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ABSTRACT

For the task of semi-automatic music transcription, we ex-
tended our framework for shift-variant non-negative matrix
deconvolution (svINMD) to work with multiple templates
per instrument and pitch. A k-means clustering based learn-
ing algorithm is proposed that infers the templates from the
data based on the provided user information. We experi-
mentally explored the maximum achievable transcription
accuracy of the algorithm and evaluated the prospective
performance in a realistic setting. The results showed a
clear superiority of the Itakura-Saito divergence over the
Kullback-Leibler divergence and a consistent improvement
of the maximum achievable accuracy when each pitch is
represented by more than one spectral template.

1. INTRODUCTION

Automatic music transcription describes the process of
transforming a recording of a piece of music into a score
or an intermediate score-like representation. It has been
an active area of research over the last decades and a mul-
titude of approaches has been proposed. An overview of
the main computational techniques for music transcription
can be found in [1]. Despite this long research history, the
accuracy of fully automatic music transcription systems is
still considerably below the accuracy achieved by trained
musicians.

As a step towards a more accurate transcription system,
we address the task of user-assisted or semi-automatic mu-
sic transcription. These terms refer to systems in which
the user provides a certain amount of information about the
recording under analysis which can then be used to guide
the transcription process. In this paper, we assume that
the user labels a certain number of notes for each instru-
ment, which is then used to build instrument models that
are tailored to the specific instruments in the mixture. In
a practical application, the user could either be presented
with a magnitude spectrogram and be asked to graphically
mark a few fundamental frequency trajectories, or — if a
more musical approach is desired — with the result of a
fully-automatic transcription system for which he is asked
to assign some of the detected notes to the instruments.

We address this task by means of a non-negative matrix
deconvolution framework. Since the introduction of non-
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negative matrix factorisation (NMF) [2] which was first ap-
plied to music analysis by Smaragdis and Brown [3], a num-
ber of modifications to this algorithm have been proposed.
In this work, we build on our shift-variant non-negative ma-
trix deconvolution (svNMD) framework [4] which is itself
a modification of Schmidt and Mgrup’s NMF2D model [5].
In the svNMD framework, a single spectral template for
each pitch of each instrument is estimated which is then
used to detect fundamental frequencies in the constant-Q
magnitude spectrogram of the recording. Here, we extend
the model to work with multiple templates per pitch. The
motivation for having multiple templates per pitch is given
by the fact that the spectral shape of a particular note can
vary based on dynamics or playing style and to model a
time-varying spectral envelope of a note.

Other related work can be found in NMF-based ap-
proaches to score-informed source separation, where mid-
level score representations are used to infer models for the
source instruments. Hennequin et al. [6] modify the NMF
model to work with parametric spectral templates. The
model allows templates to be shifted in frequency while
preserving the overtone amplitudes. The parameters are
learned by initialising the NMF gain matrix and succes-
sively applying update functions for the template parame-
ters and the gains. In [7], Ganseman et al. use a synthesised
and time-aligned score as priors for the PLCA system pro-
posed in [8]. In addition to note information, this approach
requires knowledge about the timbre of each source in order
to facilitate a fast convergence.

The remainder of this paper is organised as follows:
In the following section we present our extension to the
svNMD framework that works with multiple templates per
pitch (Sect. 2.1) and illustrate the algorithm for learning
these templates (Sect. 2.2). In Sect. 3 we evaluate the
proposed algorithm in two different experiments and discuss
the results. Conclusions are finally drawn in Sect. 4.

2. MULTIPLE-TEMPLATE SHIFT-VARIANT
NON-NEGATIVE MATRIX DECONVOLUTION

In this section we present our non-negative matrix deconvo-
Iution framework which decomposes a constant-Q spectro-
gram into a structured dictionary of instrument templates
and corresponding gain values (see Sect. 2.1). The frame-
work represents each pitch of each instrument by a prede-
fined number of spectral templates. Furthermore, in Sect.
2.2 we describe a procedure that allows us to extract multi-
ple templates for each note previously labelled by the user.
This procedure is applicable to polyphonic material where
partials might overlap.
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Figure 1: syNMD framework with multiple templates per
instrument and pitch.

2.1 Framework

The proposed non-negative matrix deconvolution frame-
work decomposes a constant-Q spectrogram into 4-dimen-
sional structures for the basis functions and the gains, re-
spectively. Figure 1 illustrates the framework graphically.
Each instrument in the mixture under analysis is represented
by a 3-dimensional structure (tensor) that contains a fixed
number of basis functions for each pitch. The pitch res-
olution is determined by the frequency resolution of the
constant-Q spectrogram under analysis and the number of
templates per pitch can be chosen arbitrarily. Likewise,
for each instrument a 3-dimensional structure contains the
corresponding gains for the spectral templates. Each layer
displayed on the right-hand side of Fig. 1 contains the gain
trajectories at a fixed template index over time. In order
to arrive at a single pianoroll-like representation for each
instrument, the gains of the layers can be summed up verti-
cally.

In mathematical terms, we denote the constant-Q magni-
tude spectrogram by V € Rf *M \where N is the number
of frequency bins and M the number of frames. The matrix
Wi ¢ Rf *T contains in its columns the spectral tem-
plates of instrument ¢ at pitch ¢ (see Fig.1). T' denotes the
specified number of spectral templates. All templates have
their first partial at the first row index of W®+ and likewise
all other partials appear each roughly at their corresponding
row index due to the use of the constant-Q spectrogram.
H% ¢ RIXM on the other hand denotes the matrix that
contains the corresponding gains for the templates of instru-
ment ¢ at pitch ¢ over time. Note that in Fig. 1, this matrix
corresponds to a slice through one of the banks of layers,
as shown in the figure.

Given these matrices we approximate our original spec-

trogram V by
I-19-1 ¢
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where A € Rf XM has the same dimensions as V. Here, I
denotes the number of instruments in the mixture and ® the
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number of pitches. ® and N do not necessarily need to be
the same, in our case, however, they are. The operator ¢|
denotes a downward shift of the matrix elements by ¢ rows
while the upper ¢ rows are filled with zeros. This mixture
model shifts each spectral template to the correct frequency
position and scales them by the corresponding gains at each
frame.

Update equations were derived for both W and H?"*
by computing the gradient of the 3-divergence between V
and A. The S-divergence is given by
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In these equations, e denotes an elementwise multiplica-
tion and all divisions and power operations are likewise
carried out per element. We can obtain the well-known
least squares (LS), Kullback-Leibler (KL) and Itakura-Saito
(IS) cost functions by setting 3 = 2, 8 = 1 and 5 = 0,
respectively. The derivation of Egs. 5 and 6 is provided in a
supplementary document [9].

2.2 Learning the basis functions

Figure 2 illustrates the iterative procedure of learning a
number of templates for a single note labelled by the user.
The user provides information about the start frame, the end
frame and the pitch ¢ of a note of a particular instrument
1p. This information can be illustrated by a pianoroll that
contains a single line representing the note, as shown on the
left-hand side of panel (a). Given this information, we can
identify the matrix W 0% in which the learned templates
will be stored and the matrix H?0:% that contains the gains
for each of the templates over time (grey-shaded matrices
on the right-hand side of panel (a)). Since only those two
matrices W% and H?0% are relevant for learning the
templates from the labelled note, we isolate them from their
tensors when illustrating the learning algorithm in panels

(b)—(®).

Panels (b)—(f) display the algorithmic steps for estimat-
ing the spectral templates. This procedure is in fact very
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similar to applying k-means clustering to the spectra of a
note at all time frames within the spectrogram V. In this
analogy, each spectral template corresponds to a cluster
mean and thus represents a set of spectra at different time
frames. Since the learning procedure is carried out within
the nonnegative framework, the correponding k-means clus-
tering steps might not be obvious. For that reason, we
illustrate these on the right hand side of panels (b)—(f). In
these graphs, each data point corresponds to a spectrum of
the note at a particular time frame in the /N-dimensional
space which is here for the sake of illustration reduced to 2
dimensions.

1. Initialisation: The algorithm starts by initialising the
spectral templates in W% with nonnegative random
values (panel (b)). In the gain matrix H®0:% each frame
of the note is randomly assigned to exactly one spectral
template by setting the corresponding gains to a value of
1 while all other entries of the matrix are set to 0. In the
k-means example, this corresponds to assigning the data
points randomly to one of the three clusters: crosses,
circles and squares.

2. Update: In the second step (panel (c)), we update the
spectral templates in W0 based on the gains that
were set in the previous step. This modifies the spec-
tral templates in such a way that the resulting templates
minimise the S-divergence at the assigned frames. Thus,
each resulting spectral template can be seen as an av-
erage of the instrument spectra at the time frames that
were assigned to it. In k-means clustering terms, this is
equivalent to computing the average of the data points
that were assigned to the same class. Note that in order
to eliminate scale-ambiguities in the nonnegative frame-
work, all spectral templates in W#0-% are scaled to have
a power of 1 and the gains are adjusted accordingly.

3. Assignment: In order to assign the spectra of the note
at all frames to the template that best resembles their
spectral shape, we set the template gains at each note
frame to equal values (panel (d)) and update the gains
based on the given spectral templates (panel (e)). This
way, the gain matrix contains the contributions of each
template to the audio spectra of each time frame when
linearly combining the templates. This can be seen as a
similarity measure between the templates and the spectra.
We assign each frame to the template with the highest
gain value, here indicated by the grey-shaded entries. In
the k-means clustering example, this corresponds to the
assignment step, in which each data point is assigned
to the closest mean. We setup a new matrix H®o%
(panel (f)) that contains at each frame and each assigned
template index the gains from step 2 (cf. panel (d)).

The algorithm iterates over steps 2 and 3.

The reason for assigning each frame to just a single
spectral template in step 1 and 3 is that we want to avoid the
partials of a note to be split among the different templates.
A template that only contains a subset of partials might be
used by the algorithm to explain partials of other notes from
the same or another instrument. An intuitive example for
this case would be a spectral template that only contains
a single partial (i.e. a single spectral peak) which can be
used by the algorithm to approximate a partial of any note
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Figure 2: Learning algorithm

at that position of the same or another instrument. This
would produce a gain value either at the wrong fundamental
frequency or the wrong instrument or both and thereby
adulterate the transcription accuracy.

In k-means clustering, there is a chance of producing
empty clusters when assigning the data points to the new
means. The same problem applies to our proposed learn-
ing algorithm. In our algorithm this problem can occur in
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panel (e), when for a certain template none of the frames
contains the largest gains. In this case, we detect the largest
cluster (i.e. the template with the largest number of assigned
frames) and randomly assign half of its frames to the empty
cluster. The spectral template of the empty cluster is then
discarded and replaced by a duplicate of the spectral tem-
plate of the largest cluster.

Although the learning procedure was here illustrated
by an individual note of a single instrument, the proce-
dure is applicable to and intended for polyphonic audio.
A MATLAB implementation of the learning algorithm

is available at http://code.soundsoftware.ac.

uk/projects/svnmdmt.

3. EVALUATION

The evaluation of the proposed framework and the tem-
plate learning algorithm was carried out in two experiments.
In the first experiment (Sect. 3.3) we explored the upper
limit of performance of the algorithm when used for semi-
automatic transcription. The results of this experiment
provide some intuition about the potential of the framework
to accurately approximate a spectrogram. The second exper-
iment (Sect. 3.4) looked at a more realistic semi-automatic
transcription setting in which only a part of the notes are
employed for learning the templates which are then applied
to transcribe the remainder of the recording.

3.1 Dataset

For both experiments described below, the same dataset
as in [4] was used. The dataset was based on monophonic
recordings of musical phrases from 12 different instruments,
each with a length of approximately 30s. Mixtures of 2 to 5
instruments were produced by combining the monophonic
signals. For each polyphony level (2 to 5 instruments), 50
different combinations were generated. At the same time,
the hand-annotated notes of the 12 monophonic files were
available in MIDI format. Those MIDI files acted as the
ground truth for the evaluation.

In addition to that, we evaluated the algorithm on more
harmonically related instrument parts and computed results
for a wind quintet excerpt (cf. [10]). This example had a
length of 54s and for each instrument part hand-annotated
MIDI ground-truth was available.

3.2 Accuracy

In order to measure the transcription accuracy, we refrained
from using the common measures precision, recall or F-
score. Those measures are used to compare detected note
events to ground truth notes. Combining gains into note
objects, however, would require a subsequent note-tracking
algorithm which will have an influence on the results. Our
aim is here to study the performance of the proposed algo-
rithm in isolation.

As an accuracy measure, we therefore compute the per-
centage of energy in the gain matrices that is concentrated
in the ground truth fundamental frequencies. This is done
for each instrument individually. In order to achieve that, a
summary gain matrix G* is computed for each instrument i
in the mixture by
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Intuitively, in Fig. 1 this corresponds to summing all the
displayed gain layers for each instrument. Based on the
summary gain matrices G, the per-instrument accuracies
Acc; are computed by

M=z

2.
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n=1¢'=1

(1¢1,,)’
(Ie1,.,)"

In this equation, JF,, denotes the set of frequency bins of
the annotated pitches in the n-th frame. Since the test set
only contains monophonic instruments, J,, only contains
the bins of at most one note at each time frame. Ideally, we
would like to see all energy concentrated in the fundamen-
tal frequencies which would make it easy to detect notes
within the gain matrices. This case would correspond to an
accuracy Acc; of 1.

n

Acc; =

3.3 Experiment 1: Exploring the upper performance
limit

In the first experiment we explored the upper performance
limit of the nonnegative framework when used for a semi-
automatic transcription task. The upper performance limit
is given when a user labels all notes of all instruments in
the mixture under analysis. Although this scenario may
seem trivial, because no transcription algorithm would be
required if all notes were known beforehand, this evaluation
provides an intuition about the expressivity of the algorithm
and reveals any methodological flaws.

3.3.1 Experimental setup

For each file in the dataset, we extracted 7" = 1, 3 and 5
templates per pitch, by running 50 iterations of the tem-
plate learning algorithm described in Sect. 2.2. The user
information was given by the ground truth MIDI files of
the instruments contained in the mixture which contained
onset, offset and pitch information of the notes of the in-
struments. Once the basis functions were learned from the
constant-Q magnitude spectrogram of the recording, the
gain matrices were computed. This was done by randomly
initialising all matrices H?? with nonnegative values and
applying 10 iterations of the update equation for the gains
(Eq. 6). Transcription accuracies were computed as de-
scribed in Sect. 3.2. The experiment was conducted for the
IS-divergence (8 = 0) and the KL-divergence (8 = 1).

3.3.2 Results

The results of this experiment are displayed in Fig. 3. The
upper panels display the results obtained by using the Itakura-
Saito (IS) divergence, the lower panels the results of the
Kullback-Leibler (KL) divergence. From left to right, the
panels show the results of the different polyphony levels
— from 1 to 5 instruments — and on the right-hand side
the results of the wind quintet. In each panel, we compare
the per-instrument transcription accuracies of all instru-
ments of all files when represented with different numbers
of templates per pitch. The results are displayed as box-
plots: the upper and lower edges of the box represent the
first (1) and third quartile (Q3), the median is displayed
in between. The whiskers extend to the data points that
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Figure 3: Results of experiment 1. The upper and lower rows display the per-instrument accuracies for the IS-divergence
and KL-divergence, respectively. From left to right, the panels contain the accuracies for different polyphony levels and for
the wind quintet. Within each panel the results for different numbers of templates per pitch are presented as boxplots.

are furthest away from the median, but within the inter-
val [Ql —1.5- (Qg — Ql) .Q3+1.5- (Q3 - Ql)] All
data points outside that range are marked by crosses and
considered as outliers.

When comparing the different cost functions for the
random instrument mixtures, it becomes obvious that the
Itakura-Saito divergence outperforms the Kullback-Leibler
divergence in all cases. A possible explanation for the good
performance of the IS-divergence is its scale-invariance
property (cf. [11]) which is in compliance with Weber’s
law applied to the perception of loudness. An interesting
aspect we found here is that by using the IS-divergence, the
accuracies do not even noticeably decay when the number
of instruments is increased.

When we compare the results for different numbers
of spectral templates per pitch, a clear tendency towards
higher accuracies can be observed when more templates
are learned for each note. The improvement is consistent
when the number of templates is increased from 1 to 3 and
ranges between 2% and almost 10% for different poyphony
levels when considering the median accuracies for the IS-
divergence. Increasing the number of templates from 3 to
5 improves the accuracy even further, but not in the same
consistent way as from 1 to 3.

The results of the wind quintet generally confirm the
above findings, particularly the increasing accuracy when
multiple templates are used. The median accuracy is how-
ever slightly lower than for the data set of random instru-
ment mixtures, which can be attributed to the larger number
of overlapping partials.

3.4 Experiment 2: Real case scenario

In the second experiment, we estimated the performance of
a semi-automatic transcription system in a more realistic
environment. We assumed that the user had labelled a
certain number of notes for each instrument, which we use
to estimate template spectra at the corresponding pitches.
These template spectra are then used to build complete
models for the instruments which are then applied to the
remainder of the piece in order to obtain the transcription.
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3.4.1 Experimental setup

For this experiment, we split each file in the dataset in two
halves, each containing approx. 15 s of audio. We assumed
that the user had labelled all notes of all instruments in
the first half and used these to learn the basis functions as
described above. The basis functions were then replicated
at the surrounding pitches to cover the whole pitch range
and were applied to estimate the gains of the second half of
the audio.

As in the first experiment, we applied all combinations of
cost functions (IS-divergence and KL-divergence), number
of instruments (1-5) and number of templates per pitch (1,3
and 5). We again ran 50 iterations of the learning algorithm
and 10 iterations for the estimation of the gain matrices.

3.4.2 Results

Figure 4 shows the results for the second experiment. The
order of the results is the same as for the previous results.

For the random instrument mixtures, the results of this
experiment differ from the results of the previous experi-
ment. In general, there is a considerably larger variance in
the results for each configuration. Several trends are clearly
visible in the diagram: For both cost functions, the accuracy
decreases when the number of instruments in the mixture
is increased. The impression from the first experiment that
the IS-divergence generally yields better results than the
KL-divergence is here confirmed, the only exception being
the polyphony level of one instrument. However, since the
results for the monophonic audio files are only based on 12
accuracies, this fact needs to be put in perspective.

In terms of the different numbers of templates per pitch,
the results for 1, 3 and 5 templates consistently stay in
the same range and no clear trend can be found. It has to
be considered here that the results of this experiment are
not only influenced by the number of templates, but also
by the fact that templates of non-annotated pitches were
estimated by replicating adjacent pitches. It seems that the
error introduced by this rough assumption outweighs the
gain of having multiple templates per pitch.

The results for the quintet recording only show a small
loss in accuracy to the previous experiment. The reason for
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Figure 4: Results of experiment 2. The results are displayed in the same order as the ones in Fig. 3.

this can be seen in the fact that in this excerpt large parts of
the first half are repeated in the second half, so that almost
the same pitch range was covered for training and testing.

The experiments show a certain discrepancy between the
maximum achievable accuracy and the accuracies that can
be expected in a more realistic setting. There are several
explanations for the fact that the accuracy of the second ex-
periment is decreased: First, there was twice more training
data in experiment 1. Second, in the first experiment the
basis functions will have been better adjusted to the spectra
of the second half of the audio files, which were not used in
the learning process in the second experiment. And third,
as indicated above, filling the gaps in the basis function
tensors by merely replicating the estimated basis functions
in the second experiment leads to a loss in accuracy.

4. CONCLUSION

We presented a shift-variant non-negative matrix deconvo-
Iution (svNMD) framework that represents each note of
each instrument by multiple spectral templates. A learning
algorithm was presented that allows the different templates
to be estimated within the svNMD framework. The steps
of this algorithm are comparable to a k-means clustering
algorithm. We investigated the use of the framework for
the task of semi-automtic music transcription in which the
user provides a priori information about some notes in the
mixture under analysis. Two experiments were carried out.
In the first experiment, the upper performance limit of the
algorithm was investigated which is given when the user
provides information about all notes of all instruments. The
results showed the superiority of the IS-divergence over the
KL-divergence and a consistent improvement when more
than one template per pitch was used. The second experi-
ment expoited a more realistic use case in which the user
merely labels a subset of the notes. Here, the superiority of
the IS-divergence could be confirmed. In this experiment,
however, no improvement could be found by using multiple
templates per pitch.
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