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Abstract. Skilled musicians are able to shape a given piece of music (by contin-
uously modulating aspects like tempo, loudness, etc.) to communicate high level
information such as musical structure and emotion. This activity is commonly
referred to as expressive music performance. The present paper presents another
step towards the automatic high-level analysis of this elusive phenomenon with
Al methods. A system is presented that is able to measure tempo and dynamics
of a musical performance and to track their development over time. The sys-
tem accepts raw audio input, tracks tempo and dynamics changes in real time,
and displays the development of these expressive parameters in an intuitive and
aesthetically appealing graphical format which provides insight into the expres-
sive patterns applied by skilled artists. The paper describes the tempo tracking
algorithm (based on a new clustering method) in detail, and then presents an ap-
plication of the system to the analysis of performances by different pianists.

1 INTRODUCTION

An expert musical performer is able to shape a given piece of music to communicate
high level information such as musical structure and emotion. That is, the artist goes
beyond what is prescribed in the written score and modifies, gradually or abruptly, the
tempo or loudness or other parameters at certain places in the piece in order to achieve
certain musical and emotional effects. This activity is commonly referred ¢x@®s-

sive music performancé&xpressive performance is an element of central importance in
art music and especially in classical music, where the performing artists have (or take)
a lot of freedom in expressing their interpretation of the music and their individuality.
At the same time, expressive performance is still a poorly understood phenomenon,
both from a musical and a cognitive perspective. No formal models exist that would
explain, or at least quantify and characterise, aspects of commonalities and differences
in performance style.

This paper presents a step towards the automatic high-level analysis of this elusive
phenomenon with Atrtificial Intelligence methods. We restrict our attention to two of the
most important expressive dimensions: fluctuation®mpoandloudnesgdynamic$.

A system is presented that is able to measure tempo and dynamics of a musical perfor-
mance and to track their development over time. The system accepts raw audio input
(e.g., from a microphone), tracks tempo and dynamics changes in real time, and dis-
plays the development of these expressive parameters in an intuitive and aesthetically



appealing graphical format which provides insight into the expressive patterns applied
by skilled artists.

Measuring and trackingynamicsis rather straightforward. The (perceived) loud-
ness of the music can be derived from the audio signal by applying well-known signal
processing techniques and psychoacoustic principles. The difficult part is inferring the
basictempq and tracking changes in tempo in real time. The main problems are detect-
ing the onsets of notes in the raw audio signal (event detection), inferring the basic rate
of beats or tempo and the most plausible metrical level (tempo induction), and the real
time adaptation of the tempo hypotheses in response to newly incoming information
(tempo tracking).

The main technical contribution of this paper is a real time algorithm that finds
the tempo of a musical performance, keeping track of multiple hypotheses, rating and
updating each of the hypotheses dynamically, and allowing the user to interactively
switch between hypotheses (e.g., when the system has obviously chosen a wrong met-
rical level). At the heart of the tempo induction and tracking system is a fast on-line
clustering algorithm for time intervals.

In the following, we describe the tempo tracking and clustering algorithm in detalil,
and then present an application of the algorithms in a real time visualisation system
for expressive music performance. An example visualisation of two pianists playing the
same piece demonstrates what kind of direct insight into expressive performance can
be facilitated by this kind of system.

2 REAL TIME TEMPO TRACKING

Most music has as its rhythmic basis a series of pulses, spaced approximately equally in
time, from which the timing of all musical events can be measured. This phenomenon
is called thebeat and the individual pulses are also called beats. The rate at which
beats occur defines thempgq a value which varies over time. Sometimes a multiple or
divisor of the tempo is perceived as an alternative tempo; these different rates are called
metrical levels

The task of a tempo induction and tracking system at any moment during its op-
eration is to infer, from the observed inter-note time intervals, possible beat rates and
select the one that most likely represents the perceived tempo of the piece. This is
performed by a clustering algorithm which groups similar time intervals between note
onsets, forming clusters which correspond to musical time units, such as half notes,
quarter notes and dotted quarter notes. In a mechanical performance, these time inter-
vals would be precisely integer or simple integer fraction multiples of the time between
two consecutive beats. But in expressive performance, the categories are blurred and
change over time, so the clustering algorithm must be robust to noise and able to adapt
dynamically to drift in the cluster centres.

The architecture of the tempo tracker is shown in figure 1. The input signal is pre-
processed in several stages to detect the onsets of musical notes (events), and this in-
formation is used by the multiple tempo tracking subsystem to create a set of tempo
hypotheses which are updated dynamically as further input data arrives. The highest-
ranking tempo hypothesis is given as output, but the ranking can be overridden by the
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user selecting a different metrical level. In the remainder of this section, we describe
the successive stages of processing in detail.

2.1 Audio Processing

The audio input is read from the soundcard or from a file, in linear PCM format. If the
input has more than one channel, a single channel signal is created by averaging all
channels. The resulting signal is denotgd] and its sampling rat&.

The audio data is processed in blocks by a smoothing filter which calculates the
RMS amplitudeA[k], wherek is the integer time index expressed as a multiple of the
block size. A block size of 10m$ & 0.01 R samples) is used for input and processing
of the signal, and this determines the time resolution of the system. The amplitude
values are calculated by smoothing across a nunibet @) of blocks and passed to
the event detection module.

(k+h)b—1
Ak) = (o Y ali]’)? 1)
i=kb
The event detection module finds the slgfi&] of the smoothed amplitude using an
m-point linear regression. It then calculates the/3gi] of local peaks of5[k] which are
above given thresholds, of amplitude andl; of slope, where a local peak is defined
to be a point which is maximal among thpoints either side of it.
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These local peaks are taken to be note onset times, which are the main input to
the multiple tempo tracking module, the most complex part of the system. Although a
relatively simple time domain algorithm is used for event detection, it has been shown
previously [3] that the accuracy is sufficient for successful extraction of tempo.

2.2 Multiple Tempo Tracking Subsystem

Clustering The tempo induction and tracking system calculates the time intervals be-
tween pairs of recent eventmiter-onset intervalsor 101s) and uses a clustering al-
gorithm (figure 2) to find significant clusters of 10ls, which are assumed to represent
musical units. These clusters form the bases of the tempo hypotheses generated by the



For each new onset
For timest from 100ms to 2500ms in 10ms steps
Find pairs of onsets which areapart
Sum the mean amplitude of these onset pairs
Loop until all time points are used
For timest from 100ms to 2500ms in 10ms steps
Calculate window size as function of: (see (6))
Find average amplitude of 10Is in windo ¢ + s]
Storet which gives maximum average amplitude
Create a cluster containing the stored maximum window
Mark the IOIls in the cluster as used
For each cluster
Find related clusters (multiples or divisors)
Combine related clusters using weighted average
Match combined clusters to tempo hypotheses and update

Fig. 2. Algorithm for clustering of inter-onset intervals

system. The clustering algorithm maintains a limited memairfy-€ 8 seconds) of on-
settimes in the se®’[k], and begins processing by calculating all 10Is between pairs of
onsets in its memory, weighting the intervals by the geometric mean of the amplitudes
of the onsets, and summing across equally spaced onset pairs, to give thé/kuins

for each 10I; calculated at time index (block numbeér)as shown in figure 3(a).
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i1,i2 € P'[k]
with i = i1 — iz
At each timek, the inter-onset interval[k, j], limited to the range 0.1s to 2.5s
(%48 < j < 25E) are clustered using an iterative best-first algorithm given in fig-
ure 2, which sequentially finds the clusters with the greatest average amplitude, without
reusing the data for more than one cluster.
The sizes]:] of the windows used in clustering is calculated as a function of the
minimum IOl in the cluster:

sl = Lo +8) ©)

The best clusters are given by maxima in the average weight], as shown in fig-
ure 3(b). The starting indices of the best clusters at firaee denoted |k, 1], alk, 2], ...
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alk, 1] = argmaz,wlk, ] (8)
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Fig. 3. (@) Example showing weighted inter-onset intervEls, i| before clustering, for a fixed
time k, and (b) Average weights [k, 7] after clustering, showing the 5 best clusters as crosshairs
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The centroidt[k, 1] of the cluster at[k, ¢] is calculated as the weighted average of
the component 10Is. The initial weight assigned to the cluster is dendted).
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The next best clusters$k, ;] and their weights |k, i] for i = 2,3, ... are calculated
by setting to O the values dfik, j] which have been used in a previous clusfér ;]
(wherej < ) and repeating the above calculations.

Reinforcement It is usually the case in traditional Western music that time intervals
are approximately related by small integer ratios, and therefore the clustertfiméas

are expected also to reflect this property. In other words, the cluster times are not in-
dependent; they represent related musical units such as quarter notes and half notes.
The tempo inducer exploits this property by recalculating the cluster times and weights
based on the combined information given by sets of related clusters. Two clusters are
said to be related if the ratio of their time interv ;] is close to an integer. More

formally, the set of clusters|k, i] related tot[k, 7] is defined as follows.
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2 < round(f(t[k, i, t[k, 5])) < 8} (14)

The errors of individual cluster times are reduced by bringing the related times
closer to the ideal integer ratios. To achieve this, the related clusters are scaled to the
same metrical level and a weighted average of the scaled clusters is calculated. The
weighting favours longer time intervals, which tend to have a lower relative error. For-
mally, the updated clustet§k, 7] (with weightsv’[k, i]) are calculated as follows.
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Smoothing Tempo as a percept arises from the timing of many notes; local changes

in timing do not unambiguously imply a tempo change. In order that the system is not
disrupted by local timing irregularities, like the delay of a single note, the tempo tracker
performs smoothing on the tempo hypotheses generated above. The tempo hypotheses
t'[k, 1] at time stepk, ranked by the corresponding weight$k, i], are combined with
historical values from the previous time step- 1 to give updated hypothesé§k, i].

Each current hypothest§k, ] is matched to the nearest/k — 1, j] (if a sufficiently

near one exists), and updated according to a formula which causes old values to decay
exponentially as they are replaced by new. If the decay factgrttse updated value is:

t"[k,i] = ~yt"[k — 1, 5] + (1 — y)t'[k, 4] (18)

Although it would be possible to keep track of all hypotheses, it is sufficient for the
system to keep track of the best 10 hypotheses; no change in behaviour is noted when
more hypotheses are tracked. Sometimes hypotheses are found to be duplicating the
same metrical level, in which case they are merged into a single hypothesis.

3 APPLICATION: AWORM WITH EARS

The above algorithm, together with an algorithm that computes the dynamics (loud-
ness) of a performance from the audio signal, has been implemented in a system that
tracks the tempo and dynamics in a given performance and shows the parameters (cur-
rent values plus part of their history) in an animated display. The idea for this kind of
visual representation was originally developed by the musicologist Llangner [7].

As with tempo (equation 18), the dynamics trajectory is smoothed over the past via an
exponential decay function. The system takes its input from an audio file or directly
from the sound card and works in real time. For reasons that are evident (see figure 4),
we call it thePerformance Worm

The Worm works interactively. The user can dynamically modify presentation pa-
rameters (e.g., rescale the axes) and, what is more, switch between tempo hypotheses,
i.e., force the tempo tracker to re-weight its clusters and move to a higher or lower
metrical level.

In this section, we briefly present an example of the Worm’s output to give an im-
pression of the kind of insight offered by such an animation. Figure 4 shows a snapshot
of the Worm as it tracks the performances of the same piece by two famous pianists.
The piece is W.A. Mozart’s piano sonata K.279 (C major), first section of second move-
ment @Andantg, and the performances analysed are by Daniel Barenboim andg&ndr
Schiff.! In the plots, ther axis represents the tempo in beats per minute (bpm)y the
axis the loudness in terms of sound pressure level (measured in decibels). The darkest

! Daniel Barenboim, Mozart: The Piano Sonatas, EMI Classics, 767 294-2, recorded 1985;
Andras Schiff, Mozart: The Piano Sonatas, DECCA, 443 717-2, recorded 1980.
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Fig. 4. Expression trajectories over the last bars (mm.24-28) of the Mozart piano sonata K.279,
second movement, first section, as played by Daniel Barenboim (left) ané&\8ahiff (right).

x axis: tempo in beats per minutg;axis: dynamics (‘loudness’) in decibel. The darkest point
represents the current instant (third beat of m.28), while instants further in the past appear fainter.



point represents the current instant, while instants further in the past appear fainter. We
see the respective trajectories as they look when the performers have reached the very
end of the section (beat 3 of measure 28). In the following, we will look at what these
trajectories tell us about how the pianists played the last five bars of the piece (mea-
sures 24-28); the relevant part of the musical score is shown in figure 4 (top), and the
positions in the trajectory that correspond to the beginnings of bars (24-28) have been
manually marked in the plots, to make the following discussion easier. Note that the
Worm knows nothing about the score or bar numbers.

Many interesting patterns emerge that reveal both commonalities and differences
between the two performers. Some of these are clearly audible in the recording, others
are hard to pinpoint and name when we hear the piece, but clearly emerge from the
graphical representation (and contribute to the overall impression of the performance).

The most fundamentaimilarity between the two trajectories is the general leftward
tendency in the tempo dimension (i.e., a slowing down) over the last 5 bars, combined
with a strong downward movement (a reduction of loudnesgearescendoover the
last two bars. This is a well-known performance strategy for closing a piece; everything
else would probably sound unmusical to us.

More interesting are the differences. The first striking difference is that Schiff plays
the entire section much faster (above 60 bpm) than Barenboim (around 50 bpm). In
fact, Schiff’s trajectory lingers around the 65 bpm mark for most of the piece and only
moves left towards the 60 bpm mark in the final 5 bars of the piece — a very strong
way of closing the piece by a long-term, gradual firidrdando that clearly sets the
ending apart from the rest of the performance. Barenboim, on the other hand, spends
most of his time (at least the last 8 or 9 bars) in the range of 50 bpm and also ends the
piece there.

Another difference, again in the tempo dimension, is in the structuring of this fi-
nal slowing down. Starting from m. 24, Schiff applies a continudtesdando with
no interruptions — his trajectory moves steadily to the left —, while Barenboim adds
micro-structure to hisitardando by interjecting two little speedups at two musically
similar points: the third beat of m. 26 (*) and the third beat of m. 27 (**).

In the dynamics dimension, an interesting difference is in the placement of the last
rise in volume ¢rescendpbefore the closing drop: Barenboim performs trsscendo
during thetrill in beat 2 of m. 25, while Schiff builds up the most of the volume (and
the tension) before the trill (see the arrows in figure 4, which indicate the durations of
the trill). On the other hand, both artists combine this buildup in volume with a marked
slowing down (the trajectories move from lower right to upper left). This might again
represent a common performance strategy.

Many more interesting observations could be made. But this is not the place for
an exhaustive musical analysis. What the example is meant to illustrate is how this
approach to visualisation provides an intuitive view of a number of high-level aspects
of expressive music performance. With a little experience, one immediately sees many
interesting and typical features and patterns in a given trajectory. That makes the Worm
an extremely useful tool for musical performance analysis.



4 DISCUSSION

We have described a tempo tracking algorithm that extracts potential note onsets from
audio input and estimates the current tempo of a piece of music in real time, and the
application of this algorithm in a system for the visualisation of musical expression.

Early work in tempo and beat tracking focussed mainly on the converse of expres-
sion extraction, that is rhythm parsing, where deviations from metrical time were either
not considered (e.g. [9]) or treated as noise (e.g. [10, 2, 11, 1]), and the systems pro-
cessed symbolic data off-line. More recently, several beat tracking systems have been
developed which work with audio input (e.g. [12, 4]) or run in real time (e.g. [8]) or
both (e.g. [5, 6]). Compared with the real time audio beat tracking work of [5, 6], our
tempo tracking algorithm performs a simpler task, that of finding the tempo but not
necessarily the beat. However, our work is not restricted to a particular musical style
or tempo, whereas Goto’s work is restricted to function only for popular music in 4/4
time, with a tempo range of 61-120 beats per minute, where either the drum patterns or
the harmonic changes match assumed rhythmic patterns typical of pop music.

The values of parameters used in this paper were determined empirically, and are
not necessarily optimal. In general, optimal values for parameters will depend on the
data being processed. For example, the onset detection parameters depend on the in-
struments used; current values assume a reasonably sharp onset at the beginning of
each tone. The tempo tracking parameters can be adjusted to suit different levels of
rhythmic complexity and extents of tempo variation; the values cited here appear to
work well with small to moderate tempo variations and any level of rhythmic complex-
ity. We note that these two characteristics are interdependent, since by allowing greater
variation in tempo, the system becomes more sensitive to rhythmic complexity, that is,
more likely to interpret a complex rhythm as a change (or series of changes) in tempo.
In further work, we intend to extend the system to allow input of high level (e.g. score)
information, to make the system less dependent on parameter settings.

The expression tracking and visualisation system has a variety of interesting appli-
cations. For instance, it could be used for didactic purposes, for the visualisation and
analysis of students’ performances (e.g., in conservatories). Another interesting practi-
cal application would be in the automatic synchronisation of the music with other pre-
sentation aspects like lighting, videos, animations, etc. in live stage productions. Here,
real time capabilities are essential. Note that our algorithms are by no means restricted
to classical (or even tonal) music. In fact, they make no assumptions whatsoever re-
garding the type of music or instruments they are dealing with, except that the notion of
‘tempo’ has to be applicable (i.e., there has to be some regular, recognisable rhythmic
element).

A third application — and that is what we are using it for — is in the visualisation
and analysis of the performance style of famous artists. We are currently starting a large-
scale study on the typical style of various famous pianists, in an attempt to quantify and
characterise at least some aspects of what has so far been discussed by musicologists
and music lovers only in rather vague and aesthetic terms: what is it that distinguishes
one great artist from another — what makes a Horowitz a Horowitz, to speak with [13].
This, we hope, will make an interesting contribution of Al to the world of music.
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