to music collections (Casey et al., 2008b). Downie (2003) distinguishes be-

tween a number of musical facets, including pitch, rhythm, harmony, timbre, lyrics, performance

instructions and the bibliographic facet of musical works. In MIR, it is sought to obtain repre-

1http://www.apple.com/itunes/, retrieved October 2014.
2https://press.spotify.com/uk/information/, retrieved October 2014.

http://www.apple.com/itunes/
https://press.spotify.com/uk/information/
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sentations for such facets that allow music to be organised for subsequent navigation by a user.

On the basis of music representations, we may distinguish among tasks spanning audio finger-

printing, genre classification, artist classification, mood classification, version identification, and

structural segmentation (cf. Cano et al., 2005; Fu et al., 2011b; Casey et al., 2008b; Kim et al.,

2010; Serrà, 2011; Paulus et al., 2010). With a view to performing such tasks, we may consider

disparate sources of information: the sampled audio signal, musical score representations, or

annotations including textual meta-data. Focussing on the sampled audio signal, music content

analysis investigates methods which may serve as alternatives to manual annotation processes,

when the latter are infeasible, unavailable or amenable to be supplemented (Casey et al., 2008b;

Celma, 2009). This thesis relates to music content analysis.

This chapter motivates and summarises the work described in this thesis. Section 1.2 dis-

cusses the research questions addressed in this thesis. Further, Section 1.3 summarises novel

contributions. Section 1.4 lists related publications by the author. Finally, Section 1.5 briefly

outlines the following chapters.

1.1 Music Content Analysis

A variety of users would benefit from the application of music content analysis in MIR sys-

tems. Music consumers would benefit from novel recommendation systems enabling them to

search and discover music, in turn benefiting the music industry. Besides consumers, individuals

such as musicologists, artists, cataloguers, music tutors and therapists would benefit from similar

systems. For the particular cases of audio fingerprinting, artist classification and version identi-

fication, record labels may seek to identify instances of copyright infringement; cataloguers may

seek to identify instances of misattribution in musical works. Music content analysis has found

widespread commercial application in the online service provided by EchoNest3. For the purpose

of scientific inquiry, music content analysis has the potential for cross-disciplinary investigations

in musicology and music psychology (Serra et al., 2013).

Figure 1.1 provides a schematic summary of stages involved in a typical music content anal-

ysis system. Following feature extraction, track-wise representations of feature sequences are

obtained. Such representations may then be used to classify tracks. Alternatively, distances

between representations may be computed to obtain a measure of pairwise similarity between

3http://the.echonest.com/, retrieved October 2014.

http://the.echonest.com/
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CollectionQuery

Extract features Extract features

Obtain track-wise Obtain track-wise
representationsrepresentation

Compute distances

Compute distances

Estimate model

Classify query

Predict similarities

Predicted label

Result candidates

Track-wise labels

Pairwise labels

Model

Figure 1.1: Stages in a typical music content analysis system. The system incorporates a classifier

which is subsequently used to classify tracks. Dashed lines indicate stages for an alternative

‘query-by-example’ system.

tracks. The second approach may be used to retrieve similar tracks in the collection, with respect

to the query (‘query-by-example’).

Classification tasks in music content analysis typically perform a mapping of audio tracks to

labels. For example, in audio fingerprinting we seek a mapping under which labels are unique

to particular recordings of a piece of music. In version identification, we seek a mapping under

which labels are unique to a piece of music for which there may exist multiple versions. Similarly,

in genre and mood classification, labels are ideally unique to genres and moods, respectively. If

we consider the equivalence classes with regard to the described mappings, the aforementioned

fingerprinting, version identification, genre classification, mood identification tasks relate to sim-

ilarity measures between audio tracks. Thus, how to determine musical similarity is a central

problem in music content analysis.

We may further characterise the described tasks, by considering the typical size of equiva-

lence classes in relation to the size of the collection. In typical applications of audio fingerprinting

such as copyright infringement detection or recording identification, given a query the set of rele-
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vant tracks is small in relation to the collection. In genre and mood identification for applications

such as music recommendation or playlist generation, since there may exist many exemplars for

a given genre or mood, the set of tracks relevant to the query may be large in relation to the

collection. Thus, we may distinguish between music content analysis tasks according to the de-

gree of specificity associated with tracks deemed relevant to a query (Byrd, 2007; Casey et al.,

2008a). We collectively refer to tasks such as genre and mood classification as low-specificity

tasks. Note that version identification is deemed to have mid-level, diffuse specificity in compar-

ison to audio fingerprinting and genre classification, since versions may differ from the original

song to varying degrees, potentially involving various musical facets. For example, version iden-

tification on the one hand incorporates identifying remasters of a recording, where remasters may

differ only in musical timbre and noise characteristics. On the other hand, version identification

incorporates identifying cover versions of a song, where cover versions may additionally differ

in timbre, tempo, timing, structure, key, harmony, or lyrics (Serrà, 2011).

As discussed by Rhodes et al. (2010), the described tasks may involve collections at vari-

ous scales. Fingerprinting applications typically require large collections of approximately 106

tracks to be of practical use, due to the task’s high specificity. In contrast, version identification

applications exist for both for small collections of approximately 103 tracks, in addition to large

collections. Particular to large collections is the requirement of computational efficiency, since

using a linear scan of tracks may be prohibitively slow to determine similarity with respect to

a query. One possible approach to attaining computational efficiency involves using scalable

algorithms with sub-linear time complexity (cf. Slaney and Casey, 2008).

1.2 Research Questions

RQ1: How may we obtain representations of temporal structure in music?

From the perspective of music content analysis, the fundamental research question which this

thesis addresses is how to obtain representations of temporal structure in music. This question

is of considerable interest, since music is intrinsically a temporal phenomenon. As we review

in Chapter 2, among musical similarity tasks of diverse specificities, we may distinguish be-

tween diverse methods for obtaining sequences of features from musical audio and subsequently

performing similarity comparisons using such sequences.

In version identification (cf. Section 2.4.2), existing approaches are typically based on ex-
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tracting sequences of mid-level features representing harmonic content in musical audio. Given

a collection of tracks, among which we seek to identify those tracks corresponding to versions of

a query track, pairwise similarities are typically determined either by performing sequence align-

ment or by comparing models of feature sequences. We may distinguish between methods based

on strings, and methods based on sequences of continuous-valued audio features. As evidenced

by recent investigations which employ either discrete-valued or continuous-valued representa-

tions, accurate as well as computationally efficient version identification remains a challenge.

We perform investigations on cover song identification with the aim of improving beyond the

state of the art in accuracy, where we consider both discrete-valued and continuous-valued ap-

proaches. We address the challenge of computationally efficient retrieval in our evaluation, by

considering a dataset on the scale of 106 tracks. We define a cover song as a rendition of a

previously recorded piece of music, particular to the practice in Western popular music where

renditions may be created by different artists (cf. Serrà, 2011).

In low-specificity similarity tasks (cf. Section 2.4.3), existing approaches typically involve

extracting sequences of either low-level or mid-level features. Thereafter, we may distinguish

between methods which disregard the temporal order of features (thus discarding information

on temporal structure), and methods in which temporal order of features is retained. The for-

mer so-called ‘bag-of-features’ approach involves estimating distributions of individual observa-

tions in a feature sequence. The bag-of-features approach may be used to obtain relatively low-

dimensional, duration-invariant representations of features in a given track, subsequently allow-

ing computationally efficient methods to be used for determining pairwise similarity. Whereas

bag-of-features approaches have been widely applied, their relative convenience contrasts with

the disadvantage inherent in discarding temporal information. As evidenced by recent investi-

gations which use bag-of-features representations, low-specificity similarity tasks remain a chal-

lenge, from the perspective of accurate as well as computationally efficient retrieval. The inves-

tigations described in this thesis address the question of how to preserve temporal information in

features, in a manner which permits computationally efficient retrieval.

RQ2: Is it possible to use information-theoretic measures of predictability to

represent temporal structure in music?

Relating to RQ1, this thesis specifically investigates the use of information-theoretic measures of

predictability as a representation of temporal structure in music. As discussed in Chapter 2, our
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approach is inspired by music-psychological models of expectation which are based on score rep-

resentations of music. Among such approaches, statistical models of sequences are constructed;

Shannon information is then used to quantify predictive uncertainty. We note similar methods

based on Shannon information which have been proposed to quantify predictability in musical

audio, however these approaches to date have not been evaluated quantitatively in music content

analysis tasks. We motivate our approach on the basis of these considerations.

RQ3: To what extent can information-theoretic measures of predictability be

used to determine musical similarity?

Described in chapters 4 and 5, the investigations reported in this thesis are concerned with cover

song identification, similarity rating prediction and song year prediction, all of which are mu-

sical similarity tasks. In applying our approach to these tasks, we seek to establish whether

information-theoretic measures of predictability may be used to determine musical similarity.

Our measures of predictability are designed to capture temporal structure in sequences, thus

we hypothesise that our approach captures temporal structure in music. From evidence in support

of using our measures to determine musical similarity, we may conclude that our measures indeed

capture temporal structure in music. Thus, from our observations we may subsequently arrive at

conclusions concerning RQ1 and RQ2.

Our investigations contrast two means of computing predictive uncertainty. For cover song

identification, we quantify predictive uncertainty of one feature sequence relative to another se-

quence, which we refer to as pairwise predictability. We use pairwise predictabilities as similari-

ties between tracks. This contrasts with our approach to similarity rating prediction and song year

prediction, where we quantify predictive uncertainty in a single feature sequence. To determine

similarities, in the latter case we consider a metric space on track-wise predictabilities. That is,

we deem two tracks similar, if their feature sequences yield similar amounts of predictive uncer-

tainty. In Section 2.3.4 we discuss the suitability of pairwise versus track-wise predictability for

the considered similarity tasks, based on their respective specificities.

In both cases, we quantify the performance of our measures by computing agreement between

predicted and annotated similarity data: for cover song identification, our predictions are tracks

ranked with respect to query tracks; our annotations are the sets of tracks which are cover songs

of query tracks. For similarity rating prediction, our predictions and annotations are pairwise

similarity ratings between tracks. For song year prediction, our predictions and annotations are
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the chart entry dates of tracks.

RQ4: Which measures of predictability are useful for determining musical similarity?

As previously described in RQ1, we contrast discrete-valued and continuous-valued represen-

tations in our investigations on cover song identification. As we discuss in Chapter 3, Shannon

information allows us to express pairwise similarity between sequences in a number of ways.

Thus, to establish which measures of predictability are useful in determining musical similarity,

we compare a variety of possible measures. Notably, we may interpret the normalised compres-

sion distance (NCD) as a further information-theoretic approach, which has previously been ap-

plied in cover song identification. Our evaluation aims to establish the performance of alternative

distance measures to the NCD. As we detail in Chapter 4, next to the behaviour of information-

theoretic measures, we compare in detail the effect of interchanging techniques used to estimate

them. Such comparisons consider the choice of statistical model applied to strings. Further, in

relation to evaluated discrete-valued measures of predictability we contrast and propose analo-

gous continuous-valued measures of predictability which do not require feature quantisation and

thus may be applied directly to feature sequences.

RQ5: Which feature representations are useful for determining musical similarity?

Whereas our investigations on cover song identification are based on a single mid-level feature,

in our investigations on similarity rating prediction and song year prediction we evaluate a set

of low-level and mid-level features. For each feature, we evaluate the utility of quantifying pre-

dictive uncertainty relative to a ‘bag-of-features’ approach, where we downsample each feature

sequence using a set of specified rates. In this manner, we seek to establish whether represen-

tations at multiple time scales are useful for determining similarity. We motivate this research

question on the basis that diverse feature representations have been proposed for low-specificity

tasks; to date the potential of representing features at multiple time scales has not been investi-

gated widely.

RQ6: How may we quantify similarity between sequences?

While this thesis is primarily concerned with applications in music content analysis, our ap-

proach relates to the general problem of quantifying similarity between sequences. As described

in Chapter 4, we propose a variant of the NCD which eliminates a deficiency in the existing
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approach, when applied to sequences generated by Markov information sources. In addition

to evaluations involving cover song identification, we compare the theoretical behaviour of our

measure using artificially generated sequences. Further, we propose methods for computing

information-theoretic measures of similarity which unlike the NCD do not require feature quan-

tisation.

RQ7: How might we perform computationally efficient retrieval?

As was previously mentioned for RQ1, in our investigations we address the question of how to

determine similarity in a computationally efficient manner, which we view as a prerequisite for

retrieval using large-scale datasets. Concerning cover song identification, while our information-

theoretic measures are relatively computationally expensive, we demonstrate that they may be

combined with more computationally efficient methods, in a two-stage ‘filter-and-refine’ process.

Using this approach, we attain state-of-the-art performance using 106 tracks. While our evaluated

filter-and-refine approach uses an exhaustive linear scan to produce an initial ranking of tracks

relative to a query, the initial ranking is based on pairwise comparisons using a metric. This

approach allows the potential use of sub-linear techniques in place of a linear scan. Similarly,

our comparisons of track-wise measures of predictive uncertainty are based on a metric space.

Thus, we allow for the possibility of using sub-linear retrieval techniques.

1.3 Novel Contributions

The novel contributions in this thesis may be summarised as follows:

• Empirical evidence for the utility of information-theoretic measures of predictabil-

ity in music content analysis. This thesis shows that information-theoretic measures of

predictability may be applied to musical similarity tasks. For the purpose of cover song

identification, we compare contrasting measures of pairwise predictability, which we use

to compute similarities between pairs of feature sequences. In the NCD, there exists a

widely-applied information-theoretic measure of similarity which has previously been ap-

plied to cover song identification, however to date no extensive comparison has been made

between it and alternative approaches. We demonstrate that our alternative measures to

the NCD yield state-of-the-art accuracy; moreover we demonstrate that similarities may

be combined to improve accuracy with respect to baseline approaches.
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For the purpose of similarity rating prediction and song year prediction, we propose pre-

dictability as a means of summarising feature sequences across individual tracks. We

demonstrate that such measures are relevant for determining similarity in similarity rat-

ing prediction and song year prediction. Moreover, we demonstrate that our measures may

be combined to improve accuracy with respect to baseline bag-of-features representations.

• Methods for quantifying similarity between sequences. This thesis proposes novel mea-

sures of similarity between sequences. Firstly, in the normalised compression distance with

alignment (NCDA), we propose a variant of NCD which accounts for correlation between

discrete-valued observations generated by Markov information sources. As we observe for

artificially generated sequences, NCDA better characterises distances between sequences

compared to NCD. Applied to cover song identification and based on quantised audio fea-

tures, NCDA improves cover song identification accuracy compared to NCD, when applied

to the Lempel-Ziv (LZ) compression algorithm. Next to NCDA, we propose measures of

similarity which may be computed on continuous-valued sequences, thus requiring no pre-

ceding feature quantisation step. The approach relies on combining a nearest-neighbours

prediction technique with parametric distribution estimation, which in combination repre-

sents a novel contribution. We observe that continuous-valued similarity measures outper-

form discrete-valued approaches.

• A method for quantifying regularity in feature sequences. This thesis proposes a mea-

sure of temporal regularity in feature sequences. The approach is based on quantising

feature sequences and subsequently determining compression rates of strings. Further, we

downsample feature sequences using a set of specified rates. In this way, we quantify pre-

dictive uncertainty at multiple time scales. Exploratory and quantitative analysis reveals

that the proposed measure captures temporal structure relevant for low-specificity similar-

ity tasks.

1.4 Publications

This thesis is based on the following publications:

• Peer-reviewed:

– P. Foster, M. Mauch, and S. Dixon. Sequential complexity as a descriptor for musical
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similarity. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22

(12):1967–1977, 2014b

– P. Foster, S. Dixon, and A. Klapuri. Identification of cover songs using information

theoretic measures of similarity. In Proceedings of the 38th International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), pages 739–743, 2013

• In progress:

– P. Foster, A. Klapuri, and S. Dixon. Identifying cover songs using information-

theoretic measures of similarity. arXiv preprint arXiv:1407.2433, 2014a

In the listed publications, PF performed all scientific tasks from research question formula-

tion up to and including manuscript writing. Co-authors SD, AK, MM provided advice during

meetings and via electronic correspondence, in addition to comments on manuscripts. The au-

thor’s main supervisor was SD. The data used in Foster et al. (2014b) were kindly provided by

MM. Finally, the author is grateful to the individuals given in the Acknowledgements section of

this thesis, for further advice and comments on manuscripts.

The work described in Foster et al. (2014a) substantially extends preceding work described

in Foster et al. (2013). Notably, it extends the set of evaluated similarity measures; it applies the

methods to an additional, large-scale dataset; it investigates combining similarity measures.

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 reviews existing work on the similarity tasks considered in this thesis. Further-

more, we consider the phenomenon of musical expectation. Owing to models of musical

expectation, we motivate the decision to investigate the use of information-theoretic mea-

sures of predictability for determining musical similarity.

• Chapter 3 briefly reviews information-theoretic concepts relevant to our investigations and

proposed methods. Next to measures of uncertainty on sequences of discrete and continu-

ous random variables, we review measures of disparity between sequences.

• Chapter 4 describes investigations on cover song identification. This chapter is based on
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Foster et al. (2014a); it includes additional analysis of NCDA and experiments using arti-

ficially generated sequences in Section 4.2.2.

• Chapter 5 describes investigations on similarity rating prediction and song year prediction.

This chapter is based on Foster et al. (2014b).

• Chapter 6 discusses the findings in this thesis, before examining possibilities for future

research.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, we review and discuss concepts and related work on musical expectation and

computational methods for determining similarity in musical audio.

Since music is an inherently subjective phenomenon, we consider musical concepts from

the perspective of the listener. We begin in Section 2.2 by reviewing the musical phenomena

on which our work is based, where we consider perceptual and cognitive processes involved in

music listening. We then proceed to a discussion of musical expectation in Section 2.3. As

discussed in Section 2.3.4, we identify models of musical expectation as a possible approach to

determining musical similarity. Based on existing work in expectation modelling, we propose to

use information-theoretic measures of predictability in our own inquiry.

In Section 2.4, we review and discuss related work on musical similarity from the perspective

of music content analysis. We begin in Section 2.4.1 by reviewing audio features relevant to our

work.We then describe approaches to determining musical similarity relevant to our investiga-

tions in chapters 4 and 5, which relate to cover song identification and low-specificity similarity.

Finally, in Section 2.5 we summarise and conclude our discussion.

2.2 Music-Theoretical and Psychological Background

According to Patel (2010, Chap. 5), music involves perceptually discrete elements and conven-

tions for combining such elements into sequences. Because music is a human universal (Cross,
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Pattern
Beat 4

4

Figure 2.1: Example score with a rhythmic pattern (upper voice) and corresponding beat (lower

voice).

2001), yet with differing musical practices across cultures, providing an exhaustive account of

musical elements and conventions for combining them is beyond the scope of this thesis. In

the following, we provide a brief description of musical phenomena, where we confine our dis-

cussion to music which relates to conventions of the common practice era (CPE), ranging from

around 1600 to 1900 CE (Kennedy et al., 2013, p. 373). We discuss two important phenomena,

namely pitch and rhythm. For a more detailed discussion of musical concepts introduced in the

following, we refer to Kennedy et al. (2013).

2.2.1 Rhythm

Rhythm relates to the dimension of time at scales above 120ms and below 1.5s (Bolton, 1894;

Repp, 2003). Fraisse (1982) defines rhythm as a perceived ordered succession of distinct events.

Since events are ordered, listeners are able to predict future events based on what has been per-

ceived. As suggested by Mach (1865), perceived rhythm relates closely to anticipatory motor

activity, such as tapping. Perceptual events may be distinguished according to duration, pitch,

loudness, or timbre. As discussed by Rasch and Plomp (1999), we define timbre as the quality

which allows the listener to discern dissimilarity between steady-state tones with identical pitch

and loudness.

Perceived rhythm may coincide with a sequence of periodic and identical perceptual events.

This sequence of periodic events is the beat, also referred to as the tactus. The period between

successive events determines the tempo, measured in beats per minute. A phenomenon related to

beat is metre, which London (2012, Chap. 1) defines as the periodic anticipatory schema which

enables a listener to infer beat and direct motor behaviour. From the perspective of music theory,

metre determines how beats are counted, divided and grouped into bars in common practice

notation (CPN). In the listener, metre influences perceived rhythmic patterns. Figure 2.1 displays

an example score in CPN, where we include a repeated rhythmic pattern along with notated beat;

in CPN the time signature and bar-lines provide information on metrical structure.
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2.2.2 Pitch

A listener may perceive pitch produced by pitched instruments, which in contrast to percus-

sive instruments produce approximately periodic sound waves. Pitched instruments typically

produce complex tones, with partials closely approximating integer multiples of the fundamen-

tal frequency. The phenomenon of pitch relates to fundamental frequency. Listeners perceive

constant ratios of frequencies as having constant difference in pitch; pitch perception is approxi-

mately linear with respect to the logarithm of frequency. For a more detailed discussion of pitch,

we refer to de Cheveigne (2005). Notes have pitch and duration, thus a succession of notes

incorporates rhythmic perceptual characteristics.

As summarised by Krumhansl (2000), pitch in music differs from speech in the use of mu-

sical intervals. A musical interval is the distance between two pitches, which we may quantify

as the ratio of fundamental frequencies associated with the pitches. The ratio of fundamental

frequencies explains listeners’ perception of consonant and dissonant intervals; consonant in-

tervals closely approximate simple ratios such as 2:1 (octave), 3:2 (perfect fifth), 4:3 (perfect

fourth). Listeners perceive pitches which are an integer number of octaves apart as having iden-

tical chroma (cf. Balzano and Liesch, 1982) . From the perspective of music theory, such pitches

have identical pitch class. Except for the constraint of hearing range, pitch perception is there-

fore cyclic. In CPE music, there are 12 pitch classes; the associated chromatic scale consists of

pitches whose precise intervals are determined by the tuning system used. While there exist di-

verse tuning systems for CPE music, we may consider twelve-tone equal temperament the most

widespread from the mid-nineteenth century onwards (cf. Kennedy et al., 2013, p. 848). Equal

temperament specifies a common interval ratio of 12
√

2 between adjacent pitches (semitones) in

the chromatic scale. Table 2.1 lists pitch classes and associated musical symbols. Assuming

equal temperament, the set of possible fundamental frequencies Fp for a given pitch class p is

given as

Fp = {2p/12+n f : n ∈ Z} (2.1)

where f denotes the pitch reference, by convention often f = 440Hz. Based on a hearing range

of 16Hz to 16kHz, humans may distinguish among 120 possible pitches in the equal-tempered

scale (Olson, 1967).

From the perspective of music theory, music from the CPE is based on diatonic scales, with

each scale based on a sequence of seven distinct pitch classes from the chromatic scale. Pitches
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p 0 1 2 3 4 5 6 7 8 9 10 11
Musical symbols A A] B[ B C C] D[ D D] E[ E F F] G[ G G] A[

Table 2.1: Pitch classes p and associated musical symbols.

in diatonic scales are enumerated as degrees. A scale is associated with a tonal centre (the tonic),

which is the pitch class of the first degree. In addition, a scale is associated with a particular

mode, which determines the intervals between successive degrees. In CPE music, two modes

predominate, namely major and minor modes. Scales constrain the set of pitch classes used in

melody (pitch succession) and harmony (simultaneous production of pitch based on chords). In

CPE music, chord progressions are described in terms of scale degrees associated with individual

chords. Musical key is determined by the tonic and mode.

2.2.3 Musical Structure and Cognition

In CPE music, both pitch and rhythm are organised hierarchically at multiple time scales. From

the perspective of music theory, notes and note onsets respectively form distinct motifs, which in

turn form phrases. Listeners may perceive boundaries between such units and may infer relations

between units involving repetition, variation and contrast. For the case of harmony, while chord

changes typically occur at time scales above the motivic level of rhythm and melody, analogously

listeners may infer hierarchical repetition, variation and contrast within chord progressions. In

the present discussion, repetition, variation and contrast are similarity relations. Therefore, the

concept of similarity is fundamental to music listening.

Music listening involves subjective judgement using information not readily represented in

the musical score: we distinguish between fundamental perceptual events such as notes and

chords, and the similarity relations inferred based on sequences of perceptual events. Whereas

notes and chords are directly represented in CPN, musical structure is not represented in general.

Following Wiggins (2007), we refer to the mental processes involved in identifying musical

structure as cognitive processes. Such processes contrast with perceptual processes which relate

to individual notes and chords. Conceptually, perceptual processes relate to the musical surface

(Jackendoff, 1987), whereas cognitive processes operate below the musical surface.

From the perspective of engineering, we adopt the view that performance gains in a music

content analysis system might be obtained by emulating perceptual or cognitive processes. Fo-

cussing on cognitive expectation processes involved in music listening, in the following section
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we provide a brief discussion of such processes. We stress that we do not aim at simulating ex-

pectation processes, rather we motivate our discussion to provide sufficient background for later

comparison with our own approach, which is inspired by existing models of musical expectation.

2.3 Musical Expectation

An account of the importance of expectation in music listening is provided by Hanslick (1891 /

1986), who posits that the fulfilment or violation of expectations influences the listener’s affec-

tive response. This view is shared by the music theorist Meyer (1956), who draws attention to

the notion that expectations may be revised as musical events unfold. According to these two

perspectives, elucidating the operation of listening processes involves examining the objective

(and thus intrinsic) capacity for music to elicit expectations. In turn, the listener forms subjec-

tive expectations via an evolving internal model of what has been perceived. As summarised in

Huron (2006), early investigations involving isolated non-musical stimuli reveal that the reaction

time associated with identifying a stimulus is proportional to the information-theoretic entropy

of observable stimuli (Hick, 1952; Hyman, 1953). Thus, one might posit that the statistical prop-

erties of musical stimuli are relevant in music listening. We discuss illustrative studies separately

for rhythm and pitch facets. Following Cont (2008, p. 13), we define expectation as a mental

representation which is coupled with subsequent prediction.

2.3.1 Pitch

Following the work of Hick, Hyman, a number of studies examine listeners’ responses to isolated

pitch stimuli. Greenberg and Larkin (1968) assess listeners’ ability to detect pitched probe sig-

nals embedded within a noise signal, observing that identification accuracy improves for stimuli

which are close in pitch. Using a probe-tone paradigm, Howard et al. (1984) examine listeners’

ability to detect pitched probe signals in a sequence. The authors observe that listeners more ac-

curately identify omitted probe signals when the entire sequence consists of identically pitched

events. We may interpret both results as evidence that listeners conditionally direct attention in

the pitch dimension during listening, based on the immediate past. Attention might be consid-

ered the result of expectation: in the presence of predictable stimuli, expectation enables more

accurate perception than is otherwise achieved for unpredictable stimuli (Huron, 2006, p. 43).

Expectation suggests a memory component, since it requires reference to what has previ-
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ously occurred—evidently we are able to form accurate predictions when attending to a familiar

melody. Whereas in the work by Howard et al. (1984) the memory component might be influ-

enced by auditory sensory memory alone, subsequent studies examine the possible influence of

long-term memory. Carlsen et al. (1970) observe that when presenting listeners with a melody,

sung melodic continuations vary across cultures. Curtis and Bharucha (2009) observe an effect

similar to Greenberg and Larkin (1968), whereby probe-tones are more readily misidentified as

being present in a preceding sequence if the probe-tone is obtained from a culturally familiar

scale, compared to the case where the probe-tone is obtained from an unfamiliar scale.

That music listening involves statistical learning is evidenced by the work of Saffran et al.

(1999). The authors generate pitch sequences constructed from three-note figures, such that two

disjoint sets of three-note figures contribute to two classes of pitch sequence. Both three-note

figures and resulting pitch sequences are isochronous. Listeners are exposed to a pitch sequence

from one class, in a learning phase. In a testing phase, listeners are asked to judge pairs of three-

note figures according to familiarity. Pairs are constructed so that one of the constituent figures

is sampled from set to which they were previously exposed, by way of the pitch sequence. Thus,

each pair contains a familiar and an unfamiliar figure. Saffran et al. (1999) observe that listeners

judge figures to which they were previously exposed as more familiar than those figures to which

they were not exposed. The authors’ conclusion that listeners learn statistical properties of tone

sequences, relates to the fact that there exist no cues on boundaries between figures. Specifically,

one may conclude that listeners implicitly learn probabilities of pitch transitions.

One might further ask whether expectation and statistical learning are involved in the cog-

nition of scale degrees. Recall from Section 2.2.2 that scale degree is an abstraction of pitch.

To establish whether listeners form expectations based on scale degree, Aarden (2003, chap. 4)

exposes listeners to melodies, where listeners are asked to indicate for each successive note the

intervallic direction with respect to immediately preceding notes. The reaction time between a

note onset and the ensuing rating is taken as a measure of expectancy, with fast reaction times

indicating a strong expectancy. Based on an analysis of folk melodies in major keys, Aarden

observes in a multivariate analysis incorporating melodic context that scale degree probability

predicts reaction time. Thus, the obtained results suggest that listeners incorporate both melodic

context and scale degree when forming expectations and that scale degree distributions are im-

plicitly learnt by listeners.
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Expanding the role of expectation observed by Aarden, Huron (2006, p. 153) proposes that

expectation accounts for the subjective experiences (qualia) associated with scale degrees. Huron

first observes quantitatively that scale-degree patterns evoking a sense of closure in the listener

(cadences) have relatively high statistical regularity compared to non-cadential patterns, as quan-

tified using probabilities of degree transitions. Observing that the end of a cadence entails a

relatively weak statistical association with successive scale degrees, Huron posits that a relative

absence of expectation in the listener about successive scale degrees contributes to the sense

of closure experienced following a cadence. Based on an exploratory analysis of descriptive

terms associated with scale degree qualia, descriptive categories relating to certainty, tendency,

completion, correlate with transition probabilities between scale degrees. Thus, listeners ap-

pear to be sensitive to transition probabilities of scale degrees. The hypothesis that scale de-

gree schemata are acquired using statistical learning, is supported by cross-cultural investigations

(Eerola, 2004).

2.3.2 Rhythm

Concerning the phenomenon of rhythm, an analogous role emerges of expectation based on sta-

tistical learning. Using the method of probe-tones, Jones et al. (2002) request listeners to judge

the intervallic direction of a probe tone relative to a reference tone. Interpolated between the

probe tone and reference tone is a sequence of isochronous ‘distractor’ tones which individually

vary in pitch. Thus, the distractor tones are intended to establish rhythm in the listener. The

authors vary the onset time of the probe tone, observing that listeners most accurately judge in-

tervallic direction when the onset of the probe tone occurs with the beat implied by the distractor

tones. In contrast, a delayed or advanced onset of the probe tone causes rating accuracy to di-

minish. The authors conclude that listeners’ attention is directed by temporal expectancies about

future events which arise during exposure to a rhythmic pattern.

Pertaining to statistical learning in rhythm cognition, Desain et al. (2003) examine the cate-

gories of rhythmic pattern assigned by listeners to three-note patterns. To this end, the authors

vary the inter-onset intervals determining patterns on a continuous scale. The obtained patterns

are exposed to musicians, who are asked to transcribe each pattern individually. Plotting the range

of onset intervals with respect to each category, the authors observe varying inter-onset tolerances

across categories. The authors explain such tolerances by examining the empirical distribution

of rhythmic patterns in a corpus of Western music, observing a correspondence between cate-
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gory size and rate of occurrence. Thus, the mechanism of rhythm categorisation appears to be

informed by pattern probabilities. In particular, frequently occurring rhythmic patterns are asso-

ciated with comparatively large inter-onset tolerances and may absorb rarely occurring patterns,

in terms of listener categorisation. Desain et al. (2003) provide a Bayesian account of rhythmic

familiarity, which implicates statistical learning in the cognition of rhythmic patterns.

2.3.3 Modelling Musical Expectation

Techniques for modelling musical expectation have been proposed from music-theoretical as well

as psychological and engineering domains. As noted by Rohrmeier and Koelsch (2012) we may

view sampling estimates of musical event probabilities as models of musical expectation, since

such statistics may be used to form predictions. As a result, a model of musical expectation is

contained in straightforward scale degree transitions (Piston, 1978), as well as complex statistical

models (Pearce and Wiggins, 2004).

Music-Theoretical Approaches

In the implication-realisation (I-R) model, Narmour (1990) proposes a theory of melodic cog-

nition based on expectation. Narmour’s theory draws on music theory, as well as ideas earlier

proposed by Meyer (1956), who suggests that melodic cognition rests on innate perceptual prin-

ciples of proximity, symmetry and similarity (cf. Schellenberg, 1996). Since Narmour makes

concrete claims based on the score, the I-R model has subsequently been examined in detail as

a model of melodic expectation (Huron, 2006). We summarise key aspects of the I-R model, as

discussed in Schellenberg (1996).

The I-R model defines three processes, namely closure, implication and realisation. Closure

entails the absence of expectation: in the context of two successive notes, closure is attained by

factors including a shorter note followed by a longer note, the second note occurring on a stronger

beat, or the second note conferring harmonic stability. Alternative factors which contribute to

closure are a small interval succeeding a large interval, or changes in pitch direction.

The second process, implication, entails the presence of expectation and arises from the ab-

sence of closure. Based on three-note patterns, Narmour describes implication in terms of prop-

erties of registral direction (intervallic direction), intervallic difference (interval size), registral

return (reverses in intervallic direction) and proximity (preference for small intervals). Based on

exhausive enumeration of two-note patterns in terms of registral direction and intervallic differ-
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ence, the I-R model defines expectations about the following note. The final process, realisation,

describes the effect of fulfilled or violated expectation.

Early Probabilistic Approaches

With a view to characterising the predictability of music, Shannon’s information theory (Shan-

non, 1948) provides a formalism for quantifying predictive uncertainty. As reported by Cohen

(1962), information theory prompted early cross-fertilisation between music theory and psychol-

ogy, specifically using information-theoretic measures computed on discrete-valued representa-

tions of music. Pertaining to music theory and psychology, Cohen identifies three investigation

domains, namely ‘analytic-synthetic’, ‘analytic’, and ‘synthetic’. The analytic-synthetic domain

relates to the construction of statistical models using musical corpora for stylistically-informed

music generation. Thus, we may view the analytic-synthetic approach as an expectation-modelling

process for music composition. We may consider the remaining analytic and synthetic domains

special cases of the analytic-synthetic domain: in synthetic investigations, the statistical model

is presented in ad hoc fashion for music composition. Finally, in analytic investigations the sta-

tistical model is constructed on a corpus of music for musicological purposes. Common to many

such approaches is the assumption of a Markov information source, whereby the conditional

probability P(si|s1:i−1) of the discrete-valued event si given the sequence of preceding events

s1:i−1 = (s1,s2, . . . ,si−1) is equal to the conditional probability under finite context of length k,

P(si|s1:i−1) = P(si|si−k:i−1) (2.2)

where k is the order of the model. Conditional probabilities may be estimated using the empirical

distribution of sub-strings of length k + 1 (n-grams) in a corpus. For example, the respective

conditional probabilities for first-order and second-order Markov models may be estimated using

the empirical distribution of bi-grams and tri-grams.

In an analytic-synthetic investigation, Pinkerton (1956) obtains pitch bi-grams for a sample

of 39 melodies. Using estimated pitch transition probabilities conditioned on metrical positions,

Pinkerton obtains a simplified statistical model by considering the two most likely notes at each

metrical position. Extending Pinkerton’s method of determining first-order transition statistics,

Brooks et al. (1957) obtain transition statistics up to the seventh order using a sample of 37

melodies, with further constraints restricting the set of generated melodies. In the work of Brooks

et al. (1957), the use of n-grams to obtain transition statistics between notes and the assumption
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of a Markov information source is analogous to the approach used in Shannon’s estimate of

information-theoretic entropy in natural language (Shannon, 1951).

We omit further discussion of early synthetic applications, since the employed model is typ-

ically strongly motivated (and thereafter supplemented) by the composer’s aesthetic judgement

(Cohen, 1962); we consider such topics beyond the scope of our discussion. Concerning analytic

applications, Youngblood (1958) examines stylistic differences between Romantic era melodies

and Gregorian chant, by computing first-order pitch transition statistics. In comparison to varia-

tions in entropies among individual Romantic era composers, Youngblood observes substantially

lower entropies for Gregorian chant, with the requirement that both corpora are represented us-

ing a 12-tone scale. One may conclude that measures of musical expectation may be used to

distinguish between musical styles, informal listening tests suggest however that higher-order

statistics are necessary to generate stylistically convincing melodies (Cohen, 1962). As observed

by Cohen, one may interpret entropy as quantifying the listener’s average uncertainty when ex-

posed to a musical stimulus, subject to the caveat that the listener has acquired the statistical

structure of the entire stimulus. Related to Meyer’s notion of the listener’s expectations be-

ing revised as music unfolds in time (Meyer, 1956), Coons and Kraehenbuehl (1958) propose

an ‘information-dynamic’ approach quantifying the listener’s instantaneous predictive success,

based on an evolving model. However, their approach is restricted to synthetic musical patterns

and appears not to have been subsequently implemented.

Connectionist Approaches

As observed by Pearce (2007), the described probabilistic models and information-theoretic mea-

sures fell out of favour with the growth of artificial intelligence and cognitive science in the

1960s and the coinciding decline of behaviourism in psychology. Inspired by biological neu-

ral networks, artificial neural networks (ANNs) abstract the dynamics of biological neurons us-

ing non-linear functions, such that the parameters of such non-linear functions define individual

units. Weighted input signals are supplied to units; outputs may be combined or directed to fur-

ther units, as specified by the network’s architecture. In a supervised learning setting, network

parameters may be optimised using the backpropagation algorithm (Bryson et al., 1963). Two

widely-applied classes of network architecture are feed-forward networks (FFNs) and recurrent

neural networks (RNNs). In FFNs, input signals propagate to output units in an acyclic manner:

input units are connected to hidden units; hidden units are in turn connected to output units. In
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RNNs, the graph of unit connections contains cycles. For a more detailed discussion of ANN

architectures, we refer to Bishop (2007).

Bharucha and Todd (1989) describe an ANN for predicting chords associated with scale

degrees. Their approach is primarily based on a feed-forward architecture, whereby input and

output units each correspond to major and minor chord functions. Given a chord sequence, suc-

cessive chords are mapped to input unit activations; model weights are optimised by considering

the mismatch between the immediately following chord and the network’s output. The network

models context of previously observed chords in the form of individually recurrent input nodes;

weights of such connections are set to an identical constant within the range (0,1), thus imple-

menting a decay of previous observations. Bharucha and Todd expose the network to artificial

chord sequences generated using Piston’s (1978) distribution of scale degree transitions. The au-

thors observe that their network converges to a model of the conditional probability distribution

associated with the chord sequences.

Mozer (1994) proposes an RNN for musical composition based on prediction. Analogous

to Bharucha and Todd (1989), input units represent current musical events in a sequence; output

units generate predicted events. Input and output units represent pitch and duration of notes, in

addition to accompanying chords. In Mozer’s model, hidden units are organised into multiple

layers to enable a distributed representation of pitch, duration and harmonisation. A further layer

of hidden units has recurrent connections as a representation of context as motivated by Bharucha

and Todd (1989), however in Mozer’s architecture recurrent connections are learnt, instead of be-

ing held constant. Based on artificial pitch sequences each on the scale of 10 elements, Mozer

concludes that the architecture is able to learn musical structure at short time scales. Yet, Mozer

observes limited success at predicting longer musical sequences, suggesting that long-range de-

pendencies present a challenge for the model.

To address the challenge of learning long-range dependencies, alternative RNN architectures

have been proposed. Eck and Schmidhuber (2002) apply the long short-term memory (LSTM)

architecture (Hochreiter and Schmidhuber, 1997) for musical improvisation based on prediction;

they consider melodic and harmonic accompaniment based on the 12-bar Blues form. The central

concept in LSTM is the arrangement of units into memory cells capable of retaining an input

signal indefinitely. For each cell, separate inputs pertain to storage, recall, and reset functionality.

Eck and Schmidhuber observe that while long-range dependencies are learnt successfully, the
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absence of variation in training data limits conclusions on the efficacy of their approach.

As reported by Bengio et al. (2013), RNN architectures offer a powerful framework for repre-

senting temporal dependencies, where specifically for the goal of learning long-range dependen-

cies, model optimisation remains an ongoing research area. In a contrasting approach by Cherla

et al. (2013), the use of a restricted Boltzmann machine (RBM) is proposed. Such a model

may be viewed as an FFN where unit interactions represent probabilities. While the model as

proposed does not represent long-range dependencies, it offers the advantage of efficient opti-

misation procedures (Hinton, 2002). Cherla et al. predict pitch sequences by supplying a fixed

amount of context to input units, observing that the RBM competes with state-of-the-art n-gram

approaches proposed by Pearce and Wiggins (2004). Bengio et al. (2013) evaluate a recurrent

variant of RBM for melody prediction, observing encouraging results.

Recent Probabilistic Approaches

The work of Conklin and colleagues demarcates a renewed interest in information theory and

probabilistic approaches for music prediction (Conklin and Cleary, 1988; Conklin and Witten,

1995). A limitation of earlier probabilistic approaches is that pitch and duration are either exam-

ined separately, or a single model of notes is constructed with pitch and duration jointly mapping

to unique symbols. Such a cross-alphabet approach is preferable to the case of separate pitch and

duration models, since it accounts for correlation between attributes. However, cross-alphabets

may lead to inaccurate event probability estimates for objects with many attributes, since the

cross-alphabet size grows exponentially with the number of considered attributes. A similar

combinatorial issue arises for Markov models when increasing the context length: long contexts

may lead to inaccurate estimates of conditional event probabilities, since the set of possible con-

texts grows exponentially with the context length. In both cases, the inaccuracy in probability

estimates arises from sparse empirical distributions, where event probabilities of zero are under-

estimates.

Conklin and Cleary (1988) address the latter limitation by employing prediction by partial

matching (PPM) (Cleary and Witten, 1984), a class of variable-order Markov model (VMM) (cf.

Begleiter et al., 2004). In VMMs, predictions are formed using a set of Markov models with de-

creasing context lengths, where shorter context lengths are used when no observations exist for

a given context. To address the first limitation relating to cross-alphabets, VMMs are estimated

for separate ‘viewpoints’ such as pitch classes, intervals, and durations. To combine viewpoints



2.3. Musical Expectation 34

for prediction, the scheme proposed by Conklin and Witten (1995) involves weighting the proba-

bility distribution associated with each viewpoint according to information-theoretic entropy. In

this manner, uncertain predictions are weighted less favourably than certain predictions. Finally,

a set of viewpoint models is estimated separately for a corpus of musical pieces (the long-term

model, LTM), as well as for the piece of music which is the subject of prediction (the short-term

model, STM). Expanding on the described LTM/STM approach, Pearce and Wiggins (2004) in-

vestigate influences of using VMM variants, as well as methods for estimating and combining the

LTM and STM. Pearce and Wiggins consider the problem of predicting pitch sequences based

on a single viewpoint representation, where they improve on multiple-viewpoint pitch predic-

tion accuracies reported by Conklin and Witten (1995). The LTM/STM approach with multiple

viewpoints is subsequently proposed as a model of listeners’ melodic expectations (Pearce and

Wiggins, 2006; Pearce et al., 2010).

Concerning the prediction of musical harmony, Ponsford et al. (1999) use tri-gram statistics

to estimate chord transition probabilities on a musical corpus; estimated probabilities are then

used to generate chord progressions. Ponsford et al. base their approach on a key-invariant

representation, where chords are represented as lists of scale degrees; major and minor modes

are modelled separately. Based on VMMs and for the purpose of generating harmonisations

with respect to a melody, Whorley et al. (2013) propose a multiple viewpoint system based on

VMM modelling. Whorley et al. propose methods for reducing computational complexity in the

harmonisation problem, including incorporating domain knowledge on melodic ranges.

Assayag et al. (1999) propose an approach for automated musical improvisation based on

cross-alphabets. For the described application, the limitations of cross-alphabets appear to be of

secondary concern, since the improvisation is based on music with few melodic voices; moreover

attaining high predictive accuracy is subsidiary to the goal of novelty in improvisations, which

is evaluated subjectively. Assayag et al. form predictions using an adaptation of the widespread

Lempel-Ziv (LZ) string compressor (Ziv and Lempel, 1977), which may be considered a class

of VMM (cf. Begleiter et al., 2004). In contrast to PPM which specifies an upper bound on

VMM order, LZ specifies no such bound (outside implementation constraints). Thus, Assayag

et al. motivate their choice of LZ compression to better account for long contexts when forming

predictions.
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Information-Theoretic Measures of Predictability

The hitherto-described approaches focus on the use of predictive models: where information

theory is used to quantify predictive uncertainty, investigations are confined to the measures

originally proposed by Shannon (1948) for discrete noiseless systems. Abdallah and Plumbley

(2009) compare related information-theoretic measures of predictability in sequences, as appre-

hended by an evolving probabilistic model. By grouping a sequence of events into a perceptual

past, present and future, the authors propose and contrast measures of instantaneous predictive

success; such measures are based on the notion that the listener forms predictions using the per-

ceptual past and revises the internal model, as events unfold in time. In particular, the authors

propose predictive information, which pertains to the amount of information the present conveys

about the future, given the past. The authors propose average predictive information (the predic-

tive information rate, PIR) as a measure of sequential complexity: the PIR attains maximal value

for sequences which have intermediate statistical regularity on the continuum of uncorrelated

and deterministic sequences. Thus the authors propose PIR as a measure of cognitive interest-

ingness, considering that for sequences with high PIR, observations in the perceptual present

are relatively informative about the perceptual future. Using a first-order Markov model and

based on an analysis of minimalist compositions using monophonic pitch sequences, Abdallah

and Plumbley qualitatively examine instantaneous measures of information for any correspon-

dence with temporal structure in the compositions. As observed, all measures appear to show

some amount of correlation with expert-annotated structural boundaries; notably peaks in the

log-loss (cf. Chapter 3) and predictive information measures coincide with sectional boundaries.

Abdallah and Plumbley note that abstraction and generality are attributes of their information-

theoretic approach: the examined quantities are not restricted to perceptual entities such as notes.

In addition, the authors note that the measures are not restricted to the first-order Markov model

considered in the investigation.

Continuous-Valued Approaches

The preceding models of expectation are strictly applied to score representations of music, where

both pitch and duration are discrete-valued. We refer to such representations as symbolic repre-

sentations; where note durations and onsets are initially continuous-valued, they are subsequently

quantised to obtain discrete-valued representations (Assayag et al., 1999). Pertaining to musical

audio, Large (2000) proposes a model of metre as a continuous-time system of oscillators. In the
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presence of an input signal, oscillators may entrain to a rhythm, resulting in oscillations which

are phase-locked with rhythmic onsets, such that oscillations persist after initial entrainment. Os-

cillations are proposed to embody the perception of metre, implying predictions about successive

rhythmic events; we may thus consider Large’s approach a model of expectation in time. Cont

(2008, p. 121) incorporates an oscillatory model into an audio-to-score alignment system, where

oscillations are used to form anticipatory actions and assist in inferring the current score position.

Hazan (2010, p. 61) proposes a model of expectation for musical audio, which addresses

the problem of learning classes of acoustic events and their rhythmic onsets. Hazan’s model is

based on discrete-valued representations of event onset intervals, sequences of which are learnt

online using a VMM, similar to the STM approach described by Conklin and Witten (1995).

Inter-onset intervals are quantised using an online variant of the K-means clustering algorithm.

As a representation of musical timbre in acoustic events, Mel-frequency cepstral coefficients

(MFCCs, cf. Rabiner and Juang (1993)) are employed, which are assigned to clusters analo-

gously, using online K-means. The number of clusters is optimised using goodness-of-fit criteria

in an initial learning phase, where the system is exposed passively to a musical signal. With a

view to forming predictions, Hazan considers three possible strategies for modelling the result-

ing sequences of quantised inter-onset intervals and timbral clusters. These include independent

models, cross-alphabets, and separate inter-onset models conditioned on timbral clusters. Hazan

performs an evaluation of prediction behaviour, examining the influence of exposure to percus-

sive and melodic musical signals. Exploratory analysis of instantaneous entropy suggests that the

model successfully learns temporal structure in the considered signals, and that predictive uncer-

tainty may be used to infer repetition structure. Empirical analysis demonstrates that the system

successfully predicts percussive events. Analogous approaches by Marchini and Purwins (2010);

Marxer and Purwins (2010) explore the use of online hierarchical clustering techniques. Con-

trasting with the previously described probabilistic approaches, Dubnov et al. (2007) identify

repetition structure in audio by combining feature quantisation with methods for constructing

finite-state automata (Allauzen et al., 1999). Dubnov et al. perform concatenative sound syn-

thesis by randomly traversing learnt automata. Finally, Stark and Plumbley (2012) propose an

approach for real-time musical accompaniment based on sequence alignment of audio features.

This approach requires no quantisation, relying instead on determining similarities between beat-

synchronous feature vectors in Euclidean space.
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Information-Theoretic Approaches at the Sub-symbolic Level

The information-theoretic measures proposed and evaluated by Conklin and Witten (1995); Pearce

and Wiggins (2004); Abdallah and Plumbley (2009) are based on symbolic representations of

music; conceptually, the continuous-valued approaches proposed by Hazan (2010); Marchini

and Purwins (2010); Marxer and Purwins (2010) differ only in the additional use of quantisation

to obtain symbolic representations from audio. Adopting a sub-symbolic approach (i.e. operating

above the musical surface, thus relating to perceptual processes rather than cognitive processes;

cf. Section 2.2.3), Dubnov (2006) proposes ‘anticipation profiles’ which quantify instantaneous,

short-term predictability in audio. Rather than perform transcription and quantify predictability

in symbol sequences, Dubnov attempts to quantify the type of predictability which distinguishes

musical signals at short time scales both from noise and straightforward determinism. To this

end, Dubnov’s information rate (IR) is the reduction in uncertainty about the present obtained

when accounting for the past1. The IR is minimal for signals which are either random or deter-

ministic. Dubnov shows that for stationary Gaussian processes such as white noise autoregressive

processes (cf. Lütkepohl, 2005, p. 4), the IR may be computed as the spectral flatness from the

signal’s power spectrum. To deal with complex audio mixtures, Dubnov sums IR across decor-

related spectral features. Thus computed, Dubnov performs an exploratory analysis of IR for a

natural sound-scape, versus synthetic noise. Computing IR over the entire duration of the signal,

results suggest that IR successfully quantifies temporal regularity. In a subsequent exploratory

analysis involving musical audio, Dubnov obtains instantaneous power spectra by applying a 3

second sliding window to spectral features. Plots of instantaneous IR suggest that the measure

captures information on temporal structure distinct from alternative statistics such as signal en-

ergy. In a study involving contemporary orchestral music, Dubnov et al. (2006) observe that

IR significantly correlates with real-time measures of affective response in listeners. Moreover,

a combination of IR and signal energy yields substantially higher correlation with affective re-

sponse, compared to signal energy alone.

The proposed formulation of IR assumes that signals are stationary, which Dubnov argues is

reasonable for musical signals which are assumed to be locally stationary within the specified 3

second window. Notably, predictability is quantified only with respect to short time scales. Dub-

nov (2008) subsequently estimates instantaneous predictability while modelling non-stationarity

1Dubnov’s IR differs from Abdallah and Plumbley’s PIR (cf. Abdallah and Plumbley, 2009).
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between successive window positions. To this end, Dubnov decomposes IR into a local data-

IR term (as previously defined), in addition to a global model-IR term. The model-IR is esti-

mated by applying quantisation to blocks of features represented by their average, assuming a

first-order Markov model for transitions between quantised features. Exploratory analysis using

piano recordings and using a 5 second window suggests that inspection of separately visualised

data-IR and model-IR may be used to identify interest points in a piece of music: data-IR may

be used to identify repetitive versus irregular melodic patterns, whereas model-IR may be used

to identify novelty versus repetition structure at longer time scales. The analysis of combined

data-IR and model-IR is suggested for future work.

Recently, Abdallah and Plumbley (2013) have extended the discrete-valued treatment of PIR

(Abdallah and Plumbley, 2009) to the continuous-valued case. For PIR, the authors derive ex-

pressions for Gaussian processes, involving power spectra. For the particular case of white noise

autoregressive processes, Abdallah and Plumbley derive straightforward closed-form expres-

sions for the PIR, involving autoregressive coefficients. Abdallah and Plumbley then propose

a Bayesian method for estimating autoregressive parameters in online fashion. Assuming local

stationarity, the approach relies on maintaining a record of past observations with exponential

memory decay. Adopting Dubnov’s approach of decorrelating spectral features, Abdallah and

Plumbley apply their Bayesian approach to a minimalist percussion piece. Based on the evolving

model and maintaining around 12 seconds of past observations, the authors then compute in-

stantaneous measures of predictability, including PIR and IR. Exploratory analysis of individual

information measures suggests that multiple measures convey the presence of structural bound-

aries in the piece of music, mirroring the results reported by Abdallah and Plumbley (2009) for

symbolic representations.

2.3.4 Summary and Conclusions on Musical Expectation

This far, we have discussed the role of expectation in musical pitch and rhythm. We observe that

for both phenomena, expectation plays an important role in the cognition of musical structure.

In particular, cognitive representations of pitch and rhythm involve statistical learning (Huron,

2006). In our discussion of expectation models, we identify two broad categories of approach,

based on statistical and connectionist models, respectively. A successful statistical approach

to quantifying predictive uncertainty involves computing information-theoretic quantities and

assuming a Markov model (Conklin and Witten, 1995; Pearce and Wiggins, 2004). Whereas



2.3. Musical Expectation 39

early methods primarily involve mono-alphabetic representations, more recent methods employ

complex alphabets when dealing with symbolic (i.e. discrete-valued, score-level) representations

of music, or use quantisation when dealing with continuous-valued features.

We seek to establish whether an approach inspired by expectation modelling might be use-

ful in determining similarity in musical audio. This aim is motivated by the observation that

expectation is important in determining musical structure (Wiggins, 2007). Our working hy-

pothesis is that measures of predictability might be used to identify music with similar temporal

structure, where we extend our hypothesis to include sub-symbolic structure. In this view, we

deem sequences musically similar, if they incur similar amounts of predictability. As the con-

ceptual framework in our enquiry, following the described statistical approaches we consider an

information-theoretic approach and evaluate measures of predictability in musical audio.

Concerning our approach, a caveat relates to the observation that the reviewed models of

musical expectation are primarily based on symbolic representations of music. In fact, the do-

main in which the information-theoretic approach has been validated—in behavioural and neuro-

physiological terms—is melody (Pearce and Wiggins, 2006; Pearce et al., 2010); it remains to

investigate the psychological plausibility of this approach for alternative musical phenomena.

Since we consider measures of predictability as a conceptual framework, psychological plau-

sibility is not of primary concern in our investigations. From an engineering perspective, we

note that one possible approach to computing information-theoretic measures involves combin-

ing quantisation with a discrete-valued statistical model (Hazan, 2010). An alternative approach

involves prediction in the continuous domain, as proposed by Abdallah and Plumbley (2013).

A limitation of existing audio-based approaches is that evaluations involving information-

theoretic measures are primarily confined to exploratory analysis (Dubnov, 2006; Hazan, 2010;

Abdallah and Plumbley, 2013). As we ascertain in Section 2.4, few investigations have ap-

plied such approaches in music content analysis. Considering our aim of evaluating information-

theoretic measures of predictability, this thesis seeks to redress the gap in the existing literature.

Concerning the use of information-theoretic measures of predictability, we observe that such

an approach offers the advantage of abstraction and generality (Abdallah and Plumbley, 2009).

Abstraction refers to the notion that the meaning of observations is interchangeable, thus the

approach relates to patterns of observations, rather than the observations themselves. Relat-

ing to our work, abstraction allows us to analyse patterns in both quantised and non-quantised
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continuous-valued sequences, using the same conceptual framework. Secondly, generality refers

to the notion that probabilistic models may be interchanged, while retaining the interpretation

of examined measures. We consider expressiveness a third advantage of the approach, since it

admits a multitude of measures which may potentially be used to quantify predictability.

Concerning potential tasks in music content analysis, we conjecture that an audio-based ap-

proach close to the musical surface might prove successful, providing we can obtain a relevant

discrete-valued representation from the audio signal. One task which operates close to the mu-

sical surface is version identification (cf. Serrà, 2011), where chroma features (Fujishima, 1999;

Bartsch and Wakefield, 2001) have been frequently used as a representation of harmonic con-

tent in music, and where similarity is typically determined by comparing between audio tracks

sequences of chroma features. For version identification, an information-theoretic approach of-

fers the potential for contrasting discrete-valued and continuous-valued measures of pairwise

predictability hitherto not considered, and for evaluating their behaviour as similarity measures.

With a view to such an evaluation in Chapter 4, we review work on version identification in

Section 2.4.2.

Concerning sub-symbolic measures of predictability, we identify a potential use in low-

specificity similarity tasks such as genre classification (cf. Fu et al., 2011b), which use summary

statistics computed in track-wise manner from sequences of audio features. Since predictability

measures account for temporal structure, they might serve to complement alternative summary

statistics where temporal structure is discarded. The track-wise approach differs from the pair-

wise approach suggested above, in that we consider the obtained measures of predictability our

elements of comparison, thus we compare tracks in terms of their individual measures of pre-

dictability. We note that the track-wise approach is not restricted to the sub-symbolic level, thus

we might attempt to quantify predictability close to the musical surface. On the other hand, we

note that existing statistics for low-specificity similarity attempt to capture information at the

sub-symbolic level (Fu et al., 2011b), suggesting that a sub-symbolic approach is more likely

to be successful. We review work on low-specificity similarity tasks in Section 2.4.3, before

providing an account of our work in Chapter 5.
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2.4 Music Similarity Computing

2.4.1 Audio Features

In music content analysis, methods for characterising musical similarity are principally based

on obtaining sequences of features from audio, with such features obtained from time-frequency

representations. As discussed by Fu et al. (2011b), one possible feature taxonomy distinguishes

between low-level and mid-level features. Low-level features are obtained by applying spectral

analysis to frames on the scale of 10ms–100ms, thereafter statistics may be computed which

characterise the magnitude spectrum at the same time scale. Low-level features have been used

as a representation of musical timbre, above the musical surface. Mid-level features in contrast

are based on longer time scales, and aim to represent phenomena close to the musical surface,

such as rhythm and harmony. Meanwhile, mid-level features may be considered an alternative to

symbolic features, the latter which are more challenging to obtain (Marolt, 2008).

Tzanetakis and Cook (2002) have proposed the use of MFCCs as a representation of musical

timbre for genre classification. In MFCCs, log-transformed magnitude spectra obtained using

the discrete short-time Fourier transform (STFT) are divided into sub-bands and weighted. The

spacing of sub-bands is linear at low frequencies, and logarithmic at high frequencies, based on

a perceptually motivated scale. After dividing and weighting magnitude spectra, the resulting

signal is cosine-transformed to obtain MFCCs. For speech and music, we may consider the

cosine-transformation a decorrelation step which approximates principal components analysis

(PCA), thus the resulting coefficients in ascending order explain a decreasing amount of variance

in the log-transformed magnitude spectrum (cf. Logan, 2000). The use of 13 MFCCs is typical

in music content analysis (Lartillot and Toiviainen, 2007).

Alternative low-level features are based on computing scalar-valued statistics on frame-wise

estimates of magnitude spectra (Tzanetakis and Cook, 2002). For example, the spectral centroid

may be defined as a weighted average of the magnitude spectrum, the spectral flux may be defined

as the sum of squared errors between successive magnitude spectra, and the spectral rolloff may

be defined as a specified percentile of the magnitude spectrum. Finally, it should be noted that

spectral analysis is not confined to approaches based on the STFT, for example Li and Ogihara

(2006) propose features based on the discrete wavelet transform.

A mid-level feature, chroma features (Fujishima, 1999; Bartsch and Wakefield, 2001) have

been proposed as a representation of harmonic content. Chroma features quantify energy dis-
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tributions across octave-folded bands, using the 12 pitch classes in the chromatic scale to map

frequency bands to discrete chroma bins. A variety of approaches for computing chroma have

been proposed: Fujishima (1999) computes an STFT and for each frame sums spectral ener-

gies in octave-folded frequency bands, to obtain 12-component features. Bartsch and Wakefield

(2001) propose a similar approach, but instead of using a constant frame-rate the authors ap-

ply beat tracking (Dixon, 2000) and obtain beat-synchronous features. Both approaches assume

an equal-tempered scale with respect to a fixed pitch reference. In contrast, Gómez and Herrera

(2006); Ellis and Poliner (2007) account for deviations from the pitch reference, by initially using

36 octave-folded frequency bands, and by heuristically shifting frequency bands, respectively.

In addition to computing beat-synchronous features, there exist mid-level features which at-

tempt to describe rhythmic content exclusively. Given an audio signal, Tzanetakis and Cook

(2002) detect periodicities by selecting peaks in the sample autocorrelation of the audio signal

envelope. Another approach consists in determining individual musical onsets and clustering ob-

tained onset intervals (Dixon, 2001). Such methods may be used to obtain global or instantaneous

tempo estimates, by using further heuristics (cf. Müller et al., 2011).

2.4.2 Version Identification

Version identification systems commonly assume that sequential pitch content is preserved among

versions of the same piece of music (Serrà, 2011). Owing to this assumption, version identifi-

cation relies on predominant melody extraction to represent melodic content, or extraction of

chroma features to represent harmonic content. Shown in Figure 2.2, feature extraction may

be followed by additional processing to obtain a summary feature representation. Additional

processing stages aim to adjust for any variation in musical key or tempo between versions.

Pairwise sequence matching is then applied, which results in a measure of pairwise similarity

between tracks. We discuss each of the stages separately, in similar spirit to Serrà (2011). Our

discussion differs in that we focus on methods for pairwise sequence matching and computing

pairwise similarity, the subject of our own work.

Note from Figure 2.2 that obtained pairwise similarities are typically used to quantify re-

trieval performance, using a suitable statistic. Thus we may view Figure 2.2 as a variant of

Figure 1.1 omitting model estimation and including additional steps, in place of straightforward

feature extraction and obtaining a track-wise representation.
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Figure 2.2: Stages involved in a typical version identification system.

Feature Extraction and Summarisation

In an approach based on predominant melody extraction, Tsai et al. (2005) assume that solo vo-

cal content in popular music contains melodic material relevant to identifying cover versions of a

song. Following this assumption, the authors segment audio into vocal and non-vocal regions, us-

ing a classifier based on MFCCs. Non-vocal regions longer than two seconds are then discarded.

To perform predominant melody extraction, Tsai et al. apply the STFT and perform spectral peak

picking, where the approach sums energies across harmonics to improve the robustness of funda-

mental frequency estimation. Successively repeating pitch candidates are discarded, since such

notes are likely to have been produced by instrumental accompaniment. Additional heuristics

constrain the range of admissible durations and pitches.

Marolt (2008) describes a mid-level approach where features encode multiple salient melodic

lines, rather than the predominant melody. The approach derives from Klapuri (2006), whereby

acoustic modelling is first applied to remove noise content in the signal. In a two-stage pro-

cess, a set of pitch candidates is then formed using spectral peak picking, which results in a

set of melodic lines where each pitch has an associated salience value. To obtain the mid-level
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representation, melodic lines are then pruned by applying a threshold to average salience values.

Since reliable melody extraction presents a challenge in complex audio mixtures, most re-

cent version identification systems rely on mid-level representations, notably chroma-based rep-

resentations of harmonic content. We may distinguish between approaches which retain the

continuous-valued representation of chroma for pairwise similarities, and those which use quan-

tised chroma features. Concerning quantisation-based methods, Casey and Slaney (2006) pro-

pose an approach based on the K-means clustering algorithm. Here, the codebook is estimated

using training data, with codebook sizes in the range [8 ..64]. An alternative, unsupervised ap-

proach consists of applying a threshold to each chroma vector, which results in a set of 212 pos-

sible symbols for 12-dimensional chroma features (Tabus et al., 2012). A caveat against using

the latter approach is that the codebook is comparatively large and may contain redundant code-

words; an alternative approach uses musical knowledge to define a set of 793 chroma codewords

(Kurth and Müller, 2008). We may consider chord recognition a particular case of quantisation,

where the set of symbols is relatively small and musically motivated. Lee (2006) performs chord

recognition using a 36-state hidden Markov model (HMM), trained on labelled chord sequences.

States are defined for three possible chord types (major, minor, diminished), for each of 12 pos-

sible root notes. Bello (2007) and Ahonen (2009) propose a similar approach using 24-state and

12-state HMMs, respectively based on two chord types (major, minor) and a single chord type

(‘indeterminate mode’). An alternative approach relies on matching chroma vectors with binary

templates (Martin et al., 2012; Khadkevich and Omologo, 2013).

Tempo Invariance

To deal with tempo variation between renditions of a piece of music, beat-synchronous features

have been widely applied (Bello, 2007; Ellis and Poliner, 2007; Serrà et al., 2008; Bello, 2011;

Bertin-Mahieux and Ellis, 2011, 2012; Khadkevich and Omologo, 2013). On the one hand, this

approach presents a potential caveat: Bello (2007); Serrà et al. (2008) attribute reduced perfor-

mance to unreliable beat tracking. On the other hand, the approach potentially yields features

which are insensitive to both local and global tempo changes. In addition, beat-synchronous

representations may yield shorter sequences compared to frame-based representations, thus re-

ducing the computational cost of pairwise sequence matching. An alternative approach consists

of re-sampling the chroma sequence to a lower frame-rate (Serrà et al., 2008; Bello, 2011); how-

ever in contrast to beat-synchronous features this approach is unable to adjust for local tempo
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variation. A further method which aims at tempo-insensitivity involves interpreting the chroma

sequence as a two-dimensional signal: Jensen et al. (2008) compute the two-dimensional sample

autocorrelation; tempo-insensitivity is subsequently obtained by computing a weighted sum of

autocorrelations across time lags, with weights defined by exponentially distributed bands.

Key Invariance

The concept of musical key is relevant in cover song identification, since cover versions of a

song may involve chromatic transposition, i.e. the shifting of pitch by a specified interval. Since

pitch class is a modulo 12 representation of chromatic pitch, transposing a set of pitches implies

applying a circular shift to associated pitch classes. Given two chroma feature sequences, one ap-

proach for handling transposition relies on repeated pairwise sequence matching, by considering

all 12 possible circular shifts of chroma feature components and minimising the similarity mea-

sure (Ellis and Poliner, 2007; Kurth and Müller, 2008; Marolt, 2008). With a view to reducing

computational cost, the required number of circular shifts may be determined using summarised

chroma sequences: Serrà et al. (2008) proposes the optimal transposition index (OTI), based

on averaging both chroma sequences across time, before computing the inner product between

the resulting chroma vectors. The inner product is then optimised with respect to rotations of the

query features. An alternative approach relies on key estimation, as proposed by Gómez and Her-

rera (2006); this approach is however observed to be less robust compared to the OTI (Serrà et al.,

2008). Bello (2007) proposes a similar approach to the OTI, using normalised chord histograms.

Finally, (Marolt, 2008; Bertin-Mahieux and Ellis, 2012) compute two-dimensional power spec-

tra, which have the property of shift-invariance. Applied to chroma features, the resulting power

spectra are therefore key-invariant.

Pairwise Sequence Matching

A variety of version identification approaches are based on computing pairwise alignments be-

tween continuous-valued chroma sequences. Following Foote’s (2000) method of applying dy-

namic time warping (DTW, cf. Sakoe and Chiba, 1978) to spectral energy features, Gómez and

Herrera (2006) apply DTW to chroma features. Given two feature sequences, DTW is based on

computing a similarity matrix between feature sequences, where each entry records the similarity

between two feature vectors respectively from each sequence, using a specified distance function

such as the Euclidean distance. The similarity matrix is used to compute an optimal, cumulative

similarity score between both sequences, by specifying additional costs for inserting or deleting
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feature vectors from one of the sequences. The associated set of insertions and deletions defines

a global alignment between the two sequences. Computed using frame-based feature representa-

tions, DTW is thus able to account for tempo variation between musical renditions by inserting

or deleting feature vectors, without resorting to beat-synchronous features. Serrà et al. (2008)

evaluate the performance of alignment techniques based on DTW, which place additional global

or local constraints on admissible insertions and deletions. Whereas global constraints relate to

the total number of permitted insertions and deletions, local constraints relate to the amount of

permitted time dilation and compression. A further notable difference to Foote (2000); Gómez

and Herrera (2006) is the use of binarised similarity matrices, obtained by thresholding pairwise

distances between feature vectors. In addition, the authors propose a local alignment technique

based on the Smith-Waterman algorithm (Smith and Waterman, 1981), which incorporates local

alignment constraints. Given a query sequence and a comparison sequence, local alignment de-

termines the optimal set of insertions and deletions from the query, with respect to all possible

contiguous sub-sequences of the query and comparison sequence. In this manner, local align-

ment is able to account for structural changes between musical renditions, such as omitted verses

in cover songs.

Subsequent investigations by Serrà et al. (2009) extend the notion of similarity matrices used

for sequence alignment in the preceding investigations, in that time-lagged chroma vectors are

combined to form higher-dimensional temporal features, using the process of time delay em-

bedding (Takens, 1981). In this way, each resulting vector captures information on temporal

structure, analogous to n-grams formed from a sequence of symbols (cf. Section 2.3.3). By

thresholding pairwise distances between time delay embedded vectors, Serrà et al. (2009) obtain

recurrence plots. Similarity between query and comparison chroma sequences is subsequently

quantified using statistics of diagonal paths in the associated recurrence plots. Local or global

tempo variation is accounted for, by allowing paths to vary in curvature or angle, respectively.

In an alternative approach, Serrà et al. (2012) propose to use a measure of pairwise pre-

dictability between frame-based feature sequences as a means of quantifying similarity. The

authors apply non-linear prediction techniques to time delay embedded features. Given a query

and a comparison sequence, the approach relies on estimating a predictive model with respect to

the comparison sequence. The estimated model is then used to obtain a sequence of predictions

about successive elements in the query sequence; this sequence of predictions is thereafter com-
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Figure 2.3: Cross-prediction. Sequence y1:M = (y1, . . . ,yM) serves as model input, the observa-

tion context x1:n thereafter forms basis of prediction x̃n+1. Quantity εεεn+1 denotes the prediction

error.

pared to actual elements in the query sequence, using an error statistic. Figure 2.3 illustrates the

described approach schematically, which Serrà et al. term cross-prediction. The use of cross-

prediction for version identification is based on the intuition that a similar comparison sequence

is a feature sequence whose model facilitates accurate prediction of the query sequence.

Using signal processing techniques, Ellis and Poliner (2007) apply two-dimensional cross-

correlation as a measure of similarity between beat-synchronous chroma sequences. Specifi-

cally, the authors determine similarity by applying peak-picking to sample cross-correlations

normalised with respect to the shorter of the two sequences; in this manner obtained correlation

values fall within the unit interval. A caveat exists in that strong correlations may arise from

a single chroma component across a large range of lags, where in contrast matching chroma

sequences typically yield strong correlations across multiple chroma components, for specific

lags. Owing to the latter observation, the authors seek to identify maxima with sharp peaks

by high-pass filtering the sample cross-correlation. A further approach using signal process-

ing techniques is proposed by Jensen et al. (2008). As previously described, the approach uses

two-dimensional sample autocorrelations of chroma sequences to obtain tempo-invariant repre-

sentations. Similarly, (Bertin-Mahieux and Ellis, 2012) compute two-dimensional power spectra

to obtain key-invariant chroma representations. In both cases, transformed feature sequences are

subsequently compared using the squared Euclidean distance.

The hitherto-described pairwise sequence matching techniques are applied to continuous-

valued features. Based on a discrete-valued feature representation, a number of approaches apply

sequence alignment techniques analogous to those described previously: Tsai et al. (2005); Lee

(2006); Bello (2007) perform global alignment; for the considered discrete-valued approaches,

the distance function previously described for DTW instead specifies the cost of symbol substitu-

tion, instead of the distance between feature vectors. Casey and Slaney (2006); Khadkevich and
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Omologo (2013) apply the string edit distance, which we may consider a particular case of DTW,

where symbol substitutions incur unit cost. Martin et al. (2012) instead perform local alignment,

using a computationally efficient heuristic approach (Altschul et al., 1990).

Another discrete-valued approach relies on the normalised compression distance (NCD) (Li

et al., 2004) to quantify similarity. We discuss the NCD in detail, in chapters 3 and 4. Given two

strings x, y, the NCD is defined as

NCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)}
(2.3)

where C(·) denotes the number of bits required to encode a given string, using a specified string

compressor. Moreover, C(xy) denotes the number of bits required to encode the concatenation

of strings x, y. The NCD is based on the intuition that for similar strings of equal length, the

value of C(xy) approximates both C(x),C(y), whereas for dissimilar strings of equal length, we

have C(xy)�max{C(x),C(y)}. For typical compression algorithms, Equation 2.3 yields values

approximately within the unit interval (Li et al., 2004).

Ahonen computes the NCD between quantised feature sequences for version identification

(Ahonen, 2009, 2010, 2012). The approach draws on earlier work which applies the NCD to

symbolic representations of music (Li and Sleep, 2004; Cilibrasi and Vitányi, 2005; Ahonen

et al., 2011), and to quantised audio features (Li and Sleep, 2005) for genre classification. Using

chord identification to quantise chroma features, Ahonen (2009) evaluates the effect of inter-

changing compressors on version identification accuracy; the comparison includes PPM (Cleary

and Witten, 1984), Burrows-Wheeler (BW) compression (Burrows and Wheeler, 1994) and LZ

compression (Ziv and Lempel, 1977). Ahonen (2010) proposes to average NCDs computed us-

ing multiple discrete-valued representations, with PPM used for string compression. Ahonen

(2012) proposes chroma-derived representations which are then quantised and compressed using

BW compression. Tabus et al. (2012) propose a similar approach to Ahonen based on quantis-

ing chroma-derived representations, using an alternative compression-based similarity measure

to the NCD.

In a contrasting approach, Bello (2011) computes recurrence plots obtained for individual

chroma sequences in track-wise manner, rather than pairs of chroma sequences as proposed by

Serrà et al. (2009). Such self-recurrence plots are then compared using the NCD, which Bello

proposes as a measure of structural similarity between two pieces of music. Finally, Silva et al.

(2013) propose related measures of structural similarity by applying video compression to recur-
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rence plots, using an alternative compression-based measure to the NCD.

Large-Scale Version Identification

A number of recent investigations are concerned with the potential use of version identification

for large-scale music collections containing millions of tracks. For such collections, it may be

infeasible to perform computationally expensive comparisons involving every track in the col-

lection, given a query. An example for a comparatively expensive algorithm is alignment based

on DTW, which for a single pairwise comparison involving feature sequences with respective

lengths N,M has O(NM) time complexity2.

Kurth and Müller (2008) propose an approach based on an inverted file index (cf. Clausen

and Kurth, 2004). Given a codebook and a collection of quantised feature sequences, this data

structure maps each codeword to the set of sequences in which the codeword occurs. Given

a query sequence, the inverted file index is used to map query codewords to sets of candidate

sequences. Retrieval is subsequently performed by intersecting sets of candidate sequences,

an operation which may be performed computationally efficiently using sorted lists (Clausen

and Kurth, 2004). Kurth and Müller subsequently propose a fuzzy matching scheme, which

permits the retrieval of candidate sequences with mismatching symbols. The authors examine

a scenario in which an indexing stage is performed offline, prior to a query and retrieval stage,

which is performed online. The authors propose a filter-and-refine approach (cf. Schnitzer et al.,

2009), whereby a more computationally expensive matching is subsequently applied to the set of

retrieved items in the collection.

Alternative large-scale approaches relate to locality-sensitive hashing (LSH), (cf. Slaney and

Casey, 2008). The central concept in LSH is a projection operator which reduces the dimension-

ality of a feature space. Given two feature vectors and a similarity measure, a suitable projection

operator maps the feature vectors to lower-dimensional vectors, such that the similarity between

low-dimensional vectors approximates the similarity between the original feature vectors. Next

to the projection operator, a hash function maps the low-dimensional subspace to a set of hash

values. Thus, LSH aims to ensure that two similar feature vectors map to the same hash value

with high probability. The hash function allows a set of feature vectors to be stored in a lookup

table indexed by hash values. Similar entries in the lookup table are subsequently identified by

obtaining the hash value for a query feature vector, an operation which may be performed in O(1)

2Whereas DTW as originally proposed by Sakoe and Chiba (1978) is relatively computationally ex-
pensive, we note that there exist computationally efficient variants, cf. Rakthanmanon et al. (2012).
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time (Slaney and Casey, 2008).

Casey et al. (2008a) propose version identification as nearest-neighbour retrieval using a

similarity threshold. Given a query and a comparison track, two sets of fixed-length chroma

fragments are obtained by windowing track-wise chroma sequences. Pairwise similarity is then

quantified as the number of fragments in the query track for which there exists a proximate

fragment in the comparison track. The authors define proximity in terms of Euclidean distance

falling below a specified threshold. Importantly, the approach of using the Euclidean distance

allows LSH to be employed, as subsequently investigated by Rhodes et al. (2010). Specifically,

Rhodes et al. consider the approach of random projections, in which a set of inner products is

computed between a feature vector and points drawn from a multivariate Gaussian distribution.

The number of computed inner products determines the dimensionality of the feature subspace

after projection; hashing is subsequently achieved by quantising the subspace. Marolt (2008)

considers a similar LSH approach for estimating cosine distances; this approach relies on com-

puting the sign of inner products between feature vectors and random points. In both cases, the

feature vectors in question are vectorised fragments of audio feature sequences.

More recently, Khadkevich and Omologo (2013) propose a filter-and-refine approach for

version identification, based on LSH. Here, each track is represented as a distribution of chords,

with chord distributions compared using the L1 distance. The authors use LSH to obtain a set of

nearest neighbours with respect to a query; this set of nearest neighbours is subsequently ranked

using the edit distance. In an alternative hashing approach, Bertin-Mahieux and Ellis (2011)

binarise and window chroma sequences using an adaptive thresholding technique. Each fragment

is subsequently mapped to a hash value, based on an encoding of chroma peak locations. Finally,

Martin et al. (2012) match chord sequences using heuristic local alignment (Altschul et al., 1990).

Here, in an initial step, n-grams obtained for a query sequence are compared to n-grams obtained

for all sequences in a collection. By locating matching n-grams in the collection, the algorithm

identifies short sequences with exact matches, which form seeding points for subsequent local

alignment. In this manner, the set of sequences considered for local alignment is constrained.

Discussion

In the preceding, we have reviewed existing approaches to version identification. With particular

attention to methods for pairwise sequence matching, we may distinguish between methods based

on strings, which contrast with methods based on sequences of continuous-valued audio features.
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We note a number of discrete-valued approaches which are based on the NCD. On the one

hand, this approach is straightforward to compute: subject to the compression algorithm em-

ployed, the approach may be considered parameter-free (Li et al., 2004; Sculley and Brodley,

2006). It thus contrasts with DTW, which requires a cost function to be defined, in addition to

a distance measure. In addition, DTW has time complexity O(NM) with respect to sequence

lengths N,M. In contrast, string compression may be performed in linear time with respect to

sequence lengths, thus following Equation 2.3 pairwise string comparison has time complexity

O(N +M).

We note that the NCD may be considered an information-theoretic measure, if we consider

the associated string compression from an information-theoretic perspective (cf. Begleiter et al.,

2004). As we review in Chapter 3, NCD is motivated as an approximation of an uncomputable,

optimal similarity measure (Li et al., 2004), which we may consider a measure of pairwise pre-

dictability between sequences. Although we may conceive of related measures of similarity

(Tabus et al., 2012; Silva et al., 2013), to date no detailed comparison of related methods has

been performed. As outlined in Section 2.3.4, we use our information-theoretic framework to

perform such an investigation.

With regard to discrete-valued approaches, Serrà (2011, p. 28) observes that while quantisa-

tion yields efficient representations of pitch, its effect on version retrieval accuracy remains to

be explored in detail. Particular to the NCD, we note that existing evaluations are predominantly

based on datasets of the scale of 102 tracks (Ahonen, 2009, 2010, 2012) or 103 tracks (Bello,

2011; Silva et al., 2013). To date, no large-scale evaluation has been performed. We motivate

such an investigation to establish the accuracy of NCD and related discrete-valued approaches

for version identification.

We note that our proposed approach of quantifying predictive uncertainty resembles the work

of Serrà et al. (2012), who determine similarity by computing the cross-prediction error between

feature sequences. Our proposed approach differs in that we aim to evaluate alternative measures

to the mean squared error statistic considered in the described work. Serrà et al. consider the role

of predictive models. Further, in our own investigation into methods for determining similarity

from obtained predictions, we contrast discrete-valued and continuous-valued approaches.
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Figure 2.4: Stages involved in a typical system for determining low-specificity similarity. The

system incorporates a classifier which is subsequently used to classify tracks. Dashed lines indi-

cate stages for an alternative query-by-example system.

2.4.3 Low-Specificity Similarity

In contrast to version identification, among low-specificity tasks (such as genre classification,

artist identification and mood classification) Fu et al. (2011b) observe that a variety of low-

level and mid-level features have been considered. Figure 2.4 illustrates the stages involved in

a typical system for determining low-specificity similarity. We view Figure 2.4 as a variant of

Figure 1.1 with an additional step of obtaining an intermediate feature representation following

feature extraction. Similar to version identification, based on sequences of low-level or mid-level

features, a number of techniques exist for summarising features, which results in the intermediate

representation. Thereafter, obtained sequences may be converted to a track-wise representation

in a further step. Finally, the obtained representations may be used for classification; alternatively

distances computed between track-wise representations may be used for model estimation and

prediction. We base our discussion of the previously described stages on Fu et al. (2011b).
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Feature Extraction and Intermediate Representation

Using low-level features, the motivation behind track-wise feature summarisation is to obtain a

representation of timbral content which facilitates subsequent application of a similarity model.

As described in Section 2.4.1, as low-level features Tzanetakis and Cook (2002) propose the

use of MFCCs for genre classification. Such features have been widely adopted; the major-

ity of investigations which we discuss in the following are based on MFCCs. Related features

based on weighted magnitude spectra are applied by West et al. (2006); Slaney et al. (2008);

Dieleman et al. (2011); Coviello et al. (2012); Dieleman and Schrauwen (2013). Alternative

features include scalar-valued statistics obtained from frame-wise magnitude spectra (Tzanetakis

and Cook, 2002; Mörchen et al., 2006; Lee et al., 2009). As an alternative to spectral analysis

using the STFT, wavelet analysis has also been considered (Li and Ogihara, 2006).

Having obtained a sequence of features for a given track, a straightforward method for ob-

taining a track-wise feature summary involves computing statistical moments across the entire

sequence (Mandel and Ellis, 2005). Chiefly, we may characterise methods based on whether

the temporal order of features is discarded or retained (Casey et al., 2008b). The former so-

called ‘bag-of-features’ approach involves estimating distributions of individual observations in

a feature sequence (Logan and Salomon, 2001; Aucouturier and Pachet, 2002; Berenzweig et al.,

2004; Mandel and Ellis, 2005; Aucouturier et al., 2007; Helén and Virtanen, 2010; Fu et al.,

2011a).

The relative convenience of bag-of-features approaches stands in contrast to the importance

of temporal structure in perception of musical timbre observed by McAdams et al. (1995). In their

study, based on synthesised monophonic instrument sounds the authors perform an exploratory

analysis of acoustic correlates of human judgements of timbral similarity. Notably, the authors

observe that similarity judgements are explained by log-attack time and spectral flux. Log-attack

time quantifies the duration between the onset of a tone and its maximum amplitude. As pre-

viously described in Section 2.4.1, spectral flux quantifies changes in magnitude spectrum. On

the basis of McAdams et al. (1995), we note that while a bag-of-features approach using such

features potentially describes the overall timbral quality in a piece of music, it may fail to capture

temporal structure relevant for determining similarity.

Aucouturier et al. (2007) argue that the bag-of-features approach is insufficient to model

polyphonic music for determining similarity. Aucouturier et al. evaluate classification accuracy
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based on a bag-of-features approach using MFCCs. The collection consists of 350 popular music

tracks associated with 37 distinct artists, with tracks selected to maintain timbral homogeneity

both within individual tracks and within individual artists. The authors examine the effect of arti-

ficially increasing temporal homogeneity in feature sequences, an operation which is performed

by constructing audio tracks from random extracts, using a specified extract length and before

performing feature extraction. Compared to a baseline classifier using untransformed audio, Au-

couturier et al. observe reductions in classification accuracy, as temporal homogeneity increases.

As a possible explanation for the reduction in accuracy, the authors posit that the distribution of

frames in polyphonic music varies, depending on the considered time scale: Compared to record-

ings of urban sound-scapes, it is suggested that the distribution of frames in polyphonic music

exhibits relatively low amounts of statistical self-similarity. The approach of summarising across

the entire set of frames therefore appears insufficient.

One possible approach to mitigating the shortcomings of the bag-of-features approach in-

volves the intermediate step of aggregating features locally, before summarising anew using ob-

tained summary statistics. Tzanetakis and Cook (2002) propose the use of a texture window,

which captures the local mean and variance of features contained in a 1s window. For the task of

predicting musical similarity, Seyerlehner et al. (2010) consider a related approach which uses

additional summary statistics. Among statistics, at each window position the authors compute

first-order differences and pairwise correlations between feature vectors; the authors consider

window sizes in the range of approximately [0.2s,6.0s]. Hamel et al. (2011) consider higher-

order moments in addition to maximum and minimum feature values, with evaluated window

sizes in the range of approximately [1.5s,20s]; a window size of 2.3s is observed to be optimal.

A similar window size maximises genre classification performance, as observed by Wülfing and

Riedmiller (2012). Note that the approach of computing feature differences may also be per-

formed in track-wise manner before windowing, thus a sequence of low-level derivative features

is obtained (Mörchen et al., 2006).

An alternative approach characterises the temporal order of features at each window posi-

tion, by applying spectral analysis. Pampalk (2006, p. 37) proposes fluctuation patterns, which

are based on applying a 3s window to frames representing weighted magnitude spectra. For each

frequency band and for each window position, Pampalk determines low-frequency modulation

of the aforementioned magnitude spectra, with modulation frequencies in the range [0Hz,10Hz].
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Based on perceptual considerations, modulation frequencies are subsequently weighted. Thus,

a higher-level feature is obtained, where at each window position the dimensions are frequency

bands and modulation frequencies. It should be noted that an analogous procedure may be ap-

plied to alternative features, such as MFCCs (Pampalk, 2006). Lee et al. (2009) propose further

techniques based on modulation spectral analysis of MFCCs and using a window size of approx-

imately 6s.

A further alternative involves estimating a time series model at each window position. With

the goal of modelling local temporal structure in MFCCs, Meng et al. (2007) apply a multivari-

ate autoregressive (MAR) model for genre classification. In this model, each feature vector is

assumed to be a linear combination of immediately preceding feature vectors, plus a multivariate

Gaussian error. The number of preceding feature vectors determines the model’s order. Chiefly,

an MAR model accounts both for temporal correlation among feature vectors, in addition to cor-

relation among feature vector components. Meng et al. estimate MAR models using window

sizes in the range of [1.2s,2.2s]. Coviello et al. (2012) propose an alternative approach based on

local MAR models for semantic tag classification of songs.

The preceding discussion concerns the use of low-level features for characterising musical

timbre. Among mid-level features, those related to musical rhythm have been applied in genre

classification and mood identification. Note that some of the previously described methods char-

acterised as low-level also potentially capture rhythmic content, without the subsequent step of

tempo estimation (Pampalk, 2006; Seyerlehner et al., 2010). The method proposed by Tzane-

takis and Cook (2002) first decomposes an audio signal into frequency bands each with octave

bandwidth. For each band, time-domain envelopes are then computed and summed together,

before using the sample autocorrelation to detect periodicities in the resulting signal histogram

of autocorrelation peaks. This approach has been subsequently applied for the purpose of mood

identification (Li and Ogihara, 2006; Yang et al., 2008), in addition to further genre classifica-

tion approaches (Li and Sleep, 2005; Li and Ogihara, 2006). For the problem of dance rhythm

classification, Gouyon et al. (2004) evaluate an extensive set of rhythmic features based on both

tempo estimation and periodicity histogram statistics.

Compared to rhythmic features, harmonic features have been applied less widely. Similar

to the method for detecting rhythmic periodicities, Tzanetakis and Cook (2002) decompose the

audio signal into two frequency bands, before summing time-domain envelopes and computing
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the sample autocorrelation. Peak-picking is then applied to the sample autocorrelation, before

mapping peaks to pitches, assuming an equal-tempered scale. Tzanetakis and Cook (2002) fur-

ther fold pitches in a manner similar to a chromagram. A track-wise summary of tonal content is

then formed on the basis of folded pitch histograms. In an investigation using beat-synchronous

chroma features, Ellis (2007) combines track-wise chroma averages with MFCC feature averages

for artist classification.

We note that both low-level and mid-level feature sequences may be quantised before be-

ing processed further. A straightforward approach involves vector quantisation using a specified

codebook: Foote (1997) applies tree-based quantisation to sequences of MFCCs, whereas Li

and Sleep (2005); Reed and Lee (2009); Ren and Jang (2012) use the K-means clustering algo-

rithm for quantisation. Based on the K-means clustering approach, Fu et al. (2011a) extensively

evaluate the effect of codebook generation strategies for genre and artist classification. Alterna-

tive approaches include hierarchical clustering (Langlois and Marques, 2009) and self-organising

maps (Levy and Sandler, 2006). Finally, we may consider chord identification a further approach

to quantisation. Using such an approach, Anglade et al. (2010) use chroma features to infer chord

sequences.

Track-Wise Feature Representation

As previously mentioned, to obtain a track-wise representation of a feature sequence we may

adopt a bag-of-features approach and assume that observations in the entire sequence are inde-

pendent and identically distributed. For such an approach, we distinguish methods which rely on

continuous-valued sequences from those which rely on strings.

Among continuous-valued approaches, a straightforward approach of summarising a se-

quence involves computing the component-wise mean and variance, as proposed by Tzanetakis

and Cook (2002); Levy and Sandler (2006); Lee et al. (2009). To quantify correlation between

components, the covariance may be computed (Mandel and Ellis, 2005). We may interpret both

approaches as estimating the parameters of a multivariate Gaussian distribution. Alternatively,

a Gaussian mixture model (GMM) may be estimated; the sequence is thus parametrised by a

number of multivariate Gaussians, in addition to a weighting vector. In a GMM, the probability

density of an observation is the weighted combination of probability densities associated with

each estimated Gaussian. Aucouturier and Pachet (2002); Tzanetakis and Cook (2002) propose

a 3-component model, whereas Mandel and Ellis (2005) estimate 20 components. In contrast
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to the single Gaussian model which may be estimated using descriptive statistics, estimating

a GMM requires iterative algorithms such as K-means clustering (cf. Berenzweig et al., 2004)

and Expectation-Maximisation (cf. Helén and Virtanen, 2010). We note that besides comput-

ing the component-wise mean and variance, a number of alternative summary statistics may be

computed: Mörchen et al. (2006); Seyerlehner et al. (2010) compute higher-order moments and

percentiles, respectively. Note that all described continuous-valued approaches may be used to

summarise a track using a vector whose dimensionality is invariant to song duration.

Among discrete-valued approaches, as previously described for the case of mid-level rhyth-

mic features (cf. Tzanetakis and Cook, 2002) one possible approach to summarising features

involves computing a histogram. For the case of MFCCs (Foote, 1997; Logan and Salomon,

2001; Levy and Sandler, 2006; Fu et al., 2011a), this typically involves a non-trivial quantisation

algorithm such as K-means clustering, contrasting with uniform partitioning used for the case of

autocorrelation peaks (Tzanetakis and Cook, 2002). In either case, similar to the aforementioned

continuous-valued approaches, the dimensionality of histograms is invariant to the duration of

songs. If histogram counts are subsequently normalised to sum to one, the normalised counts are

sample estimates of event probabilities associated with histogram bins. In this way, the histogram

is a non-parametric model of the marginal distribution of observations in the feature sequence.

In both described discrete-valued and continuous-valued approaches, the obtained represen-

tations are used for subsequent similarity modelling. We note that such representations are not

used exclusively: in a further bag-of-features approach, models are directly applied to pooled se-

quences considered as sets of observations (cf. Berenzweig et al., 2004). Other models account

for temporal structure in sequences (cf. Li and Sleep, 2005).

Similarity Models

One class of similarity model involves pairwise comparisons between tracks. As a bag-of-

features approach, Aucouturier and Pachet (2002) model MFCC features using GMMs, so that

each song in a collection is represented as a GMM. To compare the pair of songs (i, j), a set

of samples is obtained with respect to the model GMMi. The cross-likelihood of the obtained

samples using the model GMM j is then computed. In this manner, cross-likelihood is used as

a pairwise similarity measure between tracks for music recommendation and playlist generation

tasks. A widely-applied distance measure is the Kullback-Leibler divergence (KLD), which may

be estimated using sampling techniques for GMMs; it may be computed in closed form for mul-
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tivariate Gaussians and discrete distributions (cf. Helén and Virtanen, 2010). The closed-form

approach using single Gaussians is considered by Levy and Sandler (2006); the closed-form

approach using histograms is considered by Vignoli and Pauws (2005); Fu et al. (2011a). Us-

ing GMMs, Aucouturier et al. (2007) estimate the KLD using sampling techniques. Logan and

Salomon (2001); Berenzweig et al. (2004) evaluate alternative distance functions which may be

computed exactly, given obtained GMM parameters. Besides computing pairwise similarities be-

tween tracks, Berenzweig et al. (2004) estimate GMMs using features pooled across individual

artists. In this way, the authors quantify pairwise similarity between artists.

Pairwise distances may be used to classify tracks. A comparatively straightforward approach

involves K-nearest neighbours (KNN) classification. Here, training data are represented as a set

of exemplars with associated labels. Given a query track, a set of nearest neighbours is deter-

mined in the set of exemplars, using a specified distance measure. The query is then classified

by applying a specified voting function to the set of nearest neighbours, such as a majority vote.

Tzanetakis and Cook (2002); Li and Ogihara (2006); Lee et al. (2009) apply KNN for genre

classification, with the number of nearest neighbours in the range [1..10]. Among distance func-

tions, Mandel and Ellis (2005) evaluate the KLD for artist classification, representing tracks as

single Gaussians. Where tracks may be summarised as vectors of constant dimensionality (as is

the case for single Gaussians), alternative distance measures include the Euclidean (cf. Fu et al.,

2011a) and Mahalanobis distances (cf. Mandel and Ellis, 2005). Fu et al. (2011a) evaluate dis-

tances between histograms, including the KLD. In the work of Slaney et al. (2008), supervised

methods are employed which learn a linear transformation of features for KNN classification

based on the Euclidean distance. As stated previously, use of the KNN algorithm does not pre-

clude using non-vector representations: for example, the KLD may be estimated using sampling

techniques (Mandel and Ellis, 2005).

Expanding on the use of pairwise similarity between tracks for classification, support vec-

tor machines (SVMs, cf. Cristianini and Shawe-Taylor, 2000) have been applied extensively in

genre and artist classification (Li and Sleep, 2005; Mandel and Ellis, 2005; Meng and Shawe-

Taylor, 2005; Li and Ogihara, 2006; Mörchen et al., 2006; Meng et al., 2007; Reed and Lee,

2009; Coviello et al., 2012; Ren and Jang, 2012; Wülfing and Riedmiller, 2012). In SVMs,

classification is chiefly performed with respect to a hyperplane in high-dimensional space. The

hyperplane is determined by optimising a measure of separation between classes in the training
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data. Importantly, the feature space used for optimisation need not conform to the original feature

space. By mapping the original feature space to higher-dimensional space, finding the optimal

hyperplane is facilitated when the training data are not linearly separable. Notably, while SVMs

are intrinsically linear classifiers, use of appropriate kernel functions allows SVMs to behave as

non-linear classifiers with respect to the original feature space. A kernel function is conceptually

a pairwise similarity function; it computes the inner product between two objects represented in

the expanded feature space.

In a bag-of-features approach, Mandel and Ellis (2005) transform the KLD for use as an SVM

kernel. The authors perform artist classification by training an SVM using artist annotations as

class labels. They compute track-wise feature averages, thus each training datum corresponds

to a single track alongside an artist label. Likewise, a linear kernel is defined as the dot product

between feature vectors, thus it is possible to use this approach to compare track-wise feature av-

erages (Meng and Shawe-Taylor, 2005; Li and Ogihara, 2006). Meng and Shawe-Taylor (2005)

propose the use of alternative kernels: the evaluated convolution kernel relies on exhaustively

computing pairwise correlations between feature vectors, and thus does not require feature sum-

marisation. The evaluated product probability kernel is a divergence measure similar to the KLD,

yet it admits a closed-form solution when comparing GMMs. Coviello et al. (2012) propose fur-

ther kernel functions which are suited for comparing mixtures of MAR models.

Contrasting with SVMs, in other classifiers a pairwise similarity function is not specified

explicitly. Tzanetakis and Cook (2002); Li and Ogihara (2006); Ellis (2007) estimate the distri-

bution of summary feature vectors in each class using a GMM. Query tracks are then classified by

determining the GMM most likely to have emitted summary vectors associated with queries. A

further approach involves the use of classification trees (West et al., 2006; Foucard et al., 2011).

As proposed by West et al., rather than produce a single prediction for a query track, predicted

genre labels are obtained for each feature vector associated with the query track. Thus a his-

togram of predicted genres is obtained. The authors propose that normalised genre histograms

are compared. In this way, the output of a classifier may be used to quantify pairwise similarity

between tracks.

Modelling Temporal Structure

The similarity models previously discussed are bag-of-features approaches. Among methods

which attempt to model temporal structure, we distinguish between methods which rely on
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continuous-valued sequences and methods which rely on strings.

As discussed in Section 2.3.3, one possible discrete-valued approach involves Markov mod-

els estimated from n-grams. Langlois and Marques (2009) quantise sequences of MFCCs using

a two-stage procedure, where in the first stage track-wise summaries are obtained by estimating

a GMM for each track. The obtained GMMs are then used to estimate a global codebook using

K-means clustering. The codebook is used to obtain bi-grams and estimate a first order Markov

model. For the purpose of genre classification, Langlois and Marques estimate Markov mod-

els across individual genres and compute cross-likelihoods between query sequences and each

genre model. Langlois and Marques further estimate artist-wise and track-wise models for artist

classification and similarity estimation for playlist generation, respectively. For semantic tag

classification, Reed and Lee (2009) propose to segment sequences of MFCCs, before quantising

segment centroids using an iterative procedure and computing uni-gram and bi-gram distribu-

tions. The obtained distributions are then classified using a set of SVMs, with each SVM trained

to predict a specific tag.

For genre classification, Ren and Jang (2012) propose a similar combination of feature seg-

mentation and quantisation to Reed and Lee (2009), which results in a discrete-valued transcript

for each track. However, instead of using transcripts to estimate Markov models, Ren and Jang

apply a heuristic to transcripts, with the goal of identifying a set of characteristic sub-sequences

for each genre. Sub-sequences may originate from non-contiguous events within transcripts,

thus facilitating efficient representation of long-term repetition structure. Similar to Reed and

Lee (2009), distributions of characteristic sub-sequences are thereafter classified using an SVM.

Li and Sleep (2005) propose a similarity measure between strings for genre classification.

The similarity measure is based on the NCD, which as described in Section 2.4.2 quantifies

pairwise similarity using a string compressor. Li and Sleep propose a modification to the LZ

compressor (Ziv and Lempel, 1978), which generates a histogram of substring occurrences in

a given string. Similarity between strings is then determined by computing the inner product

between histograms obtained for each string. As their features, Li and Sleep use MFCCs, which

they subsequently quantise using the K-means algorithm. To perform classification, the authors

apply their similarity measure as an SVM kernel.

A further discrete-valued approach proposed by Anglade et al. (2010) uses chord sequences

as a high-level representation of harmonic content. For the purpose of genre classification,
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Anglade et al. apply inductive logic programming (Muggleton, 1991) to a corpus of annotated

chord sequences. The authors in this way attempt to identify genre-characteristic chord se-

quences. Analogous to Ren and Jang (2012), the learnt representations may originate from

non-contiguous chord sequences in the training data. Thus, irrelevant chords in a characteris-

tic chord sequence may be ignored. Inductive logic programming yields a set of rules by which

a chord sequence may be classified. Anglade et al. apply chord transcription to classify tracks

from audio, using the set of learnt rules.

Recent approaches attempt to model temporal structure using representations constructed at

multiple time scales. Based on a bag-of-features approach and using low-level features, Foucard

et al. (2011) propose an ensemble of classifiers, where each classifier is trained on a windowed

sequence of features at a given time scale, with label annotations supplied for each track. Repre-

sentations at successive resolutions are obtained by aggregating feature frames using averaging.

Each classifier is a decision tree, whose nodes specify feature thresholds used to form predictions.

Applied to the task of semantic tag classification, a given query track is classified by combining

predictions obtained at each window position, at each time scale.

Dieleman and Schrauwen (2013) propose to learn multi-scale feature representations. To this

end, they compute short-time spectra, using feature averaging schemes similar to Foucard et al.

(2011) to obtain spectra at multiple time scales. Representations are subsequently obtained by

decorrelating feature vectors, then multiplying resulting vectors with a dictionary matrix. Use

of spherical K-means clustering to learn the dictionary matrix is proposed following Coates and

Ng (2012). This approach has shown potential as an unsupervised method for sparse coding,

whereby given input vectors are closely approximated as linear combinations of basis vectors

in a dictionary matrix, subject to the constraint that the associated weighting vectors are sparse.

The obtained representations are aggregated across a window; each window is then used to obtain

predicted semantic tags, based on an ANN.

Finally, deep neural network architectures have been proposed for modelling temporal struc-

ture. A deep network may be defined as a feed-forward network consisting of many hidden

layers, with each layer an RBM (cf. Section 2.3.3; Hinton, 2007). Dieleman et al. (2011) apply a

two-stage learning process. In the first stage, a deep architecture is trained in unsupervised fash-

ion (Hinton, 2002). In the employed convolutional architecture, connections between layers are

constrained to enforce locality (each unit at level i is connected to a small number of proximate
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units at level i− 1) and translation invariance (at levels i, i− 1, if there is a connection between

units j, k and between units j + c, k + c at respective levels, the connection weights are identi-

cal). Additional pooling layers aggregate unit activations by computing maxima. Together with

the use of pooling layers, the constraints of locality and translational invariance allow successive

layers to learn successively higher-level representations. Having trained the network in unsu-

pervised fashion, Dieleman et al. employ a supervised learning stage based on backpropagation

(Bryson et al., 1963). The resulting network is applied to artist and genre classification, using

beat-aligned chroma and timbral features. Hamel et al. (2011) propose a similar hierarchical

architecture for semantic tag classification, investigating the role of pooling functions.

Large-Scale Approaches

Investigations on low-specificity similarity for retrieval using large collections have focussed on

summary feature representations. As described in Section 2.4.2 for cover song identification,

such representations permit the use of computationally efficient methods for nearest neighbour

retrieval with respect to a query. In contrast to version identification, the retrieval process dis-

penses with subsequent pairwise comparisons between feature sequences.

Schnitzer et al. (2009) note that despite its widespread use as a pairwise distance measure,

the KLD potentially presents a challenge when applied to large datasets. Firstly, it does not fulfil

metric requirements: while it is non-negative and symmetric and while it may be trivially sym-

metrised, it does not fulfil the triangle inequality. As a result, nearest-neighbour retrieval requires

a linear scan of items in a collection, an approach which may not be sufficiently scalable. Sec-

ondly, computing the KLD requires a relatively large number of floating point operations, com-

pared to alternative distances such as the Euclidean metric. To address the latter issue, Schnitzer

et al. propose the use of FastMap (Faloutsos and Lin, 1995), a method for mapping objects to Eu-

clidean space, given a pairwise distance matrix between objects. Notably, FastMap empirically

has been shown to perform well, even if a restricted set of pairwise distances is available, rather

than a pairwise distance matrix for the entire collection considered. Thus, Schnitzer et al. use

FastMap to map track-wise single Gaussian representations of MFCCs to Euclidean space. Given

a query, the authors obtain nearest neighbours in Euclidean space using a linear scan. The au-

thors propose a filter-and-refine strategy, whereby nearest neighbours are subsequently re-ranked

using the KLD. Based on a collection of 2.5 million tracks, Schnitzer et al. report retrieval times

of approximately 0.5s per query, while retaining 95% recall of nearest neighbours with respect
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to the original feature space.

Schlüter (2013) applies alternative methods for efficient nearest-neighbour retrieval. Using

the same dataset as Schnitzer et al. (2009), Schlüter contrasts methods which provide sub-linear

nearest-neighbour retrieval complexity, against methods which aim at performing pairwise com-

parisons at low computational cost while performing a linear scan of the collection. The eval-

uation is based on applying a filter-and-refine strategy to the similarity measures proposed by

Seyerlehner et al. (2010), Mandel and Ellis (2005). As a measure of performance, Schlüter com-

putes execution time subject to the requirement of 90% nearest neighbour recall using a full

linear scan with the original similarity measures. Among filtering methods with sub-linear re-

trieval, in addition to LSH Schlüter applies linear and non-linear mappings of features to binary

vector representations; akin to LSH such representations allow for O(1) retrieval using lookup

tables. Among filtering methods based on linear scans, besides FastMap Schlüter applies PCA

and ANNs for dimensionality reduction, the resulting vectors are subsequently compared using

the Euclidean distance. As observed, while sub-linear approaches provide better scalability, for

the evaluated collection on the scale of 106 tracks, linear-time filtering techniques when applied

to high-dimensional features yield superior speedup.

Discussion

In the preceding, we have reviewed existing approaches to determining low-specificity similar-

ity. Concerning methods for obtaining track-wise feature representations, we may distinguish

between bag-of-features representations and track-wise representations which account for tem-

poral structure in sequences.

The extent to which the reviewed methods account for temporal structure in music demands

more refined distinction among approaches. Above the level of extracted feature frames, a variety

of approaches model local temporal structure while discarding temporal structure in the result-

ing sequence when computing the track-wise summary (Tzanetakis and Cook, 2002; Meng and

Shawe-Taylor, 2005; Li and Ogihara, 2006; Pampalk, 2006; Meng et al., 2007; Lee et al., 2009;

Seyerlehner et al., 2010). A further possibility involves accounting for both local and global tem-

poral structure, as exemplified by multi-scale approaches (Dieleman et al., 2011; Foucard et al.,

2011; Dieleman and Schrauwen, 2013).

A particular category of track-wise representation yields equal-sized vectors, such as may be

obtained by computing histograms, summary statistics or by estimating single Gaussians. With a
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view to performing large-scale retrieval, vector-valued representations facilitate computationally

efficient pairwise comparisons. However, the described methods for obtaining such representa-

tions typically discard temporal structure. As discussed in Section 2.3.4, we propose to compute

information-theoretic measures of predictability as summary statistics.

Among summary statistics which account for temporal structure in feature sequences, we

note the work of Mörchen et al. (2006), who performs a large-scale evaluation on the utility of

summary statistics including autocorrelation and partial autocorrelation coefficients (cf. Lütkepohl,

2005), out of a total of 164 summary statistics. However, the authors do not consider any

information-theoretic measures of predictability. Similarly, we note that while Streich (2006)

considers the possibility of using information-theoretic measures of predictability, no evaluations

are performed using the approach.

2.5 Conclusion

In this chapter, we have reviewed computational methods for determining musical similarity. The

background for our approach is the concept of musical expectation. Musical expectation plays

an important role in the cognition of musical structure, the latter which in turn is relevant in

determining musical similarity. While we do not aim at simulating cognitive processes for our

purposes in music content analysis, we motivate our own approach having considered existing

models of musical expectation.

In particular, we have identified information-theoretic measures of predictability as a means

of quantifying regularity in musical sequences. Among existing approaches, there are methods

applicable to both continuous-valued and discrete-valued sequences. Our working hypothesis is

that measures of predictability might be used to determine music with similar temporal struc-

ture; we deem sequences musically similar, if they incur similar amounts of predictability. An

information-theoretic approach offers the properties of abstraction, generality and expressive-

ness.

Considering potential applications for our information-theoretic approach, we have identified

version identification and low-specificity similarity tasks. For version identification, we seek to

compare our approach to existing discrete-valued and continuous-valued methods for quantifying

pairwise predictability between tracks. For low-specificity similarity tasks, we seek to evaluate

the utility of our approach as a track-wise summary statistic.
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In the following chapter 3 we review information-theoretic measures of predictability and

detail the methods used in our investigations.
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Chapter 3

Information-Theoretic Methods

In this chapter, we review information-theoretic concepts relevant to our investigations in chap-

ters 4 and 5.

We begin in Section 3.1 by reviewing Shannon’s information theory; sections 3.1.1 and 3.1.2

respectively discuss measures of predictability on discrete-valued and continuous-valued memo-

ryless sources. Section 3.1.3 reviews analogous measures applicable to information sources with

memory.

In Section 3.2, we review the concept of algorithmic information content, which we may

view as a deterministic measure of information contained in a mathematical object, such as a

string. In Section 3.2.2 we review relations between algorithmic information content and Shan-

non information. In Section 3.2.3 we review the normalised compression distance, a measure

of similarity between strings. Section 3.3 briefly discusses the interpretation of our considered

information-theoretic measures as measures of predictability. Finally, in Section 3.4, we con-

clude our discussion.

3.1 Shannon Information

For an extensive discussion of information-theoretic concepts reviewed in the following, we refer

to MacKay (2003); Cover and Thomas (2012). Our own discussion closely follows Feldman

(2002), who provides a more concise overview.
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3.1.1 Discrete Random Variables

We denote with X ,Y random variables whose sample spaces are both given by a finite alphabet

A. We denote with PX(x) the probability of observing x, with x ∈ A. We denote with PX ,Y (x,y)

the joint probability of observing x and y, with y ∈ A. Finally, we denote with PX |Y (x|y) the

conditional probability of observing x, given the observation y. In a sequence of random variables

X1:N = (X1,X2, . . . ,XN), we use PX1:N (x1:n) to denote the joint probability of observations x1:n =

(x1,x2, . . . ,xN), with x1:N ∈ AN .

The fundamental information-theoretic quantity for a single random variable X is the entropy

H(X), defined as

H(X) =− ∑
x∈A

PX(x) logPX(x). (3.1)

A straightforward interpretation of Equation 3.1 is that H(X) quantifies uncertainty about out-

comes in terms of their respective probabilities: for a given alphabet size, entropy is maximised

for uniformly distributed outcomes, whereas entropy is minimised for distributions whose prob-

ability mass is assigned to a single outcome. Defining with LX(x) the surprisingness of observa-

tion x,

LX(x) =− logPX(x) (3.2)

we note that H(X) is the expectation value E[LX ]. Thus, we may alternatively interpret entropy

as the average surprisingness of the observed outcome of X . Taking the logarithm to base 2,

entropy is measured in bits.

The entropy H(X) is non-negative and continuous with respect to the distribution of outcomes

in X . Since entropy is a function of the distribution of outcomes alone, it does not depend on the

actual values of outcomes. It follows that entropy is invariant to any re-arranging of outcomes

assigned to probability values.

The joint entropy H(X ,Y ) is defined as

H(X ,Y ) =− ∑
x∈A

∑
y∈A

PX ,Y (x,y) logPX ,Y (x,y). (3.3)

Equation 3.3 quantifies in analogous manner to H(X) the uncertainty about pairs of outcomes in

the random variables X ,Y . For independent X ,Y , we have H(X ,Y ) = H(X)+H(Y ).

We may re-state H(X ,Y ) as the entropy H(Z) of the random variable Z = (X ,Y ) whose

sample space is A2 and whose probability mass function is PZ = P(X ,Y ). It follows that we may

extend the definition of joint entropy to a sequence of random variables X1:N = (X1,X2, . . . ,XN),
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for which the joint entropy H(X1:N) is defined as

H(X1:N) =− ∑
x1:N∈A

PX1:N (x1:N) logPX1:N (x1:N). (3.4)

Finally, the conditional entropy H(X |Y ) is defined as

H(X |Y ) =− ∑
x∈A

∑
y∈A

PX ,Y (x,y) logPX |Y (x|y) (3.5)

= H(X ,Y )−H(Y ) (3.6)

The conditional entropy H(X |Y ) quantifies the uncertainty about outcomes in X , given knowl-

edge of outcomes in Y . For sequences of random variables X1:N ,Y1:M, it follows that we may

express the conditional entropy H(X1:N |Y1:M) as

H(X1:N |Y1:M) = H(X1:M,Y1:M)−H(Y1:M). (3.7)

Shannon (1948) proposes entropy in the context of an information source which transmits a

sequence of messages via a communication channel to a receiver. A discrete source is a sequence

of discrete random variables X = (X1,X2, . . .) with respective outcomes in A. We define with

Hµ(X) the entropy rate,

Hµ(X) = lim
n→∞

1
n

H(X1:n) (3.8)

which we may interpret as the average uncertainty about outcomes, while accounting for corre-

lation among observations. In a discrete memoryless source, random variables in the sequence

are independent and identically distributed. Based on Equation 3.3 and owing to the indepen-

dence and identical distribution of random variables, for a discrete memoryless source we have

H(X1:N) = NH(X1); it follows that Hµ(X) = H(X1).

For any source, we may devise a code which maps a sequence of random variable outcomes

to a sequence of binary codewords; we may use such a code to compress data for transmission.

We require that the code is uniquely decodable, i.e. the code must yield a lossless representa-

tion of the original sequence of observations. For the case of a discrete memoryless source, an

efficient approach involves constructing a code which maps each outcome to a codeword, while

accounting for the respective marginal probabilities of outcomes. Preferably, probable outcomes

should map to short binary strings, whereas improbable outcomes should map to long binary

strings. What is the bound on achievable compression? Intuitively stated, Shannon’s source

coding theorem states that for a single observation, the expected codeword length L in bits is
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bounded as

L≥ Hµ(X) (3.9)

with logarithms in Hµ(X) taken to base 2. If we assume that we have an optimal code, it follows

that we may interpret the entropy H(X) of a random variable as the expected number of bits

required to represent its value.

Thus, the notion of ‘information’ in entropy as proposed by Shannon is in terms of the distri-

bution of possible content in a given message.

Given random variables X ,Y , we may quantify disparities in uncertainty between the respec-

tive variables. The cross entropy H×(X ,Y ) is defined as

H×(X ,Y ) =− ∑
x∈A

PX(x) logPY (x). (3.10)

If we recall the definition of H(X) in Equation 3.1, we may interpret H×(X ,Y ) as the expected

number of bits required to represent the value of X , given an optimal code for Y . A further mea-

sure of disparity between X ,Y is the Kullback-Leibler divergence (KLD) DKL(PX‖PY ), defined

as

DKL(PX‖PY ) = ∑
x∈A

PX(x) log
PX(x)
PY (x)

(3.11)

= H×(X ,Y )−H(X). (3.12)

From our preceding discussion, we may interpret the KLD as the expected number of additional

bits required to represent the value of X , given an optimal code for Y .

3.1.2 Continuous Random Variables

The information-theoretic measures discussed are for discrete random variables. Next, we re-

view analogous measures for continuous random variables. Henceforth, we denote with X ,Y

continuous random variables whose respective real-valued outcomes can be described in terms

of probability density functions. We denote with pX(x) the probability density associated with

observing x. We denote with pX ,Y (x,y) the joint probability density of observing x and y. Further,

we denote with pX |Y (x|y) the conditional probability density of observing x, given the observation

y.

The continuous entropy h(X) is defined as

h(X) =−
∫

pX(x) log pX(x) dx. (3.13)
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The continuous joint entropy h(X1:N) and conditional entropy h(X1:N |Y1:M) are respectively de-

fined as

h(X1:N) =−
∫

pX1:N (x1:N) log pX1:N (x1:N) dx1:N (3.14)

and

h(X1:N |Y1:M) = h(X1:N ,Y1:M)−h(Y1:M). (3.15)

Compared to Equations 3.1, 3.4, 3.7, we might conjecture plausibly that the continuous en-

tropies h(X), h(X1:N), h(X1:N|Y1:M) share properties with their discrete-valued counterparts. In-

deed, continuous entropy is continuous with respect to the probability density functions under

consideration. For continuous X , we may interpret h(X) in similar manner as a measure of un-

certainty to H(X): continuous entropy is maximised for a uniform distribution, given a specified

range for outcomes in X (Shannon, 1948).

However, as suggested from the latter requirement of specifying a range for outcomes in X ,

continuous entropy quantifies uncertainty with respect to a given coordinate system (Shannon,

1948). Moreover, continuous entropies may be negative, since for a given uniform distribution

there exists a coordinate system under which the entropy is zero (cf. Cover and Thomas, 2012).

Clearly, the interpretation of continuous entropy as the expected number of bits required to

represent a random variable does not hold, since a real number may be represented with arbitrary

accuracy. Despite this caveat, we may nevertheless adopt a comparable interpretation if we

specify a required accuracy. This interpretation is based on integration in the Riemannian sense,

whereby the domain of the integrand is quantised using a given bin width δ . Integration is then

performed as a summation in the limit as δ → 0. We define with H(Xδ ) the discrete entropy of

the continuous random variable X quantised using bin size δ . Providing X is Riemann integrable

(i.e. the probability density is bounded and continuous with respect to a given compact interval),

it may be shown that for small δ (cf. Cover and Thomas, 2012),

H(Xδ )≈ h(X)− log2 δ . (3.16)

Setting δ = 2−n, we obtain

H(Xδ )≈ h(X)+n. (3.17)

From Equation 3.17 we may interpret n as the expected number of bits required to represent the

value of a uniformly distributed continuous random variable to which we apply n-bit quantisation.
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h(X) is then the expected number of bits required to represent the value of the quantised random

variable X , minus an offset for n-bit quantisation accuracy.

Given continuous random variables X ,Y , we may quantify disparities in uncertainty analo-

gous to the discrete-valued measures previously discussed. The cross entropy h×(X ,Y ) is defined

as

h×(X ,Y ) =−
∫

pX(x) log pY (x) dx. (3.18)

Similarly, the KLD DKL(pX‖pY ) is defined as

DKL(pX‖pY ) =
∫

pX(x) log
pX(x)
pY (x)

dx. (3.19)

Similar to H×(X ,Y ), we interpret h×(X ,Y ) as the expected number of bits required to represent

the value of X , given an optimal code for Y , minus a constant number of bits according to the

specified accuracy of distinguishing among outcomes in X ,Y . For the case of continuous KLD,

note that we have

DKL(pX‖pY ) = h×(X ,Y )−h(X) (3.20)

≈ H×(Xδ ,Yδ )− log2 δ − (H(Xδ )− log2 δ ) (3.21)

= H×(Xδ ,Yδ )−H(Xδ ). (3.22)

The continuous and discrete KLD therefore have identical interpretation as the expected number

of additional bits required to represent the value of X , given an optimal code for Y . In contrast

to the preceding continuous measures, the KLD is invariant to the considered coordinate system

and is non-negative (cf. Cover and Thomas, 2012).

Considering their similar interpretation and analogous identities, in the following we use

capital letters H to refer interchangably to discrete and continuous information quantities. Lower-

case letters h to refer exclusively to continuous information quantities.

3.1.3 Sources with Memory

The source coding theorem extends to sources with finite memory, where there may exist n,m

such that Xn,Xm ∈ X are correlated. For such processes the expected codeword length required to

represent a single observation Xn is—as before—bounded by Hµ(X). In contrast to memoryless

sources, for sources with memory we have Hµ(X)≤ limn→∞
1
n ∑

n
i=1 H(Xi). Thus, there may exist

redundancies among observations.
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Recall that Hµ(X) is defined as

Hµ(X) = lim
n→∞

1
n

H(X1:n). (3.23)

Given two sources X ,Y , akin to the joint entropy H(X ,Y ) we define the joint entropy rate

Hµ(X ,Y ) as

Hµ(X ,Y ) = lim
n→∞

1
n

H((X1,Y1),(X2,Y2), . . . ,(Xn,Yn)) (3.24)

= lim
n→∞

1
n

H(X1:n,Y1:n). (3.25)

We interpret Hµ(X ,Y ) as the average uncertainty in a single pair of observations (Xn,Yn), ac-

counting for correlation between sources and across successive observations. Further, akin to the

conditional entropy H(X ,Y ), we define the conditional entropy rate Hµ(X ,Y ) as

Hµ(X |Y ) = Hµ(X ,Y )−Hµ(Y ). (3.26)

We interpret Hµ(X |Y ) as the average uncertainty in a single observation Xn, accounting for cor-

relation among observations emitted by X and given knowledge of observations emitted by Y .

In Chapter 4, we further consider the cross entropy rate H×
µ (X ,Y ), for discrete random vari-

ables defined as

H×
µ (X ,Y ) = lim

n→∞
−1

n ∑
x1:n∈A

PX1:n(x1:n) logPY1:n(x1:n). (3.27)

We interpret H×
µ (X ,Y ) as the expected number of bits required to represent a single observation

emitted by source X , given an optimal code for source Y and accounting for correlation among

observations emitted by X .

Given an empirical estimate P̂X1:N of the distribution PX1:N , such as we might obtain by ap-

plying a compression algorithm to the sequence x1:N , we may estimate Hµ(X) using the average

log-loss `(P̂X1:N ,x1:N) (cf. Begleiter et al., 2004), defined as

`(P̂X1:N ,x1:N) =− 1
N

log P̂X1:N (x1:N). (3.28)

In Equation 3.28, taken to base 2 the term − log P̂X1:N (x1:N) corresponds to the number of bits

required to represent the sequence of observations x1:N , given the estimated model P̂X1:N . Dividing

by the number of observations N, we may take the observation-wise average number of bits as

an estimate of Hµ(X). As described in Chapter 4 we estimate H×
µ (X ,Y ) analogously, using an

empirical estimate P̂Y1:N of the distribution PY1:N . We then compute `(P̂Y1:N ,x1:N), where x1:N is a

sequence of observations emitted by X .
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Markov Sources

Markov sources form a particular class of source with memory, in which the conditional distribu-

tion of observation Xn given previous observations X1:n−1 is equal to the conditional distribution

given context Xn−k:n−1. That is,

PXn|X1:n−1 = PXn|Xn−k:n−1 (3.29)

where k is the order of the Markov source and where n > k. A Markov source is stationary if the

conditional distribution of Xn given Xn−k:n−1 is invariant with respect to n,

PXn+1|Xn−k+1:n = PXn|Xn−k:n−1 . (3.30)

We may attain favourable compression performance when applying widespread compression

algorithms to stationary, finite-order Markov sources: for such sources, the Lempel-Ziv (LZ)

(Ziv and Lempel, 1977) algorithm closely approximates the optimal codeword length Hµ(X)

when applied to sufficiently long sequences, using a sufficiently large window size (cf. Gallager,

2008). Alternative algorithms such as prediction by partial matching (PPM) (Cleary and Witten,

1984) assume a Markov source.

3.2 Algorithmic Information Content

For an extensive discussion of concepts reviewed in the following, we refer to Li and Vitányi

(2008). Our own discussion closely follows Grünwald and Vitányi (2004), who provide a more

concise overview.

3.2.1 Information Measures

Informally stated, the algorithmic information content (AIC, alternatively Kolmogorov complex-

ity) of a string is the length of the shortest program which outputs the string under consideration,

before terminating. Thus, in AIC the notion of information is in terms of obtaining the ultimate

compressed representation of an object; we may conceptualise the object in question as the con-

tent in a given message which we seek to encode. This contrasts with Shannon information,

where the notion of information is in terms of the distribution of outcomes in a random variable;

we may conceptualise such outcomes as possible content in a given message.

More formally, we denote with {0,1}∗ the set of finite binary strings. We denote with |x| the

length of the string x ∈ {0,1}∗. The set {0,1}∗ contains the empty string ε , for which we have
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|ε|= 0. Assume that we have a reference machine U , namely a universal Turing machine which

when provided with a self-delimiting representation of the pair z = 〈i,y〉, before halting outputs

U(z), the value of the ith computable function with argument y. This assumes that computable

functions are enumerable (Turing, 1936). We may thus interpret i as an encoding of a Turing

machine Ti whose input is y; the pair 〈i,y〉 specifies a program whose output is U(z).

The AIC K(x) of the string x may thus be defined as

K(x) = min
z
{|z| : U(z) = x,z ∈ {0,1}∗} (3.31)

which we may interpret as the length in bits of the shortest program which outputs x and then

halts. It may be shown that up to an additive constant, K(x) is equivalent when defined in terms of

alternative, equally powerful reference machines: alternatively, we may interpret K(x) in terms

of the shortest program in a given language such as Java or C which outputs x and then halts. A

string x is algorithmically random if the length of its shortest program is greater than or equal to

the length of x.

In addition to K(x), we may define the quantity K(x,y) analogously as the length of the

shortest program which outputs strings x,y, in addition to a means of distinguishing between

respective strings. Next to strings, the AIC may be defined for alternative objects: given a com-

putable function f , we define K( f ) = K(i), where i is the minimum value i such that the Turing

machine Ti computes f . We may interpret this latter definition as the length in bits of the shortest

program that computes f .

Note that AIC is uncomputable, which means that in general there exists no algorithm which

allows us to obtain the value of K(·), either exactly or as an approximation up to specified pre-

cision. As will be discussed in Section 3.2.3, it is however possible to obtain an upper bound

on K(·). Furthermore, as discussed in the following Section 3.2.2, we may adopt a probabilistic

approach and characterise the expectation value of K(·) with respect to a random variable whose

outcomes are binary strings.

3.2.2 Relation to Shannon Information

As previously stated, AIC quantifies information contained in a single object, whereas Shannon

information is concerned with the distribution of outcomes in a random variable. This distinction

notwithstanding, consider a random variable X whose sample space is the set of finite strings

S = {0,1}∗. Thus, each outcome x ∈ S has an associated probability PX(x) and an associated
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AIC K(x). It may be shown (cf. Grünwald and Vitányi, 2004) that up to specified constants, the

expectation ∑x∈S PX(x)K(x) approximates the entropy H(X),

0≤ ∑
x∈S

PX(x)K(x)−H(X)≤ K(PX)+O(1). (3.32)

In Equation 3.32, K(PX) denotes the AIC of the probability mass function PX , which we assume

is computable with respect to outcomes x ∈ S. As is commonplace in equivalences involving

K(·), the constant O(1) depends on the employed reference machine; we may thus interpret

Equation 3.32 as stating that for low-complexity distributions, the expectation ∑x∈S PX(x)K(x)

closely approximates H(X). As discussed by Grünwald and Vitányi (2004), low-complexity

distributions are those distributions which are not heavily skewed towards a particular outcome

and whose distribution function may be readily described algorithmically.

Owing to Equation 3.32, we might conjecture that for an N-symbol emission from a station-

ary, finite-order Markov source, the expectation value E[X1:N ] closely approximates its Shannon

entropy H(X1:N). As demonstrated by Grünwald and Vitányi (2004), it turns out that we have

0≤ ∑
x∈{0,1}N

PX1:N (x)K(x)−H(X1:N)≤ K(PX1:N )+O(1). (3.33)

We may interpret Equation 3.33 as follows: the entropy and expected AIC are equivalent up

to the constant O(1) as described in Equation 3.32, plus an additional constant K(PX1:N ). For a

stationary Markov source whose order is much smaller than the considered sequence length N,

we treat K(PX1:N ) as negligible.

3.2.3 The Normalised Information Distance

The normalised information distance (NID) (Li et al., 2004) is a measure of pairwise similarity

based on AIC. For finite strings x,y ∈ S, the NID is defined as

NID(x,y) =
K(x,y)−min{K(x),K(y)}

max{K(x),K(y)}
. (3.34)

The NID possesses a number of attractive theoretical properties: up to close approximation, it

fulfils the metric requirements of identity, symmetry and the triangle inequality (Li et al., 2004).

Moreover, the NID characterises dissimilarity using the transformation under which input strings

most closely resemble each other. In addition, the NID yields values within the unit interval.

Thus, it incorporates the notion that maximally attainable dissimilarity should be invariant of

sequence length. Note however that the NID inherits the property of uncomputability from the

quantities K(·), K(·, ·).
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The normalised compression distance (NCD) has been proposed as an approximation of the

NID (Li et al., 2004). In the NCD, quantities K(·) are approximated using the number of bits

required to represent strings by way of a general-purpose compression algorithm. Similarly, the

quantity K(x,y) is approximated by compressing the concatenation of strings x,y.

3.3 Discussion

Having reviewed information-theoretic measures and their properties in the preceding sections,

we briefly discuss their use as measures of predictability. Consequently, we justify use of the

term information-theoretic measures of predictability in the title of this thesis.

Shannon information quantifies predictability in terms of uncertainty about outcomes in a

random variable. Given a random variable X , the entropy H(X) quantifies the uncertainty about

outcomes in X . Given an information source X , Hµ(X) quantifies the average uncertainty about

outcomes in observations emitted by X , while accounting for correlations among observations.

Given two sources X , Y , the cross entropy rate H×(X ,Y ) and conditional entropy rate Hµ(X |Y )

quantify uncertainty about observations emitted by X in relation to observations emitted by Y ,

while accounting for correlations among observations. We may interpret the latter measures as

quantifying pairwise predictive uncertainty between sources.

The AIC of a string x is the length of the shortest program which outputs x and halts. We may

view such a program as the ultimate compressed representation of x. As described informally by

Schmidhuber (2009), compression and prediction are closely related: a string which admits effi-

cient compression contains redundant structure; this is in contrast to an algorithmically random

string, which possesses no such structure. Efficiently compressing a string amounts to modelling

structure which might thereafter be used to form predictions about subsequent, unobserved el-

ements. In a more formally rooted argument, we may appeal to the approximation of expected

AIC using Shannon entropy as discussed in Section 3.2.2: for low-complexity distributions, low

expected AIC corresponds approximately to low predictive uncertainty; high expected AIC corre-

sponds approximately to high predictive uncertainty. We may interpret the NCD as a measure of

pairwise predictability between strings x,y, if we consider the expected AIC of the concatenation

of strings xy.
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3.4 Conclusion

We have briefly reviewed information-theoretic concepts relevant to our investigations in Chap-

ters 4 and 5. In particular, we have reviewed Shannon’s information theory for discrete-valued

and continuous-valued random variables, where we consider both sources with and without mem-

ory. In addition, we have reviewed the concept of algorithmic information content, whose ex-

pected value may be approximated using Shannon information. Furthermore, algorithmic in-

formation content may be used to formulate the normalised information distance between two

strings.
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Chapter 4

Identifying Cover Songs

4.1 Introduction

In Chapter 3, we reviewed measures of predictability and discussed their mathematical properties.

Having identified in Chapter 2 information-theoretic measures as a potential means for determin-

ing similarity in musical audio, we seek to evaluate such measures for cover song identification.

With this aim in view, in this chapter we compare our approach to existing discrete-valued and

continuous-valued methods for quantifying predictability between pairs of tracks.

Described in Section 4.2, we propose methods for computing pairwise distances between

audio feature sequences, where we consider both discrete-valued and continuous-valued ap-

proaches. Our approaches contrast with the normalised compression distance (NCD), a discrete-

valued approach which has been evaluated in music content analysis tasks using quantised audio

features. In Section 4.2.2, for the discrete case we propose a modification to the NCD, where we

account for correlation between sequences. Using artificially generated sequences, we observe

that our approach outperforms the NCD as an approximation of the normalised information dis-

tance (NID). In Section 4.2.3, for the continuous case we propose to compute information-based

measures of similarity as statistics of prediction errors between sequences.

Described in Section 4.3, we evaluate our approaches using a dataset of 300 Jazz standards,

in addition to the Million Song Dataset (MSD). For the MSD, to demonstrate scalability we use

a filter-and-refine approach, based on ranking tracks using a metric distance, and then re-ranking

top-ranked result candidates using information-theoretic methods. Thus we obtain results for a
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large-scale dataset.

As described in Section 4.4, we observe that continuous-valued approaches outperform discrete-

valued approaches. Comparing approaches based on string prediction and compression, we ob-

serve that our alignment-based NCD improves performance over existing NCD, for sequential

compression algorithms. In addition, we demonstrate that continuous-valued distances may be

combined to improve performance with respect to baselines.

4.2 Approach

We denote with X = (x1,x2, . . . ,xN), Y = (y1,y2, . . . ,yM) two multivariate time series, each rep-

resenting a sequence of feature vectors extracted from a piece of musical audio. If we assume that

both X, Y consist of independent and identically distributed realisations generated respectively

by stochastic processes X = (X1,X2, . . .), Y = (Y1,Y2, . . .), recall from Chapter 3 that one possible

means of quantifying dissimilarity between sequences involves the Kullback-Leibler divergence

(KLD), defined as

DKL(pX‖pY ) =
∫

pX(u) log
(

pX(u)
pY (u)

)
du (4.1)

where pX(u), pY (u) denote the probability density of observation u emitted by X , Y , respectively.

Viewed in terms of Shannon information and taking the logarithm to base 2, recall that the KLD

quantifies the expected number of additional bits required to represent observations emitted by

the memoryless source X , given an optimal code for observations emitted by memoryless source

Y . As was observed in Chapter 2, the KLD has been widely applied in conjunction with a ‘bag-

of-features’ approach for low-specificity music content analysis tasks (Casey et al., 2008b).

To account for temporal structure in musical audio, as described in Chapter 3 we may use the

NCD as a measure of musical dissimilarity between sequences of quantised feature vectors (Li

and Sleep, 2005; Ahonen, 2009, 2010; Tabus et al., 2012). Given two strings x = (x1,x2, . . . ,xN),

y = (y1,y2, . . . ,yM), the NCD is defined as

NCD(x,y) =
max{C(xy)−C(x),C(yx)−C(y)}

max{C(x),C(y)}
(4.2)

where C(·) denotes the number of bits required to encode a given string, using a compressor such

as the Lempel-Ziv (LZ) algorithm (Ziv and Lempel, 1977). Similarly, C(xy) denotes the number

of bits required to encode the concatenation of strings x, y. The NCD is an approximation of the
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NID (Li et al., 2004), defined as

NID(x,y) =
K(x,y)−min{K(x),K(y)}

max{K(x),K(y)}
(4.3)

where the uncomputable function K(·) denotes algorithmic information content (AIC). The AIC

of a given string is the length in bits of the shortest program which outputs the string and then

terminates (cf. Li and Vitányi, 2008). Similarly, K(x,y) denotes the length of the shortest program

which outputs x, y, in addition to a means of distinguishing between both output strings (cf. Li

and Vitányi, 2008). Thus, AIC quantifies the number of bits required to represent specified input

strings, under maximally attainable compression.

We are interested in examining the performance of the NCD as an approximation of the NID,

where the choice of compressor determines the feature space used to compute similarities in the

NCD (Sculley and Brodley, 2006). Furthermore, note that the choice of concatenation in C(xy) to

approximate K(x,y) represents an additional heuristic (Li et al., 2004). In the following sections,

we describe our contribution.

4.2.1 Quantifying Sequence Dissimilarity Using Shannon Information

We approach the problem of quantifying dissimilarity from the perspective of Shannon informa-

tion. We assume finite-order, stationary Markov sources X , Y . We denote with X1:N the sequence

of discrete random variables emitted by source X at times 1, . . . ,N. We denote with Hµ(X),

Hµ(X ,Y ), Hµ(X |Y ) the entropy rate, joint entropy rate and conditional entropy rate, respectively

defined as

Hµ(X) = lim
n→∞

1
n

H(X1:n) (4.4)

Hµ(X ,Y ) = lim
n→∞

1
n

H((X1,Y1),(X2,Y2), . . . ,(Xn,Yn)) (4.5)

= lim
n→∞

1
n

H(X1:n,Y1:n) (4.6)

Hµ(X |Y ) = Hµ(X ,Y )−Hµ(Y ). (4.7)

The entropy rate Hµ(X) defined in Equation 4.4 quantifies the average amount of uncertainty

about Xn, while accounting for correlation between Xn for all n. Analogously, the joint entropy

rate Hµ(X ,Y ) defined in Equation 4.5 quantifies the average amount of uncertainty about the
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pair (Xn,Yn) emitted by sources X ,Y , while in addition accounting for correlation between the

sources. For the conditional entropy rate Hµ(X |Y ) we have

Hµ(X |Y ) = lim
n→∞

1
n

H(X1:n,Y1:n)−H(Y1:n) (4.8)

= lim
n→∞

1
n

H(X1:n|Y1:n). (4.9)

From Equation 4.9 we may interpret Hµ(X |Y ) as quantifying the average amount of uncertainty

about a given emission Xn, while taking into account correlation between observations emitted

by X and given knowledge of observations emitted by Y .

For N observations emitted from source X , up to an additive constant the expectation value

E[K(X1:N)] may be approximated using the entropy (Grünwald and Vitányi, 2004),

E[K(X1:N)]≈ H(X1:N). (4.10)

Using Equations 4.4, 4.5 and following Kaltchenko (2004), we assume further approximations

E[K(X1:N)]≈ N Hµ(X) (4.11)

E[K(X1:N ,Y1:N)]≈ N Hµ(X ,Y ) (4.12)

where E[K(X1:N ,Y1:N)] denotes the expected value of K(·, ·) for N observations emitted from

sources X ,Y . In terms of Shannon information, following Kaltchenko (2004) we use Equation 4.7

and estimate the NID as

NID(X ,Y )≈
max{Hµ(X |Y ),Hµ(Y |X)}

max{Hµ(X),Hµ(Y )}
. (4.13)

4.2.2 Normalised Compression Distance with Alignment

As given in Equation 4.13, the NID utilises the joint entropy rate Hµ(X ,Y ), which accounts for

correlation between sources. In contrast, the approach of compressing concatenated strings to

estimate K(x,y) may be inadequate for compressors which assume an underlying Markov source,

since correlation is not accounted for (Kaltchenko, 2004). To address this possible limitation, we

propose the normalised compression distance with alignment (NCDA), defined as

NCDA(x,y) =
C(〈x,y〉)−min{C(x),C(y)}

max{C(x),C(y)}
(4.14)

where 〈a,b〉 performs alignment as a means of maximising correlation between integer-valued

strings a,b. Formalised in Algorithm 4.1, we generate equal-length strings by right-padding the
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Algorithm 4.1 Pseudo-code for aligning strings a,b. The functions pad() and mode() respec-

tively stand for right-padding and computing the most frequent symbol. See Equation 4.15 for

description of ? operator.
if length(a) > length(b) then

b← pad(b,mode(a), length(a)− length(b))

else

a← pad(a,mode(b), length(b)− length(a))

end if

t← argmaxτ((a?b)[τ])

M← length(a)

bi← bi+t modulo M, for all i ∈ [1 ..M]

〈a,b〉 ← (a1,b1, . . . ,aM,bM)

shorter of the two strings with the most common value of the longer string. We then compute the

cross-correlation (a?b)[t], defined as

(a?b)[τ] =
∞

∑
m=−∞

ambm+τ (4.15)

where τ denotes the lag, where ai,bi respectively denote the ith symbol in a,b and where we

define ai = 0, bi = 0 for all i < 1. We obtain the value for τ which maximises (a ? b)[τ], before

circularly shifting b by the optimum number of steps. We motivate our choice of cross-correlation

by considering that cross-correlation may be computed efficiently, as a series of inner products.

Hence, our choice of cross-correlation is pragmatic; an alternative approach might involve esti-

mating mutual information between a and lagged b.

NCDA for Artificial Strings

Before proceeding to an analysis using cover songs as described in Section 4.3, we first examine

the behaviour of NCDA and NCD using artificially generated strings.

To facilitate interpretation, we consider the source B with equi-probable binary observations

{0,1}. Since observations are independent, the entropy rate Hµ(B) equals the entropy of indi-

vidual observations H(Bn); since outcomes are equi-probable the entropy is 1 bit. In addition to

B, we consider the source B′ with each observation b′n obtained by inverting bn with probability

p. Parameter p thus influences the correlation between B, B′. Note that for p = 0.5 we obtain

minimally correlated B, B′.
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To obtain an analytical estimate of NID(B,B′), we note that the joint entropy rate Hµ(B′,B)

equals the joint entropy of individual observations H(Bn,B′n), since observations are temporally

uncorrelated. Based on the joint probabilities

P(Bn = 1,B′n = 0) = P(Bn = 0,B′n = 1) = p/2 (4.16)

P(Bn = 1,B′n = 1) = P(Bn = 0,B′n = 0) = (1− p)/2 (4.17)

and using the formula for the joint entropy given in Chapter 3 we obtain for the joint entropy

H(Bn,B′n) =−
(

p log
p
2

+q log
q
2

)
(4.18)

with q = 1− p. Using Equation 4.13 and the identity H(X |Y ) = H(X ,Y )−H(Y ) we then estimate

NID(B,B′) as

NID(B,B′)≈ max{H(Bn|B′n),H(B′n|Bn)}
max{H(Bn),H(B′n)}

(4.19)

= H(Bn,B′n)−1. (4.20)

We proceed to examine the behaviour of NCDA and NCD experimentally by generating ran-

dom binary strings b1:N , b′1:N by sampling from the processes B, B′ as previously described. We

vary p in the range [0,0.5]. We compute NCDA(b,b′), NCD(b,b′) using LZ, Burrows-Wheeler

(BW) (Burrows and Wheeler, 1994) and prediction by partial matching (PPM) (Cleary and Wit-

ten, 1984) compressors, implemented respectively as ZLIB1, BZIP22 and PPMD3. As advised

by Cebrian et al. (2005), we motivate our choice of string length N = 104 so as not to exceed

implementation-defined window sizes used by LZ and BW compressors, which negatively af-

fect compression performance when exceeded. Note that our considered implementation of PPM

incorporates methods for modelling conditional symbol probabilities over long contexts (Skibin-

ski and Grabowski, 2004), which are not considered in the original PPM approach proposed by

Cleary and Witten (1984). Therefore, we expect no ‘pathological’ behaviour which would result

from computing NCD(b,b) using a model restricted to short contexts. We employ ZLIB, BZIP2,

PPMD with a view to evaluating the performance of NCDA when applied to general-purpose

compressors. Our evaluations using compressors are based on representing strings using ASCII

encoding. We subsequently compress the obtained textual data.

1http://zlib.org, retrieved October 2014.
2http://bzip2.org, retrieved October 2014.
3http://compression.ru/ds/, retrieved October 2014.

http://zlib.org
http://bzip2.org
http://compression.ru/ds/
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(b) BW
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(c) PPM

Figure 4.1: Compression distances computed for random strings, with results displayed for LZ,

BW, PPM compressors in sub-figures (a)–(c), respectively. Parameter p denotes symbol inver-

sion probability. Each sub-figure includes experimentally obtained NCD, NCDA, in addition to

analytically obtained NID.

Figure 4.1 (a)–(c) displays plots of NCD, NCDA in response to p for LZ, BW, PPM algo-

rithms. For comparison, each sub-figure includes the analytically obtained estimate of NID based

on Equation 4.19, which we view as our target function. Across compressors, we observe that

whereas both NCD and NCDA increase approximately monotonically for increasing p, NCDA

more closely approximates NID compared to NCD. Using NCD and for LZ, BW, PPM compres-

sors, we obtain mean absolute absolute errors of 0.17 , 0.20 , 0.19, respectively; using NCDA we

obtain corresponding mean absolute errors of 0.07, 0.06, 0.07.

Examining compressors further, we observe for LZ that while NCDA improves performance

on average, for small p NCD more closely approximates NID than NCDA. We explain this

behaviour by considering that the LZ algorithm identifies repeated substrings (Ziv and Lempel,

1977), a strategy which clearly yields efficient compression for exact repetition in the sequence

(b,b). Thus, for near-identical strings we expect NCD to outperform NCDA when used with

LZ compression. In contrast, using either PPM or BW and for p = 0, NCD incurs target errors

of 0.12 and 0.38 compared to jointly 0.00 using NCDA. Since PPM and BW compression do

not rely on identifying repeated sequences, this observation matches our expectation of NCDA

yielding at least as favourable performance compared to NCD, when dealing with near-identical

strings.

Figure 4.2 (a)–(c) displays absolute errors between distances obtained using NCDA and
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(b) BW
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(c) PPM

Figure 4.2: Absolute error between distances obtained using NCDA and NCD with results dis-

played for LZ, BW, PPM compressors in sub-figures (a)–(c), respectively. Parameter p denotes

symbol inversion probability.

NCD. We observe greatest discrepancy between distances for BW compression, followed by

PPM and LZ compression. Yet, for BW discrepancy is maximal for comparatively small p =

0.02, versus 0.05, 0.09 for PPM, LZ, respectively. Thus, for BW the advantage of using NCDA is

for the comparison of near-identical strings. A possible explanation for differences in behaviour

between compressors is that our assumptions of a Markov source in NCDA apply less readily to

block-based compression schemes such as BW compression, compared to stream-based LZ and

PPM.

4.2.3 Predictive Modelling

As previously described, NCD and NCDA rely on determining the number of bits required to

encode strings, using a specified compression algorithm. As an alternative approach, we consider

the relation between predictability and compressibility (cf. Feder et al., 1992; Feder and Merhav,

1994) and perform sequence prediction. We illustrate our approach for the case of discrete-valued

observations. First, recall from Chapter 3 that the entropy rate Hµ(X) is defined as

Hµ(X) = lim
n→∞

−1
n ∑

x1:n∈An

PX1:n(x1:n) logPX1:n(x1:n) (4.21)

where PX1:n(x1:n) denotes the probability of observing X1:n = x1:n, with x1:n ∈An according to the

alphabet A. Assume that we have an empirical estimate P̂X1:N of the distribution PX1:N , based on

a finite number of observations x1:N . We estimate Hµ(X) using the average log-loss `(P̂X1:N ,x1:N)
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(cf. Chapter 3), defined as

`(P̂X1:N ,x1:N) =− 1
N

log P̂X1:N (x1:N) (4.22)

=− 1
N

(
log P̂X1(x1)+

N

∑
i=2

log P̂Xi|X1:i−1(xi|x1:i−1)

)
(4.23)

where P̂Xi|X1:i−1(xi|x1:i−1) denotes the estimated probability of observing xi, given preceding con-

text x1:i−1. Using Equation 4.23, we thus compute average log-loss by performing a series of

predictions based on increasingly long contexts x1:i−1. Since P̂X1:N is an estimate of PX1:N , the

described process is termed self-prediction (cf. Serrà et al., 2012).

We denote with PY1:n(x1:n) the probability of observing x1:n from source Y . Recall from Chap-

ter 3 that a measure of disparity between sources X ,Y is the cross entropy rate H×
µ (X ,Y ),

H×
µ (X ,Y ) = lim

n→∞
−1

n ∑
x1:n∈An

PX1:n(x1:n) logPY1:n(x1:n). (4.24)

We estimate H×
µ (X ,Y ) by computing the average log-loss `(P̂Y1:N ,x1:N) based on iterated pre-

diction, where P̂Y1:N denotes an estimate of PY1:N based on observations y1:M. Since P̂Y1:N , P̂X1:N

represent disparate sources, the described process is termed cross-prediction (cf. Serrà et al.,

2012). To obtain a symmetric distance between sources X ,Y based on cross entropy, we compute

the quantity

D×(X ,Y ) =
H×

µ (X ,Y )+H×
µ (Y ,X)

Hµ(X)+Hµ(Y )
(4.25)

where in Equation 4.25 the denominator serves as a normalisation factor, analogous to the de-

nominator in Equation 4.2. We use self-prediction to estimate Hµ(X),Hµ(Y ).

To obtain a prediction-based estimate of the NID in Equation 4.13, we estimate Hµ(X),

Hµ(Y ) again using self-prediction. Furthermore, we estimate the conditional entropy rate Hµ(X |Y )

using the distribution P̂X1:N |Y1:M , referring to the estimated distribution of observations X1:N emitted

by X , given knowledge of observations Y1:M = y1:M emitted by Y . Analogous to self-prediction

and cross-prediction, we define the quantity `(P̂X1:N |Y1:M ,x1:N ,y1:M),

`(P̂X1:N |Y1:M ,x1:N ,y1:M) =

− 1
N

(
log P̂X1|Y1:M(x1|y1:M)+

N

∑
i=2

log P̂Xi|X1:i−1,Y1:M(xi|x1:i−1,y1:M)

)
.

(4.26)

We refer to the process used to compute Equation 4.26 as conditional self-prediction.
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Figure 4.3: Evaluated prediction strategies. Sequences x1:N ,y1:M serve as model inputs, obser-

vation context x1:n thereafter forms basis of prediction x̃n+1. Quantity εεεn+1 denotes prediction

error.

4.2.4 Continuous-Valued Approach

One means of computing the quantities described in Section 4.2.3, involves quantised feature

vectors (Li and Sleep, 2005; Ahonen, 2009, 2010; Helén and Virtanen, 2010; Tabus et al., 2012).

As an alternative, we propose an approach requiring no prior quantisation.

As used by Serrà et al. (2012), in our approach we utilise non-linear sequence prediction.

In contrast to Serrà et al. (2012), we are concerned with evaluating distance measures which we

compute as statistics of prediction errors. Therefore, we use a comparatively straightforward

nearest-neighbours approach. Given the sequence of feature vectors C, consider first the process

of time delay embedding (Takens, 1981), which yields the vector sequence SC, whose elements

sC
r are defined as

sC
r = vec(cr,c(r−1)τ , . . . ,c(r−d+1)τ). (4.27)

According to Equation 4.27, each element sC
r aggregates feature vector cr along with its preced-

ing temporal context (c(r−1)τ , . . . ,c(r−d+1)τ). The amount of temporal context is controlled by

parameters d, τ , respectively referred to as embedding dimension and time delay. The operator

vec denotes vectorisation.

Our method of predicting features is based on determining nearest neighbours in time de-

lay embedded space. We first illustrate our method for the case of cross-prediction, depicted

schematically in Figure 4.3 (a). Given sequence y1:M, we denote with x̃t+h the estimated succes-

sor of sequence x1:t+h−1,

x̃t+h = yq(t)+h (4.28)

where h denotes the predictive horizon (how far into the future we predict), and where we define
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q(t) as

q(t) = argmax
k∈[d ..M−h]

corr(sY
k ,sX

t ) (4.29)

with corr(·, ·) denoting Pearson’s correlation coefficient. We motivate use of correlation coeffi-

cients as an alternative to the Euclidean distance, following Gómez (2006).

Depicted schematically in Figure 4.3 (b), to perform self-prediction we set Y = X. Since

features may be slowly-varying, when forming prediction x̃t+h we disregard observations in the

immediate past of time step t. Thus we define

x̃t+h = xq′(t)+h (4.30)

with q′(t) defined as

q′(t) = argmax
k∈[d ..N−h], |k−t|>R

corr(sX
k ,sX

t ) (4.31)

and where R denotes the radius below which observations are disregarded.

Finally, to perform conditional self-prediction, we use both time delay embedded spaces sY,

sX. Given predictions yq(t)+h, xq′(t)+h, respectively obtained using cross-prediction and self-

prediction, we compute the linear combination

x̃t+h = yq(t)+h α +xq′(t)+h (1−α). (4.32)

Similar to the approach given by Foster et al. (2011), in Equation 4.32 we compute the weighting

coefficient α using mean squared errors (MSEs),

α =
MSEself

MSEself +MSEcross
(4.33)

where MSEcross, MSEself respectively denote cross-prediction and self-prediction mean squared

errors. Figure 4.3 (c) depicts conditional self-prediction schematically.

Given the sequence of predictions x̃1:N , we denote with εεεn the rescaled prediction error,

whose ith component εi,n is given by

εi,n =
x̃i,n− xi,n

σ2
i

(4.34)

where σ2
i denotes the sample variance of the ith component (x1:N)i in x1:N . We contrast our

approach with the component-wise normalised mean squared error (NMSE) based on cross-

prediction used by Serrà et al. (2012), which may be applied as an alternative measure of dissim-

ilarity between sequences. Our approach is based on assuming that the prediction error may be
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represented using a normally distributed random variable Z with samples εεε1:N . Using the sam-

ples, we estimate the continuous entropy h(Z) parametrically. In the case of self-prediction, we

assume the approximation h(Z)≈Hµ(X); analogously in the case of cross-prediction and condi-

tional self-prediction, we assume respective approximations h(Z)≈H×
µ (X ,Y ), h(Z)≈Hµ(X |Y ).

Assuming normality, we estimate h(Z) using the equation

h(Z) =
1
2

log(2πe)k|ΣΣΣ| (4.35)

where ΣΣΣ denotes the sample covariance. In our continuous-valued approach, using the prediction

methods depicted in Figure 4.3, we thus estimate information-based measures of uncertainty as

statistics of the prediction error sequence. We then substitute the obtained quantities in Equa-

tions 4.13 and 4.25 to obtain continuous-valued analogues of the NID and distance D×.

4.3 Evaluation

We first evaluate our proposed methods using a set of 300 audio recordings of Jazz standards4.

We assume that two tracks are a cover pair if they possess identical title strings. Thus, we assume

a symmetric relation when determining cover identities. The equivalence class of tracks deemed

to be covers of one another is a cover set. The Jazz data set comprises 97 cover sets, with average

cover set size 3.06 tracks.

Furthermore, we perform a large-scale evaluation based on the MSD (Bertin-Mahieux et al.,

2011). This dataset includes meta-data and pre-computed audio features for a collection of 106

Western popular music recordings. We use a pre-defined evaluation set of 5 236 query tracks

partitioned into 1 726 cover sets5, with average cover set size 3.03 tracks. Following Bertin-

Mahieux and Ellis (2012), for each query track, we seek to identify the remaining cover set

members contained in the entire 106 track collection.

4.3.1 Feature Extraction

For the Jazz dataset, as a representation of musical harmonic content, we extract 12-component

beat-synchronous chroma features from audio using the method and implementation described

by Ellis and Poliner (2007). We motivate beat-synchronous features as a means of dealing with

4http://www.eecs.qmul.ac.uk/∼peterf/jazzdataset.html, retrieved October
2014.

5http://labrosa.ee.columbia.edu/millionsong/secondhand, retrieved October
2014.

http://www.eecs.qmul.ac.uk/~peterf/jazzdataset.html
http://labrosa.ee.columbia.edu/millionsong/secondhand
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tempo variation. Assuming an equal-tempered scale, the method accounts for deviations in stan-

dard pitch from 440Hz, by shifting the mapping of FFT bins to pitches in the range of ±0.5

semitones. Following chroma extraction, beat-synchronisation is achieved using the method de-

scribed by Ellis (2006). First, onset detection is performed by differencing a log-magnitude

Mel-frequency spectrogram across time and applying half-wave rectification, before summing

across frequency bands. After high-pass filtering the onset signal, a tempo estimate is formed

by applying a window function to the autocorrelated onset signal and determining autocorrela-

tion maxima. Varying the centre of the window function allows tempo estimation to incorporate

a bias towards a preferred beat rate (PBR). The tempo estimate and onset signal are then used

to obtain an optimal set of beat onsets, by using dynamic programming. Chroma features are

averaged over beat intervals, before applying square-root compression and normalising chroma

features with respect to the Euclidean norm. We evaluate using a PBR of 240 beats per minute

(bpm), based on preliminary experiments using NCDA combined with LZ compression. Note

that PBR need not relate to the time scale of musical beat, rather we consider PBR the time scale

at which we obtain a tempo-invariant representation of chroma features.

The MSD includes 12-component chroma features alongside predicted note and beat onsets

(Jehan, 2011), which we use in our evaluations. In contrast to the beat-synchronous features

obtained for the Jazz dataset, MSD chroma features are initially aligned to predicted onsets.

Based on preliminary evaluations, as an additional processing step we resample predicted beat

onsets to match a rate of 240bpm. We then average chroma features over resampled beat intervals.

Finally, we normalise features as described for the Jazz dataset.

4.3.2 Key Invariance

To account for musical key variation within cover sets, we transpose chroma sequences using

the optimal transposition index (OTI) method (Serrà et al., 2008). Given two chroma vector

sequences X, Y, we form summary vectors hX, hY by averaging over entire sequences. The OTI

corresponds to the number of circular shift operations applied to hY which maximises the inner

product between hX and hY,

OTI(hX,hY) = argmax
i

hX · circshift(hY, i) (4.36)

where circshift(hY, i) denotes applying i circular shift operations to hY. We subsequently shift

chroma vectors Y by OTI(hX,hY) positions, prior to pairwise comparison.
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4.3.3 Quantisation

For discrete-valued similarity measures, we quantise chroma features using the K-means algo-

rithm. We cluster chroma features aggregated across all tracks, where we consider codebook

sizes in the range [2 ..48]. To increase stability, we execute the K-means algorithm 20 times.

We then select the clustering which minimises the mean squared error between data points and

assigned clusters. We observed that the described quantisation method performs similarly to an

alternative based on pairwise sequence quantisation.

4.3.4 Distance Measures

We summarise our evaluated distance measures in Table 4.1, where for each distance measure,

we list our estimation methods.

As was described in Section 4.2.2, we utilise the following algorithms to compute distance

measures by compressing strings: PPM (Cleary and Witten, 1984), BW (Burrows and Wheeler,

1994) and LZ compression (Ziv and Lempel, 1977), implemented respectively as PPMD6, BZIP27

and ZLIB8. In all cases, we set parameters to favour compression rates over computation time.

To obtain strings for compression, following quantisation we map integer codewords to alphanu-

meric characters. Subsequently, we represent strings using ASCII encoding, before compressing

the obtained data.

We use the described compression algorithms to determine the length in bits of compressed

strings and compute NCD, NCDA distances as given in Equations 4.2 and 4.14. In a complemen-

tary discrete-valued approach, we use string prediction instead of compression. Using average

log-loss, we compute a prediction-based variant of NCDA using the formula

`
(
P̂〈X ,Y 〉,〈x,y〉

)
−min{`

(
P̂X ,x

)
, `
(
P̂Y ,y

)
}

max{`
(
P̂X ,x

)
, `
(
P̂Y ,y

)
}

(4.37)

where `
(
P̂〈X ,Y 〉,〈x,y〉

)
is the average log-loss obtained from performing self-prediction on the

aligned sequence 〈x,y〉. We compute a prediction-based variant of NCD analogously by predict-

ing concatenated strings without performing any alignment. In addition, we use cross-prediction

to estimate distance measure D×, as defined in Equation 4.25. We perform string prediction

using the implementations of PPMC and LZ78 algorithms described by Begleiter et al. (2004).

6http://compression.ru/ds/
7http://bzip2.org
8http://zlib.org

http://compression.ru/ds/
http://bzip2.org
http://zlib.org
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Distance Definition Estimation method
NCD Equation 4.2 String compression (LZ, BW, PPM) Discrete prediction (LZ, PPM)

NCDA Equation 4.14 String compression (LZ, BW, PPM) Discrete prediction (LZ, PPM)
D× Equation 4.25 Discrete prediction (LZ, PPM) Continuous prediction
DJS Equation 4.38 Normalised symbol histograms (baseline)
NID Equation 4.13 Continuous prediction

NMSE Continuous prediction (baseline)
Ellis and Poliner Continuous cross-correlation (baseline)

Table 4.1: Summary of evaluated distance measures.

Note that the KLD given in Equation 4.1 is non-symmetric. To obtain symmetry, we compute

the Jensen-Shannon divergence (JSD) DJS(pX‖pY ), defined as

DJS(pX‖pY ) = DKL(pX‖pA)+DKL(pY‖pA) (4.38)

where pA denotes the mean of pX , pY ,

pA =
1
2

(pX + pY ) . (4.39)

As a baseline method, we compute the JSD between symbol histograms normalised to sum to

one.

We evaluate continuous-valued prediction using parameters h ∈ {1,4}, d ∈ {1,2,4}, τ ∈

{1,2,4,6}, setting the exclusion radius in Equation 4.31 to R = 8 based on preliminary analysis.

We compute distance measure D× using cross-prediction to estimate the numerator in Equa-

tion 4.25. In a complementary approach, we estimate the NID using conditional self-prediction

to estimate the numerator in Equation 4.13. For D× and NID, we use self-prediction to estimate

the denominator in Equations 4.25, 4.13, respectively.

4.3.5 Performance Statistics

We quantify cover song identification accuracy using mean average precision (MAP), as de-

scribed by Bello (2011). Relative to a given query track j, we rank all remaining L−1 tracks in

the data set by ascending distance and denote with R(r, j) the track at rank r. As an indicator of

the relevance of trackR(r, j), we define the binary-valued function Ω(r, j),

Ω(r, j) =


1, R(r, j) ∈ C( j)

0, otherwise.
(4.40)

In addition we define with P j(r) the precision at rank r,

P j(r) =
1
r

r

∑
c=1

Ω(c, j). (4.41)
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We define with AP j the average precision for the jth query,

AP j =
1
|C( j)|

L

∑
r=1

P j(r)Ω(r, j). (4.42)

To see why AP j is useful as a measure of cover song identification accuracy, note that P j(r) is

the precision (i.e. proportion of covers) that we obtain by considering the top r tracks ranked by

ascending distance. We may thus interpret AP j as the average over all P j(r) such that R(r, j) is

a cover. As observed by Aslam et al. (2005), AP j is an estimate of the area under the precision-

recall curve associated with the jth query. By averaging AP j over all L tracks in the data set as

queries, we obtain the MAP.

Following Bello (2011), we use the Friedman test (Friedman, 1937) with Tukey-Kramer post-

hoc analysis (Tukey, 1973) to compare accuracies among distance measures. The Friedman test

is based on ranking across queries each distance measure according to average precision. We

combine the Friedman test with Tukey-Kramer post-hoc analysis to adjust for Type I errors when

performing multiple comparisons. We motivate use of both MAP and Friedman test combined

with Tukey-Kramer post-hoc analysis to conform to the evaluation procedure used in the MIREX

cover song identification task (cf. Downie et al., 2008).

4.3.6 Distance normalisation

To compensate for cover song candidates consistently deemed similar to query tracks, we nor-

malise pairwise distances using the method described by Ravuri and Ellis (2010), based on com-

puting z-scores. For a given distance measure, we denote with δi, j the pairwise distance between

the ith query track and the jth result candidate. The normalised distance di, j is obtained as

di, j =
δi, j−m j

s j
(4.43)

with m j denoting the average query-wise distance with respect to the jth result candidate,

m j =
1
L

L

∑
i=1

δi, j (4.44)

and with s j denoting the sample standard deviation of query-wise distances with respect to the

jth result candidate,

s j =

√
1

L−1

L

∑
i=1

(δi, j−m j)2. (4.45)

We apply such distance normalisation as a post-processing step, before computing performance

statistics.
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4.3.7 Large-Scale Cover Song Identification

For music content analysis involving large datasets, algorithm scalability is an important issue.

Since our considered approaches involve non-metric pairwise comparisons between tracks, re-

trieving result candidates for a given query track requires a linear scan through the dataset, which

may be infeasible for large datasets. We use a scalable approach for our evaluations involving

the MSD. Following the method proposed by Khadkevich and Omologo (2013), we incorporate

our methods into a two-stage retrieval process. By using a metric distance to determine similar-

ity in the first retrieval stage, we allow for the potential use of indexing or hashing schemes, as

proposed by Casey et al. (2008a); Schnitzer et al. (2009). We then apply non-metric pairwise

comparisons in the second retrieval stage.

In the first stage, we quantise as described in Section 4.3.3 and represent each track with a

normalised codeword histogram. Given a query track, we then rank each of the 106 candidate

tracks using the L1 distance. To account for key variation, for each candidate track we minimise

L1 distance across chroma rotations. We then determine the top 1000 candidate tracks, which

we re-rank in the second stage using our proposed methods. After both retrieval stages, we

normalise pairwise distances as described in Section 4.3.6. We report performance based on the

final ranking of all 106 candidate tracks, across query tracks.

4.3.8 Combining Distance Measures

To determine whether combining distance measures improves cover song identification accuracy,

we obtain pairwise distances as described in Section 4.3.4. We denote with dk
i, j the normalised

pairwise distance between the ith query track and the jth result candidate, obtained using the kth

distance measure in our evaluation. We transform dk
i, j by computing the inverse rank d ′k

i, j,

d ′k
i, j = 1− rank(dk

i, j)
−1

(4.46)

where rank(dk
i, j) denotes the rank of dk

i, j among all distances obtained with respect to query track

i, given the kth distance measure. We apply this transformation to protect against outliers, while

ensuring that distance decreases rapidly for track pairs deemed highly similar, for decreasing

distance. Note that since our distance transformation preserves monotonicity and MAP itself

is based on ranked distances, performance of unmixed distance measures is unaffected by this

transformation. Finally, we combine distances d ′k
i, j, d ′m

i, j by computing a weighted average of
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distances pooled using max and min operators,

max{d ′k
i, j,d

′m
i, j}β +min{d ′k

i, j,d
′m
i, j}(1−β ) (4.47)

where we optimise weight β with respect to MAP. We subsequently re-normalise the obtained

distance, using the method described in Section 4.3.4.

4.3.9 Baseline Approaches

In addition to the JSD and cross-prediction NMSE baselines, we include an evaluation of the

method and implementation described by Ellis and Poliner (2007) based on cross-correlation.

As a random baseline, we sample pairwise distances from a normal distribution.

4.3.10 Summary

Figure 4.4 summarises our method for cover song identification. Following chroma feature ex-

traction, we obtain key invariance of queries with respect to result candidates, by computing the

OTI. Next, we quantise feature sequences using a codebook obtained using the K-means algo-

rithm. We then compute pairwise distances between tracks, where we consider parameter com-

binations listed in Table 4.1. After normalising obtained pairwise distances, we quantify cover

song identification performance using MAP. To evaluate combined distance measures, we use

the method described in the preceding Section 4.3.8, before computing performance statistics.

4.4 Results

In Figure 4.5 (a)–(c), based on the Jazz dataset we examine the performance of discrete-valued

NCD and NCDA distance measures, combined with LZ, BW and PPM algorithms. For the LZ

algorithm, NCDA yields a relative performance gain of 38.6%, averaged across codebook sizes.

In contrast, for PPM, with the exception of small codebook sizes in the range [2 ..8], NCDA

yields no consistent improvement over NCD, however averaged across codebook sizes we obtain

a mean relative performance gain of 11.0%. Finally, the effect of using NCDA is reversed for

BW compression, where performance decreases by an average of 21.8%.

Examining results for the MSD in Figure 4.5 (e)–(g), we observe similar qualitative results

for LZ and BW algorithms. For the LZ algorithm, NCDA yields an average relative performance

gain of 10.1%, whereas for BW compression we observe an average relative performance loss of
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Dataset
Query tracks

Result candidates

Extract featuresExtract features Chroma features; cf. Section 4.3.1

ObtainObtain
Key invarianceKey invariance

OTI; cf. Equation 4.36; Section 4.3.2

Quantise featuresQuantise features K-Means clustering; cf. Section 4.3.3

Compute pairwise
distances

cf. Table 4.1; Section 4.3.4

Normalise distances Compute z-scores; cf. Section 4.3.6

Combine distances cf. Section 4.3.8

Compute performance MAP; cf. Section 4.3.5

Figure 4.4: Summary of cover song identification method. The dashed box indicates an optional

step of combining distances.

6.5%. In contrast to the Jazz dataset, for PPM we observe an average relative performance loss

of 1.5%.

For both datasets, compared to NCD, NCDA appears to be advantageous when combined

with LZ compression, whereas NCDA combined with BW compression is disadvantageous. Fur-

ther, NCDA is advantageous combined with PPM, yet only for the case of averaging across code-

book sizes and for the Jazz dataset. We note that BW compression is block-based in contrast to

LZ and PPM compressors, both of which are stream-based. Following Section 4.2.2, we attribute

this property to differences in behaviour among compressors; our assumption of a Markov source

in NCDA may apply less readily to BW compression. Concerning differences in relative perfor-
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Figure 4.5: Effect of codebook size and distance measure on mean average precision (MAP).

Results displayed for LZ, BW and prediction by partial matching (PPM) algorithms in sub-figures

(a)–(c), (e)–(g), for Jazz and MSD datasets respectively. Sub-figures (d), (h) display results for

Jensen-Shannon divergence baseline (JSD), for Jazz and MSD datasets respectively.

mance gains between datasets, following Khadkevich and Omologo (2013) we further conjecture

that chroma feature representation affects the performance of the evaluated distance measures.

We examine the performance of JSD between normalised symbol histograms, as displayed in

Figure 4.5 (d), (h). Surprisingly, for the Jazz dataset and for K > 8, JSD outperforms compression-

based methods, with maximum MAP score 0.289 obtained for K = 48. This result is contrary

to our expectation that NCD approaches should outperform the bag-of-features approach, by ac-

counting for temporal structure in sequences. In contrast, for the MSD and for optimal K, both

NCD and NCDA outperform JSD across all evaluated compression algorithms. We attribute this

disparity to differences in problem size between datasets; for the Jazz dataset the problem size

may be sufficiently small to amortise advantages of using NCD, NCDA compared to JSD.

In Figure 4.6, we examine the performance of distance measures based on string prediction.

For the Jazz dataset, comparing log-loss estimates of NCD and NCDA using the LZ algorithm,

averaged across codebook sizes NCDA outperforms NCD; we obtain a mean relative perfor-
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Figure 4.6: Effect of codebook size and distance measure on mean average precision (MAP). Re-

sults obtained using string prediction approach, displayed for Lempel-Ziv (LZ) (sub-figures (a),

(c)) and prediction by partial matching (PPM) (sub-figures (b), (d)), for Jazz and MSD datasets

respectively.

mance gain of 105.1% (Figure 4.6 (a)). For the PPM algorithm, NCD maximises performance

(MAP 0.140); yet in contrast we obtain a mean relative performance gain of 19.3% using NCDA

over NCD (Figure 4.6 (b)). Importantly, for both LZ and PPM the cross-prediction distance D×

consistently outperforms NCD and NCDA; for K = 16 and combined with PPM compression,

we obtain MAP 0.329. For the MSD and using LZ compression, in contrast to the Jazz dataset

we observe a mean relative performance loss of 1.8% when comparing D× with NCDA. For both

LZ and PPM, NCDA compared to NCD yields mean relative performance gains of 17.6% and

24.0%, respectively.

Table 4.2 displays the performance of continuous-valued prediction approaches. Note that for

d = 1, parameter τ may be set to an arbitrary integer following Equation 4.27. We consider results

obtained for the Jazz dataset (Table 4.2 (a)–(c)). Using conditional self-prediction to estimate the

NID, maximised across parameters h,d,τ we obtain MAP 0.346. In comparison, cross-prediction

distance D× yields MAP 0.454. As a baseline, we determine the cross-prediction NMSE, where

maximising across parameters we obtain MAP 0.459. Table 4.2 (a)–(c) displays performance

against evaluated parameter combinations. Examining results for the MSD in Table 4.2 (d)–(f),

we obtain qualitatively similar results with maximum MAP values 0.0303, 0.0498 and 0.0499

for NID, D× and NMSE, respectively. For both datasets, we observe that increasing the value of

d consistently improves performance. In contrast, we observe no such effect for parameters τ,h.
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d τ = 1 τ = 2 τ = 4 τ = 6

h=1
1 0.282 0.282 0.282 0.282
2 0.308 0.311 0.293 0.312
4 0.327 0.332 0.318 0.318

h=4
1 0.243 0.243 0.243 0.243
2 0.262 0.273 0.291 0.284
4 0.307 0.313 0.346 0.321

(a) NID estimate; conditional self-prediction (Jazz)

d τ = 1 τ = 2 τ = 4 τ = 6

h=1
1 0.347 0.347 0.347 0.347
2 0.412 0.403 0.390 0.403
4 0.454 0.446 0.432 0.423

h=4
1 0.293 0.293 0.293 0.293
2 0.352 0.364 0.377 0.365
4 0.408 0.428 0.432 0.435

(b) D× estimate; cross-prediction (Jazz)

d τ = 1 τ = 2 τ = 4 τ = 6

h=1
1 0.344 0.344 0.344 0.344
2 0.402 0.396 0.385 0.389
4 0.448 0.452 0.428 0.433

h=4
1 0.321 0.321 0.321 0.321
2 0.362 0.375 0.390 0.379
4 0.417 0.450 0.446 0.459

(c) NMSE; cross-prediction (Jazz)

d τ = 1 τ = 2 τ = 4 τ = 6

h=1
1 0.0191 0.0191 0.0191 0.0191
2 0.0230 0.0222 0.0239 0.0250
4 0.0238 0.0275 0.0303 0.0295

h=4
1 0.0200 0.0200 0.0200 0.0200
2 0.0208 0.0239 0.0236 0.0260
4 0.0228 0.0276 0.0303 0.0301

(d) NID estimate; conditional self-prediction (MSD)

d τ = 1 τ = 2 τ = 4 τ = 6

h=1
1 0.0451 0.0451 0.0451 0.0451
2 0.0476 0.0477 0.0479 0.0475
4 0.0489 0.0494 0.0494 0.0489

h=4
1 0.0465 0.0465 0.0465 0.0465
2 0.0470 0.0480 0.0484 0.0487
4 0.0478 0.0488 0.0498 0.0491

(e) D× estimate; cross-prediction (MSD)

d τ = 1 τ = 2 τ = 4 τ = 6

h=1
1 0.0341 0.0341 0.0341 0.0341
2 0.0404 0.0420 0.0431 0.0437
4 0.0447 0.0474 0.0478 0.0465

h=4
1 0.0431 0.0431 0.0431 0.0431
2 0.0450 0.0457 0.0467 0.0471
4 0.0466 0.0494 0.0499 0.0494

(f) NMSE; cross-prediction (MSD)

Table 4.2: MAP scores for distances based on continuous prediction. In each sub-figure, pa-
rameters h, τ , d denote predictive horizon, time delay and embedding dimension, respectively.
Results displayed in sub-figures (a)–(c), (d)–(f) for Jazz and MSD datasets, respectively.

4.4.1 Summary of Results and Comparison to State of the Art

Figure 4.7 (a), (b) displays the result of significance testing as described in Section 4.3.5, where

we assume 95% confidence intervals and where we maximise across evaluated parameter spaces

before testing for significance. Table 4.3 displays a corresponding summary of MAP scores. As

baselines we include Ellis and Poliner’s cross-correlation approach (Ellis and Poliner, 2007), in

addition to randomly sampled pairwise distances.

For both Jazz dataset and MSD, we observe that continuous-valued approaches based on

cross-prediction consistently outperform discrete-valued approaches. Moreover, with the excep-

tion of NCD combined with PPM-based string compression on the MSD, these differences are

significant. For approaches based on string compression, we note that using NCDA with BW

compression significantly decreases performance with respect to NCD. Similarly, using NCDA

decreases MAP scores for PPM. Although we do not observe a significant performance gain us-

ing NCDA over NCD for LZ compression, performance improves consistently across datasets.

For the Jazz dataset, we observe that the JSD baseline significantly outperforms the majority of

string-compression approaches. In contrast, for the MSD the majority of string-compression ap-

proaches significantly outperform the JSD baseline. Whereas PPM with distance D× consistently

outperforms all discrete-valued approaches for the Jazz dataset, PPM with compression-based



4.5. Conclusion 100

NCD consistently outperforms all discrete-valued approaches for the MSD and significantly out-

performs the JSD baseline.

In a comparison of continuous-valued approaches, we observe that cross-prediction using

either distance D× or NMSE competes with cross-correlation for the Jazz dataset. In contrast,

the same cross-prediction approaches significantly outperform cross-correlation for the MSD.

Examining continuous-valued approaches further, for both Jazz dataset and MSD, we observe

a significant disadvantage in using our conditional self-prediction based estimate of NID, over

cross-prediction based distances D× and NMSE. The relatively poor performance of NID for

the MSD might be explained by limitations of our prediction approach when used with MSD

chroma features. However, considering results for both datasets suggests that cross-prediction

yields more favourable results than conditional self-prediction generally.

To facilitate further comparison, we consider the approaches proposed by Bertin-Mahieux

and Ellis (2012), Khadkevich and Omologo (2013), who report MAP scores of 0.0295, 0.0371,

respectively. Based on such a comparison, we obtain state-of-the-art results. Note that the stated

approaches do not report any distance normalisation procedure as described in Section 4.3.4; we

found that normalisation improved our results.

Finally, using the method described in Section 4.3.8, we combine distances obtained using

continuous-valued prediction. We display results in Table 4.3 and Figure 4.7 (c), (d). Compared

to using the baseline cross-prediction NMSE alone, combining NMSE with D× significantly

improves performance for both the Jazz dataset and MSD; we obtain relative MAP performance

gains of 8.1% and 3.4% respectively. We obtain no performance gain by further combining

NID estimates with NMSE and D×. Using the combination NMSE and D×, we obtain MAP

scores 0.496 and 0.0516 for Jazz dataset and MSD, respectively, consistently outperforming the

remaining distance measures.

4.5 Conclusion

We have evaluated measures of pairwise predictability between sequences for cover song iden-

tification. We consider alternative distance measures to the NCD: we propose NCDA, which

incorporates a method for obtaining joint representations of sequences, in addition to methods

based on cross-prediction. Secondly, we attend to the issue of representing sequences: we pro-

pose continuous-valued prediction as a means of determining pairwise similarity, where we esti-
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Dataset Jazz MSD
Method NCDA NCD NCDA NCD

PPM 0.220 0.249 0.0460 0.0487
BW 0.143 0.220 0.0428 0.0480
LZ 0.196 0.168 0.0457 0.0438

PPM; D× 0.329 0.0428
LZ; D× 0.288 0.0415

JSD 0.289 0.0412
D× (continuous) 0.454 0.0498
NID (continuous) 0.346 0.0303

NMSE (continuous) 0.459 0.0499
Cross-correlation 0.465 0.0404

Random 0.026 0.0006
D× & NMSE (cont.) 0.496 0.0516

D× & NID & NMSE (cont.) 0.432 0.0463

Table 4.3: Summary of MAP scores. First three rows denote compression based approaches.
‘Random’ denotes sampling pairwise distances from a normal distribution.

mate compressibility as a statistic of the prediction error. We contrast methods requiring feature

quantisation, against methods directly applicable to continuous-valued features.

Results indicate that the method of determining pairwise similarity significantly affects cover

song identification performance. Firstly, the proposed continuous-valued approach outperforms

discrete-valued approaches and competes with evaluated continuous baseline approaches. Sec-

ondly, we draw attention to using cross-prediction as an alternative approach to the NCD, where

we observe superior results in both discrete and continuous cases for Jazz cover song identifica-

tion, and for the continuous case for cover song identification using the Million Song Dataset.

Thirdly, we have demonstrated state-of-the-art performance using a large-scale dataset. Finally,

we have shown that our distances based on continuous-valued prediction may be combined to

improve performance relative to the baseline.

Results involving NCDA demand that we distinguish between experiments involving artifi-

cial strings and quantised chroma sequences. Whereas we observe performance gains across LZ,

BW, PPM algorithms for the case of artificial strings, that NCDA universally improves perfor-

mance does not hold when considering quantised chroma sequences. For the purpose of cover

song identification, in terms of maximally attained performance whereas NCDA is consistently

advantageous for LZ compression, NCDA is disadvantageous for BW and PPM compressors.

Moreover, we observe a significant reduction in performance for BW, whereas for both LZ and

PPM compressors we observe no significant difference in performance using NCDA over NCD.

Contrastingly, in terms of relative performance gains and averaged across codebook sizes, we

observe performance gains using NCDA for PPM and for the case of the Jazz dataset. This ob-
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Figure 4.7: Mean ranks of average precision scores obtained using Friedman test. Error bars

indicate 95% confidence intervals obtained using Tukey’s range test (Tukey, 1973). Higher mean

ranks indicate higher performance. Results displayed for Jazz and MSD datasets in sub-figures

(a) and (b), respectively, with results for combined distances displayed in sub-figures (c) and (d).

servation holds for approaches based on string compression, as well as string prediction. Further,

we observe consistent performance gains using NCDA for PPM and for the case of the MSD,

across evaluated codebook sizes. The latter observation holds for approaches based on string

prediction. For LZ, in terms of relative performance gains and averaged across codebook sizes

NCDA consistently improves performance across evaluated datasets, for approaches based on

string compression, as well as string prediction.

We conclude that NCDA may yield performance gains compared to the alternative of NCD,

for LZ compression. Considering that we obtain conflicting results for evaluated BW and PPM

algorithms, further investigations are however necessary to establish causes for differences be-

tween results involving artificial strings and quantised chroma sequences, and for differences

between results obtained using string compression versus string prediction. As we suggest in

sections 4.2.2 and 4.4, our assumptions of a Markov source may apply less readily to BW com-
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pression. We further note that our considered implementations of BW and PPM as general-

purpose compressors both incorporate multiple compression steps (cf. Fenwick, 1996; Skibinski

and Grabowski, 2004); the influence of individual compression steps should be the subject of

future investigations.
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Chapter 5

Predicting Musical Similarity

5.1 Introduction

In Chapter 4 we proposed measures of pairwise predictability for cover song identification, a

task which we associate with intermediate specificity. In this chapter we estimate predictive

uncertainty for the purpose of musical similarity prediction. In particular, we consider the tasks

of similarity rating prediction and song year prediction, both tasks which we associate with low

specificity.

Described in Section 5.2, our approach is based on computing track-wise descriptors on

audio feature sequences. Specifically, we propose to use measures of predictability as track-

wise statistics of audio feature sequences. Thus, this approach contrasts with Chapter 4, where

we use predictive uncertainty to quantify pairwise similarity between feature sequences. In this

chapter, we take the obtained track-wise measures of temporal regularity as our feature space for

classification and regression, for our chosen tasks.

Section 5.3 details our evaluations. We describe our method and results for similarity rating

prediction in Section 5.3.1; we describe our method and results for similarity rating prediction

and song year prediction in Section 5.3.2. For both considered tasks, we observe that our descrip-

tors capture musically relevant information and that our descriptors improve predictive accuracy

with respect to baseline approaches.
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5.2 Approach

Assume that we have the audio feature vector sequence X = (x1, . . . ,xT ), computed for a given

piece of music. As was discussed in Chapter 2, as a feature descriptor we may compute statistical

moments of X, yet such bag-of-features representation disregards the temporal order of feature

vectors. As our descriptor for predicting musical similarity, we propose the compression rate

Rλ (X),

Rλ (X) =
C(Q(X,λ ))

T
(5.1)

where C(·) denotes the number of bits required to represent a string and where we quantise X

using the quantisation scheme Q with λ levels. Note from Chapter 3 that we may take C(·) as an

estimate of the algorithmic information in Q(X,λ ); moreover we may take Rλ (X) as an estimate

of the entropy rate of Q(X,λ ). To control for variation in sequence length in our evaluations,

rather than simply use C(·) we normalise with respect to T . Finally, we favour quantisation

over continuous-valued measures of predictability as described in Chapter 4, using standard time

and memory-efficient string compressors when computing C(·) in our evaluations. Thus, we

motivate use of discrete-valued approaches on pragmatic grounds in our investigations; we view

using continuous-valued prediction as an alternative approach which should be explored in future

work.

Given a track in our collection, we compute compression rates for feature sequences extracted

from musical audio. We refer to the set of compression rates as feature complexity descriptors

(FCDs). For features with constant frame rate, we compute FCDs using the original feature

sequence, in addition to FCDs computed on downsampled versions of the original sequence;

we consider the downsampling factors 1,2,4,8. We distinguish among temporal resolutions

using the labels FCD1, FCD2, FCD4, FCD8, respectively. For features with variable frame

rate, we compute FCDs with no further downsampling applied. Algorithm 5.1 lists pseudo-code

for computing FCDs with respect to downsampling factor F , feature sequence X, quantisation

granularity λ .

As proposed, consider FCDs computed on a hypothetical scalar-valued feature sequence ex-

hibiting a high amount of temporal structure, either due to periodicity or locally constant regions

(Figure 5.1 (a), (b)). For such sequences, we obtain low values for Rλ , since the quantised

feature sequence may be encoded efficiently. Conversely, if we discard temporal structure by

randomly shuffling the original feature sequence (Figure 5.1 (c)), we obtain high values for Rλ ,
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Algorithm 5.1 Pseudo-code for computing FCDs with respect to downsampling factor F , feature

vector sequence X, λ quantisation levels. Quantity C(s) denotes number of bits required to

represent string s using a given string compressor. See main text for description of quantisation

function Q(·, ·).
X← downsample(X,F)

string s← Q(X,λ )

FCD←C(s)/length(s)

since the quantised feature sequence no longer admits an efficient encoding. We thus consider

FCDs a statistic quantifying the amount of temporal regularity in a feature sequence. Note from

Figure 5.1 that FCDs are invariant to any re-scaling of feature values. In contrast, statistical mo-

ments such as mean and variance are invariant to any re-ordering of features. We observed in

Chapter 2 that feature moments have been widely applied for low-specificity tasks. Considering

that FCDs have similar dimensionality to feature moments and assuming that temporal order of

features is informative for our considered tasks, we therefore expect that FCDs combined with

feature moment descriptors (FMDs) may be used to improve prediction accuracy with respect to

using feature moments alone, for our considered tasks.

1

2

3

4

Observation

(a) Low Rλ

1

2

3

4

Observation

(b) Low Rλ

1

2

3

4

Observation

(c) High Rλ

Figure 5.1: Hypothetical sequences with low and high Rλ , assuming λ = 4.

5.2.1 Similarity Rating Prediction

For the task of similarity rating prediction, assume that we have a distance metric which we use

to compare descriptor vectors computed on pairs of tracks. We hypothesise that the pairwise

distance between descriptors correlates with the similarity rating associated with track pairs. To

predict similarity ratings we take as our feature space pairwise distances between descriptor vec-

tors and apply multinomial regression. We use ri,n to denote the nth descriptor vector computed
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for the ith track in our collection, with 1≤ n≤N and given a set of N available descriptor vectors.

We compute separate descriptor vectors across audio features and across FCD resolutions, with

each vector component in ri,n corresponding to a quantisation granularity λ . We denote with

d〈i, j〉 the distances between ri,n, r j,n obtained across all N descriptor vectors, using our assumed

distance measure. Given the pair of tracks 〈i, j〉 whose similarity rating we seek to predict, we

estimate the probability of similarity score k ∈ [1 ..K] as

P
(
S = k|d〈i, j〉

)
=

exp
(

βββ
T
k d〈i, j〉+ γk

)
∑

K
m=1 exp

(
βββ

T
m d〈i, j〉+ γm

) (5.2)

where βββ k, γk are the model parameters associated with outcome k, given a total of K sim-

ilarity scores. We predict similarity ratings by determining the value of k which maximises

P
(
S = k|d〈i, j〉

)
. In this way, we retain the ordinal scale of training samples, when forming pre-

dictions. We describe our model estimation method in Section 5.3.1.

5.2.2 Song Year Prediction

For the task of song year prediction, we hypothesise that descriptor values correlate with the

chart entry dates of tracks. Following Bertin-Mahieux et al. (2011) we apply a linear regression

model. Given the ith track in our collection, we predict the associated chart entry date yi using a

linear combination of components in descriptor vectors ri,n,

ŷi =
N

∑
n=1

θθθ
T
n ri,n +α (5.3)

where θθθ n denotes regression coefficients for the nth descriptor vector as specified for similarity

rating prediction, and where α denotes the model intercept. We describe our model estimation

method for song year prediction in Section 5.3.2. We motivate use of both multinomial and linear

regression techniques as a straightforward means of evaluating the utility of FCDs for determin-

ing similarity based on a metric space. We perform our evaluation by considering predictive

accuracy, in addition to interpreting estimated coefficients as feature utilities.

5.3 Evaluation

For our evaluations, we use a collection of 15 473 entries from the American Billboard Hot

100 singles popularity chart1. Each entry in the dataset is represented by a track excerpt of

1http://www.billboard.com, retrieved October 2014.

http://www.billboard.com
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Feature name Description
Chroma (Ellis and Poliner) 12-component chromagram based on using phase-derivatives to

identify tonal components in spectrum (Ellis and Poliner, 2007).
dynamics.rms Root mean square of amplitude.
rhythm.tempo Tempo estimate based on selecting peaks from autocorrelated

onsets.
rhythm.attack.time Duration of onset attack phase.
rhythm.attack.slope Slope of onset attack phase.
spectral.centroid First moment of magnitude spectrum.
spectral.brightness Proportion of spectral energy above 1500Hz.
spectral.spread Second moment of magnitude spectrum.
spectral.skewness Skewness coefficient of magnitude spectrum.
spectral.kurtosis Excess kurtosis of magnitude spectrum.
spectral.rolloff95 95th percentile of energy contained in magnitude spectrum.
spectral.rolloff85 85th percentile of energy contained in magnitude spectrum.
spectral.spectentropy Shannon entropy of magnitude spectrum.
spectral.flatness Wiener entropy of magnitude spectrum.
spectral.roughness Average roughness (Plomp and Levelt, 1965) between peak

pairs in magnitude spectrum.
spectral.irregularity Squared amplitude difference between successive partials

(Jensen, 1999).
spectral.mfcc 12-component Mel-frequency cepstral coefficients (MFCCs)

(Slaney, 1998) (excluding energy coefficient).
spectral.dmfcc First-order differentiated MFCCs.
spectral.ddmfcc Second-order differentiated MFCCs.
timbre.zerocross Zero crossing rate.
timbre.spectralflux Half-wave rectified L1 distance between magnitude spectrum at

successive frames (Masri, 1996).
tonal.chromagram.centroid Centroid of 12-component chromagram.
tonal.keyclarity Peak correlation of chromagram with key profiles (Gómez,

2006).
tonal.mode Predicted mode after correlating chromagram with key profiles.
tonal.hcdf Flux of 6-dimensional tonal centroid (Harte et al., 2006).

Table 5.1: Summary of evaluated audio features.

approximately 30s of audio, and is annotated with a chart entry date. Chart entry dates span the

years 1957–2010 (M = 1982.9y, SD = 15.4y). Our choice of the Billboard dataset is motivated

by prior availability of web-sourced similarity ratings for a subset of 7 784 track excerpts.

For each track excerpt in the dataset, we extract a set of 25 audio features, using MIRToolbox

(Lartillot and Toiviainen, 2007) version 1.3.2 and using the framewise chromagram representa-

tion proposed by Ellis and Poliner (2007). With the exception of rhythmic features, which are

computed using predicted onsets, features are based on a constant frame rate of 40Hz. Table 5.1

summarises the set of evaluated audio features.

In addition to FCDs, for each track excerpt we compute the mean and standard deviation,

based on frame-level representation with no downsampling applied. We refer to the latter non-

sequential descriptors as FMDs. We compute FCDs as described in Section 5.2, where for the
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case of the vector-valued features chroma, MFCCs and delta-MFCCs we apply principal com-

ponents analysis (PCA) in track-wise fashion as an additional decorrelation step. We then quan-

tise and compress each resulting component separately, before averaging obtained compression

lengths across components. We apply PCA, since we seek to quantify temporal structure in

feature vector sequences while disregarding any correlation among feature vector components.

We quantise features by applying equal-frequency binning with λ ∈ {3,4,5} levels; we perform

relatively coarse quantisation to ensure that each symbol occurs frequently, regardless of down-

sampling factor.

We choose equal-frequency binning to ensure that obtained strings have a consistent station-

ary distribution; the obtained compression rates therefore are a function of temporal structure

alone. The value logλ may be interpreted as the theoretical compression rate for a temporally

uncorrelated sequence. We compress symbol sequences using the prediction by partial matching

(PPM) algorithm2, based on the implementation described in Begleiter et al. (2004). We con-

sider PPM a general-purpose string compression algorithm which may be substituted with an

alternative compressor; in initial experiments we obtained similar results using Lempel-Ziv (LZ)

compression (Ziv and Lempel, 1978). Nevertheless, we note that PPM compresses efficiently

compared to alternative compression schemes (Begleiter et al., 2004).

With a view to characterising the feature space represented by FCDs, we perform a track-wise

exploratory analysis of computed FCDs. For each track excerpt in our collection, we compute

FCDs based on MFCC features alone. We obtain a scalar-valued score for each excerpt by

averaging FCDs across quantisation levels λ and across temporal resolutions. Next, across artists

in our collection we compute the median of obtained FCD scores. To facilitate interpretation, we

consider only artists with a minimum number of 20 chart entries; thus out of 5 455 artists in our

collection we consider 129 artists. We then rank artists according to median FCD scores. Shown

in Table 5.2, we report the 20 lowest-ranking and highest-ranking artists. Additionally, across

artists we report tracks with median FCD scores (‘medoid tracks’).

Comparing track groups, the lowest-ranking artists are predominantly vocalists with a reper-

toire of Jazz ballads and slow-moving pieces, with smooth timbral characteristics (e.g. Johnny

Mathis, Barbara Streisand). In contrast, the artists with highest complexity values stand for mu-

sic with strong percussive and aggressive components, from surf-rock (Jan & Dean), through

2http://www.cs.technion.ac.il/∼ronbeg/vmm/index.html, retrieved October
2014.

http://www.cs.technion.ac.il/~ronbeg/vmm/index.html
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1980s Power Rock (Van Halen) and Hip Hop (Eminem). Our own informal listening to medoid

tracks supports this observation, with the exception of the medoid track by artist Etta James. We

view this observation in support of our expectation that FCDs may be useful for low-specificity

similarity and subsequently demonstrate validity of our expectation for our considered similarity

tasks. Note however that we make no claim that FCDs capture any notion of musical complexity

as discussed by Pressing (1999). While beyond the scope of our work, track-wise analysis of

FCDs merits further investigation.

5.3.1 Similarity Rating Prediction

We evaluate similarity rating prediction using annotations collected for a subset of the chart music

dataset. For our investigations, we use an existing collection of 7 784 pairwise similarity ratings

from 456 subjects participating in a web-based listening test3. Subjects were asked to quantify

pairwise musical similarity between successive pairs of track excerpts using a five-point ordinal

scale, with score ‘1’ corresponding to ‘not similar’ and score ‘5’ corresponding to ‘very similar’.

We assume that subjects have an internal similarity scale which they use to perform ratings.

Therefore, we omit any training step from the rating process. Note that while we prescribe that

pairwise similarity ratings are made using a five-point scale, we do not assume that similarities

are judged using an absolute scale across listeners. Given three track pairs for which we have

respective ratings (4, 5), (5, 5), (1, 2), we view the ratings as qualifying relative agreement,

compared to (4, 1), (5, 1), (1, 4).

For human similarity judgements, two issues prompt consideration: in addition to music

being inherently subjective (Wiggins et al., 2010), human similarity judgements are context-

dependent (Goodman, 1972; Tversky, 1977). We motivate our assumption of an internal similar-

ity scale on the basis that Western popular music is widely disseminated and that listeners might

form similarity judgements using a common factor. We verify our assumptions by quantifying

similarity rating agreement.

When presenting track pairs to listeners, we select the first song in each pair using uniform

sampling. For the second song in each pair, we again apply uniform sampling, however we bias

towards proximate chart entry times by restricting the permissible chart entry deviation to ≤ 1y

with probability 0.9. We bias as a means of controlling for historical changes in audio production,

3http://webprojects.eecs.qmul.ac.uk/matthiasm/audioquality-pre/
check.php, retrieved October 2014.

http://webprojects.eecs.qmul.ac.uk/matthiasm/audioquality-pre/check.php
http://webprojects.eecs.qmul.ac.uk/matthiasm/audioquality-pre/check.php
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which might affect similarity ratings (Sturm, 2012). We obtain a median of 6 ratings per subject,

with each rating corresponding to a unique track pair. Table 5.3 displays obtained score counts.

As shown in Table 5.3, the majority of ratings are associated with scores less than ‘3’, corre-

sponding to relative dissimilarity on the five-point scale. We contend that for music content anal-

ysis based on an ensemble of systems as proposed by Bogdanov et al. (2011), the entire target set

of predicted musical similarity might be used when forming recommendations. In contrast, for

track recommendation relying on predicted similarity alone, when forming recommendations, it

is typically of interest to consider tracks deemed similar to a query, while disregarding tracks

deemed dissimilar (Downie et al., 2010). Pertaining to the first use case, we perform evaluations

using the five-point scale ratings, as defined previously. Pertaining to the second use case, we

merge similarity ratings with scores ‘1’ and ‘2’, thus discarding any distinction between similar-

ity ratings with low scores. We then perform our evaluations using the resulting four-point scale

ratings.

Similarity score
1 2 3 4 5

Count 2 060 2 115 1 742 1 391 476

Table 5.3: Similarity score counts obtained from web-based listening test.

To assess the consistency of similarity ratings, we collected an additional set of similarity

ratings under controlled experimental conditions, involving 12 subjects aged 21y–42y. Subjects

were assessed using the Ollen musical sophistication index (OMSI) Ollen (2006). We obtain a

median OMSI score score of 241, with an associated median of 0.75 years of formal musical

training. To avoid subject fatigue, we imposed no minimum number of ratings per subject, and

collected ratings during two 30-minute sessions. We selected stimuli by sampling uniformly

from the set of track pairs for which we have prior ratings. Across subjects, we obtain a median

of 42 ratings (M = 45.4, SD = 29.3), after discarding ratings for duplicated track pairs. We

aggregate controlled-condition ratings across participants and again discard ratings for duplicated

track pairs. Across subjects we thus obtain a total of 509 controlled-condition similarity ratings,

corresponding to 6.5% coverage of web-based similarity ratings. Table 5.4 displays a confusion

matrix of web-sourced versus controlled-condition similarity ratings.

We quantify the agreement between controlled-condition and web-sourced similarity ratings.

We report results for both five-point and four-point rating scales; for each agreement statistic



5.3. Evaluation 113

Controlled-condition

1 2 3 4 5

W
eb

-s
ou

rc
ed

1 64 34 17 10 0
2 55 44 18 14 4
3 26 41 26 25 5
4 16 30 16 24 7
5 6 9 5 8 5

Table 5.4: Confusion matrix of web-sourced versus controlled-condition similarity ratings.

we report results for the four-point rating scale in brackets. We first quantify agreement us-

ing Kendall’s correlation coefficient τb (cf. Agresti, 2010). We obtain a correlation of 0.274

(0.250), with p < 0.001 based on a permutation test for the hypothesis of no correlation. We

then compute a confidence interval for the obtained sample correlation by applying bootstrap

sampling (cf. Efron, 1982). At the 95% level, we obtain correlations in the range [0.205,0.337]

([0.173,0.325]). Subsequently, we consider the correlation 0.337 (0.325) an upper bound on

attainable accuracy using our proposed method of similarity rating prediction. As a second

measure of rating agreement, we compute Spearman’s correlation coefficient ρs (cf. Agresti,

2010), where we obtain 0.329 (0.278) for ratings aggregated across subjects. Analogously by

applying bootstrap sampling, at the 95% level we obtain correlations in the range [0.247,0.404]

([0.193,0.361]). We consider the correlation 0.404 (0.361) an upper bound on attainable accu-

racy based on ρs. Finally, using Table 5.4 and interpreting the controlled-condition rating process

as a multinomial classification task, we obtain a balanced accuracy (BA) of 0.292 (0.345); the

corresponding 95% confidence interval is [0.254,0.336] ([0.304,0.393]).

Distance Measures

We predict similarity ratings by applying multinomial regression to pairwise Euclidean distances

between descriptor vectors, using the approach described in Section 5.2.1. As an additional base-

line distance measure, assuming Gaussianity and diagonal covariance, we compute the Kullback-

Leibler divergence (KLD) on pairs of FMDs. Given means µµµ1,µµµ2 and variances ΣΣΣ1,ΣΣΣ2, each

with dimensionality c, we compute the KLD in closed form as

KLD =
1
2

(
tr
(
ΣΣΣ
−1
1 ΣΣΣ2

)
+(µµµ1−µµµ2)

T
ΣΣΣ
−1
1 (µµµ1−µµµ2)− c− log

|ΣΣΣ2|
|ΣΣΣ1|

)
. (5.4)

We logarithmically transform distances obtained using the KLD, which we observed improved

prediction accuracy.

As a baseline distance accounting for temporal structure, we compute the cross-prediction
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error between audio feature sequences, with each feature sequence represented at the original

frame level. As described in Chapter 4, following Serrà et al. (2012), we apply time delay

embedding (Takens, 1981) separately to pairs of feature sequences. We restrict our evaluated

parameter space by setting unit time delay in Equation 4.27. Given feature vectors (v1, . . . ,vT )

each with dimensionality c, time delay embedding then produces higher-dimensional feature

vectors with dimensionality dc by stacking d consecutive vectors (vt−d , . . . ,vt−1) at each time

step t. We perform cross-predictions by determining sequential successors of nearest neighbours

in the embedded space, using the approach described in Equations 4.28, 4.29. We restrict our

evaluated parameter space by setting unit predictive horizon in Equation 4.29. As our distance

measure between predicted and observed feature sequences, we compute the normalised mean

squared error, as described in Section 4.2.4. We consider parameter d in {8,12,16,20} and report

results for d = 12, which yields highest average correlation between computed pairwise distances

and similarity annotations. We apply square-root transformation to pairwise distances, which we

observed improved similarity rating prediction accuracy.

Performance Statistics

To quantify the accuracy of similarity rating prediction, as discussed by Cardoso and Sousa

(2011) we compute Kendall’s τb and Spearman’s ρs, both which are ordinal measures of associ-

ation between predicted and annotated similarity ratings. As given by Agresti (2010), we define

Kendall’s τb as follows: assume that we have sequencesQ= (q1, . . . ,qM),O= (o1, . . . ,oM). The

pair di, j = ((qi,oi),(q j,o j)) is termed concordant, if qi > q j and oi > o j, or if qi < q j and oi < o j.

Analogously, di, j is termed discordant, if qi < q j and oi > o j, or if qi > q j and oi < o j. Kendall’s

τb is defined as

τb =
Mc−Md√

(Mp−Mq)(Mp−Mo)
(5.5)

where Mc, Md respectively denote the number of concordant and discordant pairs and where

Mp = 1
2 M(M− 1) denotes the total number of pairs. Terms Mq, Mo respectively denote the

number of pairs with tied (qi,q j) and with tied (oi,o j). In the denominator, the normalisation

is with respect to the geometric mean of adjusted pair counts (Mp−Mq), (Mp−Mo). Yielding

values in the range [−1,1], τb may be interpreted as an estimate of the difference in probability

of sampling a concordant pair versus sampling a discordant pair in (Q,O), while accounting for

ties.

As a second measure of prediction accuracy, we compute Spearman’s ρs, corresponding to
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the product-moment correlation coefficient between separately rankedQ,O (Agresti, 2010). We

assign unique ranks to tied values, before computing average ranks across tied values. Note

that in contrast to τb, the value of ρs is a function of assigned ranks. Thus, in the presence of

ties τb may be viewed as a more appropriate means of comparing ordinal sequences (Pinto da

Costa et al., 2008). Nevertheless, we compute ρs, since its square yields a direct interpretation as

proportion of explained variance between assigned ranks.

As a third performance measure, we view our prediction task as multinomial classification

and compute BA. Note that in contrast to τb, ρs, BA disregards the ordering of rating scores.

Based on our notion of relative rating agreement, we thus consider BA a subsidiary measure of

performance compared to τb, ρs.

Model Estimation

We evaluate similarity rating prediction by applying hold-out validation to web-sourced anno-

tations. We use 60% of annotations for training, with the remainder of annotations used for

testing.

We apply multinomial regression separately to sets of distances between descriptor vectors,

as specified in Table 5.5. We standardise distances with respect to training data. Note that we

compute FCD vectors separately across temporal resolutions and across audio features. Based on

a set of 25 audio features, given a pair of tracks we thus obtain a total of 100 distances between

compression-based descriptor vectors. Furthermore, note that when combining sets of descriptors

we aggregate among obtained distances. Thus given a pair of tracks, when combining sets 1, 3, 4

as specified in Table 5.5, we obtain 150 distances. As given in Equation 5.2, we weight distances

individually.

In our training step, we estimate multinomial regression parameters using elastic net regular-

isation (ENR) (Zou and Hastie, 2005) based on coordinate descent (Friedman et al., 2010; Qian

et al., 2013). We denote with βββ = (βββ T
1 , . . . ,βββ T

K)T , γγγ = (γ1, . . . ,γK)T regression coefficients and

model intercepts as given in Equation 5.2. Using ENR, we solve

min
βββ ,γγγ

{
η

(
ν‖βββ‖1 +(1−ν)

1
2
‖βββ‖2

2

)
− `(βββ ,γγγ)

}
(5.6)

where `(βββ ,γγγ) denotes model log-likelihood. Furthermore, η and ν respectively are shrinkage

and elastic net penalty parameters, with η > 0 and 0 ≤ ν ≤ 1. Thus, ν determines the rela-

tive contribution of regularisation due to L1 and L2 norms, whereas η scales the regularisation

penalty. For each performance statistic τb, ρs, BA and for each rating scale, we apply hold-out
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Set Track representation Descriptor vector
components

Distance measure Prediction
coeffs.

1. FCDs λ ∈ {3,4,5} Euclidean 4×25
2. Frame sequence N/A Cross-prediction

error
25

3. FMDs Mean, Std Euclidean 25
4. FMDs Mean, Var KLD 25
5. Combine 3, 4 50
6. Combine 1, 3, 4 150

Table 5.5: Summary of descriptor combinations evaluated for similarity rating prediction. Third
column denotes components included in descriptor vectors. Fifth column lists number of coeffi-
cients in multinomial regression model (excluding intercepts).

validation to training data and optimise η by determining maximal prediction accuracy. We con-

sider ν a hyper-parameter which we assign constant value 0.444 after a single optimisation step;

we optimise Kendall’s τb with respect to the five-point rating scale and using a model incorpo-

rating FMDs, where we again apply hold-out validation to training data.

Summary

Figure 5.2 summarises our method for similarity rating prediction. Following feature extraction

(cf. Table 5.1), we compute FCDs and FMDs. Next, we compute pairwise distances between

FCDs and FMDs. Using ENR, we estimate a multinomial regression model of similarity ratings

in response to pairwise distances; we consider combinations of descriptors and distance measures

as given in Table 5.5. Using cross-validation, we consider as performance measures ρs, τb, BA.

Results

Figure 5.3 displays the result of exploratory analysis, in which we plot pairwise distances against

similarity ratings. We consider FCDs computed without downsampling and FMDs, respectively

compared using Euclidean distance and log-transformed KLD. For both descriptors, we average

distances across across features, to identify any possible relationship between similarity rating

and pairwise distances between descriptors. We observe a monotonically decreasing trend in

median, 25th and 75th percentile ranges against increasing similarity rating, suggesting that both

FCDs and FMDs may be used to predict similarity ratings.

We examine the correlation between descriptor distances and five-point scale similarity rat-

ings across individual audio features. Figure 5.4 depicts correlations τb for FCDs and FMDs,

where we compare FMDs using both Euclidean distance and KLD. In addition to FMDs, as

described we consider as a baseline the cross-prediction error.
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Dataset

Extract featuresExtract features

Obtain track-wise Obtain track-wise
representations representations

Compute pairwise Compute pairwise
distances distances

Estimate model

Predict similarities

Evaluate prediction
accuracy

Training track pairs

Testing track pairs

FCDs; FMDs

cf. Table 5.1

Eucl.; KLD; Cross-prediction

cf. Table 5.5; Equation 5.6

cf. Equation 5.2

ρs, τb; BA

Figure 5.2: Summary of similarity rating prediction method.

We observe that FCDs and FMDs both yield maximum correlation 0.19 (comparing FCD2

to FMDs, with both distances computed using Euclidean distance); similarly, FMDs compared

using KLD yield maximum correlation 0.18. Across descriptors, with α = 0.05 and applying

Bonferroni correction, the majority of features yield significant correlations. In contrast, for

cross-prediction, effect sizes are comparatively small. Comparing descriptors, for FCD2 we ob-

serve correlations exceeding 0.1 for 9 features, and for 12 features for the case of FMDs compared

either using KLD or Euclidean distance. On average, FMDs yield greater correlation compared

to FCD1 (0.095 versus 0.087). However, for specific features FCDs yield higher correlation than

FMDs. Comparing FCDs amongst temporal resolutions, we observe a monotonically decreasing

relationship between downsampling factor and average correlation.

Figure 5.5 displays a comparison of similarity rating prediction accuracy, where for each

descriptor set in Table 5.5 we apply feature selection using ENR. We estimate models using
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(b) FMDs compared using KLD

Figure 5.3: Box plot of pairwise distances against web-sourced pairwise similarity ratings, ob-

tained using (a) FCDs computed without downsampling and (b) FMDs. Distances averaged

across features. Crosses represent outliers. Box widths proportional to number of observations.

τb, ρs, BA as performance statistics. We consider both 5-point and 4-point rating scales. In

particular, we consider the performance gain obtained by including FCDs in our models.

Across rating scales, we observe that FCDs are outperformed by FMDs compared using

KLD alone, or FMDs compared using Euclidean distance and KLD in combination: Compared

to FCDs and based on the five-point rating scale, for FMDs compared using aggregated Euclidean

distance and KLD we observe absolute performance gains of 0.018, 0.043, 0.039 with respect

to ρs, τb, BA; the respective relative performance gains are 7.0%, 19.3%, 14.1%. Comparing

analogously for the four-point rating scale, using FMDs in place of FCDs we observe absolute

performance gains of 0.009, 0.016, 0.017; the respective relative performance gains are 3.2%,

10.1%, 9.8%.

However, a combination of FCDs and FMDs outperforms evaluated combinations employing

FMDs alone. By incorporating compression descriptors, compared to FMDs based on aggregated

KLD and Euclidean distance, based on the five-point rating scale we obtain absolute performance
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Figure 5.4: Feature-wise absolute correlation |τb| between pairwise distances and web-sourced

similarity annotations. Pairwise distances respectively obtained using FMDs compared using Eu-

clidean distance and KLD (first and second columns), cross-prediction (third column), Euclidean

distance applied to FCDs (remaining columns). Starred entries indicate significance, where we

apply Bonferroni correction to α = 0.05.

gains of 0.033, 0.030, 0.013 with respect to ρs, τb, BA. The respective relative performance gains

are 10.4%, 11.3%, 4.7%. Based on the four-point rating scale, we obtain absolute performance

gains of 0.059, 0.051, 0.021; the respective relative performance gains are 31.1%, 29.1%, 7.2%.

As suggested by Figure 5.4, we observe that cross-prediction yields comparatively low predic-

tion performance. We test for differences between correlations by applying bootstrap sampling

to predicted and observed similarity ratings, from which in turn we estimate standard errors of

performance statistics. Based on a one-way analysis of variance (ANOVA) with Tukey-Kramer

post-hoc analysis and setting α = 0.05, we reject the hypothesis of no difference between cor-

relations across all considered pairs, for all considered performance statistics. We use ANOVA

instead of analogous non-parametric tests as applied in Chapter 4, since visual inspection of his-

tograms revealed that bootstrapped statistics are normally distributed with approximately equal

variance, thus fulfilling ANOVA’s assumptions.

Figure 5.6 displays regression coefficients across features and descriptor classes, where we

consider the best-performing model evaluated in Figure 5.5 based on ρs and using the five-point

rating scale. We sum regression coefficient magnitudes across each of the K binary classifiers
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Figure 5.5: Similarity rating prediction accuracy using combined descriptors. Standard errors

obtained by bootstrap sampling pairs of predicted and observed similarity ratings.

given in Equation 5.2, before normalising the obtained values to sum to one. Comparing FMDs

and FCDs, we observe that both FCDs and FMDs are selected within individual features. FCDs

appear to be selected across diverse temporal resolutions, with emphasis on higher temporal

resolutions. We observe that multiple FCD resolutions are selected within the same feature.

5.3.2 Song Year Prediction

For song year prediction, we compute FCDs and FMDs as performed for similarity rating pre-

diction. We use chart entry dates as our annotation data and apply the linear regression model

given in Equation 5.3. Figure 5.7 displays a histogram of chart entry dates.

Model Estimation

To evaluate our descriptors for song year prediction, we partition the dataset into random training

and testing subsets, where we ensure that title or artist strings are not duplicated across subsets.

We apply the aforementioned filtering procedure to control for potential cover version and album
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Figure 5.6: Normalised regression coefficient magnitudes, estimated using elastic net regression,

for task of similarity rating prediction. Candidate descriptor set comprised of FCDs compared

using Euclidean distance, and FMDs compared using Euclidean distance and KLD.
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Figure 5.7: Histogram of chart entry dates.

effects, in addition to any analogous effects at the level of artists Flexer and Schnitzer (2010). The

resulting training and testing datasets consist of 10 728 and 4 745 tracks respectively. We deem as

outliers descriptor values in the training data exceeding 10 standard deviations beyond the 99th

percentile. We replace such outliers with imputed values, using the K-nearest neighbours (KNN)

algorithm.

We apply linear regression separately to sets of descriptor vectors, as specified in Table 5.6.

We standardise descriptors with respect to training data. As performed for similarity rating pre-

diction, we compute FCDs separately across temporal resolutions and across audio features. In

contrast, we apply linear regression directly to descriptor vectors without the intermediate step of

computing distances. Based on a set of 25 audio features, given a single track we obtain a total of
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Set Track representation Descriptor vector components Prediction coeffs.
1. FMDs Mean, Std 21×2+4×24
2. FCDs λ ∈ {3,4,5} 25×4×3
3. Combine 1, 2

Table 5.6: Summary of descriptor combinations evaluated for song year prediction. Fourth col-
umn lists number of coefficients in linear regression model (excluding intercept).

300 scalar-valued FCDs, for each of which we estimate a single regression coefficient. Note that

since we represent FMDs using the mean and standard deviation, we estimate two regression co-

efficients for each univariate audio feature. For FMDs, it follows that we estimate 24 regression

coefficients for MFCCs and chroma features.

As was performed for similarity rating prediction, we estimate linear regression parameters

using ENR. We denote with θθθ = (θθθ T
1 , . . . ,θθθ T

N)T , α regression coefficients and the model intercept

as given in Equation 5.3. Using ENR, we solve

min
θθθ ,α

{
η

(
ν‖θθθ‖1 +(1−ν)

1
2
‖θθθ‖2

2

)
+SSR(θθθ ,α)

}
(5.7)

where SSR(θθθ ,α) denotes the sum of squared residuals. Both η , ν behave as defined in Equa-

tion 5.6. We apply cross-validation to training data and optimise η by determining minimal

prediction mean squared error. We again consider ν a hyper-parameter which we assign constant

value 0.163; we optimise prediction mean squared error based on a model incorporating FCDs

and FMDs, and by applying cross-validation to training data. We threshold predictions to fall in

the range [1957y ..2010y].

In addition to the year prediction task based on individual tracks, we evaluate prediction per-

formance when considering groups of tracks. We perform this experiment to establish whether

FCDs consistently improve performance, or if grouped FMDs amortise any potential perfor-

mance gain due to FCDs. We select groups of tracks by applying a non-overlapping sliding

window to chart entry dates. We then take as descriptor vector r′w,n the average

r′w,n =
1
|Cw| ∑

i∈Cw

ri,n (5.8)

where Cw denotes the set of tracks at window position w. We apply the windowing procedure

separately to training and testing data sets. For a given window size, we estimate our model using

ENR as previously described; given the obtained regression model and given descriptor vectors

at window position z in the testing data, we seek to predict the associated window centre y′z.
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Figure 5.8: Summary of song year prediction method.

Performance Statistics

We quantify prediction accuracy with respect to annotated chart entry dates, using the mean

absolute error (MAE) and root mean squared error (RMSE) statistics.

Summary

Figure 5.8 summarises our method for song year prediction. Following feature extraction (cf. Ta-

ble 5.1), we compute FCDs and FMDs. Next, using ENR, we estimate a linear regression model

of chart entry dates in response to feature values; we consider combinations of descriptors and

distance measures as given in Table 5.6. Using cross-validation, we consider as performance

measures ρs, τb, BA.

Results

Figure 5.9 displays the result of exploratory analysis for song year prediction, where for FMDs

and FCDs we group descriptor values across time, by applying a non-overlapping 2 year sliding

window to chart entry dates. We restrict analysis to obtained spectral spread features (cf. Lartillot

and Toiviainen, 2007). The resulting year-wise box plots suggest that the examined descriptors
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Set MAE RMSE
FCDs 9.44 ± 0.096 11.54 ± 0.107
FMDs 8.28 ± 0.092 10.45 ± 0.113
Combined 7.38 ± 0.085 9.43 ± 0.107

Table 5.7: Summary of song year prediction accuracy, expressed using MAE and RMSE statis-
tics. Standard errors obtained by bootstrap sampling pairs of predicted and observed chart entry
dates.

are non-stationary with respect to chart entry dates, exhibiting distinct trends. To examine the

behaviour of descriptors at a finer time scale, we apply a non-overlapping 30 day sliding win-

dow to chart entry dates, where at each window position we compute the mean descriptor value.

Examining the sample autocorrelation of the resulting sequences for lags in the range [1 ..15],

we observe weaker correlations for FCDs compared to FMDs. Yet, both autocorrelations ex-

hibit slowly decaying autocorrelations (Figure 5.10), characteristic of a non-stationary sequences

(cf. Kirchgassner et al., 2012). Following the method of Box and Jenkins (cf. Box et al., 2013),

we attempt to attain stationarity by applying first-order differencing to the sequences. However,

we observe autocorrelation close to −0.5 at unit lag, suggesting that the sequences have been

overdifferenced (cf. Kirchgassner et al., 2012). We interpret these observations as evidence for a

non-trivial, trend-exhibiting process governing observed descriptor values (Granger and Joyeux,

1980).
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Figure 5.9: Box plots of FCDs and FMDs computed using spectral spread features, with FCDs

computed without downsampling. Each box corresponds to the position of a non-overlapping 1

year window applied to chart entry dates.

Table 5.7 summarises the accuracy of song year prediction using MAE and RMSE statis-

tics. Quantified using either MAE or RMSE, song year prediction based on FMDs outperforms
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Figure 5.10: Sample autocorrelation of undifferenced and differenced FCD, FMD averages. De-

scriptor averages obtained by applying non-overlapping 30 day window to chart entry dates.

Descriptors computed on spectral spread features, with FCDs computed without downsampling.

Horizontal bars indicate 95% confidence intervals under the assumption of Gaussian white noise

for differenced sequences.

prediction using FCDs alone: We obtain respective performance gains of 12.3% (MAE) and

9.4% (RMSE). However, we observe that a combination of FMDs and FCDs yields the high-

est prediction accuracy. By incorporating FCDs we observe performance gains of 10.9%, 9.8%

relative to FMDs, in terms of MAE and RMSE. As performed in Section 5.3.1, we test for dif-

ferences among prediction accuracies by applying bootstrap sampling to predicted and observed

chart entry times, from which we estimate standard errors of MAE and RMSE statistics. Again

using one-way ANOVA with Tukey-Kramer post-hoc analysis and setting α = 0.05, we reject

the hypothesis of no difference between prediction accuracies across all pairs, for both MAE

and RMSE. As previously described in Section 5.3.1, we motivate ANOVA on the basis that

exploratory analysis of bootstrapped statistics revealed normality and approximately equal vari-

ance.

Figure 5.11 displays regression coefficients obtained using unwindowed chart entry dates.

We compute coefficient magnitudes and normalise to sum to one. Thus computed, we interpret

coefficient magnitudes as predictive utilities across individual audio features. In addition, we

consider the utility of FCDs across time scales, compared to FMDs. Summed across features, we

observe that compared to FCD1, FMDs are weighted more strongly (0.591 versus 0.201). Further

examining relative weightings, we observe a prevalence of weight assigned to FCD1 compared

to higher downsampling factors. However, we observe that individual features may be weighted
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Figure 5.11: Normalised regression coefficient magnitudes, estimated using elastic net regulari-

sation, for task of song year prediction. Candidate descriptor set comprised of FCDs and FMDs.

relatively strongly across multiple temporal scales. Note from Table 5.5 that for chroma features,

MFCCs and derivatives, FMD weights are summed across 24 prediction coefficients, compared

to 3 coefficients for FCDs.

In Figure 5.12 we examine prediction accuracy in response to windowed descriptors, as de-

scribed in Equation 5.8 and where we quantify prediction accuracy using MAE. For increasing

window size up to 60d, performance improves monotonically across all considered descriptor

sets. Across considered window sizes, using combined FCDs and FMDs we observe a mean

performance gain of 17.5%, relative to using FMDs alone. By contrast, for window sizes in the

range [0d ..60d] using FMDs alone in place of FCDs alone we observe a mean performance gain

of 7.0%.

5.4 Conclusion

In this chapter, we have considered the problem of determining musical similarity, using feature

sequences extracted from musical audio. In particular, we have considered musical similarity

in the context of two low-specificity content-based information retrieval tasks, namely similarity

rating prediction and song year prediction. We propose to compute track-wise sequential com-

plexity as a descriptor for quantifying musical similarity. Whereas bag-of-features approaches

such as feature moments disregard the temporal order of features, we conceive our descriptors as
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Figure 5.12: Song year prediction accuracy obtained using windowed descriptors, in response to

window size. Error bars denote standard errors.

a statistic quantifying the amount of temporal regularity in a feature sequence.

Our proposed FCDs are computed in an unsupervised manner and may be implemented ef-

ficiently, requiring O(n) time complexity for a feature sequence of length n (Effros, 2000). In

addition, FCDs have similar dimensionality compared to FMDs. Since FCDs may be computed

off-line or incrementally and then combined with efficient retrieval methods as considered by

Slaney and Casey (2008); Rhodes et al. (2010); Schlüter (2013), we deem them potentially ap-

plicable in large-scale content-based information retrieval systems.

For both considered tasks, we observe that FCDs predict the outcome variable. Furthermore,

in combination with FMDs, FCDs improve prediction accuracy with respect to the using FMDs

alone. The results confirm that our proposed descriptors capture musically relevant information

and that temporal structure is relevant in our chosen domain. Consequently, our results show that

predictive uncertainty may be used to improve the accuracy of low-specificity content-based in-

formation retrieval relying on bag-of-features approaches. Similar to results obtained by Foucard

et al. (2011); Hamel et al. (2011, 2012); Dieleman and Schrauwen (2013), from examining esti-

mated regression coefficients our results using FCDs suggest that an approach based on multiple

temporal resolutions is advantageous for determining musical similarity.

Since FCDs by design relate to sequences of feature vectors rather than their marginal dis-

tribution, we expect that FCDs may complement FMDs (cf. Section 5.2). Whereas we indeed

observe that FCDs combined with FMDs improve prediction accuracy compared to using FMDs

alone, in addition we observe that FCDs by themselves do not outperform feature moments. Con-

cerning the latter observation, we emphasise that as a measure of predictability, FCDs abstract
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away from the values of feature vectors on which they are computed. That FMDs in isolation out-

perform FCDs in isolation by a maximum of 19.3% (cf. Section 5.3.1) thus appears unexpected.

The performance of FCDs in isolation notwithstanding, with a view to applications in musical

similarity we conclude that FCDs should be applied in combination with feature moments.
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Chapter 6

Conclusions

6.1 Introduction

This chapter summarises and concludes this thesis. In Section 6.2 we summarise our investiga-

tions in chapters 4 and 5. We then relate the investigations to the research questions described in

Chapter 1 and discuss ideas for future investigations. We subsequently prioritise ideas for future

investigations in Section 6.4. Finally, we provide concluding remarks in Section 6.5.

6.2 Summary

In Chapter 4, we investigated using information-theoretic measures of predictability for cover

song identification. Our evaluated measures quantify pairwise predictability between chroma

feature sequences; we use such measures to determine pairwise similarity between tracks for the

considered task. We evaluate discrete-valued and continuous-valued approaches as alternatives

to the normalised compression distance (NCD).

Among discrete-valued methods, based on theoretical considerations, we propose normalised

compression distance with alignment (NCDA) as an alternative to the NCD. Further, we pro-

pose methods based on prediction, which contrast with those based on string compression used

to estimate NCD and NCDA. Secondly, we propose analogous methods directly applicable to

continuous-valued feature sequences; thus no quantisation step is required to compute our mea-

sures when determining pairwise similarities between tracks. In the continuous-valued case, we

compute our measures as statistics of the prediction error.
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As we observe in our investigations on cover song identification, our proposed continuous-

valued approaches consistently outperform discrete-valued approaches and compete with continuous-

valued baseline approaches. Further, in the continuous-valued case, we observe that cross-

prediction yields superior performance to our continuous-valued analogue of the normalised

information distance. Concerning discrete-valued approaches, we observe that using NCDA

instead of NCD improves cover song identification accuracy, for the case of the Lempel-Ziv (LZ)

algorithm. Finally, we observe that continuous-valued prediction measures may be combined

to improve performance relative to the baseline, attaining state-of-the-art performance using the

Million Song Dataset (MSD).

In Chapter 5, we investigated using information-theoretic measures of predictability for sim-

ilarity rating prediction and song year prediction. For this purpose, we quantify predictive uncer-

tainty in track-wise manner. Our proposed feature complexity descriptors (FCDs) are based on

computing predictive uncertainties at multiple time scales. Viewed as summary statistics in con-

trast to feature moments, our descriptors quantify temporal regularity, whereas feature moments

disregard the temporal order of features.

For both similarity rating prediction and song year prediction, we observe that FCDs predict

respective outcome variables. We observe that FCDs in isolation do not outperform the con-

sidered feature moment descriptors (FMDs). However, combined with FMDs, FCDs improve

performance, compared to using FMDs alone. Further, our results suggest that using multiple

time scales is advantageous for determining musical similarity.

Common to our investigations on cover song identification, similarity rating prediction and

song year prediction, we observe that by including our proposed measures in predictive models,

we improve accuracy relative to baselines, as quantified using our chosen performance statistics.

6.3 Discussion of Research Questions and Future Work

RQ3: To what extent can information-theoretic measures of predictability be

used to determine musical similarity?

Recalling the research questions stated in Chapter 1, we begin by discussing research question

RQ3, by which we subsequently infer answers about research questions RQ1 and RQ2.

Examining our results on cover song identification, continuous-valued approaches attain

competitive performance, compared to baseline approaches. This observation holds for both
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the considered Jazz dataset and the MSD: quantified using mean average precision (MAP) and

for the Jazz dataset, using our cross-prediction distance measure D× we obtain an MAP score

of 0.454, compared to MAP scores of 0.459 and 0.465 using cross-prediction normalised mean

squared error (NMSE) and cross-correlation baselines, respectively. For the MSD, using our dis-

tance measure D× we obtain an MAP score of 0.0498, compared to MAP scores of 0.0499 and

0.0404 for the same baseline approaches.

Further, we observe that we may combine our distance measures with baseline approaches

to obtain significant performance gains with respect to baselines: for the Jazz dataset and MSD,

by combining D× with NMSE we obtain respective MAP scores of 0.496 and 0.0516, corre-

sponding to performance gains of 8.1% and 3.4%. Considering the approaches proposed by

Bertin-Mahieux and Ellis (2012), Khadkevich and Omologo (2013) involving the MSD, who

respectively obtain MAP scores 0.0295, 0.0371, we obtain state-of-the-art results.

Concerning our evaluated low-specificity tasks, for similarity rating prediction we observe

significant correlations between pairwise similarity ratings and pairwise distances between FCDs.

These observations hold across the majority of evaluated features and considered time scales.

Moreover, by incorporating FCDs into a multinomial regression model, quantified in terms of

Spearman rank correlation and based on a four-point rating scale we obtain we obtain a relative

performance gain of 31.1%, compared to using FMDs alone to predict similarity ratings. For

song year prediction, by incorporating FCDs into a linear regression model we observe a relative

performance gain of 10.9% compared to using FMDs alone to predict chart entry dates.

A limitation of our investigations on cover song identification is that we consider a single per-

formance measure, the MAP, which we motivate to enable straightforward comparison between

a multitude of approaches. While widely applied in version identification (cf. Serrà, 2011), it

might prove instructive to consider alternative performance measures, such as mean reciprocal

rank or precision at rank k (cf. Metzler, 2011). A further alternative might involve determining

thresholds for identifying cover versions and computing precision/recall statistics, as performed

by Casey et al. (2008a). Further, we combine distances using a single approach. For the lat-

ter problem of combining distances, further investigations might involve using artificial neural

networks (ANNs) for regression (cf. Bishop, 2006).

For similarity rating prediction, by biasing towards tracks with proximate chart entry dates,

we attempt to control for historical changes in audio production. For song year prediction, where
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we do not control in the described manner, audio production may confound the association be-

tween musical similarity and chart entry date. In both cases, a limitation of our work is that audio

production may confound the association between similarity measures and respective outcome

variables, as observed by Sturm (2012). While we submit the contending view that audio pro-

duction is itself a musical characteristic, for future work it would be instructive to measure the

influence of audio production by introducing suitable audio degradations, for example those pro-

posed by Mauch and Ewert (2013). Extending investigations in Chapter 5 involving FCDs and

FMDs in respective isolation, additional investigations might examine robustness of FCDs and

FMDs in response to audio degradations. Further investigations might characterise the feature

space relevant for similarity judgements.

RQ2: Is it possible to use information-theoretic measures of predictability to

represent temporal structure in music?

From our obtained results, we conclude that our methods may be used to represent temporal

structure in music: for cover song identification, all evaluated methods quantify similarity be-

tween sequences relevant for the task. In addition, for similarity rating prediction and song

year-prediction our investigations confirm that temporal structure is relevant.

RQ1: How may we obtain representations of temporal structure in music?

As outlined in Chapter 1, for cover song identification we distinguish between discrete-valued

and continuous-valued approaches, which we consider alternatives for obtaining representations

of temporal structure in music. Comparing such methods, across considered datasets we observe

that both our continuous cross-prediction measure D× and the continuous baseline approaches

(cross-prediction NMSE and cross-correlation) outperform all considered discrete-valued ap-

proaches. From these results we conclude that there are practical issues related to representing

audio features using strings, and that the K-means based approach is insufficient. For future

work, it would be beneficial to investigate alternative quantisation schemes, such as those based

on chord transcription evaluated by Martin et al. (2012); Khadkevich and Omologo (2013). We

view the continuous-valued approach as advantageous, since it requires no quantisation.

In both discrete-valued and continuous-valued cases, future investigations should examine

the use of additional sequence modelling techniques. Among discrete-valued approaches, Shal-

izi and Shalizi (2004) propose a method for estimating hidden Markov models (HMMs) which
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serve as optimal statistical predictors of sequences. The inferred models may subsequently be

used to estimate entropy rates. An expansion of this approach has been proposed for the case

of continuous-valued observations with clustering behaviour (Kelly et al., 2012). The latter ap-

proach incorporates a quantisation scheme which assigns a null symbol to ambiguous observa-

tions; null symbols are subsequently ignored during model estimation. We suggest that such an

approach might be applied to chroma sequences. A further possibility for future investigations

is the use of recurrent neural network architectures, such as long short-term memory (LSTM)

(Hochreiter and Schmidhuber, 1997), which we discussed in Chapter 2.

For the purpose of computing FCDs, our proposed use of a discrete-valued approach is prag-

matic, based on the low computational cost of compressing sequences in the considered dataset.

For future work, as proposed for cover song identification we might use HMMs to estimate

entropy rates; furthermore as proposed continuous-valued prediction may readily be used to esti-

mate entropy rates. Finally, it is conceivable that by using multiple approaches we might obtain

more accurate estimates of entropy rates, using a suitable pooling function. Future investigations

might examine whether more accurate estimates lead to improved similarity predictions.

RQ4: Which measures of predictability are useful for determining musical similarity?

From our investigations on cover song identification, we observe that for the LZ algorithm, NCD

is outperformed by the proposed NCDA for both datasets, in terms of average performance gain

across codebook sizes. Furthermore, NCD is outperformed by the proposed distance D× based

on discrete-valued cross-prediction and using the Jazz dataset. Thus, we conclude that among

information-theoretic approaches, the NCD does not yield empirically optimal performance in

general. It may therefore be advantageous to use alternative measures when faced with similar

tasks.

In our present work on similarity rating prediction and song year prediction, we consider

only a single measure of predictability. For further work, it would be instructive to determine

the utility of alternative measures, for example those proposed by Dubnov (2008); Abdallah and

Plumbley (2009). Since such measures are not functions of the entropy rate (cf. James et al.,

2011), we suggest that they might be useful in combination with the proposed FCDs, potentially

yielding further performance gains.
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RQ5: Which feature representations are useful for determining musical similarity?

Our results using FCDs suggest that an approach based on multiple temporal resolutions is ad-

vantageous for determining musical similarity. This conclusion is based on comparing estimated

regression coefficients across time scales used to represent feature sequences.

As an alternative to downsampled features, we initially employed beat-synchronous repre-

sentations, which yielded comparatively small gains in prediction accuracy, when combined with

original frame-based features. This result suggests that for our chosen domain, temporal structure

at short time scales is more advantageous, compared to temporal structure at the metrical level.

One possible explanation for this behaviour is that an abundance of observations is beneficial

when estimating compression rates. Alternatively, for our chosen tasks similarity judgements

might be influenced by short-term structure (such as timbral characteristics, as opposed to long-

term structures such as motifs and chord progressions). For future work, we propose to examine

in closer detail the utility of representing features at multiple time scales and to further charac-

terise the feature space relevant for similarity judgements.

RQ6: How may we quantify similarity between sequences?

For the general problem of comparing strings, we propose NCDA as an alternative to the NCD.

We motivate NCDA by considering sequences assumed to have been emitted by Markov sources;

as proposed, NCDA is a modification of the NCD which accounts for correlation between se-

quences. Based on artificial sequences, we demonstrate experimentally that NCDA more closely

than NCD approximates the normalised information distance (NID), the latter which we estimate

analytically. Thus, we conclude that NCDA may yield more favourable performance in tasks

where we may assume Markov sources underlying observed sequences. Our results on cover

song identification support this conclusion based on consistent improvements using NCDA ver-

sus NCD, for the LZ algorithm. However, compared to experiments involving artificial strings,

we observe inconsistent results for Burrows-Wheeler (BW) and prediction by partial matching

(PPM) algorithms.

With the aim of establishing causes for differences between results involving artificial strings

and quantised chroma sequences, future investigations should examine in detail the behaviour of

NCDA when applied to BW and PPM algorithms. To this end, further analysis should quantify

the performance improvement of NCDA applied to individual compression steps in each respec-
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tive algorithm. The artificial strings with equi-probable binary observations and noise based on

an independent, identically distributed random variable (as considered in Chapter 4) might sub-

sequently be extended to more ecologically valid data such as annotated chord sequences, the

latter which might be combined with a more realistic noise source based on probabilistic inser-

tion, substitution and deletion. Further, future investigations should examine in greater detail the

behaviour of the string alignment step in NCDA, both as proposed in Chapter 4 and substituted

with alternatives such as dynamic time warping (DTW).

Future work might also examine the behaviour of NCDA versus NCD applied to alternative

tasks to cover song identification. Similarly, future investigations might involve applying our

proposed continuous-valued approaches to alternative tasks.

RQ7: How might we perform computationally efficient retrieval?

Our evaluations of pairwise and track-wise measures of predictability involve metric spaces for

computing similarity: for similarity rating prediction, we compute Euclidean distances between

FCDs, whereas for song year prediction we apply linear regression to FCD values themselves.

For cover song identification, we incorporate our methods of computing pairwise predictability

into a two-stage process, where in the first stage we filter tracks using the L1 distance. By ex-

pressing similarity using a metric, in all cases we allow for the possibility of applying techniques

with sub-linear retrieval time complexity, with respect to the number of tracks in the collection

(cf. Slaney and Casey, 2008).

While we allow for the possibility of using such approaches, it remains to examine retrieval

performance using commercial-scale datasets. Future work should first examine retrieval ac-

curacy when using sub-linear techniques, as considered by Schlüter (2013): given a specified

collection size it may be nevertheless advantageous to perform a linear scan, providing that pair-

wise comparisons can be performed with sufficient computational efficiency. Future work should

evaluate retrieval performance based on performing linear scans, using optimised implementa-

tions of our methods.

6.4 Priority List of Future Investigations

Based on ideas for future work discussed in the preceding section, we prioritise future investiga-

tions of immediate importance as follows:
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1. Establish causes for differences in performance gains, observed when computing NCDA

across compressors and across considered string data.

With a view to establishing causes for differences in performance gains when computing NCDA

across LZ, BW and PPM compressors, as a starting point we propose to restrict investigations

to simplified implementations of respective compressors. For LZ compression, investigations

should involve the algorithm originally proposed by Ziv and Lempel (1977), whereas for PPM

investigations should involve the algorithm proposed by Cleary and Witten (1984). For BW com-

pression, investigations should involve the Burrows-Wheeler transform (Burrows and Wheeler,

1994).

The effect of string interleaving should be investigated using theoretical analysis, artificial

data, as well as real-world data. After illustrating algorithm behaviour using example strings,

theoretical analysis should serve as a starting point for distinguishing among the theoretical be-

haviour of NCDA for the considered compression algorithms. Thereafter, experiments involving

artificial data should be used to test hypothesised behaviour obtained from theoretical analysis,

as well as expand on the empirical behaviour of NCDA. As sources for artificially generated

data, we propose the use of Markov and golden mean processes (cf. James et al., 2011). As a

noise source, we propose the use of a probabilistic substitution table, with substitution probabili-

ties sampled from a Dirichlet process. Both artificial and real-word data should subsequently be

used to evaluate the behaviour of complex compression techniques, with the aim of more closely

matching the behaviour of general-purpose compressors. In complex compression techniques,

the effect of string interleaving should be evaluated with respect to combinations of constituent

compression steps. The proposed investigations contrast with those described in Chapter 4, the

latter which evaluate NCDA in combination with general-purpose compressors.

2. Evaluate NCDA using alternative alignment techniques.

Having evaluated the effect of string interleaving across compressors, future investigations should

establish how the performance of NCDA is influenced by the chosen string alignment technique.

To this end, we propose to compute distances between string pairs, respectively transformed with

varying amounts of probabilistically occurring symbol insertions, substitutions and deletions.

We would then aim at contrasting our proposed method against alternatives based on DTW,

seeking to quantify the amount of robustness in NCDA with respect to string transformations.

A starting point for modifying our proposed method might involve performing correlation-based
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alignment at the level of unquantised features; it would subsequently be of interest to compare

the computational complexity of competing approaches. Another variant of correlation-based

alignment applicable to non-binary alphabets might incorporate a binary comparison function

between symbols. Finally, since DTW may be viewed as an alternative distance measure to

NCD, it would be instructive to compare the performance of the two respective approaches and

to explore the possibility of combining distances obtained using DTW and NCDA.

3. Evaluate alternative quantisation techniques for obtaining discrete-valued representations.

Further investigations should establish how the performance of NCDA and NCD is influenced by

the chosen quantisation method. To this aim, we propose to contrast K-means against the chord

transcription methods proposed by Mauch (2010) and subsequently implemented as the software

Chordino 1. Further contrasting with K-means, we propose to evaluate alternative encoding

strategies based on computing cosine similarities with respect to codewords (cf. Vaizman et al.,

2014); extended to the problem of codebook learning we note the possibility of using spherical

K-means clustering, where codewords are normalised to unit L2 norm (cf. Coates and Ng, 2012).

For the case of chroma features, we view an approach based on cosine similarities as potentially

advantageous compared to Euclidean K-means, since it allows us to incorporate chroma feature

normalisation in the codebook learning or codeword assignment steps. Investigations should

establish whether performance gains can be achieved, compared to our approach of normalising

feature vectors prior to codebook learning and quantisation.

4. Investigate methods for combining distances.

The method for combining pairwise distances considered in Chapter 4 represents a starting point

towards a more detailed investigation on using ensemble techniques for cover song identification.

Retaining the approach of using ranked distances as the input feature space, we propose to inves-

tigate training ANNs, using MAP as the loss function which we seek to minimise. A potential

difficulty using MAP is that training ANNs may require a continuous loss function with respect

to network parameters. Investigations should alternatively consider cover song identification as

an ordinal regression problem, as well as a classification problem. Thus formulated, a further

supervised learning approach might involve support vector machines (SVMs). In the work of

Ravuri and Ellis (2010), we note an approach based on combining distances using SVMs and

ANNs for classification.
1http://isophonics.net/nnls-chroma, retrieved April 2015.

http://isophonics.net/nnls-chroma
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5. Examine behaviour of FCDs in response to audio transformations

Further investigations should establish in detail the feature spaces represented by FCDs. To

this aim, as previously described we may degrade musical audio using suitable transformations

(cf. Mauch and Ewert, 2013). We propose an exploratory analysis, whereby we contrast FCDs

against FMDs, with respect to varying amounts of dynamic range compression, varying amounts

of reverberation and varying tempo. We note that depending on the intended application, we may

consider tempo variation both an irrelevant degradation, as well as a musically relevant trans-

formation. Thus, we propose to quantify the behaviour of FCDs versus FMDs both in terms of

robustness, as well as variability of descriptors with respect to transformations. With a view to

examining in further detail the use of multiple time scale representations, the proposed investi-

gations should involve FCDs computed using downsampled feature sequences, as proposed in

Chapter 5.

6.5 Conclusion

This thesis has investigated the use of information-theoretic measures of predictability for music

content analysis tasks. In particular, we have examined using information-theoretic methods

as a conceptual framework for obtaining representations of temporal structure in music, for the

purpose of determining musical similarity. We have demonstrated that our approach benefits

music content analysis tasks based on musical similarity.

Recalling the properties of abstraction, generality and expressiveness identified in Chapter 2,

we offer the following conclusions: abstraction has allowed us to compare methods applicable to

diverse feature representations, namely discrete-valued and continuous-valued representations,

obtained at diverse time scales. Generality has allowed us to consider a variety of methods for

estimating our measures. Finally, expressiveness has allowed us to consider a variety of possible

measures. Taken together, these properties have enabled an inquiry into how we might determine

musical similarity. Our obtained results and conclusions convey utility in our framework.

There exists substantial scope for expanding on the sequential models evaluated in this thesis.

A limitation of the present work is that single tracks or pairs of tracks are modelled in isolation.

Future work might examine the potential of quantifying predictability using a global model, akin

to the ‘long-term model’ in the work of Conklin and Witten (1995); Pearce and Wiggins (2006)

involving symbolic representations. Such an approach might be useful for modelling subjective
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notions of similarity, which we did not investigate in this work.

Furthermore, the measures which we compute are summary statistics with respect to entire

tracks, or pairs of tracks. Thus, we model sequences in their entirety, rather than incrementally.

Future work might investigate the alternative of an information-dynamic approach, where pre-

dictive uncertainty is quantified with respect to incremental models (cf. Abdallah and Plumbley,

2009). It would then be of interest to determine whether the resulting information profiles may

be used to determine musical similarity.

Finally, the possibility of using ensemble techniques demands attention. Besides combining

at the level of measures as previously suggested, it may prove useful to combine at the level of

individual predictions. To this end, we might consider online ensemble methods (cf. Vovk, 2001;

Cesa-Bianchi and Lugosi, 2006). It would subsequently be of interest to determine whether im-

proved estimates of information-theoretic quantities relate to improved performance at similarity

tasks. Ensemble techniques might further be applied across multiple feature representations:

for the purpose of version identification, it may prove fruitful to predict chroma features using

continuous-valued approaches in addition to discrete-valued approaches, with subsequent con-

version to a common representation.
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