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Characterising Confounding Effects in Music Classification 
Experiments through Interventions
Francisco Rodríguez-Algarra*, Bob L. Sturm† and Simon Dixon*

We address the problem of confounding in the design of music classification experiments, that is, the 
inability to distinguish the effects of multiple potential influencing variables in the measurements. 
Confounding affects the validity of conclusions at many levels, and so must be properly accounted for. 
We propose a procedure for characterising effects of confounding in the results of music classification 
experiments by creating regulated test conditions through interventions in the experimental pipeline, 
including a novel resampling strategy. We demonstrate this procedure on the GTZAN genre collection, 
which is known to give rise to confounding effects.
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1. Introduction
Classification experiments are arguably the most wide­
spread tool for the evaluation of Music Information Retrieval 
(MIR) systems and methods (Sturm, 2014b; Urbano et al., 
2013). Lack of proper control in such experiments leads to 
conclusions of questionable validity, yielding results that 
may fail to generalise beyond the experiment (Drummond, 
2006). This hampers progress by obfuscating which 
research paths are worth pursuing, and demands revising 
conventional experimental practices (Sturm, 2016a). We 
propose and illustrate a procedure for assessing how 
failing to control for particular sources of information in 
evaluation collections affects experimental results.

The partitioning of collections into training and testing 
materials affects validity in classification experiments, as 
the MIR community has long acknowledged. For instance, 
the presence of the same artists or albums in both training 
and testing recordings artificially inflates performance 
estimates; this is known as artist or album effects, 
respectively (Pampalk et al., 2005; Flexer and Schnitzer, 
2010). Performance can also decrease if one tests using a 
separate collection (Bogdanov et al., 2016) or manipulates 
recordings in presumably irrelevant ways (Sturm, 2014a; 
Rodríguez-Algarra et al., 2016).

Pampalk et al. (2005) introduced artist “filters” to 
counteract artist effects in music similarity experiments. 
Their approach, which we call “filtered partitioning”, 
creates training and testing collections1 not sharing a level 

of the factor one aims to control (e.g., artist information). 
This provides a single “regulated” testing condition (all 
testing instances follow a particular rule), alleviating the 
impact of the replication of that factor on performance 
estimates. Comparing regulated results from filtered 
partitioning with those from a conventional random 
partitioning enables assessing the impact of leaving a factor 
unregulated. Using this approach, studies (e.g., Flexer 
(2007); Sturm (2014b)) show not only that unregulated 
collections might bias performance estimates, but also 
that the magnitude of such bias varies across feature 
representations and learning algorithms.

A major limitation of filtered partitioning for assessing 
the effect of leaving collections unregulated is that the 
regulated training and testing collections it creates likely 
contain different instances than those included in their 
unregulated counterparts. No single trained system 
is exposed to both regulated and unregulated testing 
conditions, which impedes disentangling the effects of 
training and testing. Moreover, as Marques et al. (2011) 
note, the makeup of some collections constrains how 
many disjoint regulated partitions one can create (e.g., 
the number of cross-validation folds cannot exceed the 
number of artists per class). This may conflate the effect of 
the particular instances — their “difficulty” — with that of 
the (lack of) regulation.

Apart from altering the collection partitioning strategy, 
manipulating the raw data can also create regulated 
evaluation conditions (Sturm, 2014a, 2016b). This avoids 
the aforementioned limitations as instances in both 
conditions match, but cannot regulate all factors (e.g., 
artists). Previous studies combine filtered partitioning with 
manipulations to control multiple factors simultaneously 
(Rodríguez-Algarra et al., 2016), but suffer from the 
aforementioned limitations of filtered partitioning.
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In this article, we describe both partitioning and  
manipulation approaches as alternative, but complemen­
tary, types of interventions in the experimental pipeline. 
These interventions create regulated evaluation conditions 
that can be used to characterise how the outcomes of music 
classification experiments are affected by “confounding”, a 
validity threat we examine in Sec. 2. We then introduce in 
Sec. 3 a procedure for combining multiple interventions 
that overcomes the limitations of filtered partitioning, 
including a novel resampling strategy aimed at gauging 
confounding effects. We focus on the effects of particular 
sources of confounding information on test results, as this 
is paramount for MIREX2 and similar evaluation exchanges, 
but the approach could be extended to assess effects in 
training. We illustrate our approach in Sec. 4 by analysing 
two known confounders in the GTZAN music genre 
collection (Tzanetakis and Cook, 2002): artist replication 
and infrasonic content.3 This could be adapted to other 
domains with minimal adjustments. We finally discuss in 
Sec. 5 the main limitations and broader implications of our 
work, and provide concluding remarks in Sec. 6.

2. Confounding in Classification Experiments
Classification experiments dominate evaluation in both 
pure and applied machine learning research (Flach, 2012; 
Alpaydin, 2014). A classification experiment essentially 
involves measuring how well a prediction system, or family 
of systems, reproduces the annotations of a collection, 
which acts as a proxy for success in some real-world 
problem (Hernández-Orallo, 2016). The diagram in Fig. 1 
represents a simplified pipeline of a music classification 
experiment, introducing notation used later in this article.

Any empirical study is subject to diverse validity threats 
that challenge the veracity and generality of its outcomes 
(Shadish et al., 2002; Trochim and Donnelly, 2007). Among 
these, confounding is particularly relevant as it leads to 
invalid conclusions about causal relationships (Pearl, 2009). 
Two variables potentially influencing measurements are 
confounded if the experimental design cannot disentangle 
their effects (Cobb, 1998). Many experimental and quasi-
experimental designs thus alleviate confounding by 

controlling extraneous variables other than the target of 
the study – explicitly setting or accounting for their values 
in the different experimental conditions – to avoid them 
impacting the measurements (Montgomery, 2013; Shadish 
et al., 2002).

Simple experimental design choices overcome the 
most obvious risks of confounding in classification 
experiments (Langley, 1988). For instance, if one measures 
the performance of multiple systems each on different 
instances, the influence of such systems – the outcome 
of interest – becomes confounded with the selection of 
instances – an extraneous variable. This is easily avoided 
by comparing measurements on the same instances, a 
standard evaluation practice.

Subtler forms of confounding affecting the conclusions 
of classification experiments are receiving increasing 
attention in the applied machine learning literature 
(e.g., Chen and Asch (2017); Charalambous and Bharath 
(2016)). In particular, information not intrinsically linked 
with the problem of interest might incidentally relate 
with the annotations of evaluation collections, providing 
alternative means for systems to predict annotations in 
classification experiments. Causes of this phenomenon 
include selection bias (e.g., Mendelson et al. (2017)) and 
leakage (Kaufman et al., 2011), which induce confounding 
by conflating success in addressing the target problem – 
the outcome of interest – with the exploitation of auxiliary 
information – an extraneous influence (Sturm, 2016a). 
In this article, we focus on identifying and analysing the 
effects of these forms of confounding information.

If a collection is used in the evaluation of diverse 
problems and use cases, each case implicitly determines 
which content is potentially confounding. For instance, 
tempo information in a collection may be legitimate for 
identifying dance style, as the speed of a piece influences 
which dance moves are feasible, but not for identifying 
rhythmic patterns, as these should be invariant to 
reasonable variations in speed (Dixon et al., 2004; Sturm, 
2014a). Artists tend to compose or perform music pieces of 
one or a few genres, yet artist properties are not essential 
to those genres (Flexer and Schnitzer, 2010). If one’s sole 

Figure 1: Pipeline of a single iteration k of a classification experiment evaluating a system construction method m 
(combination of feature extraction and learning algorithm) on a music collection D. Square-shaped nodes represent 
data structures; diamond-shape nodes represent processes. A double border indicates a treatment factor with fixed 
level. Solid lines indicate information flow; dashed lines join components of the same data structure. π is a data 
assignment/partitioning function. Dt is the training collection; Dp is the testing collection, with Rp the raw data (e.g., 
recordings) and Ap the corresponding annotations. (Rt and At omitted for simplicity.) s is the trained system, ˆpA  the 
predicted annotations, φ the performance metric function, and ŷ  an estimate of the theoretical performance y – i.e., 
given the true distribution.
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aim is to attach genre tags to a fixed set of recordings, artist 
information will likely help; if one aims to assess whether 
a system captures the defining characteristics of music 
genres instead, then artist-specific content is extraneous. 
Other properties, however, such as the infrasonic content 
present in GTZAN (Tzanetakis and Cook, 2002; Rodríguez-
Algarra et al., 2016), are unlikely to be legitimately 
informative for any real problem.

The main risk of confounding in classification experi­
ments is that conclusions fail to generalise. Systems might 
not succeed when deployed if they rely on information 
about a potential confounder being present, as there is 
no guarantee that the observed association will remain 
outside the experimental setting. The MIR community 
has adopted evaluation practices to counter this pitfall. 
The aforementioned filtered partitioning approach 
yields performance estimates free of the influence of 
the regulated potential confounder (Pampalk et al., 
2005). Others suggest leveraging data augmentation to 
avoid confounding information influencing the training 
process (Charalambous and Bharath, 2016; Stowell, 2017). 
This synthetically generates combinations of background 
information and target categories that force systems to 
learn general concepts rather than incidental correlations.

As a homage to Clever Hans (Pfungst et al., 1911), some 
MIR publications refer to systems exploiting confounding 
information as “horses” (Sturm, 2014a, 2016b). To assess 
whether a system is indeed a “horse”, one might test on 
a completely separate collection than the one used for 
training (Bogdanov et al., 2016). This, however, does 
not reveal the source of discrepancy. Others propose to 
illuminate the behaviour of trained systems through 
interpretable explanations of predictions (Mishra et al., 
2017) or interventions in the experimental pipeline 
(Rodríguez-Algarra et al., 2016). We extend the latter 
approach to gauge how confounding impacts the 
outcomes of classification experiments.

3. Characterising Confounding Effects
We propose a simple procedure that uses interventions 
to characterise the effects of confounders in performance 
measurements from classification experiments, overcoming 
the limitations of filtered partitioning via a novel resampling 
strategy. We here focus on the effects in testing, but the 
procedure could be easily adapted to assess the effects in 
the training of systems, or a factorial combination of both.

3.1. Interventions on the Experimental Pipeline
In empirical studies, an intervention is the act of 
explicitly fixing a factor to one of its levels (Pearl, 2009). 
A conventional music classification experiment involves 
intervening on the system creation method, as Fig. 1 
represents with a double-bordered node. This specifies 
evaluation conditions to compare, each with different 
feature extraction and/or learning algorithms, yielding 
estimates of differences in performance. Apart from such 
conventional intervention, one might also intervene on 
other steps of the pipeline to create further evaluation 
conditions. These may reveal information unavailable 
otherwise, such as the impact of a potential confounder.

Consider the train/test pipeline of a classification 
experiment, with training and testing materials drawn from 
a collection D. Let z be a potential confounder. If z correlates 
with the classes in some way within D, legitimately or not, 
then such correlation should appear in both training and 
testing instances unless a regulation is introduced, making 
z available for both training and prediction. Interventions 
regulating z thus impede its availability in such steps by 
breaking its correlation with the classes.

A classification experiment pipeline offers many 
opportunities for intervening. One might intervene on 
training or prediction, altering methods and systems to 
avoid relying on z. For instance, knowing which dimensions 
of the feature representations capture information related 
with z, one might regulate by removing or masking such 
dimensions in the feature extractor. This is the case in the 
tempo-invariant features of Dixon et al. (2004). Previous 
studies, however, often intervene on the creation of 
training and testing materials, through either “instance 
assignment” or “data manipulation” interventions.

Instance Assignment interventions regulate π, the criterion 
for assigning instances to either training or testing, taking z 
into account. These interventions thus require knowledge 
of z, i.e., the value that z takes for each instance. Properties 
such as artist, album, file format, or recording device are 
suitable for this approach.

Filtered partitioning belongs to this category, with the 
intervention involving an assignment function ( )Dπ′  that 
creates tD ¢ and pD ¢  both containing different instances 
than their unregulated counterparts. Other strategies 
may distinguish between regulated and unregulated 
conditions only for testing, using the exact same training 
materials in both (i.e., ( ) ( , )t pD D Dp¢ = ¢ ). This enables 
isolating the potential effect of z in the evaluation of fixed 
systems. If one aims to estimate the impact of z in system 
construction instead, a suitable intervention might fix the 
testing collection and create regulated and unregulated 
conditions distinguished only in the selection of training 
instances (i.e., ( ) ( , )t pD D Dp¢ = ¢ ).

Data Manipulation interventions alter the raw data 
(e.g., audio recordings) in a way that preserves their 
membership to a class, but modifies the correlation between 
z and the classes. Manipulations such as pitch-preserving 
time-stretching (Sturm, 2016b) and high-pass filtering 
(Rodríguez-Algarra et al., 2016) have been used to this end. 
These interventions do not require instance-level knowledge 
of z, and they permit comparing predictions on the same 
instances (manipulated and not). Nevertheless, they require 
identifying and implementing suitable manipulations.

Similar to instance assignment interventions, data 
manipulation interventions may create regulated con­
ditions in different ways. Given a class-preserving 
manipulation, one might transform instances in both Dt 

and Dp in the same way, thus obtaining a pair of regulated 
collections ( , )t pD D¢ ¢ . This, however, may not break 
correlations if the manipulation is deterministic, failing to 
regulate z. It is more appropriate to keep either Dt or Dp 
unaltered and manipulate the other.
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These types of interventions are complementary, 
as they affect different steps of the experimental 
pipeline, but it is feasible to stack various interventions 
affecting the same step (e.g., time-stretching and 
filtering recordings). They might be integrated into the 
experiment using a factorial design (Montgomery, 2013), 
where each intervention creates an additional treatment 
factor with at least two levels: regulated and unregulated. 
Comparing measurements under combinations of 
such levels reveals the marginal and joint impact of the 
interventions, illuminating the effects of the potential  
confounders.

3.2. Analysing Confounding with Interventions
To date, interventions on the experimental pipeline have 
been used to reveal whether a potential confounder 
affects the evaluation of particular methods or systems. 
Given an annotated music collection D, we now describe 
the steps we propose to extend this approach to assess 
how such a potential confounder impacts evaluations 
conducted on D over multiple methods, and how several 
potential confounders interact.

a)  Identify potential confounders
As a prerequisite of the analysis, one should determine 
which potential confounders are worth considering for 
the collection and problem at hand. This may come from 
exploratory analyses of collections, published systems 
and/or domain knowledge.

b)  Design interventions
For each identified potential confounder z, one should 
specify at least one suitable intervention to distinguish 
regulated and unregulated evaluation conditions with 
respect to z. The adequate type of intervention depends 
on the nature of z.

c)  Create train/test materials
Let Dt be a training collection drawn from D, and Dp and pD ¢   
a pair of testing collections associated with Dt that differ 
only in whether they regulate a potential confounder 
z. In particular, Dp is drawn from D (usually D\Dt), and 

pD ¢  comes from an intervention on the experimental 
pipeline. For instance, pD ¢  might be a pruned version of 
Dp with instances whose value of z appears in Dt removed, 
or the result of a manipulation on the recordings in Dp 
for regulating z. If the analysis considers J interventions 
simultaneously, then one creates (at least) 2J testing 
collections associated with Dt, one for each combination 
of regulation condition.

To avoid the performance estimates being confounded 
with the selection of instances, it is advisable to create 
multiple training collections through a resampling 
strategy (Weihs et al., 2017). In this case, one would 
draw K training collections Dt,k and derive the testing 
collections associated with each as above. Conventional 
resampling strategies, however, cannot ensure testing 
collections from instance assignment interventions fulfil 
the intended regulation. The strategy we propose later in 
Sec. 3.3 addresses this issue.

d)  Select methods
Characterising the impact of a potential confounder z 
requires a wide range of performance estimates. One 
may then train multiple systems on each Dt,k using 
diverse combinations of feature extraction and learning 
algorithms. We denote the total number of combined 
methods as M. These methods should cover a broad 
spectrum of modelling approaches and expected perfor­
mance values. Optimisation is not essential if the goal is to 
gauge how different approaches behave when exposed to 
particular perturbations on the data and not to maximise 
performance, but plays an important role if this procedure 
is integrated into real evaluations.

e)  Obtain performance estimates
For each trained system sn, 1 ≤ n ≤ K ⋅ M, one can then 
compute figures of merit (e.g., accuracy, mean recall) in 
the corresponding testing collections. For simplicity, we 
call ŷ  and ŷ ′ the generic unregulated and regulated 
performance estimates, respectively.

f)  Relate regulated and unregulated estimates
As ŷ  and ŷ ′ differ only in their regulation of z, one 
assumes any observed difference reflects an effect of 
z. Given enough ˆ ˆ( , )y y ′  pairs, one might estimate the 
expected relationship between regulated and unregulated 
measurements ˆ ˆ( )~y f y′ .4 Fitting a model of ˆ( )f y  from 
data pairs ˆ ˆ( , )y y ′  describes the confounding effect of z in 
evaluations on D. This reflects how a potential confounder 
tends to affect performance estimates of trained systems 
evaluated in the collection. For simplicity, we may use a 
linear model, such as

	 ˆ ˆ ˆ( )~y f y yα κ′ = ⋅ + � (1)

though other relationships (e.g., quadratic, exponential) 
could be preferable. If a ≈ 1 and |k| ≫ 0, we say the 
confounding effect of z is mostly additive (i.e., the 
relationship between ŷ  and ŷ ′ appears as a fixed effect); 
if a ≉ 1 and k ≈ 0, we say it is mostly multiplicative (i.e., a 
gain). To estimate k in the former case, one could average 
performance differences between conditions per iteration. 
Denote ,

ˆm ky  the performance of a system trained with Dt,k 
using method m measured on a test collection Dp,k, and 

,
ˆm ky ¢  the measurement on the associated regulated test 
collection ,p kD ¢ , then:

	 1 , ,
ˆ ˆ( )

ˆ
K
k m m k m ky y

K M
κ = ∀Σ Σ − ′
=

⋅
� (2)

with K and M defined as above.
In the general case, ŷ  and ŷ ′ will not keep a simple 

relationship over all observations. Different system-
construction methods can exploit a potential confounder 
differently, and the effect might also differ across classes. 
One may thus analyse the data marginally to identify 
clearly distinct behaviours.

If the analysis involves multiple interventions, compar­
ing marginal and joint measurements can elucidate 
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whether the different confounders (or approaches to the 
same confounder) interact. Let ŷ  be the performance 
estimated in the original testing collection, 1ŷ ¢ and 2ŷ ¢ the 
performances in testing collections from two different 
interventions, and 1,2ŷ ¢  the performance on a testing 
collection subjected to both interventions. Apart from 
relating ŷ  with both 1ŷ ¢ and 2ŷ ¢ to analyse the effects 
of each confounder separately, one might compare the 
sum of those two marginal effects with the difference 
between ŷ  and 1,2ŷ ¢ . Let ∆A be the “accumulated” vari­
ation, defined as:

	 1 2
ˆ ˆ ˆ ˆ( ) ( )A y y y yD = - ¢ + - ¢ � (3)

and ∆R be the “real” variation:

	 1,2
ˆ ˆ( ).R y yD = - ¢ � (4)

The difference ∆R–∆A indicates whether the two 
confounding effects under study reinforce each other, do 
not interact, or overlap. This can be generalised to higher-
order interactions if more interventions coexist.

3.3. Regulated Bootstrap Resampling
The procedure above requires multiple distinct train/test 
pairs. Various resampling strategies address this, but none 
is entirely suitable for instance assignment interventions. 
In particular, the fixed size of the partitions in k-fold 
cross-validation (kCV) impedes adjusting to imbalances 
in the presence of the potential confounder z. Bootstrap 
sampling (Efron, 1977), drawing |D| training instances with 
replacement from the whole collection D, overcomes this 
issue. Sampling with replacement is often preferred in the 
statistical learning literature (Hastie et al., 2009; Hothorn 
et al., 2005), as it enhances the statistical properties of the 
generated samples over kCV, such as reducing the variance 
of the derived estimates (Efron, 1983; Efron and Tibshirani, 
1997). Nevertheless, training collections generated with 
bootstrap sampling may not permit suitable regulations 
if, e.g., too many instances in Dp = D\Dt have values of z 
also in Dt.

To address these issues, we propose regulated bootstrap, 
a multi-phase resampling strategy expressed in Alg. 1. 
The algorithm takes as input a collection D (sequence of 
instances, each a tuple (r, a, z)i of data element ri, class 
annotation ai from the set A, and attribute zi from the set 
Z) and the desired number of recordings per class nr. It first 
attempts to create a pair (Dt, Dp) using stratified bootstrap 
– sampling with replacement from each class separately. 
If this cannot derive a regulated testing collection pD ¢  of 
size nr, it then proceeds to a partially-curated approach. 
This may be repeated an arbitrary number of times. The 
output of each sampling run can then be used to generate 
a pD ¢  through pruning: removing all instances in Dp with z 
also in Dt. Although the pruned instances do not appear 
in pD ¢ , they cannot be added to Dt as they remain in Dp. 
Supplementary material S1 describes a simple illustrative 
example of regulated bootstrap.

Some aspects of the algorithm deserve clarification. First, 
it does not immediately accept the pair generated after 

Step (3h), as instances might relate with more than one 
value of z (e.g., a song might be a collaboration between 
two artists), making different d

z
 overlap. In that case, the 

number of unique elements of dh might fall short of the 
specified minimum, requiring multiple attempts until 
finally succeeding. Second, the algorithm does not impose 
any restriction regarding the same value of z appearing 
across different classes to avoid benefiting systems 
exploiting z. Finally, the sampling is performed at instance 
level to favour scalability of the algorithm, allowing in the 
future regulations over multiple z simultaneously.

Although class-wise computations ensure stratification 
in the training collections, the associated testing collec­
tions will likely be imbalanced and of different size 
across iterations. Moreover, pruning causes regulated and 
unregulated testing collections to differ in size. If these 
issues raise reliability concerns, it might prove useful to 
randomly prune test collections under both conditions to 
a fixed size per class, such as nr or a larger value if suitable. 
The choice of nr depends on the context, but aiming at a 
number of regulated instances at least equal to the size 

Algorithm 1: Regulated Bootstrap resampling strategy, 
given a collection D and a threshold nr ∈ ℕ.

RegulatedBootstrap(D, nr):
- Initialise: Dt ← (∅), Dp ← (∅)
- For each a ∈ A:

0. Define D
a
 as the instances in D with ai = a;

1. Phase 1: Stratified Bootstrap Sampling
(a) Create dt by uniformly sampling with 

replacement |D
a
| instances from D

a
;

(b) Create dp ← D
a
\dt;

2. Phase 2: Size Verification
(a) Define Zt as the union of all zi in dt;
(b) Create pd ¢  by selecting all instances (r, a, z)i 

in dp with zi not in Zt;
(c) If | | rpd n¢ < , proceed to Phase 3, as it lacks 

enough regulated instances; otherwise, go 
to Phase 4;

3. Phase 3: Curated Sampling
(a) Define Z

a
 as the union of all zi in D

a
;

(b) Initialise a hold-out collection dh ← (∅);
(c) Randomly select a z ∈ Z

a
, and remove it 

from Z
a
;

(d) Define d
z
 as the instances in D

a
 with z ∈ zi;

5

(e) Append d
z
 to dh: dh ← dh�d

z
;

(f) If |dh| < nr, go to (3c), as dh still lacks enough 
instances;

(g) Create dt by uniformly sampling with 
replacement |D

a
| instances from D

a
\dh;

(h) Create dp ← D
a
\dt;

(i) Go to Phase 2 to check size requirements;
4. Phase 4: Concatenation

(a) Append dt to Dt: Dt ← Dt�dt;
(b) Append dp to Dp: Dp ← Dp�dp;

- Return: train/test pair (Dt, Dp)
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of a fold in 10CV might be a good rule of thumb, both 
overcoming these issues and avoiding sample size concerns. 
In case nr is too high and it becomes impossible to create 

pD ¢ , it is trivial to include an exit condition in the algorithm. 
Along with collecting instance-level information about z, if 
missing, only the choice of nr requires human involvement 
in this otherwise automated resampling strategy.

4. Application to GTZAN
We now illustrate the analysis procedure proposed in 
Sec. 3, applying it to investigate the confounding effects 
of artist replication and infrasonic content in classification 
experiments involving the GTZAN music genre collection 
(Tzanetakis and Cook, 2002). The presence of multiple 
known confounders that can be regulated using different 
intervention types makes this collection ideal to showcase 
the factorial analysis approach we propose. The code is 
available online.6

4.1. Data and Machine Learning Methods
4.1.1. About the GTZAN Collection
GTZAN (Tzanetakis and Cook, 2002) is the most widely used 
public collection for music genre recognition. It contains 
100 30-second music recordings of each of 10 categories: 
blues, classical, country, disco, hiphop, jazz, metal,  
pop, reggae, and rock. GTZAN has been used in the 
evaluation of over a hundred published studies (Sturm, 
2014b), and remains a benchmark collection in recent 
publications (e.g., Choi et al. (2017)).

Sturm (2014b) provides a thorough analysis of the 
contents of GTZAN, reporting repetitions, distortions and 
mislabellings, highlighting the replication of artists in many 
classes. At the moment of writing, all but 23 of the 1000 
recordings in GTZAN have been identified. (An updated 

index is included with the code.) Fig. 2 summarises the artist 
distribution for each class in GTZAN, assuming all artists 
from still unidentified excerpts are unique. Queen is the 
only artist known to appear across classes in the collection 
(rock and metal). blues remains the class with highest 
artist replication, with all but one artist appearing in 
more than 10 excerpts. In reggae, a single artist (Bob 
Marley) appears in more than a third of the excerpts. This 
complicates creating conventional artist filters.

Rodríguez-Algarra et al. (2016) highlight a further issue 
in GTZAN. Some recordings contain acoustic information at 
frequencies below 20 Hz associated with genre annotations, 
although it is not yet clear which. Such infrasonic information 
is arguably extraneous for the problem of genre recognition.

4.1.2. Evaluation Conditions
We draw training and testing instances from GTZAN using 
the regulated bootstrap resampling strategy described in 
Sec. 3.3, regulating over artist metadata. In particular, we 
draw K = 40 pairs with nr = 10. This ensures that at least 
10 recordings per GTZAN class in each testing collection 
feature no artist that appears in its corresponding training 
collection. Table 1 includes estimates of the proportion 
of train/test samples that require curated sampling to 
achieve this.

Fig. 3 shows the distribution of the number of unique 
excerpts per class across iterations. Although all training 
collections contain exactly 100 excerpts per class, some 
of them are repeated. The expected number of unique 
instances in a bootstrap sample drawn from 100 elements 
is 63.2 (Efron and Tibshirani, 1997), approximately what 
Fig. 3 (Top) shows for the training collections despite 
the curation. The size of the testing collections (with 
and without pruning) matches their number of unique 
excerpts, as they contain no duplicates. Fig. 3 (Top) 
also shows that training collections generally include 
more unique excerpts than their corresponding testing 
collections. Some outliers appear in reggae due to 
the large proportion of Bob Marley recordings. Fig. 3 
(Bottom) highlights the expected decrease in artist variety 
after pruning. As suggested by Fig. 2, blues suffers from 
the lowest variety in all collections.

We also manipulate every recording in GTZAN similarly 
to the audio filtering intervention by Rodríguez-Algarra 
et al. (2016). We design a high-pass IIR filterbank, with stop-
band frequency at 19 Hz, passband frequency at 20 Hz, 60 
dB attenuation in the stop-band, and maximum 1 dB ripple 
allowed in the pass-band. Combining which recordings are 
included in the collections with their audio filtering status 
defines six distinct evaluation conditions for each iteration. 
We refer to these conditions as train, test, and pr. test, 
appending “(filt.)” to their name (e.g., train (filt.)) if  
the recordings have been high-pass filtered.

Figure 2: Artist distribution across classes in GTZAN, 
showing the number of unique artists (Top) and the 
quartiles of the number of excerpts per artist (Bottom) 
in each class. Dots indicate outliers.

Table 1: Estimated proportion of train/test samples requiring curated sampling for each GTZAN class if drawn using 
Alg. 1 to regulate over artists, from 100,000 simulations with nr = 10.

blues classical country disco hiphop jazz metal pop reggae rock

99.99% 98.62% 1.93% 0.11% 79.19% 99.22% 71.40% 98.31% 98.11% 99.70%
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4.1.3. Feature Extraction and Learning Algorithms
We train prediction systems using multiple combinations 
of feature representations and learning algorithms. The 
learning algorithms we employ cover a wide range of 
supervised learning approaches, from parametric to 
non-parametric. In particular, we use scikit-learn7 
implementations of: Naive Bayes (NB), 1- and 5-Nearest 
Neighbours (1-NN and 5-NN), Decision Trees with and 
without AdaBoost (ABDT and DT), Random Forests 
(RF), Support Vector Machines (SVM), and Multi-layer 
Perceptrons (MLP). In order to gauge how confounding 
affects measurements, we need a variety of modelling 
approaches whose performance on GTZAN spans the axis, 
including at its lower end, and not necessarily the best-
performing. We thus use out-of-the-box implementations 
and avoid hyperparameter tuning, which allows us to 
increase the number of methods and iterations considered. 
Therefore, the reported performances should not be taken 
as representative of the potential of each method.

We select multiple feature representations, focusing on 
different aspects of the audio signals, from two sources: the 
essentia music extractor (Bogdanov et al., 2013) and 
the scattering-based audio features by Andén and Mallat 
(2014). We group the features extracted from essentia 
into 8 disjoint sets: Rhythm, Tonal, Tim+Dyn (i.e., 
timbre plus dynamics), MFCC, GFCC, Barkbands, 
Melbands, and Erbbands, referred to jointly as 
non-scattering features hereinafter. Regarding the  
scattering-based features, we compute Mel-scaled 
(Mel Sc.), first-layer (1-L Sc.), and joint first- and 
second-layer time-scattering features (1&2-L Sc.). Unlike 
non-scattering features, these express frame-level 
information, so we add excerpt-level summary statistics of 
first-layer time-scattering features (Des. 1-L Sc.).

4.2. Instance Assignment: Artist Information
We first compare measurements obtained in test 
and pr. test to assess the effect of artist replication. 
Other than size, these conditions differ only in whether 
their artist content is regulated. We train systems using 
every combination of the selected feature extractors and 
learning algorithms on each of the K training collections 
drawn, yielding 40 × 12 × 8 = 3840 distinct systems. 
Fig. 4 shows performance statistics across iterations, using 

mean recall as metric to compensate for class imbalances 
derived from the resampling strategy employed. We see 
systematically lower performance in pr. test than the 
others, agreeing with results in Sturm (2014b).

Only 12.8% of all measurements in pr. test are 
greater or equal than their counterpart in test. From 
100 simulations using randomly generated subsets of 
test with identical class sizes as in pr. test, we find 
that figure to be on average 53.7% (±2.3) without the 
regulation. Moreover, 15.6% (±0.5) of measurements in 
pr. test are greater than or equal to their counterpart 
in the simulations, compared to an average of 54.4% 
(±2.3) between simulations (see Supplementary Material 
S3). This suggests performance differences arise due to 
the regulation and not size.

An estimate of k according to Eq. (2) yields a decrease in 
mean recall of approximately ˆ 0.085κ ≈  (8.5 percentage 
points). A closer look at the measurements reveals the 
naivety of this approach. Fig. 5 shows that, despite 
consistently lower results in pr. test than test, the 
distribution of the performance metrics varies widely 
when marginalised over class, feature set or learning 

Figure 3: Distribution of the number of unique excerpts (Top) and artists (Bottom) per class in the training and testing 
collections sampled from GTZAN using bootstrap regulated over artists.

Figure 4: Mean recall (± standard deviation) in train, 
test, and pr. test for each regulated bootstrap 
iteration over all combinations of feature extraction 
and learning algorithms on original GTZAN recordings. 
Position 0 represents the mean recall over all iterations.
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algorithm. This suggests the confounding effect of artist 
replication in GTZAN does not impact performance 
measurements as an additive fixed effect, i.e., that there 
exist interactions between that metric and the classes, 
features, and learning algorithms.

For each GTZAN class, we see clear differences in the 
distributions of recall. The largest difference by far occurs 
in blues, with an average drop of 19 percentage points — a  
relative decrease of more than 53%. This behaviour might 
be expected, as blues is the class in GTZAN with the least 
artist variety. Similarly, the average recall in reggae drops 
9.7 percentage points (almost 30% relative decrease), 
which may relate to one artist dominating the class. The 
relative decrease in pop is even higher (32.4%), and 
might arise from duplicate recordings in that class (Sturm, 
2014b).

At the other end of the spectrum, we find metal, 
classical and disco suffer average relative decreases 
in recall below 10% (7.7%, 8.1%, and 9.6%, respectively). 
Fig. 2 shows disco is the class in GTZAN with largest 
artist variety. Despite having less than half the number 
of unique artists, however, metal and classical not 
only suffer the smallest relative average decrease, but also 
yield the highest average in both test and pr. test. 
This suggests these classes are so different from others in 
GTZAN that they are distinguished even without artist-
specific information.

Marginalising over feature extraction method, Fig. 5 
shows systems using scattering-based features tend to 
obtain higher performances than non-scattering, 
both in test and pr. test. The variance in frame-level 

approaches is substantially lower than for those computing 
whole-excerpt summaries, even in train. Overall, differ­
ences in mean recall between test and pr. test are 
highest in both Mel Sc. and 1-L  Sc. features, with a 
decrease of approximately 15.8 percentage points in both 
— a decrease of 27.7% from test. The lowest drop, both 
in absolute and relative terms, occurs in Tim+Dyn (4 
percentage points, 12% decrease from test).

Marginalising over learning algorithm also reveals 
clear differences in performance distribution. Systems 
constructed using the suboptimal MLP architecture tend 
to perform close to the random baseline of 0.1 mean 
recall. For every single learning algorithm, including MLP, 
performance decreases between train and test, and 
between test and pr. test. Apart from MLP, NB is 
the only other algorithm that shows an average relative 
difference in mean recall between test and pr. test 
below 20%. It is also the algorithm that seems to suffer 
the least from overfitting. Despite a far lower performance 
in train, NB systems perform on average equivalently to 
1-NN systems in test, and slightly superior in pr. test, 
with substantially lower variance in both cases. Systems 
from all other algorithms decrease on average around 
20.5% to 23.5% between test and pr. test, with DT 
having the largest drop.

Fig. 6 relates the performance trained systems achieve 
in test with that in pr. test, both individually (left) and 
grouped by feature representation and learning algorithm 
(right). A linear fit gives a slope ˆ 0.712 0.003a=   and an 
intercept ˆ 0.034 0.001k=   (R2 = 0.929). The slope is thus 
lower than the case of no confounding, represented with 

Figure 5: Quartiles of (mean) recall distribution obtained in train, test, and pr. test, marginalised over GTZAN 
class (Top), feature set (Middle), and learning algorithm (Bottom).
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a dashed line in Fig. 6. This suggests regulating by artist in 
GTZAN attenuates the estimated performance to around 
70% of its unregulated value. This equates to considering 
the confounding effect of artist replication in GTZAN as a 
gain in mean recall of approximately 1/0.712 ≈ 1.4.

The data points at the higher end of performance 
measurements in Fig. 6 deviate from the estimated 
regression line. This may suggest using more complex 
models, but exponential and polynomial models up to 
third degree do not substantially improve the fit. A model 
including both third degree polynomial and exponential 
terms increases R2 to 0.932, but at the cost of hard to 
interpret coefficients and the risk of overfitting.

4.3. Data Manipulation: Infrasonic Content
The analysis by Rodríguez-Algarra et al. (2016) suggests 
that infrasonic content in GTZAN recordings affects 
performance estimates of scattering-based SVM systems. 
We here include non-scattering feature representations 
and a wider range of learning algorithms to gauge 
the extent of this effect. We compare performance 
measurements from the same systems in Sec. 4.2 in test 
and test (filt.), which differ exclusively in sub-20 Hz 
content. Overall, the average decrease in mean recall 
between these two conditions calculated as in Eq. (2) is 
ˆ 0.098κ ≈ , slightly larger than the one we observe for 
artist replication.

Fig. 7 shows the observed performances, marginalised 
by GTZAN class, feature representation, and learning 
algorithm. The figure includes measurements on the 
training recordings and their filtered equivalents, revealing 
that performance estimates decrease between train and 
train  (filt.) across system-construction methods 
and classes. Overall, the average decrease in mean recall 
between these two conditions is of 28 percentage points. 

Regardless of whether they exploit class-specific patterns 
of infrasonic content to predict annotations in unseen 
instances, systems trained in GTZAN seem to often rely on 
such content (or related information, such as the overall 
energy level) to identify recordings previously seen during 
training and predict their class.

The GTZAN class with largest relative average decrease 
in recall between test and test (filt.) is jazz, 
with 37.2%, followed by pop, the largest drop in absolute 
terms, and blues, with 34.9% and 33.7%, respectively. 
The smallest decrease by far occurs in hiphop, with 
an average 5.5% relative decrease. The closest classes 
are reggae and classical, both with over 16.5% 
relative decrease on average. Some might speculate these 
reductions in performance originate from removing 
information legitimately characteristic of some music 
genres, such as sub-bass kick drums in Hip-Hop recordings. 
Seeing how measurements in GTZAN’s hiphop are barely 
affected by the intervention compared to other classes 
that should not present any pattern at those frequencies 
(such as jazz), seems to disprove this explanation.

Marginal analysis of measurements by feature represen­
tation reveals two clearly distinct behaviours, and suggests 
models such as Eq. (1) might not apply in this case. The 
mean recall of scattering-based systems decreases on 
average between 41% (1&2-L Sc.) and 57% (1-L Sc.) 
when comparing test and test (filt.). On the other 
hand, no average decrease of non-scattering features 
exceeds 4%, one order of magnitude lower. This brings 
the average performance of all scattering-based systems 
except those using 1&2-L  Sc. to the bottom of the 
list in test (filt.), despite appearing substantially 
more successful than any non-scattering feature 
set in test. Feature representations such as MFCC 
discard infrasonic information, with all filters centered at 

Figure 6: Relationship between mean recall in test and pr. test obtained by systems constructed with different 
combinations of feature representations and learning algorithms on training collections sampled from GTZAN with 
bootstrap regulated over artists, represented both as individual values for each system (Left) and averages across itera­
tions (Right). The dashed line indicates the case of equal mean recall in test and pr. test; the solid line indicates 
the linear regression model fitting the data as in Eq. (1).
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frequencies above the human hearing threshold (Davis and 
Mermelstein, 1980). Scattering-based features, even those 
supposedly Mel-scaled, have multiple filters centered below 
20 Hz (Rodríguez-Algarra et al., 2016). Fig. 8 shows the 
distinct behaviour of each group, where measurements 
from systems using non-scattering feature 
representations follow quite closely the ideal behaviour 
indicated by the dashed line, whereas those from scattering-
based systems tend to create clusters away from that line.

Among the considered learning algorithms, SVM is the 
one with largest drop in performance between test and 
test (filt.) – an average decrease of 42.6% in mean 
recall. Other than MLP, NB is the algorithm that suffers 
the lowest average decrease (10.5%), with the remaining 
algorithms decreasing between 16.7% and 31.7% mean 
recall on average.

Fig. 8 separates measurements from systems using 
Des. 1-L Sc. because the clusters they form suggest 

Figure 7: Quartiles of (mean) recall distribution obtained in train, train (filt.), test, and test (filt.), 
marginalised over GTZAN class (Top), feature set (Middle), and learning algorithm (Bottom). Note that the colours in 
this figure not matching those in Figs. 3, 4 and 5 correspond to different evaluation conditions.

Figure 8: Relationship between mean recall in test and test (filt.) obtained by systems constructed with differ­
ent combinations of feature representations and learning algorithms using training collections sampled from GTZAN 
with bootstrap regulated over artists, grouped by the source of feature set. Non-Scattering features are extracted with 
essentia. Instance-level scattering features correspond to Des. 1-L Sc.; the rest are frame-level. The dashed 
line indicates the case of equal mean recall in test and test (filt.).
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interactions with learning algorithms different from 
frame-level scattering systems. Leaving MLP systems 
aside, the clusters close to the dashed line in the middle 
panel only contain measurements from NB systems. 
Their average decrease in mean recall is of 9 percentage 
points, corresponding to a 19% drop. NB systems with 
Des. 1-L Sc. feature representations, however, suffer 
an average 52% decrease. Conversely, the clusters closer 
to the ideal case for Des. 1-L Sc. systems correspond 
to algorithms of a similar kind: DT, ABDT, and RF. The 
average drop in performance for these algorithms is 
between 15% and 25% with Des. 1-L Sc. feature 
representations, but DT is the algorithm with the largest 
drop for the rest of the scattering-based representations, 
with an average 61.5% decrease in mean recall; ABDT 
follows with 55.8% decrease.

4.4. Factorial Integration of Interventions
The separate analyses above highlight the particularities 
of each confounding effect. We now conduct both inter­
ventions simultaneously in a factorial way: we expose 
each trained system to all evaluation conditions. In partic­
ular, pr. test (filt.) contains the same instances 
as pr. test but high-pass filtered.

Fig. 9 summarises the performance distributions in 
test and pr. test, both under original and filtered 
audio conditions, marginalised by GTZAN class, feature 
representation and learning algorithm. We see the distri­
bution in pr. test (filt.) is centered around lower 

values than those on any other evaluation condition for 
scattering-based representations. Systems using non-
scattering only suffer drops when regulating over 
artist, but not due to high-pass filtering.

Combining multiple interventions allows us to analyse 
interactions between confounders. Using the notation 
in Sec. 3.2, let ŷ , 1ŷ ¢, 2ŷ ¢, and 1,2ŷ ¢  be the mean recall a 
system obtains in test, pr. test, test (filt.), 
and pr. test (filt.), respectively. Let ∆A be the 
“accumu-lated” variation of mean recall, defined as in 
Eq. (3), and ∆R be the “real” variation, defined as in Eq. 
(4). Fig. 10 shows the distribution of ∆R–∆A, grouped by 

Figure 9: Quartiles of (mean) recall distribution obtained in test, test (filt.), pr. test, and pr. test (filt.), 
marginalised over GTZAN class (Top), feature set (Middle), and learning algorithm (Bottom). Note that the colours in 
this figure not matching those in Figs. 3, 4, 5 and 7 correspond to different evaluation conditions.

Figure 10: Distribution of differences between the real 
variation ∆R and the accumulated variation ∆A in mean 
recall for artist and infrasonic regulation interventions 
in GTZAN, grouped by the source of feature set.
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origin of feature set. We see the difference is centered 
around 0 for systems using non-scattering feature 
representations, as the overall confounding effect in those 
systems originates mainly from artist replication. On the 
other hand, we see the difference tends to be negative for 
systems using scattering-based feature representations. 
This suggests the two confounding effects overlap for 
those systems, which stands to reason as the recording 
conditions of excerpts from the same artist are likely to 
be similar.

Confounders not only impact the magnitude of 
performance estimates, as we saw before, but also alter 
their ranking. For instance, Fig. 11 shows that, for systems 
trained using 1&2-L Sc., NB goes from the lowest 
(ignoring MLP) to the highest position depending on 
whether one applies a data manipulation intervention; 
Sturm (2014b) reaches the same conclusion. Similar 
interactions arise in other methods (see Supplementary 
Material S3).

Kendall’s t provides estimates of concordance between 
rankings, with 1 meaning exact match, –1 completely 
reversed match, and 0 non-correlation (Kendall, 1938). 
The value of t between test and pr. test is fairly 
high (0.91), which aligns with our interpretation that artist 
information biases performance estimates in a similar way 
across methods (i.e., without substantially altering their 
ordering). t decreases between test and test (filt.) 
(0.52) and between test and pr. test (filt.) 
(0.45), reflecting the fact that infrasonic content affects 
ranking in higher degree.

5. Discussion
Our procedure for characterising confounding effects in 
music classification experiments facilitates understanding 
how particular confounders impact evaluation outcomes. 
It extends well-established practices in MIR, such as 
filtered partitioning, overcoming their limitations. In 
particular, our approach enables integrating multiple 
types of interventions, targeted to the same or distinct 
potential confounders but not necessarily multiple 
interventions of the same type. Introducing a suitable 
resampling strategy, such as the regulated bootstrap 
we describe, is key to this integration. This provides a 

distribution of regulated/unregulated measurement pairs 
instead of single sample comparisons, such as those found 
in previous studies (e.g., Rodríguez-Algarra et al. (2016)). 
It also enables disentangling the effects of confounding 
between training and prediction.

The example application using GTZAN showcases the 
benefits of our procedure. The factorial structure across 
runs of the experiment enables both marginal and joint 
analyses, revealing distinct behaviours when systems are 
exposed to each potential confounder, as well as their 
interactions. These observations, however, are subject to 
the caveats we discuss next.

Systems in our case study underperform due to the 
lack of hyperparameter tuning. We deliberately prioritise 
variety over optimisation to gather performance estimates 
of different magnitude and susceptibility to confounding. 
The evidently unsuitable MLP architecture chosen is a 
clear example of this, allowing us to obtain measurements 
close to the random baseline that could still be affected 
by the regulations. Alternatives to achieve measurements 
in the lower end, such as random or systematic classifiers, 
would by definition remain unaffected regardless of the 
condition. Tuning model hyperparameters, while relevant 
in real benchmarking studies, would likely concentrate 
performances at the high end of the axis, thus hampering 
the intended illustration of the proposed methodology. 
Further studies could incorporate optimisations as 
additional treatment conditions in the experimental 
design to illuminate how tuning impacts the susceptibility 
of systems to confounding effects.

Our analysis suggests the confounding effect of artist 
replication in GTZAN appears multiplicative rather than 
additive. This might seem obvious knowing that the perfor­
mance metric used is bounded between 0 and 1. As Carterette 
(2012) mentions, additive effects could easily make 
predicted values exceed those boundaries. In fact, current 
proposals for modelling measurements from classification 
experiments (e.g., Alpaydin (2014); Eugster (2011)) assume 
additive effects for all components of the experiment, 
ignoring the boundary problem. This motivates revising 
those models, potentially using logit transformations to 
convert multiplicative effects into unbounded additive 
components, although it might be unnecessary if one’s only 
concern is the ranking between systems.

The clear divergence between the proposed linear 
model and the observations of the highest end of perfor­
mance measurements in Fig. 6 might require collecting 
further data, either from not yet considered methods 
or through the optimisation of existing ones. That 
divergence, however, illuminates a substantial difference 
in slope between observations using a particular feature 
representation and the overall trend. This seems to 
reflect Simpson’s paradox (Simpson, 1951; Pearl, 2014), 
in which behaviour per group diverges from, or even 
completely reverses, the aggregated pattern. Together 
with the clusters suggested in Fig. 8 for the case of 
infrasonic content, this highlights the need to study 
interactions between learning algorithms and feature 
representations under various potentially confounding 
environments.

Figure 11: Interaction between learning algorithm and 
evaluation condition in average mean recall for sys­
tems constructed using training collections sampled 
from GTZAN with bootstrap regulated over artists and 
1&2-L Sc. feature representations.
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A general limitation of our method regards its scope, 
as it neither illuminates previously unknown confounders 
nor prevents confounding from affecting performance 
estimates. It is actually impossible to guarantee 
confounding does not appear at all, as there might 
be a plethora of yet unknown potential confounders 
still affecting observations to some extent. Devoted 
exploratory analyses informed by both domain knowledge 
and system analysis are necessary to uncover further 
potential confounders before assessing their impact using 
intervention-type approaches. This enables one to design 
or improve system-construction methods accounting for 
that risk and devise train/test mechanisms that prevent 
them from appearing. To this end, it is of paramount 
importance for MIR researchers to devote efforts to expose 
such potential confounders and assess their effects.

The current study does not consider all possible effects 
of confounding, focusing on characterising its effects 
on evaluation results, but leaving aside other equally 
relevant research questions for the moment. In particular, 
by introducing and comparing new conditions only at the 
prediction stage, we ignore the effects of confounding on 
the training of systems. This might be easily addressed 
for data manipulation interventions by adding training 
conditions with manipulated recordings, thus multiplying 
the number of models to consider and experimental 
conditions to analyse. In the case of instance assignment 
interventions, however, it would require modifying 
the regulated bootstrap resampling strategy to enable 
creating regulated and unregulated collections for both 
training and testing simultaneously. This is a promising 
research path for future work.

Some may argue that the curation process inherent 
to regulated bootstrap resampling introduces biases in 
the performance estimates, and thus in the comparisons 
between conditions, bringing into question the validity of 
the extracted conclusions. However, this process increases 
control over the measurements, not unlike the stratification 
performed in conventional classification experiments, 
as well as blocking in statistical design of experiments 
(Montgomery, 2013). In particular, stratification preserves 
the distribution of annotations present in the original 
collection, thus facilitating performance estimates within 
the collection that approximate what systems would have 
achieved had they used the whole collection, but does 
not account for the likely imbalances that real life data 
could have. This favours internal over external validity, 
a methodological trade-off often encouraged to create 
experimental conditions that differ only in the factor 
under study and to warrant against external factors 
affecting the conclusions (Shadish et al., 2002).

The size of the testing collections generated might also 
cause concern, as there is no guarantee that the original 
class balance remains and, by definition, the number of 
instances decreases after pruning. The use of mean recall 
as performance metric should compensate for imbalances, 
and, in the case study we conduct, the differences in 
performance between collections of the same iteration 
clearly exceed the differences across iterations. This 
suggests unequal size should not affect our conclusions. 

As mentioned before, in the general case, one might want 
to introduce a further control step that forces all original 
and pruned testing collections, and all classes within those 
collections, to match in size, such as randomly selecting 
a fixed number of instances. This might also alleviate 
the likely lack of independence between instances from 
the curation involved in their sampling. Due to the 
infeasibility of pure random sampling from the whole 
population, evaluation collections are often constructed 
through convenience sampling (Urbano et al., 2013), 
hampering independence in the first place. Curation thus 
does not necessarily affect conclusions in this regard.

The analysis approach we describe and exemplify in 
this article can be applied to a wider range of collections, 
machine learning methods and potential confounders 
than the ones we show here. Published studies and 
evaluation exchanges, such as MIREX, could incorporate 
similarly extended pipelines to assess the susceptibility 
of proposed systems to a set of interventions. Domains 
other than music would also benefit from similar analysis 
approaches. Despite its caveats, the insights obtained 
through this kind of analysis should help building more 
robust systems and obtaining performance estimates that 
generalise to deployment scenarios.

6. Conclusion
In this article, we explored the nature of confounding 
in music classification experiments and described a 
procedure for assessing its impact in the evaluation of 
MIR systems and methods. We used interventions in the 
experimental pipeline and proposed a novel resampling 
strategy that introduces regulations on a conventional 
bootstrap sampling. Using our approach, we analysed 
the effects of artist replication and infrasonic content 
in GTZAN on performance estimates of a range of 
feature extraction methods and learning algorithms. 
We found the effects of artist replication appear to be 
multiplicative, while those from infrasonic content 
depend on the system-construction method employed. 
We also showed that these two potential confounders 
appear to partially overlap, and their effect might alter the 
ranking of different solutions with respect to their average 
performance. Further improvements of the approach 
could include introducing evaluation conditions through 
interventions on the training data, controlling the testing 
collection size, and analysing the effect of optimisation. 
We hope that future MIR research will focus not only 
on maximising performance estimates, but also on 
developing and assessing solutions with regards to their 
susceptibility to confounding effects.

Notes
	 1	 We avoid the conventional term “set” and use “collec­

tion” instead for both training and testing material to 
include those from sampling with replacement, such 
as the bootstrap (Efron, 1977), as “set” implies no 
repeated elements.

	 2	 http://www.music-ir.org/mirex/wiki/MIREX_HOME.
	 3	 Infrasonic content refers to vibrations below 20 Hz, 

the lower threshold of human hearing.

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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	 4	 The symbol ~ indicates “modelled as”, similar to R 
notation.

	 5	 zi may contain multiple elements, e.g., collaborations 
between artists.

	 6	 https://code.soundsoftware.ac.uk/projects/confint.
	 7	 http://scikit-learn.org/stable/.
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