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ABSTRACT

The interpretability of a machine learning model is es-
sential for gaining insight into model behaviour. While
some machine learning models (e.g., decision trees) are
transparent, the majority of models used today are still
black-boxes. Recent work in machine learning aims to
analyse these models by explaining the basis of their de-
cisions. In this work, we extend one such technique, called
local interpretable model-agnostic explanations, to music
content analysis. We propose three versions of explana-
tions: one version is based on temporal segmentation, and
the other two are based on frequency and time-frequency
segmentation. These explanations provide meaningful
ways to understand the factors that influence the classifi-
cation of specific input data. We apply our proposed meth-
ods to three singing voice detection systems: the first two
are designed using decision tree and random forest classi-
fiers, respectively; the third system is based on convolu-
tional neural network. The explanations we generate pro-
vide insights into the model behaviour. We use these in-
sights to demonstrate that despite achieving 71.4% classifi-
cation accuracy, the decision tree model fails to generalise.
We also demonstrate that the model-agnostic explanations
for the neural network model agree in many cases with the
model-dependent saliency maps. The experimental code
and results are available online. 1

1. INTRODUCTION

Music content analysis (MCA) research aims to build sys-
tems with the sensitivity and intelligence required to work
with information in acoustic environments. Recent ad-
vances in this domain have been made by leveraging large
amounts of data with statistical machine learning, e.g.,
[5, 6]. The complexity of the resulting systems, however,
makes it extremely difficult to understand their behaviours,
or to predict their success in the real world.

Recent work seeks to ascribe certain functions or sen-
sitivities to architectural elements of a trained system. For
instance, analyses of deep computer vision systems find
the first layer to be sensitive to edges, points and colour

1 https://code.soundsoftware.ac.uk/projects/SoundLIME
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Figure 1: A binary decision tree for classifying audio us-
ing the values of three MFCC feature dimensions.

gradients, and deeper layers appear sensitive to higher-
level concepts like faces, trees and cars [23,25,26]. Similar
work for deep MCA systems has found that the first layer
is sensitive to frequency bands, and deeper layers appear
sensitive to timbres and temporal patterns, e.g., [3, 6]. In a
different direction, other research focuses on approaches to
explain individual predictions. One approach to explain in-
dividual predictions substitutes complex black-box models
with inherently interpretable models whose predictions can
be summarised by simple if-else rules [11,24]. Other meth-
ods use sensitivity analysis [7] or Taylor series expansion
[15] to analyse the prediction function locally. Sensitiv-
ity analysis aims to capture the local behaviour of the pre-
diction function when the input dimensions are perturbed.
Variants of this approach include saliency maps [20], ex-
planation vectors [1], “horse” detection [22] and local in-
terpretable model-agnostic explanations (LIME) [17]. In
this paper, we focus on extending LIME for MCA.

LIME is an algorithm that provides instance-based ex-
planations to predictions of any classifier. These expla-
nations are locally faithful to the instance, independent of
the classifier model type, and are learned over interpretable
representations of the instance. For example, for an e-mail
classification system, LIME generates a list of words of an
e-mail as an explanation for its classification to some cate-
gory. To produce the explanation, LIME approximates the
classifier locally with an interpretable model (e.g., sparse
linear models, decision trees).

We introduce three different versions of explanations
to apply LIME to MCA. We call this extended frame-
work as Sound LIME (SLIME). Each version works in
the time, frequency and time-frequency domains, respec-
tively. SLIME pinpoints the time or time-frequency re-
gion that contributes most to a decision. This transforms a
non-intuitive feature-based classifier decision into a more
intuitive temporal and spectral description. We demon-
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Figure 2: Schematic representation of LIME explaining
why an MCA system S applies label j to instance xi with
probability yij .

strate SLIME for three trained singing voice detection sys-
tems, and show how the generated explanations are useful
in gaining insight into model behaviour, and in identifying
an untrustworthy model that fails to generalise.

2. MOTIVATION

Consider a simple MCA system, the classification compo-
nent of which is the binary decision tree (BDT) shown in
Fig. 1. The input to this system is a T -sec excerpt of audio,
from which the system extracts D Mel-frequency cepstral
coefficients (MFCC) [4]. This D-dimensional feature vec-
tor is labeled by the system as either “class A” or “class B”
based on the values in specific dimensions. The particular
dimensions, and the thresholds of the decisions, are found
through training.

A binary decision tree is a transparent classifier because
one can trace the reason for a particular outcome - in this
case in terms of the MFCC coefficients and thresholds. As
shown in Fig. 1, if the value of the zeroth MFCC is less
than X and that of the third MFCC is less than Y, then this
system classifies the instance as “class A”. What does this
mean in terms of the qualities of the input sound, however?
Why X? Is this a real-world general principle? Or does it
arise from a peculiarity of the training dataset?

MFCCs were introduced for speech recognition [4], but
have been argued as suitable for machine music listen-
ing [9,12]. Extracting MFCC features from audio involves
windowing (typically on the order of 10-100 ms), a Mel-
scale based smoothing of the log magnitude spectrum, and
discrete cosine transform (DCT)-based compression. Al-
though MFCC features are pseudo-invertible [2], they are
difficult to interpret in terms of the qualities of the underly-
ing sound. This comes in part from frequency bin grouping
and the log magnitude operations, which destroy the bijec-
tive mapping between the audio and its spectrum.

One might still roughly approximate the meaning of
particular MFCCs: low MFCC dimensions relate to broad
spectral structures (e.g., formants); high MFCC dimen-
sions relate to fine spectral structures (e.g., pitch and har-
monics); and the zeroth MFCC relates to the energy of
a signal. But, as shown in Fig. 1, values along several
MFCC dimensions and their thresholds jointly contribute
to a prediction. This combination makes interpretation
even harder. It is hard to understand what audible qualities
are captured by the combination of the zeroth MFCC with
either the third or the fifth MFCC. Thus, though the deci-
sion tree has clear decision rules, they are not easy to relate
to audible qualities of inputs. With other machine learning

systems, e.g., deep neural networks or support vector ma-
chines, this task becomes harder still. This motivates the
use of “interpretable representations” for explaining sys-
tem behaviours for specific inputs.

3. INTERPRETABLE EXPLANATIONS FOR
MUSIC CONTENT ANALYSIS

We first present the local interpretable model-agnostic ex-
planations (LIME) proposed in [17]. We then extend it to
working with MCA systems.

3.1 Summary of LIME [17]

Section 2 shows how the rules guiding a classifier’s out-
put can be difficult to interpret in terms of content, even
for transparent classifiers. This interpretability becomes
increasingly difficult when the model becomes complex
(e.g., support vector machine) or the feature extraction is
replaced by feature learning (e.g., convolutional neural net-
work). LIME uses an interpretable representation of data
to maintain interpretability in the generated explanations.
Such explanations are easier because they show a more di-
rect mapping between the input and its prediction.

LIME is an algorithm that generates interpretable, lo-
cally faithful and model-agnostic explanations to predic-
tions of any classifier. Fig. 2 depicts a high-level overview
of what LIME aims to perform. LIME helps illuminate
reasons for a system S applying label j to instance xi with
probability yij . For example, for the input xi, LIME lists
three reasons: R1, R2 and R3, to explain the prediction.
R1 and R2 are positively correlated with the decision and
R3 is negatively correlated.

Locally faithful explanations refer to capturing the clas-
sifier behaviour in the neighbourhood of the instance to be
explained. To learn a local explanation, LIME approxi-
mates the classifier’s decision boundary around a specific
instance using an interpretable model. LIME is model-
agnostic, i.e., it considers the model as a black-box and
makes no assumptions about the model behaviour. This
makes LIME applicable to any classifier.

Formally, let C : Rn → R be a classifier, mapping
a feature vector to a class label. For a feature vector
xi = ε(xi), denote yij = C(xi) as the probability that
xi takes the class label j. Define a sequence Xi, which is
composed of elements that are in some sense meaningful
with respect to the classification of the instance xi. For
example, for a text classification system, Xi could be the
sequence of unique words in e-mail. LIME defines an in-
terpretable space T = {0, 1}|Xi|, where its kth dimension
corresponds to the kth element of Xi. Then x′i ∈ T is the
interpretable representation of xi. Thus, LIME transforms
the input instance xi to a binary vector x′i whose elements
correspond to presence and absence of elements of Xi.

LIME defines an interpretable explanation as a model
g ∈ G, where G denotes a class of interpretable models
(e.g., linear models, decision trees). LIME learns a model
g over the interpretable space by the optimisation:

min
g∈G

L(C, g, ρxi) + ∆(g) (1)
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Figure 3: Functional block diagram of SLIME depicting
the steps in generation of the explanation wi for the pre-
diction of the instance xi.
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Figure 4: Segmentation based sequence generation for
SLIME. (a) Temporal segmentation of instance xi into four
super samples (Ti), each of duration 50 ms. (b) Time-
frequency segmentation of instance xi into 8 blocks (Bi).

where L(C, g, ρxi
) is a locally-weighted loss function that

for an instance xi measures how well the model g approxi-
mates the classifierC in the neighbourhood defined by ρxi

,
and ∆(g) is a measure of model complexity (e.g. sparsity
in linear models). Thus, LIME minimises this function to
explain why C maps xi to class label j.

3.2 Extending LIME to MCA

Fig. 3 depicts the functional block diagram of SLIME.
This consists of two components: the first one is our con-
tribution (dotted box in Fig. 3), which defines interpretable
sequences for an input audio. The second one is the LIME
algorithm that uses the defined representations to generate
explanations.

The first step in SLIME is to define a sequence denoted
Xi from an input instance xi. We define three kinds of
sequences: temporal X t

i , spectral X f
i and time-frequency

X tf
i . We call each element of X t

i a super sample, which
we generate by temporal partitioning of xi. For example,
the instance shown in Fig. 4(a) is uniformly segmented
into four super samples each notated Ti. Hence, X t

i =
(T1, T2, T3, T4). Similarly, each element of X f

i , notated
Ai is a spectral magnitude in a corresponding frequency
bin, obtained by the Fourier transform of xi. Hence,
X f

i = (A1, A2, A3, ...). Lastly, each element of X tf
i , no-

tated Bi is obtained by segmenting the magnitude spectro-
gram of the input instance, both along the time and fre-
quency axes. For example, in Fig. 4(b) the spectrogram of
the instance is non-uniformly segmented into eight time-
frequency blocks. Hence, X tf

i = (B1, B2, ......., B7, B8).
We call each element of a sequence as an interpretable
component. Thus, for a temporal sequence each inter-

pretable component is a supersample and for spectral and
time-frequency sequences each interpretable component is
a spectral bin and time-frequency block, respectively.

The next step is to map the input instance with fea-
ture representation denoted as xi ∈ Rn to its interpretable
representation denoted as x′i ∈ {0, 1}|Xi|. Thus, each of
the above mentioned sequences is used to define an inter-
pretable space T and an interpretable representation x′i.
This creates three interpretable representations for the in-
put instance xi. We denote temporal, spectral and time-
frequency interpretable representations as xt

i
′, xf

i

′
and xtf

i

′

respectively. These representations provide us three ways
of understanding a prediction, each highlighting the tem-
poral, spectral or time-frequency segments of the instance
influencing the prediction most.

To find an explanation, SLIME approximates the classi-
fier C : Rn → R with a linear model {g(z′) = wT z′; z′ ∈
T }. To do this SLIME first generates Ns samples from
T in a way that depends on x′i, i.e., randomly setting to
zero the dimensions of x′i. Hence, for the interpretable se-
quence X t

i in Fig. 4(a), one possible zti
′ = (1, 0, 1, 0).

This synthetic sample indicates the absence of super sam-
ples T2 and T4. Formally, for an instance with Ns super
samples, a total of 2Ns synthetic samples exists. With an
assumption that there exists a surjective map from Rn to
T , each synthetic sample is projected to Rn, weighted us-
ing an exponential kernel learned over cosine distance (we
used the same ρxi

as in [17]) and mapped to its correspond-
ing probability C(z). SLIME learns the linear model gt by
minimising the squared loss and model complexity as in
(1) over this dataset of synthetic samples and their proba-
bilities. Formally, denote the kth sample as z′k and its pro-
jection zk. Define a weight function ρxi

: Rn × Rn → R.
The locally-weighted loss used by SLIME is given by

L(C, g, ρxi) =
∑

(z′
k,zk)∈Z

ρ(xi, zk)[C(zk)− g(z′k)]2 (2)

Similarly, SLIME randomly samples xf
i

′
and xtf

i

′
to learn

the linear models gf and gtf , respectively. Each of these
models provides interpretable explanations in terms of
their learned weights. The magnitude of the coefficients
relates to the importance of the temporal segment (super
sample) or the spectral component (bin frequency) or the
time-frequency block in the classification of xi. Thus, if
w1 and w2 denote the coefficients of super samples T1 and
T2 respectively, then |w1| ≥ |w2| implies super sample T1
has more influence on a classification prediction than T2.
Similarly, the polarity of regression weights refers to the
correlation between the segment and the classifier predic-
tion. For example, if w1 < 0 and w2 > 0, then the tempo-
ral segments T1 and T2 are negatively and positively cor-
related with the classifier prediction. The weight function
ρxi

controls the contribution each synthetic sample has in
the learned model g. Thus, a distant sample in interpretable
space T will have lower contribution to g facilitating bet-
ter learning in cases where the random sampling produces
samples with highly imbalanced class distributions.



Classifier Acc[%] Prec. Recall F- score
Decision tree 71.4 0.72 0.81 0.75

Random forest 76.3 0.75 0.88 0.79

Table 1: Singing voice class evaluation results for the two
selected shallow SVD systems (a) Binary decision tree of
depth 8 and information gain as the split criterion (b) Ran-
dom forest of 64 trees, each with depth 16.

4. DEMONSTRATION

We now use SLIME to explain the predictions of three
singing voice detection (SVD) systems that classify an au-
dio excerpt into two categories: music without singing
voice, and music with singing voice. Two systems are
based on a shallow architecture proposed in [10]. The other
one is based on hierarchical feature learning [19].

4.1 Explaining predictions of a shallow vocal detector

Several shallow vocal detection systems have been pro-
posed [10, 13, 16, 18]. We adapt the method proposed
in [10] that uses only MFCC features to reach state of the
art performance. Our system calculates FFTs on a frame
size of 200 ms with 50% overlap at a sampling frequency
of 22050 Hz. It uses a set of 30 Mel-filters to extract 30
MFCC coefficients (including the 0th) and their first-order
derivatives from each audio frame using Librosa [14]. The
system performs classification over a 1 sec excerpt, hence
it calculates the median and standard deviation of the 60
dimensional vector over five frames [18], constructing a
feature vector of 120 dimensions.

We train two systems: the first (S1) combines a binary
decision tree (BDT) with the feature vector from above and
the second (S2) replaces the BDT with a random forest
(RF) classifier. The Jamendo dataset, introduced in [16]
is used to train, validate and evaluate both the models on
three non-overlapping sets. Table 1 reports the results of
the evaluation for singing voice class. The vocal detection
systems designed using the BDT and RF classifiers achieve
an overall accuracy of 71.4% and 76.3%, respectively. The
vocal class occupies 57.5% of the test dataset which sug-
gests that these two systems may have learnt some rep-
resentation of singing voice that helps to detect vocals.
We now apply SLIME to determine if these systems are
trustworthy [22]. In other words, are the vocal predictions
caused by content where there actually is voice?

In order to generate temporal explanations, we segment
the instance (1 sec) into ten super samples, each of 100
ms duration. We first generate 1000 samples in the inter-
pretable space. We then approximate each classifier’s deci-
sion boundary in a neighbourhood of the instance by a lin-
ear model learnt over the interpretable space. The number
of interpretable components needed to explain an instance
may vary from one instance to the other, but to reduce the
model complexity (∆(g) in (1)), we generate explanations
with a fixed number of components. To do this we first use
the synthetic dataset of perturbed samples and their proba-
bilities to select the top-3 super samples by forward selec-
tion, and then learn a linear model [17].

Id. Dur.
(s)

Prob-Vocal SS-Pred.
SS-True

BDT RF BDT RF
41 1.0 0.97 0.85 6,7,9 2,0,7 0-9

178 1.0 0.86 0.86 9,8,4 9,6,0 0-9
58 0.4 0.80 0.76 6,5,3 0,2,6 0-3

124 0.4 0.92 0.84 0,4,6 6,9,8 6-9

Table 2: Instance-based temporal explanations generated
by SLIME. Id: instance index, Dur: vocal duration, SS: su-
per samples, Prob-Vocal: probability assigned by the SVD
system that the instance contains singing voice, SS-Pred:
super sample indices that are the most influential upon the
classification of the input instance to vocal class, SS-True:
super sample indices that actually contain singing voice.

Table 2 reports the temporal explanations generated by
SLIME for four instances extracted from the “03 - Say me
Good Bye.mp3” test file in the Jamendo dataset. The super
samples are arranged in the decreasing order of influence
on the prediction. The magnitude of the weights learned
for each super sample determines the influence it has on
the prediction. This analysis of the temporal explanations
helps to gain insight about how the models are forming
their predictions. For example, instance 41 is correctly pre-
dicted by both the models (true positive). But, the tempo-
ral explanations for both the models are very different. The
same is the case with another instance 178. Listening to all
the predicted super samples for instances 41 and 178, high-
lights an interesting observation. For most of the predicted
super samples for the decision tree model there is a pres-
ence of ‘strong’ instrumental onset along with the singing
voice. Thus, it might be the case that instead of “listening”
to the singing voice in the super sample, the decision tree
model is paying attention to instrumental onset.

To verify the above hypothesis, we select true positive
instances that have instrumental music and singing voice as
separate temporal sections. We apply SLIME to two such
instances: 58 and 124, which have singing voice in the
first and last 400 ms, respectively. The temporal explana-
tions generated for the BDT highlight that even though the
prediction score is high for the model, the super samples
it believes to contain singing voice have only instrumen-
tal music in most of the explanations. This raises ques-
tions about the generalisation capability of such a model.
Based on the explanations generated for the RF model, it
appears that the model is looking at the right temporal sec-
tions to form a prediction. Thus, the temporal explanations
are helpful in identifying an untrustworthy model.

Temporal explanations help to understand the predic-
tions but under some limitations. First, for the explana-
tions to be clearly audible super samples should be at least
100ms long. Second, for the cases as in instance 41, where
singing voice and instrumental music are present for com-
plete duration, temporal explanations do highlight which
temporal sections are useful for prediction but not what in
that section is important. One way to solve this problem
is to use SLIME to generate the spectral or time-frequency
explanations as demonstrated below.
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Figure 5: Comparing the positive explanation from
SLIME with the positive saliency map for a 1.6s excerpt.

4.2 Explaining predictions of a deep vocal detector

We now demonstrate SLIME working with the convolu-
tional neural network (CNN)-based system proposed in
[19]. We generate time-frequency explanations for the pre-
dictions of the system and compare the generated explana-
tions with the saliency maps [20, 21, 26]. Due to space
restriction we have skipped the demonstration of spectral
explanations, but such explanations can be easily derived
from time-frequency explanations by expanding the tem-
poral analysis window to full length of the excerpt.

The system proposed in [19] takes in a Mel-spectrogram
representation of a 1.6 second audio excerpt and returns
the probability that it contains singing voice. In order to
explain the predictions of the system, we map the Mel-
spectrogram to the time-frequency interpretable represen-
tation proposed in subsection 3.2. We segment the time-
frequency axis of the input in 6 and 4 segments, respec-
tively. Thus, the temporal axis of each of the first 5 seg-
ments is 266 ms in duration and that of the last segment
is 280 ms. We aim to keep the temporal axis of the re-
sulting interpretable components long enough to facili-
tate audition in the temporal domain. Similarly, segmen-
tation along the frequency axis results in 4 spectral sec-
tions, each with 20 spectral bins. Thus, the input Mel-
spectrogram is mapped to a sequence of time-frequency
blocks X tf

i = (B1, ..., B24), where each block represents
a dimension in the interpretable space. Fig. 5(a), (b) depict
the Mel-spectrogram and its time-frequency segmentation,
respectively for an input excerpt from “03 - Say me Good
Bye.mp3” file from the Jamendo test dataset.

SLIME generates 2000 samples in the neighbourhood
of the input, approximates the non-linear decision bound-
ary by a linear model, and selects the top-3 interpretable
components (time-frequency blocks) with the highest pos-
itive weights. Fig. 5(c) depicts the positive explanation
for the prediction of the audio excerpt. We call an expla-
nation positive if the weights of the interpretable compo-
nents in the explanation are positive. The input excerpt

chosen for analysis has singing voice with musical accom-
paniment for the first 900 ms and only musical accompa-
niment for the last 700 ms. We invert the time-frequency
blocks in the explanation to temporal domain and on lis-
tening find that all the components in the explanation have
the presence of singing voice. This raises confidence in the
predictions of the model. Moreover, all the components in
the negative explanation (not shown due to space restric-
tion), fall in the temporal sections after 1s. This indicates
that the time-frequency segments containing only instru-
mental music are negatively correlated with the classifier
prediction. This also seems to be correct behaviour. Thus,
the time-frequency explanations help to understand what
sections in the input are influencing the prediction most.

We now compare SLIME-based explanations with
saliency maps. Saliency maps, like time-frequency ex-
planations, are tools to analyse black-box neural network
models. They highlight how each input dimension influ-
ences the prediction. The gradient of the output prediction
with respect to each input dimension is calculated to com-
pute the saliency maps [20]. Thus, they depict the effect
of modifying the input along any dimension, on the net-
work prediction. Instead of allowing all the gradients to
flow back, techniques proposed in [21, 26] only allow the
positive gradient to flow back resulting in cleaner visuali-
sations. Using the technique proposed in [26], we employ
a leaky-ReLU non-linearity [8] in the backward path to re-
duce the magnitude of the negative gradients flowing back.
We compare the positive time-frequency explanations with
the positive saliency map. This map will highlight the
input dimensions that are positively correlated with the
classifier prediction. Not all the dimensions influence the
predictions equally, thus we select only those dimensions
whose normalised gradient is more than 0.5. We generate
such maps for the output layer of the network. Fig. 5(d)
shows the thresholded positive saliency map.

It is important to note that saliency maps highlight in-
dividual dimensions in the input while SLIME based ex-
planations are time-frequency blocks. One way to com-
pare the two is by visually verifying whether all the di-
mensions highlighted by the saliency maps are captured
in the explanations created by SLIME. A visual compar-
ison for the example in Fig. 5 shows that SLIME’s ex-
planation includes most of the key dimensions highlighted
by the saliency map. Numerically we measure how many
dimensions highlighted by the saliency map are enclosed
in the explanation generated by SLIME. For the audio ex-
cerpt shown in Fig. 5, this agreement is 62.5%. We ex-
pand this analysis to a set of 1349 randomly chosen ex-
cerpts from the Jamendo test dataset. We found that on
an average SLIME achieves 46.50 % numerical agreement
when compared with the positive saliency maps. Instance-
based analysis reveals that in some instances the numerical
agreement is 100%, but there are cases where this number
is less than 10%. One possible explanation for this is the
shape of decision boundary near the instance. If the deci-
sion boundary is highly non-linear, approximating it with a
linear model will result in poor explanations from SLIME.

We have not performed an exhaustive comparison (by
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varying the preset factors, e.g. threshold, number of com-
ponents) between the two techniques. The above analy-
sis aims to provide an estimate about the performance of
model-agnostic SLIME against a model-dependent tech-
nique for some preset values. It is obvious that the numer-
ical agreement will be high if the constraints are softer and
vice versa. Although saliency maps are accurate in high-
lighting the input dimensions that are influential to a classi-
fier’s output, they can suffer from lack of temporal context
around the dimensions. On the other hand, SLIME-based
explanations can be readily inverted to an acoustic form for
audition, which may provide additional insights into how a
classifier is forming its prediction for an input.

4.3 Discussion on the number of samples (Ns)

As discussed in subsection 3.2, to explain a prediction
LIME generates Ns samples in the interpretable space
(T ). In [17] there is no discussion about how many sam-
ples should be used to generate each explanation. We
believe that exploring this is important for two reasons.
First, it affects the time taken (Ts) to generate an expla-
nation. Second, it affects the stability of the generated ex-
planation. Ideally, an explanation should remain the same
(at least the interpretable components, but their order and
weights might change) even on multiple iterations of ap-
plying LIME to the same instance. But, empirically we
find that the generated explanations do change on multiple
iterations. This happens because LIME samples randomly
in T . In this section we seek to understand the effect of
Ns on the stability of the explanations and on the time to
generate one explanation.

For the experiment, we use the trained model, dataset
and SLIME set-up from subsection 4.2. We randomly se-
lect 5 excerpts from each test file in the Jamendo dataset.
We apply SLIME to generate explanation for the predic-
tion of each excerpt in a batch of 80 and select the top-k
interpretable components per explanation (we try k = 3 and
5). We iterate this process 5 times, each time randomly

sampling 80 excerpts, generating explanations and select-
ing the top-k interpretable components.

We define the stability of an explanation to be inversely
proportional to the number of unique interpretable com-
ponents (Un) from the sequence Xi that appear in expla-
nations generated with m iterations. For example, if we
apply SLIME m = 2 times to an instance and select
the top-3 interpretable components in each iteration. Say
the selected time-frequency segments are denoted as sets
ξ1 = {B1, B2, B3} and ξ2 = {B2, B6, B5}. Then Un = 5,
as B2 appears twice in 6 components. To understand the
effect of Ns on the stability of explanations, we generate
5 explanations for each of the 80 excerpts in the randomly
sampled batches. We calculate the value of Un in all the
5 explanations for each excerpt and plot the average result
over 5 batches for a given value of Ns. Fig. 6(a) reports
the results of the experiment. The result shows that Un is
inversely related to Ns, and thus the stability of the gen-
erated explanations is proportional to Ns. The result also
shows that exhaustive search of the interpretable space T
is not needed to generate stable explanations.

We also record the average time taken to generate one
explanation for a given value of Ns. Results are gener-
ated by running SLIME on a computer with 1.6 GHz Intel
core i5 processor and 8 GB memory and are reported in
Fig. 6(b). Results show that Ts increases linearly with Ns,
reaching to a maximum of around 5 mins for an explana-
tion generated with Ns = 10k. The reported time includes
the time taken for prediction by the CNN. These results
suggest that selecting a suitable Ns depends on the trade-
off between the stability of an explanation and the time-
taken to generate it. In our experiment Ns = 1000 seems
to be a good trade-off.

5. CONCLUSION

In this work we proposed SLIME, an algorithm that ex-
tends the applicability of LIME [17] to MCA systems.
We proposed three versions of SLIME and demonstrated
them with three types of singing voice detection systems
to generate temporal and time-frequency explanations for
the predictions of specific instances. We see that the tem-
poral explanations generated by SLIME are helpful for re-
vealing how the BDT is making decisions based on content
that does not contain singing voice despite possessing high
classification accuracy for the selected instances. Such is-
sues cast doubt on the generalisability of the model. We
also demonstrated that the analysis of time-frequency ex-
planations is helpful to gain trust in the CNN based SVD
system. We compared SLIME based explanations with
saliency maps for the neural network model and the re-
sults suggest that model-agnostic SLIME based explana-
tions agree in many cases with saliency maps.

In future we would like to apply SLIME to other MCA
systems. We also plan to experiment with improved inter-
pretable representations that will be created around audio
“objects”. We believe that the improved representations
will assist in better understanding of the behaviour of the
underlying machine learning model.



6. ACKNOWLEDGEMENTS

This work is supported in part by AHRC Grant Agreement
no. AH/N504531/1. We would like to thank Jan Schlüter
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