Cocktails and Brainwaves
Experiments with Complex and Subliminal Auditory Stimuli

David M. W Powers, Ph.D, Directpr C. Richard Clark, Ph.D, Director
Simon E. Dixon, Ph.D., and Darren L. \ber B.Sc.(Hons)
Artificial Intelligence Laboratory Cognitive Neuroscience Laboratory

Department of Computer Science School of Psychology
The Flinders University of South Australia The Flinders University of South Australia
Email: {David.Powers,Richard.Clark,Simon.Dixon,Darreredér}@flinders.edu.au
Phone/Fax: +61-8-201-{3663,2425,3664,3580} / +61-8-201-{3626,3877}
Change: Adelaide numbers will change in August when our pefix becomes +61-8-8201

This paper deals with the problem of processing acoustic signals originating from multiple sources in a potentially noisy
environment. Previous research in speech processing and cognitive modelling has tended to concentrate on single
sources and relatively noise-free signals. Separating éertafif signals from a multitude of sources is a significant part

of human auditory processing. In speech processing research, the problem we are dealing with is known as the cocktail
party syndrome. The processing of polyphonic music involves similar challenges, and auditory scene analysis (ASA)
has been proposed as a means of separating out component signals and identifying their sources. In subliminal auditory
processing, a speech signal which is masked from conscious awareness by a music signal provides an extreme form of
the multiple source problem and permits exploration of the boundary between conscious and unconscious auditory
processing. The research presented employs machine learning and associative models to characterize and track
individual signals, and uses electroencephalographic (EEG) analysis to more precisely characterize human processing

of multimodal signals.
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INTRODUCTION responsible for ihe-grained sensori-motor and

In this paper we focus on the problem of dealing Witissociative processing [3]. While there is a general and

acoustic signals originating from multiple sources in ong standing expectation that musical processing is

andled by the ‘right brain’ (in non-musicians) and

potentially noisy environment. Despite sigeéit ; \ L
progress in developing systems and models for limite{f:"9Uag€ processing by the ‘left brain’ (in a normal
ight-hander), there is scope for more detailed analysis

p:#: ;?In S}ar;gu;?:” :nng esggec;r:iﬁ?;cl)c?;ts;ﬂ?é et: ICS(’E ar% the areas of the cortex which are active foiedént

researchers, cognitive scientists and electricalfinds of auditory processing, and of the nature of the

engineers. In particulaspeech processing traditionally activity when multiple signals are present.
assumes limitations such as customization for a single addition, variation of the relative strength of two
speaker close-miking, neglible ambient noise, andsuch signals in relation to the threshold of conscious
often other conditions including the requirement forperception and the maskindesdt, allows examination
words to be enunciated separateBmmilarly, when of which areas of the cortex are involved in conscious
processing acoustic music signals, it isficifit to and unconscious processing. More detailed analysis
reconstruct the score of a polyphonic composition.  should also be able to distinguish certain semantic and
syntactic aspects of the message as well as distinct
haracteristic frequency spectra associated with the
ifferent signals [3,6].

Recently interest in a more integrated cognitive
science approach has led to models in which multipl
sources of information are used to attack perceptual a
cognitive processing problems, and auto-correlativea;nis AND OBJECTIVES

connectionist, statistical and learning-based techniques

are employed to analyze linguistic input [7,8]. Engineering Objectives

Furthermore, there is evidence that associativeyr approach to this problem area is proceeding on a
processing is employed to discover characteristics of @, nher of fronts, and this paper will outline the
signal and selectively filter out other signals, and tha{,nroiects and report some preliminary results. Our
spectral similarity may be used to mark internal neurglimary objective is to apply associative, statistical and
signals as relating to the same event or concept [1]  |eaming techniques to the multisource auditory
Developments in the area of multi-electrode EE@roblem in order to increase thefegtive signal to
permit the topographic mapping of scalp electricanoise ratio for an attended source and to enhance
activity that is volume conducted from underlying processing of a source without necessarily separating it
brain structures. These scalp potentials reflect the grossit explicitly. Cleaning up signals is an application in
neural activity of localised regions of activity in the its own right, but our aim is simply to transcribe or
brain. Wth language processing, much of this activityunderstand one or more of the signals.

:5 presumed to Iof,ig"f‘atﬁ inbthe_ cortzx. hThiS is the QLit% order to tackle any problem, it is important to have an
ayer or “mantle” of the brain and the part mainly 555 0priate representation of the input data. In the case



of auditory data, this should take into account theEEG maps for types of words, but we also need a
known characteristics of the human ,eand should mechanism for distinguishing areas involved in
retain information which is useful whilst discarding conscious and preconscious processing, and for this
what is not. The decision as to what constitutes usefydurpose we are using subliminal auditory conditions.
information depends, howeyeam our purpose. If our

aim is to identify a speaker or an instrument we would®YSTEMS DEVELOPMENT

tend to retain information about spectral characte ; ;

which is typically discarded by systems that seekr:Ourler Preprocessing

simply to understand speech or transcribe a melody Although the techniques used in this project are based
on Fourier analysis, it is recognised that this method

For our purposes, the character of a voice (whethelynnot provide a sfifiently high resolution in both the
human or instrumental) is information which we wantime and frequency domains simultaneously [4]. Nor is
to retain and use to distinguish ourgelr voice from a6 an optimal compromise for all recognition tasks,
other noise and voices. Conversetpditional lage o< diferent domains require the ideftition of

vocabulary speech systems are tuned to an individugitterent acoustic features. The parameters chosen for a
voice using an extensive training procese Wantto o vier transform provide a traddobetween

build a model which is economical, rather thanegqiytion in the frequency domain and in the time
providing a brute force dictionary of typical speechyomain.

units at some level. 8will then use this model not just N ) _

to switch the system to a particular speakett to be For example, the recognition of speech requires high
able to track our tget speaker in the face of time resolution (tens of milliseconds), but a relatively
background noise and voices. Finathe tuning into a  low frequency resolution (50 or 100 Hertz isfeiént),
speaker should not involve a studio quality trainingvhereas Wstern music can be recognised with a time
phase, but should be possibiesitu. resolution closer to 100ms, but requires a frequency
resolution of less than a semitone, which is around 2 Hz
at the lowest frequencies of interest. Suitable setting of

arameters comes close to meeting the resolution needs

and autocorrelating the signal — thatis we find parts of; gjther domain, but the combined requirements are
the signal that are similar icontent or context with ¢ directly attainable.

other parts of the signal, and classify those segments
into classes. In application to speech, previous result§? counteract this problem, sounds are analysed at
include associating of similar speech vectors and th@ultiple resolution levels, and features are linked
identification of phonetic classes [8]. At higher levels,between the levels. For example, in a music recognition
syllable structure, syntactic relations and semanti§ystem, it appears to be Seient to work at two levels,

The technology which we are employing for our
linguistic analysis involves creating statistical model

classes can be identified [7,8]. one for detecting frequency (pitch) accurately and one
N L for detecting timing (rhythm) accuratelyThe
Scientific Objectives resolution problem is thus solved at the expense of

Notwithstanding the many practical applications for theadded complexity in grouping the acoustic data, but this
technology we are seeking to develop, this project se@pproach has the additional virtue of consistency with
the pure scientific objectives of understanding andhe similar dual processing performed in the cochlea:
modeling auditory processing as being of considerablthe inner surface of the basilar membrane provides low
importance in its own right, and thus a worthwhile aimfrequency resolution whilst the outer surface permits
for the project. The problem area is therefore beindigh frequency discrimination.

explored as a multifaceted interdisciplinary _res_e_arC'Auditory Scene Analysis

project in Cognitive Science. &believe that scientific ]
understanding is a prerequisite for technologicaln order to make sense of complex signals from
achievement and that there should be a symbioti@Ultiple sources, a sound recognition system must be

relationship between theoretic models and practicaible to oganise the components of sounds into groups
systems in this area. which correspond to the acoustic sources. This appears

d : d di £ h to be done preconsciously in the human brain, and
In order to increase our understanding of human,ensive psychological research in the area of auditory

processing of multimodal auditory signals, we arécene gnalysis (ASA) has identified a number of
seeking to develop the capacity to make verlflabl%1

. rinciples which reflect this area of brain functionality
predictions from our proposed models/systems and 2] The grouping principles of ASA are common to

confrm thlese pLedi_ctlions using the methods ofiher areas of basic cognitive function (such as vision),
cognitive electrophysiology and also share common ground with Gestalt

These predictions may take many forms. The analytipsychology

techniques which we are using result in models whicfy, agreement with ASA principles, we are examining
shc_)w certain structures and sequences.of genee 0 stages of grouping: primitive and schema-based.
which do not correspond to standard Linguistic anGyimitive grouping is used to sort raw elements of
Psycholinguistic expectations. For example, the role Oéensory data, whereas schema-based grouping builds

closed class words, functionalfiaés and prosody is qrid-level descriptions of acoustic sources and events
recogn_|zed at the earliest stages of processing wheregs the output of the primitive grouping stage.
the tacit assumption has been that the lategenee of

functional features in the speech of young childrerPrimitive grouping itself can be divided further into
means that they do not have any significance to thef#o types: sequential or horizontal grouping, based on
and are not recognized. Bifent areas show up in the proximity of acoustic components, and simultaneous or



vertical grouping, based on similarity of componentsauditory stimuli, no previous experiments using EEG
The process of auditory scene analysis can be modellede known.

as a collection of acoustic components, each initiaII){I:'EG Experiments and Results

assigned to its own group, competing to attract othe P

components to mge groups together The study tested two right-handed subjects (18-25
years) who had normal hearing. The subjects
completed each of the auditory stimulus conditions

spectral profile (e.g. formants), relative strength O]descrlbed in the section above whilst EEG activity was

; - corded from 19 scalp sites according to the 10-20
harmonics, slope of frequency change and spatial cues ;
The nearer any two components are according to ea@gnvention [5]. EEG was sampled and held every 1
of these criteria, the more strongly the two groups wilfiSeconds using an analog-to- digital converter with
compete to m:ge \értical grouping is based on 16 bit resolution, and amplified 1000 times using DC
frequency proximityharmonicity common fate (onset ?r?prllflr?rs (VI\\/Ieuroscadn SETN'SM_PS)'I 'rA‘ I'r:‘ikedE%aé
and ofset synchronycommon amplitude or frequency eference was used. Electro-oculographic ( )

modulation), and spatial correspondence. The greatgrct'v'ty was also recorded from the supraorbital ridge

the similarity of components with respect to theseof one eye and referred to the outer canthus of the same

principles, the more likely they will be attributed to the &Y€

same acoustic event. EOG artefacts were removed from the digitised EEG
using the algorithm of Semlitsch [9]. Any region of
EEG containing electromyographic activityr peak
The higher levels of auditory scene analysis are basexttivity in excess of +/-100 microvolts, were also
on matching recognised patterns to previously learnedmoved from the data prior to analysis. Data were then
schemas. That is, the brain matches sounds to expectegoched individually into segments of continuous EEG
patterns, which allows the filling in of gaps in theof 2048 milliseconds duration. The data for each
sensory data, and the correction of errors in earliesubject were then analysed using a Fast Fourier
levels of processing. Transform (FFT) to identify EEG power at each
Each of the ASA principles relates directly to electrode site for each stimulus condition in each of the

- ; - llowing bands: alpha (8-13 Hertz), Beta 1 (14-20
expectations of acoustic events in the world, an N
enables the sorting of sound components into their mo%iertz), Beta 2 (21 - 34 Hertz) and Gamma (35-45
likely groups. In a computational setting, we view the erz). A minimum of 121 EEG epochs was used for
groupings produced by these principles as supportinge"a""Ch FFT analysis.
particular model of the acoustic environment, and byVhilst the data collected have not yet been fully
building these models dynamically as the sounds aranalyzed and collated, both subjects demonstrated
processed, we are able to develop expectations whidistinctive response to music and speech. T tests have
which should themselves infuence the way the data iseen used to assess thdeef of subliminal and
processed. This feedback allows the system to be finsupraliminal speech on the EEG. Theeef of
tuned without being hard-wired for any specific task osupraliminal speech was assessed by comparing EEG

Horizontal grouping is determined by frequency
proximity, temporal proximity spectral overlap,

Dynamic Modelling

voice. spectral power for the supraliminal speech+music

condition with the control music alone condition.
NEUROSCIENCE EXPERIMENTS Similarly, subliminal speech ffcts were assessed by
Subliminal Auditory Stimuli comparing the subliminal speech+music condition

o ] ) with the music alone condition.
The combination of musical and speech signals ha,a.‘
t

been controlled by using techniques which are standarff'€ €fects for one subject are shown in Figure 1. Note
in relation to developing subliminal programming. {hat shaded regions show the areas of significant
Following the standard approach recommended iff'c'éase in power associated with subliminal and
[10,11], we arranged for the local intensity of a speectUPraliminal speech processing (p<0.01, one-tail).
signal to track the local intensity of a music signal and

produced tapes of music and speech with various Left Hemisphere Right Hemisphere

degrees of relative intensjtgiving conditions with

pure speech, pure music, music with supraliminal .
(above threshold) speech and music with subliminal (31,313 Tiz)

Supraliminal Subliminal Supraliminal Subliminal

(below threshold) speech. The pure music and pure t w R
speech conditions acted as control conditions for the ;, , p
purpose of statistical analysis. This provided the basis ¢4 20 Hz) { a e 5
for identification of scalp regions with EEG activation v o« sués
related to supraliminal and/or subliminal speech B ‘ 2.
. . . . eta 2 -1
processing. In addition, we varied between isolated ; 345 " i “ I
word and continuous speech conditions and we C o 22
3.4

4,6

controlled for the emotive content of the words. The 2
music took the form of extracts from a single tape of g?;"f‘z;HZ) ': e‘ o
relaxation music, all of which were very similar in o

character
Figure 1: The darker areas (T-test>2.3)dentify regions of

Although other researchers [10] have demonstratecactivation related to the addition of supraliminal and
detectable physiological responses to subliminalsubliminal wordsto music (p<0.01, one-tail).



Supraliminal speech caused left and right hemispheliedeed have excellent evidence of sublimindas.
activation in both the beta and gamma bands witlror this reason we tried to avoid distractions, and we
maximum power over the anterior temporal andavoided asking them to concentrate on anything. But
posterior frontal regions. Right hemisphere activitythis means that we have no control over what they are
was also evident in the posterior occipital regions fothinking or their state of consciousness. However to
the alpha band. Left and right hemisphere activatiokeep them awake it now seems appropriate to ask them
covered a number of regions conventionally associatet do some specific task which will occupy them while
with auditory language processing. Subliminal speeckhe signals are being presented.

failed to generate any left hemisphere activation b

showed activation over regions of the right hemispheL\tNe also noted that the intensity tracking arrangement

. ) . Mfecommended in [ tended to make the supraliminal
and in common with a number of regions aldected words less intelligible than we had hoped. Although

gégugrsasllorgilgfl;;p@ﬁﬁhél%ir;g:nbgnofutgeze rfgécégziﬁrt%is did not appear to fatct comprehensibility of the
y language p ontinuous speech samples, it seems to introduce
Overall, these results support the view that tha

subliminal speech is processed within the brain bug 29Uty Which negates the utiity of the samples
oo pe: proces ; . Hased on random words (tagged for emotive content).
indicate that this processing is constrained to regions in

the right (but not the left) cerebral hemisphere. These experiments also serve to demonstrate that we
have the capacity to construct and manipulate complex
CONCLUSIONS AND FUTURE WORK signals as well as to study theifegfts on EEG. This

Our starting point is the assumption that all im‘ormatiorio"j‘pler has not rep%rted %n computat_iona: ex%e”m_e'_“_s lin
in the signal should be used in our speech and musf@/yZing speech and music signals, but initia
understanding task. In particulathe information €XPeriments on separating sources are in progress.
which is _used in |dent|fy|ng_§1 speaker or an instrument, ~ NOWL EDGEMENTS

such as in speaker recognition systems, should be use

to help track voices in a complex signal. Parts of this project were undertaken in association

- : . with the CSIRO Student Research Scheme and
Our preliminary electroencephalographic eXpe”mem?nvolved participation by students from South

demonstrate that ddrent characteristics of the Aystralian High Schools as assistants and subjects.
different classes of signal, speech or music, are detecte
by the brain even when presented at levels below th8eFERENCE

threshold of conscious awareness. This suggests th . -
the human auditory system does indeed make use f‘%éreggﬁjnélgr(gliﬁg?grztgfr éssr?geapgg?eighe

signal/source characteristics in processing complex . .
signals. Dgether with previous research on auditory?’Brown, G and Cooke, M (1994pomputational audi-
tory scene analysji€omputer Speech and Lan-

lysis thi fi that hould be looki
scene analysis this confirms that we should be loo mgguage8:297-336

for source characteristics, and is consistent with %Clark C.R., Pomeroy.E. and Tzard, J. (1995)

source model view of speech processing. " e S

. ) . Neuocognitive pattern classification of distributed
More detailed experiments and analysis should allow prain electrical activity In P Slezak, T Caelliand C.
(dis)confirmation of details of models being employed R. Clark (eds)Per spectives on Cognitive Science:

and will provide more information on the way the brain Theories, Experimentsand Foundations. Ablex:
separates and processes auditory signals. New York

These initial experiments have also highlighted somé-Dixon, S.E. (1996Multiphonic Note Identification
problems with the experimental method which we will Australian Computer Science Communications
want to address in future EEG experiments. Indeed, wel8: 318-323 ,

had hoped to obtain useful event related potential®-JasperH.H. (1958Report of the committee on meth-
(ERP) from these subjects — the ERP technique ods of clinical examination in electiencephalogra-
involves averaging over the events by class, with EEG PhY Electroencephalography and Clinical

epochs time-locked to the onset of each speechNeurophysiology 10:370-375 _
stimulus, but we found that the data was not oP-Neville, H.J. (1992Fractionating Language: Differ-

sufficient quality to allow this finer grained analysis. ~ €nt Neural Subsystems with Digfat Sensitive Peri-
ods Cerebral Cortex 2: 244-258

The most apparent problem was that subjects tended ¥powers, D.M.W(1996)Unsupervised learning of
fall asleep during the experiments. Having relaxation |inguistic structue: An empirical evaluatior nter -
music as the substrate for the experiments, this is notnatjonal Journal of CorpusLinguistics 1#2
unexpected, butitis a factor which isfiifilt to control g Schiferdecker G (1994)inding Structue in Lan-
and is independent of the factors we do control. 4 ageMastersThesis, University of Karlsruhe FRG
Preparing a subject for the experiment, including the Semlitsch, H.\, Anderer P SchusterP and Press-
correct seating of all the electrodes, is itself a long and|ich, 0. (1986 solution for eliable and valideduc-
somewhat stressful process. Although we detected ajon of ocular artefacts applied to the P300 ERP
tendency for subjects to close their eyes during the pgychophysiology 23: 695-703

calibration phase of the experiment, and requested tha (jrban, M.J. (1992)uditory Subliminal Stimula-
they try to keep them open, we found that the data wastjon: a re-examinatiopPer ceptual and Motor Skills
nonetheless contaminated by alpha waves 74 515541

characteristic of dozing (in the range 8-13Hz). 11.Urban, M.J. (1993juditory Subliminal Stimula-

In this experiment we aimed to have subjects as tion: methodsPerceptual and Motor Skills 76:
receptive as possible for subliminal stimulation, and 1103-1106



