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Abstract. Sixty participants provided dissimilarity ratings between var-
ious singing techniques. Multidimensional scaling, class averaging and
clustering techniques were used to analyse timbral spaces and how they
change between different singers, genders and registers. Clustering anal-
ysis showed that ground-truth similarity and silhouette scores that were
not significantly different between gender or register conditions, while
similarity scores were positively correlated with participants’ instrumen-
tal abilities and task comprehension. Participant feedback showed how a
revised study design might mitigate noise in our data, leading to more de-
tailed statistical results. Timbre maps and class distance analysis showed
us which singing techniques remained similar to one another across gen-
der and register conditions. This research provides insight into how the
timbre space of singing changes under different conditions, highlights the
subjectivity of perception between participants, and provides generalised
timbre maps for regularisation in machine learning.
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1 Introduction

The human voice is arguably one of the most diverse instruments available to
musicians, making use of its own complex structure of source excitation, filtering
and articulation functions to produce a wide variety of vocal sounds. In this paper
we investigate how the perception of vocal timbre space changes under different
listeners biases and singer conditions. We challenge the standard taxonomy of
vocal techniques, as labelled in the VocalSet dataset (Wilkins, Seetharaman,
Wahl, & Pardo, 2018), and consider how a listener’s musical background affects
this. We use psuedo-randomly chosen samples from 6 of this dataset’s singers to
represent five singing techniques under the different conditions of singer identity,
gender and register. Participants produced pairwise dissimilarity ratings between
these vocalisations, and the results were analysed using multidimensional scaling,
class averaging and cluster analysis. The source code, stimuli and collected data
are available online.!

* This research is funded by the EPSRC and AHRC Centre for Doctoral Training in

Media and Arts Technology (EP/L01632X/1)
! https://github.com/Trebolium/VoicePerception
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2 Related Work

2.1 Voice Production

There is much literature describing how the mechanics of the voice organs com-
bined with individual morphological differences affect vocal sounds (Garcia-
Lépez & Gavildn Bouzas, 2010; Kayes, 2015; Sundberg, 1987; Zhang, 2016),
providing detailed insight into how vocal production techniques influence per-
ception of a singer’s voice. A survey of voice transformation techniques by
Stylianou (2009) discusses interdependence between vocal mechanisms and how
it is a vital consideration when building a model of the voice. Garcia-Lépez and
Gavilan Bouzas (2010) compare values and perspectives between artistic and sci-
entific professions specialising in the voice and observe that differences between
these two communities lead to a convoluted and inconsistent tapestry of technical
terminology often leading to mislabelling or misunderstanding vocal production
processes - an observation shared by many others (Gerratt & Kreiman, 2001;
Proutskova, 2019; Sundberg, 1981, 1987). The term ‘phonation modes’ classifies
specific configurations of the voice organs that lead to a particular timbre qual-
ity in the voice (Sundberg, 1987). Proutskova, Rhodes, Crawford, and Wiggins
(2013) assert that phonation modes are not linked to singing registers, introduc-
ing the question of how changes in pitch affect the timbre while this subset of
vocal techniques remains constant.

2.2 Perceptual Studies

An intuitive method for building timbre maps of an instrument is to collect
perceptual dissimilarity data between audio clips. These can be formatted into
dissimilarity matrices and converted into a representation of fewer dimensions
via Multidimensional Scaling (MDS). MDS is especially useful for representing
the cognitive process of how humans perceive and generalise the diversity of
data within a given domain (Mugavin, 2008). The first to use MDS for percep-
tual representations were Kruskal (1964); Shepard (1962a, 1962b), employing
‘nonmetric’ MDS techniques (due to the rank-ordered nature of the data) to
reflect the data monotonically in the MDS representations, which has been com-
monly used for investigating timbre spaces (Gerratt & Kreiman, 2001; Krim-
phoff, McAdams, & Winsberg, 1994; McAdams, Winsberg, Donnadieu, Soete, &
Krimphoff, 1995; Serafini, 1993; Wedin & Goude, 1972).

MDS has been adapted for different uses over the years. Carroll and Chang
(1970) improved on classical MDS with the algorithm INDSCAL (used by Grey
(1977)) which avoids rotational invariance for simplified dimensional interpre-
tation and provides weights relating the contribution of participants’ collected
data to these dimensions (Mugavin, 2008). Interpreting the timbral meaning of
MDS dimensions often requires a post-hoc analysis to find correlations to audio
descriptors (Krimphoff et al., 1994). McAdams et al. (1995) however, combined
perceptual dissimiliarities with acoustic parameters to generate timbre maps
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using the CLASCAL algorithm (Winsberg & De Soete, 1993)), which greatly
improved dimensional interpretation.

Iverson and Krumhansl (1993) investigated the influence of entire tones and
their corresponding onsets/remainders on timbre spaces, concluding that the
salience of acoustic attributes in entire tones cannot be attributed to either
their onsets or remainders alone. Interestingly, it has been commonly reported
that elements such as attack transients assisted in identifying an instrument, yet
without affecting perceptual structures between the instruments/classes (Grey,
1977; Iverson & Krumhansl, 1993; Krimphoff et al., 1994; McAdams et al., 1995;
Wedin & Goude, 1972).

McAdams et al. (1995) used nearest-neighbour clustering analysis to detect
significant differences between participants, highlighting instances where some
individuals may have misinterpreted instructions. Gerratt and Kreiman (2001)
used the K-means algorithm to confirm that their choice of dimensionality sep-
arated their three classes into statistically significant clusters. Grey (1977) did
similar calculations and applied the HICLUS hierarchical clustering algorithm
(Johnson, 1967) to group the stimuli into clusters and assess the compactness
of these clusters. Iverson and Krumhansl (1993) averaged dissimilarity values
across all participants’ perceptual data in order to generate MDS on averaged
values, although it may have been beneficial to use INDSCAL’s participants’
weight values to confirm whether there were outlier participants in the data.

Grey (1977) reports that the order in which comparisons are represented
causes differences in judgements between participants, and it is therefore com-
mon practice to randomise the presented order of pairwise comparisons. Ger-
ratt and Kreiman (2001); Mehrabi (2018) include repeated examples for rating
within experiments to assure intra-participant reliability and consistency. In re-
lation to how participant profiles affected their rating techniques, Carterette and
Miller (1974); Wedin and Goude (1972) found that participants’ different levels
of musical training did not lead to major systematic differences between them.
McAdams et al. (1995) noted similarly, but observed that more musical par-
ticipants achieved more precise ratings. However Serafini (1993) reported that
musicians familiar with the gamalan sounds being evaluated attributed more
importance to the attack of the sound than its resonant volume, while non-
musicians considered these aspects equally.

3 Experiment

The literature referenced in Section 2.1 describes disagreement and confusion
between professionals specialising in the voice when describing and ascribing
vocal techniques. As a result of this, we hypothesise that participants’ dissim-
ilarity ratings will cause clusters to diverge significantly from those implied by
the ground truth labels. Observing how much variance there is in vocal timbre
space between the different conditions of gender, pitch, singer identity and par-
ticipant musicality will allow us to assess how generalisable a single model of a
singing voice can be.
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3.1 The Stimuli

3 male and 3 female singers (identified in Section 4) were randomly selected from
VocalSet (Wilkins et al., 2018), a dataset containing audio of singers vocalising a
range of pitches and sustained vowels, annotated by the different vocal techniques
being used. The techniques straight, belt, breathy, fry, vibrato were selected based
on their frequent occurrence in popular Western singing. We extracted 2 separate
sets of vocalisations from individual singers’ recordings - each set consisting of
either low or high register singing. For each set, 3 one-second audio clips per
vocal technique were randomly extracted from the singers vocalisations, provided
they obeyed the following rules. The hierarchy of audio sampling for each set is
presented in Appendix A.

Only one extract from a specific VocalSet recording could be used per set.
Each low/high register set was assigned a ‘central pitch’ which was determined
by calculating a mean pitch value from all of the recordings for a given singer and
lowering/raising this value by one standard deviation. The average pitch of each
audio clip for a given set must be matched (within 2 semitones) to the assigned
central pitch. If the average and central pitch do not match, a new audio clip
is generated and the matched-pitch check is repeated. Often a singer’s pitch for
fry utterances is a number of octaves below their other vocalisations (explained
further in Section 4.3), making it impossible to match this techniques average
pitch to the register’s central pitch. If the central pitch cannot be matched
after 20 audio clip generations, the low/un-pitched nature of the vocalisation is
considered to be a feature of that singer’s fry technique, and the pitch-matching
process is bypassed in these circumstances.

There was a notably large variance in perceived volumes between singers
and techniques. Extracted audio clips were therefore normalised to make the
comparative task easier for participants. Due to an error in data collection, dis-
similarities relating to 1 random audio clip were not saved, leaving dissimilarity
ratings for 14 audio files (instead of 15) to be used.

3.2 Procedure

60 participants were recruited from audio/music-enthused academics as well as
the author’s music network. The study was conducted online using WAET.?
Participants first completed a questionnaire® which provided the demographic
distributions presented in Appendix B. Participants were then instructed to
listen to pairs of vocalisations and rate the dissimilarities between them on a
continuous scale of 0 - 1 (see Appendix C and D for more details on the inter-
face, instructive text and survey questions used). Participants were told their
ratings should be irrespective of deviation in pitch (notes) or utterances (vow-
els). They were randomly assigned to listen to any of the 12 prepared vocal
sets and were subjected to several practice rounds, allowing them to become

2 Web Audio Evaluation Tool (Jillings, Moffat, De Man, & Reiss, 2015)
3 Includes ‘Perceptual ability’ questions from GOLD-MSI (Miillensiefen, Gingras,
Musil, & Stewart, 2014)
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familiar with the required task and diversity of timbres. Following this was the
recorded experiment of 120 pairs of vocal recordings, plus 16 repeated pairs for
calculating intra-participant consistency. Participants were also invited to give
open feedback at the end of the experiment regarding their experience and the
techniques they used for rating. The dissimilarity ratings were then subjected to
MDS, clustering, and statistical analysis.

4 Results and Discussion

In this section we report statistically significant results from the data analysis.
Participant data was divided into condition groups of singers, genders and reg-
isters. We refer to singers by their VocalSet ID, shortened to a ‘letter-index’
format. Participants’ questionnaire responses and feedback provided us with
estimates for their perceptual ability (MSI scores); ranked scores for instru-
mental ability to reflect familiarity with music and singing (non-musician=0,
musician=1 and singers=2); and task comprehension. We also calculated intra-
participant consistency, generated by the repeated-rating comparisons using
RMSE metrics.

4.1 Clustering

Values for the missing data mentioned in Section 3.1 were filled in with partici-
pant average ratings to create a uniform structure for all participant dissimilarity
matrices. A correlation matrix was generated to show correlation coefficients be-
tween these matrices, upon which hierarchical clustering (HC) was performed.
We observed that the data did not break off into minor clusters outside ma-
jority clusters for values of k=1-5, indicating that outlier matrices of unusual
behaviour such as inverse or binary raters were not detected.

To determine how participants perceptually clustered vocalisations, unsu-
pervised clustering with HC algorithms was performed on dissimilarity matrices
for k=1-15. We generated optimal %k values using the elbow and silhouette score
methods (Tan, Steinbach, Karpatne, & Kumar, 2018). A lack of elbows in sum of
squared error (SSE) plots implied that participants provided noisy dissimilarity
data, or more likely, that distances between vocalisation techniques were fairly
similar. Silhouette scores suggested the minimum value of k=2 implying that
there is little salience among these singing techniques that would allow them to
be segregated into more than 2 clusters.

Ground-truth labels were compared with HC predictions to determine an ac-
curacy score.? In total we use SSE, accuracy, and silhouette metrics to measure
the performance of clustering. A Mann-Whitney test showed significant differ-
ences between conditions for cluster performance metrics for k=5 (ground truth
solution) and k=2 (HC solution), as seen in Table 1.

This table shows compared conditions that exhibited significantly different
distributions for a given metric (p<0.02). We observe for k=2, that compared to

4 Computed using scikit-learn’s adjusted_rand_score () function
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Table 1. Mann-Whitney results table (p<0.02). Each singer condition is accompanied
with its mean value for the given metric. All 4 singer conditions in row 1, column 3
had significantly higher means compared to the singer condition in row 1, column 4
(and the opposite case for the fourth row). The U-value reflects the effect size for each
difference between conditions, proportional to the condition samples sizes (n=10). k

indicates which number of clusters the metrics were calculated for.

k|Metric| Conditions with Higher Means Conditions with Lower Means U-value
2|Acc M1=0.16, M4=0.23, F2=0.16, F5=0.22|M2=0.02 9.5, 3.0, 5.0, 6.0
2|Acc F5=0.22 M1=0.16 13.0

2|Acc M4=0.23, F5=0.22 F3=0.09 14.0, 8.0

5[Acc M1=0.61 M2=0.09, M4=0.35, F3=0.20, F5=0.32(5.0, 15.0, 10.5, 12.5
5|Acc F5=0.32 M2=0.09 11.5

51Sil M1=0.36, M4=0.35 M2=0.22 5.0, 13.0

the majority of singers, M2’s cluster accuracy is lower and F5’s cluster accuracy
is higher. One similarity between both k solutions is that M2 scores lowest in
accuracy, suggesting that this singer’s singing techniques are particularly difficult
to perceptually differentiate. For k=5, M1 and M4 silhouette score distributions
were higher than those of M2, implying that the clusters perceived for M1 and M4
vocalisations were better separated. There were no significant difference reported
for SSE, and none for any metric between gender or register condition groups.

We also tested for correlations across participant profile data and clustering
quality metrics for k=5 to see how participant profiles related to perceptions
of the ground truth classes. Correlations existed between accuracy and silhou-
ette scores (r=0.60, p<0.001), negatively between silhouette and SSE scores
(r=-0.51, p<0.001) and faintly negative between accuracy and SSE (r=-0.28,
p<0.05) due to the similarity in what is being measured. Instrumental rankings
had a positive correlation with MSI scores (rs=0.30, p<0.02), task comprehen-
sion (rs=0.40, p<0.01) and accuracy/silhouette (rs=0.45/0.30, p<0.001/0.02),
which suggests that participants’ level of instrumental familiarity allowed them
to possess a more structured perception of the voice that was similar to the
ground truth. The MSI scores were weakly correlated with SSE/Silhouette scores
(r=-0.30/0.27, p<0.02/0.05), suggesting self-reported perceptual abilities were
only vaguely reflected in cluster performance metrics. SSEs were moderately
correlated with intra-participant consistency (r75=0.57, p<0.001) showing that
participants’ inability to reproduce their ratings is indicative of loose clustering
and unstable perceptual structures. Task comprehension was moderately corre-
lated with accuracy (rs=0.53, p<0.001) and slightly negatively with SSEs (rs=-
0.34, p<0.02), showing that task comprehension is indicative of good clustering
metrics.

4.2 Class Distance

We averaged all dissimilarity ratings of the same class-pairs within each dissim-
ilarity matrix (class-pair names will be abbreviated to 3 letters in this section).
This allowed us to consider how class distances increase/decrease in the timbre
space under different conditions. Table 2 shows statistically significant differences
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between conditions. There were many significant results for singer conditions, but
these observations are not particularly meaningful without additional informa-
tion and so are not included in the table (this is discussed further in Section 5).
Dissimilarities for class-pairs (Str - Bel), (Bel - Vib) and (Fry - Vib) were larger
for low registers, which is mildly reflected in the corresponding MDS plot in
Figure 1. These plots should be noted with caution, as there are a considerable
amount of high intra-class dissimilarities present in the data, which can raise
issues when attempting to interpret MDS plots as they assume all intra-class
dissimilarities to be zero. Certain class-pairs like (Bel - Bel) for males are an
example of high intra-class dissimilarity values, implying that males’ reproduc-
tions of similar vocal techniques are perceptually diverse for belt. This is also the
case for females’ breathy and vibrato classes. Both Table 2 and Figure 1 reflects
larger (Str - Bre) distances for males and larger (Fry - Vib) distances for females.
Lastly, Figure 1 shows that belt, vibrato and straight techniques are perceptually
similar across both register and gender conditions, while fry is consistently most
dissimilar from the other classes.

Table 2. Mann-Whitney test results comparing class distances between conditions
(similar layout to Table 1). Class names are abbreviated to 3 letters.

Condition Group|Class Pair|Condition with Higher Means|Condition with Lower Means|U-value
Register Str - Bel  |low=0.59 high=0.45 263.0
Register Bel - Vib  |low=0.58 high = 0.46 301.0
Register Fry - Vib  |low = 0.81 high = 0.70 304.0
Gender Bel - Bel  |male=0.32 female=0.24 303.5
Gender Str - Bre  |male=0.67 female=0.51 235.0
Gender Fry - Vib  |female=0.82 male=0.70 275.0
Gender Bre - Bre |female=0.21 male=0.16 291.0
Gender Vib - Vib  |female=0.22 male=0.16 298.5

4.3 Potential Sources of Noise

VocalSet has some shortcomings that may contribute towards noise in the data.
Many recordings contain multiple techniques, despite being labelled exclusively
as one. The quality of performances seems to vary considerably between singers.
Due to the nature of the fry technique and variance in performance style, its
pitch is often several octaves below the singer’s intended pitch (and the dataset’s
implied pitch label). The perceived volume also differs between recordings.

Participants reported factors that influenced or dictated their dissimilarity
evaluations which are summarised as: performers lack of control, soft/harshness,
clean/dirtiness, distortion, dynamics, temporal pitch variation, subglottal pres-
sure, larynx placement, resonance, total amount of notes per sample, melody,
emotion, register mechanics and assumed class types. Many of these imply that
there is a considerable degree of uncertainty regarding the dissimilarity evalu-
ation task. It is reasonable to believe that these issues may have also caused a
significant level of noise in the results.
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Fig. 1. 2D MDS plots representing the dissimilarities between the 5 ground truth labels
for low register (top left), high register (top right), male (bottom left) and female
(bottom right) conditions.

5 Conclusion

In this study we have shown that participants’ instrumental ability and consis-
tency in their ratings supported similarity between their perceptions of the voice
and the ground truth labels, as well as cluster cohesion/separation. We have also
shown that there are subtle similarities and differences in the timbre space be-
tween genders and registers and that intra-class variance for female vocalisations
are wider than for males. Clustering analysis however, showed that participants’
data did not separate into clusters easily. Participant feedback analysis suggested
that instructions given to participants could be revised to better articulate how
dissimilarity ratings should be evaluated. Part of our assumption was that very
minor deviations in pitch would have a negligible affect on timbre perception.
However, as pitch variance was distracting for participants, it may be worth
focusing soley on sustained single pitches in future work.

In this study, there were significant differences in clustering performances and
class distances between singers. Reasons for these are best explored with joint
analysis of acoustic descriptors and dissimilarities for vocalisations, allowing us
to understand how singers’ acoustic attributes influence clustering behaviour,
while also assisting in the interpretation of the MDS dimensions. In future work,
we also intend to use the MDS-generated timbre maps for regularisation in gen-
erative neural networks for inferring a model of vocal timbre in accord with
human perception.
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A Hierarchical Structure of Session Sets

Singer (male 1)
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Fig. 2. Breakdown of the sampling structure (per singer) used to generate stimuli for
perceptual evaluations.

B Participant Demographic Distributions

Age distribution

Fig. 3. Distribution of participant age and genders. Participant age u = 36.45,0 =

13.69
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Instrumental Ability

MNon-Mus Mus Singers

Fig. 4. Number of non-musicians (non-mus), musicians (mus) and musicians with
singing as their primary instrument (singers). No male participants considered the
voice as their primary instrument.

C Interface View

e Listening test
o

Practise01 - Click REFERENCE button - click PLAY button - move SLIDER - REPEAT for each audio clip

a1t ]

Fig. 5. View of interface used by participants for rating dissimilarities between refer-
ence (remains the same for each page) and comparative audio clips.
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D Study Texts

D.1 GOLD-MSI Perceptual Ability Questions

The following questions were extracted from the GOLD-MSI ‘Perceptual Abili-
ties’ subset (Miillensiefen et al., 2014), and uses a 7-point agreement scale:

1. T am able to judge whether someone is a good singer or not.

2. T usually know when I'm hearing a song for the first time.

3. I find it difficult to spot mistakes in a performance of a song even if I know
the tune.

4. T can compare and discuss differences between two performances or versions
of the same piece of music.

5. I have trouble recognizing a familiar song when played in a different way or

by a different performer.

I can tell when people sing or play out of time with the beat.

I can tell when people sing or play out of tune.

When I sing, I have no idea whether I'm in tune or not.

When I hear a music I can usually identify its genre.

© XN

D.2 Additional Questions

The following questions were taken before the study was conducted (except
question 5):

1. Please indicate what listening equipment you intend to use for this experi-
ment (Headphones are preferrable). If you wish to change your setup, please
do so before continuing and refresh this page [Categorical response - inbuilt
speakers, external speaker, ear/headphones]

2. How would you assess your current listening environment on a scale of 1 to
5? [Ordinal response - 1 (very noisy) to 5 (very quiet)]

3. Please provide your age in the space below. [Numerical response]

4. Please provide your gender identity in the space below. [Categorical response
- male, female]

5. Do you have any other comments regarding your evaluations, or any other
aspect of the study? [Post-study question, open-ended response]

D.3 Task Description

The following text quotes the instructions given to participants regarding the
task required of them:

We are interested in measuring how differently listeners perceive the
sounds of a singer’s voice when undergoing various singing techniques.
In this experiment you will be comparing between multiple, unedited
and unprocessed recordings of one individual singer. Your task is to rate
how similar or different the singer’s sustained vocalisations sound to
you, *due to different singing techniques®. The challenge therefore, is to
rate vocal similarities IRRESPECTIVE of the singer’s changes in pitch
(notes) and utterance (vowels) between recordings.



