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ABSTRACT

Disentangled representation learning seeks to align individ-
ual dimensions or separate groups of coordinates of latent
factors with attributes of observed data such that perturbing
certain latent factors uniquely changes particular attributes.
A main challenge in unsupervised disentanglement using au-
toencoders is that strong regularisation, while necessary for
consistent disentanglement, comes at the expense of accurate
data reconstruction. To address this, we introduce a teacher-
student framework that incorporates a variational sequential
autoencoder and a Jacobian constraint that regularises the vari-
ation of observations relative to latent factors. In real-world
audio recordings of musical instruments, our approach outper-
forms a state-of-the-art method in both sampling quality and
unsupervised pitch-timbre disentanglement.

Index Terms— Disentangled representation, unsupervised
learning, variational autoencoder, music instrument

1. INTRODUCTION

Disentangled representation learning captures factorised la-
tent variables corresponding to distinct factors of variation
(FoV) [1] and is applied in various modalities [2–8]. To expose
semantically meaningful features of sequential data, such as
speaker identity and linguistic content from speech, disentan-
gled sequential autoencoders (DSAEs) [9–17] admit a model
pθ(x1:τ |z1:τ ,v)pθ(z1:τ )pθ(v), where x1:τ ∈ RτDx is condi-
tionally sampled from a time-variant (“local”) latent z1:τ ∈
RτDz and a time-invariant (“global”) latent v ∈ RDv . The
model is optimised using an evidence lower bound (ELBO)
similar to the variational autoencoder (VAE) [18]. DSAE [9]
disentangles the global FoV (e.g. speaker identity) from the lo-
cal ones (e.g. linguistic content) using model assumptions that
encourage an inductive bias, which was shown to be required
for disentanglement in unsupervised settings [19].

In this paper, we tackle unsupervised learning of disentan-
gled pitch and timbre representations of monophonic musical
instruments, represented by z1:τ and v, respectively. In partic-
ular, our evaluation is performed using real violin and trumpet
audio recordings from the URMP dataset [20].
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In practice, DSAE tends to capture information using z1:τ
and leaves v unused [14, 16], due to a capacity gap between
the two latents caused by the difference in temporal resolution.
Further, DSAE showed a considerable sensitivity to hyperpa-
rameters such as Dz and Dv [17]. TS-DSAE addresses the
problem using a two-stage framework [17]. The first stage
promotes learning v, the timbre information, with a strong
bottleneck that excludes z1:τ , the pitch information. The infor-
mative v regularises the training of the full model during the
second stage, along with other auxiliary constraints, to ensure
unsupervised disentanglement of pitch and timbre. Despite its
robustness to the hyperparameters, the auxiliary objectives can
potentially over-regularise and harm reconstruction.

A similar teacher-student framework is proposed in [21]
for images of human faces. First, a teacher model learns facial
attributes supervised from annotated images such that perturb-
ing a latent variable uniquely leads to variation of a certain
facial attribute in the generated images. A Jacobian constraint
quantifies the variation of an image w.r.t. the perturbation in
the latent space and regularises a student network of larger
capacity meant for refining reconstruction. It shows a better
reconstruction quality compared to baselines, despite the fact
that the teacher is supervised by labels.

To overcome the trade-off between reconstruction and un-
supervised disentanglement, we combine the two frameworks
and propose a Jacobian DSAE (J-DSAE), which significantly
improves TS-DSAE in both reconstruction and timbre similar-
ity measured in the Fréchet Audio Distance (FAD) [22], and
disentanglement in terms of raw pitch accuracy (RPA) [23] of
extracted pitch contours. 1

2. BACKGROUND

2.1. Two-stage disentangled sequential autoencoder

The DSAE [9] models sequential data and learns both a global
latent v and a local latent z1:τ by optimising the ELBO:

L(θ, ϕ;x1:τ ) = Eqϕ(z1:τ ,v|·)
[
log pθ(x1:τ |z1:τ ,v)

]
−DKL

(
qϕ(z1:τ |·)∥pθ(z1:τ )

)
−DKL

(
qϕ(v|·)∥p(v)

)
,

(1)

where the conditional variable x1:τ is omitted in qϕ for brevity.
The posterior qϕ(z1:τ ,v|·) is a product of two diagonal Gaus-

1Audio samples are available at http://www.jaco-dsae.xyz/.
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Fig. 1. Illustration of the Jacobian constraint (Eq. 8). In practice, the paired sequence xj
1:τ is randomly sampled and does not

necessarily share or differ in particular attributes, thus the framework is fully unsupervised. E and D denote the encoder and
decoder, and the superscripts T and S refer to the teacher and student modules. v and z1:τ are global and local latents.

sians parameterised by separate neural network encoders to
disentangle v from z1:τ . The dynamic prior pθ(z1:τ ) is also a
product of diagonal Gaussians that can be implemented by an
LSTM. We simply set p(v) = N (0, I). Although the temporal
resolution gap introduces a strong inductive bias for disentan-
glement, DSAE has been reported to collapse v and capture
all information using z1:τ [14, 16, 17].

TS-DSAE [17] addresses the issue by not updating the
local encoder qϕ(z1:τ |·) in the first stage, leading the model to
use v. Setting z1:τ of pθ(x1:τ |z1:τ ,v) to zero, as in our exper-
iments, also achieves a similar result. During the second stage,
the training recovers Eq. 1 with the non-informative prior p(v)
replaced by qϕC

(v|·), where ϕC denotes the encoder at the end
of the first stage, which helps preserve the learnt information.

Disentanglement can be further promoted by minimising:

DKL

(
qϕ(v|xv→vj

1:τ )∥qϕ(v|xj
1:τ )

)
, (2)

DKL

(
qϕ(z1:τ |xv→vj

1:τ )∥qϕ(z1:τ |x1:τ )
)
, (3)

DKL

(
qϕ(v|x

z1:τ→zj
1:τ

1:τ )∥qϕ(v|x1:τ )
)
, and (4)

DKL

(
qϕ(z1:τ |x

z1:τ→zj
1:τ

1:τ )∥qϕ(z1:τ |xj
1:τ )

)
, (5)

where x
z1:τ→zj

1:τ
1:τ ∼ pθ(x1:τ |zj1:τ ,v), z

j
1:τ ∼ qϕ(z1:τ |xj

1:τ )

and v ∼ qϕ(v|x1:τ ), similar for v → vj . That is, xj
1:τ is ran-

domly sampled to pair with x1:τ , and their latents are swapped
and combined to condition the sampling of a synthesised se-
quence. The posterior over the swapped latent should match
that of the paired sequence (Eqs. 2 and 5), while the posterior
over the other latent should remain unchanged (Eqs. 3 and 4).

Although Eqs. 2 - 5 further encourage unsupervised disen-
tanglement, they introduce unnecessarily strong constraints,
which adversely affect sampling quality. This, in turn, has
repercussions on reconstruction quality and timbre similarity
to targets in attribute translation.

2.2. Jacobian constraint

In [21], a teacher-student framework is proposed to first cap-
ture the FoV of interest with a small latent space, which is

later enlarged to recover the nuisance factors. Given images of
human faces, a low-capacity deterministic AE, or the teacher,
learns representations y ∈ Rk specified by annotations of
facial attributes. The student network is then built by adding
z ∈ Rd, d > k, to the teacher, which helps to improve recon-
struction. Importantly, the model is regularised so that:

∂x̂T

∂yT
=

∂x̂S

∂yS
, (6)

where x̂ and y are reconstructed images and latent variables
of the teacher (superscript T ) and the student (superscript
S) network, respectively. That is, the Jacobian, or change
in observation w.r.t. latent perturbation, is supposed to be
consistent between the teacher and the student network. Eq. 6
can be translated into LJac that regularises the student2:

LJac(E
S , DS ;x) = ∥yS − yT ∥22

+ ∥(DT (yT,j)−DT (yT ))

− (DS(yS,j , z)−DS(yS , z))∥22,
(7)

where yU = EU (x) and (EU , DU ) denotes the encoder-
decoder pair. The superscript U ∈ {T, S} denotes the teacher
or student network, and j is the index of a randomly paired xj .
Intuitively speaking, given a teacher network that has already
learnt the factors of interest yT , the first term anchors yS to
yT in order to retain the information learnt by the teacher,
and the second term promotes the consistency of the variation
of the outputs relative to that of yU between the teacher and
student networks. The framework outperforms an adversarial
baseline in terms of reconstruction quality [21].

There are considerable differences between TS-DSAE and
[21]: TS-DSAE is unsupervised, models sequential data and
is based on a probabilistic model, in contrast to [21], which
employs deterministic autoencoders and models annotated
static images. However, we highlight their connections in
Section 3 and introduce the Jacobian constraint into TS-DSAE,
in order to combat the trade-off between reconstruction and
unsupervised disentanglement.

2The derivation is detailed in Eq. 2 - 7 in [21].



3. METHOD

3.1. TS-DSAE as a teacher-student framework

Let the global encoder ET (x1:τ ) := qϕC
(v|x1:τ ) and the

decoder DT (v) := pθC (x1:τ |0,v), where ϕC and θC are the
parameters in the last epoch C of the first stage. Similarly,
ES

v (x1:τ ) := qϕ(v|x1:τ ), ES
z (x1:τ ) := qϕ(z1:τ |x1:τ ), and

DS(v, z1:τ ) := pθ(x1:τ |z1:τ ,v), are the two encoders and the
decoder that continue training during the second stage.

The connection between TS-DSAE and a teacher-student
framework becomes clearer with the above definitions: The
first stage produces a teacher VAE (with z1:τ masked), which
regularises the second stage training of a student DSAE
through DKL

(
ES

v (·)∥ET (·)
)
.

Revealing the connection makes it straightforward to apply
Eq. 7 to regularise the second stage training of TS-DSAE:

LJac(E
S
v , E

S
z , D

S ;x1:τ ) =DKL

(
ES

v (x1:τ )∥ET (x1:τ )
)

+∥(DT (vT,j)−DT (vT ))

−(DS(vS,j ,z1:τ )−DS(vS , z1:τ ))∥22,
(8)

where vT,j ∼ ET (xj
1:τ ), v

T ∼ ET (x1:τ ), vS,j ∼ ES
v (x

j
1:τ ),

vS ∼ ES
v (x1:τ ), and z1:τ ∼ ES

z (x1:τ ). The teacher network
(ET , DT ) is frozen and is used to regularise the student net-
work (ES

v , E
S
z , D

S). The probabilistic formulation replaces
the mean squared error, or the first term of Eq. 7 with the
distributional difference in Eq. 8. The second term is illus-
trated in Fig. 1: the Jacobian is calculated given a random pair
of samples from a mini-batch and no explicit supervision is
used. The variation in the observation domain caused by vU

and vU,j , where U ∈ {T, S}, is constrained to be consistent
between the teacher and student networks.

3.2. Optimising J-DSAE

To summarise, J-DSAE first maximises LT for C epochs:

LT (θ, ϕ;x1:τ ) = Eqϕ(z1:τ ,v|·)
[
log pθ(x1:τ |0,v)

]
−DKL(z1:τ )−DKL

(
qϕ(v|·)∥p(v)

)
,

(9)

and continues to maximise an alternative objective:

LS (θ, ϕ;x1:τ ) = Eqϕ(z1:τ ,v|·)
[
log pθ(x1:τ |z1:τ ,v)

]
−DKL(z1:τ )− LJac(E

S
v , E

S
z , D

S ;x1:τ ),
(10)

where DKL(z1:τ ) := DKL

(
qϕ(z1:τ |·)∥pθ(z1:τ )

)
.

Crucially, apart from LJac , another difference between
J-DSAE and TS-DSAE is that the former removes the loss
terms of Eqs. 2 - 5, leading to superior sampling quality and
disentanglement, as we show in Section 5.

Unlike in Section 2.2, J-DSAE adopts the Jacobian con-
straint for sequential data instead of images, leverages the
inductive bias and training mechanism of TS-DSAE to be free
of explicit forms of supervision, and optimises a VAE with
prior distributions rather than a deterministic AE.

4. EXPERIMENT

4.1. Dataset

Following the TS-DSAE benchmark [17], we use a subset of
the URMP dataset [20] that is composed of 1,545 (193) violin
and 534 (67) trumpet training (validation) samples. Audio
recordings are resampled to 16 kHz and divided into four-
second chunks that are transformed into mel spectrograms of
80 filter banks, resulting in x1:τ ∈ R80×251. We expect to
capture the overall timbre of the instrument using v and the
time-varying pitch using z1:τ .

4.2. Implementation

We closely follow the architectural implementation of TS-
DSAE [17] 3 and set (Dv, Dz) as (16, 32). We implement
both a factorised and an autoregressive (AR) decoder. DU

Fac :=∏τ
t=1 pθ(xt|v, zt) and DU

AR :=
∏τ

t=1 pθ(xt|x<t,v, z<t). We
use ADAM as the optimiser with a learning rate 10−3 and a
batch size of 128, and set C = 300 epochs as in the original
implementation.

4.3. Evaluation protocol

We train an instrument classifier (IC) using the training set.
Then, given the validation set, the classifier predicts the instru-

ment given x
z1:τ→zj

1:τ
1:τ and xv→vj

1:τ defined in Section 2.1. We
denote the former by z-swap and the latter by v-swap. The
ground truth instrument of z-swap remains that of the input
sample, while the ground truth as a result of v-swap becomes
the instrument label of the sample indexed j.

We use the full CREPE model [24] to extract pitch contours
and evaluate them against target pitch contours in terms of RPA
with a pitch tolerance of 50 cents [23]. The target of z-swap is
the pitch contour of the sample indexed j, while the target of
v-swap is dictated by the input sample.

For sampling quality, we measure FAD, which is reported
to correlate with auditory perception [22], by comparing em-
beddings of actual and generated samples that we extract using
the pre-trained IC, which captures timbre information. Recon.
in Table 1 reports FAD by comparing the reconstruction and
the actual data. FAD of v-swap (z-swap) compares xv→vj

1:τ

(xz1:τ→zj
1:τ

1:τ ) and the subset of true recordings played with the
instrument of xj

1:τ (x1:τ ), thus measuring how well the timbre
is translated (preserved) by its similarity to the true data. Rand.
first samples xrand

1:τ ∼ DS(vrand, z1:τ ), where vrand ∼ N (0, I)
and z1:τ ∼ ES

z (x1:τ ), then predicts ŷrand given xrand
1:τ using the

pre-trained IC, and calculates FAD given xrand
1:τ and true sam-

ples whose ground truths are ŷrand. The rationale is that if xrand
1:τ

carries a timbre of ŷrand according to the IC, it is supposed to
achieve a low FAD to true samples annotated with ŷrand.

3https://github.com/yjlolo/dSEQ-VAE

https://github.com/yjlolo/dSEQ-VAE


Global (F1) ↑ Local (RPA) ↑ FADViolin ↓ FADTrumpet ↓
v-swap z-swap v-swap z-swap Recon. v-swap z-swap Rand. Recon. v-swap z-swap Rand.

TS-DSAE 1.00 1.00 0.87 0.86 3.49 4.26 (0.15) 4.53 (0.09) 4.85 (0.09) 2.08 4.00 (0.48) 3.46 (0.36) 2.88 (0.02)
J-DSAE 1.00 1.00 0.93 0.92 2.17 3.22 (0.06) 3.37 (0.07) 3.37 (0.02) 1.20 2.73 (0.49) 2.25 (0.27) 2.12 (0.14)

TS-DSAE (AR) 1.00 1.00 0.82 0.83 2.18 3.19 (0.11) 3.47 (0.07) 3.56 (0.03) 1.41 3.61 (0.48) 2.92 (0.38) 2.59 (0.24)
J-DSAE (AR) 1.00 1.00 0.90 0.90 1.49 2.35 (0.05) 2.57 (0.03) 2.56 (0.07) 0.89 1.05 (0.12) 0.99 (0.04) 1.88 (0.09)

Table 1. Disentanglement in terms of macro F1 score and RPA, alongside audio quality measured in FAD. The numbers in
parentheses are standard deviation of three random paired sequences (for v- and z-swap) or samples of v (for Rand.).

5. RESULTS

5.1. Quantitative metrics

In Table 1, J-DSAE outperforms TS-DSAE in terms of disen-
tanglement according to RPA. Meanwhile, it overcomes the
trade-off and excels in terms of FAD of Recon., suggesting
superior reconstruction quality; v-swap (z-swap), indicating
better timbre translation (preservation) after attribute swap-
ping; and Rand., showing more realistic unconditional samples
of timbre. Moreover, the factorised J-DSAE also outperforms
AR TS-DSAE despite the low-capacity decoder DU

Fac.
It suggests that replacing Eq. 2 - 5 with the Jacobian con-

straint significantly improves TS-DSAE. We hypothesise that
the encoders and decoder could collaborate to minimise the
auxiliary losses by encoding latent information that does not
necessarily correspond to natural variation in the observation
domain. On the other hand, the Jacobian constraint directly
regularises the observation built upon the success of (ET , DT )
instead of matching only the latent distributions.

5.2. Sampling from timbre space

We also train a J-DSAE with the size of the global latent
space Dv = 2 (while Dz remains 32). In the left panel of
Figure 2, we show DT (vgrid), where vgrid = (m,n) and
m,n ∈ {−3, 0, 3} are the coordinates of the timbre space.
Note that only global attributes without temporal variation are
rendered by the teacher decoder, which verifies the effective-
ness of the Jacobian constraint (Eq. 8) in preserving overall
timbre information. By representing the timbre as spectral dis-
tributions composed of horizontal strips, we can observe, from
the top left to the bottom right, the transition from trumpet to
violin or a shift from a high to low spectral centroid.

Fig. 2. (Left) Outputs of DT . (Right) Outputs of DS condi-
tioned on timbre in the left panel and pitch from the leftmost
column. Refer to text for details.

Fig. 3. Attribute translation. See Section 5.3.

Denote the diagonal by vdiag and the left column in
the right panel by xseed

1:τ . The second to last columns are
DS(vdiag, zseed

1:τ ), where zseed
1:τ ∼ ES

z (x
seed
1:τ ). Fixing zseed

1:τ while
varying vdiag, they share the pitch of xseed

1:τ and differ in the
timbre dictated by vdiag. Moreover, from each of the second
to the last columns, the spectral distribution is consistent over
the two samples, as they are conditioned on a common vdiag.

5.3. Attribute translation

Figure 3 shows attribute translation. The blue block (z-swap)
shows that the source timbre is preserved and combined with
the target pitch. The red block (v-swap) shows that the source
timbre is translated with the pitch unchanged. The rendering
of a latent variable is largely independent of the other.

6. CONCLUSION

A strong regularisation is usually found in autoencoder-based
models that facilitates learning disentangled representation
in an unsupervised manner, which could hamper reconstruc-
tion or synthesis quality. By adapting the Jacobian constraint,
we have proposed J-DSAE that overcomes the trade-off and
improves upon TS-DSAE in terms of both unsupervised disen-
tanglement of pitch and timbre as well as sampling quality.

Similarly to TS-DSAE, the success of J-DSAE depends on
the teacher network that captures factors of global attributes.
A more comprehensive study of the conditions that satisfy the
requirement is left for future work.



7. REFERENCES

[1] Y. Bengio, “Deep learning of representations: Looking
forward,” Int. Conference on Statistical Language and
Speech Processing, 2013.

[2] E. Denton and V. Birodkar, “Unsupervised learning of
disentangled representations from video,” Advances in
Neural Information Processing Systems, 2017.

[3] W.-N. Hsu, Y. Zhang, and J. Glass, “Unsupervised
learning of disentangled and interpretable representations
from sequential data,” Advances in Neural Information
Processing Systems, 2017.

[4] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P.
Xing, “Toward controlled generation of text,” Int. Con-
ference on Machine Learning, 2017.

[5] O. Cı́fka, A. Ozerov, U. Şimşekli, and G. Richard, “Self-
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B. Schölkopf, and O. Bachem, “Challenging common
assumptions in the unsupervised learning of disentangled
representations,” Int. Conference on Machine Learning,
2019.

[20] B. Li, X. Liu, K. Dinesh, Z. Duan, and G. Sharma, “Cre-
ating a multitrack classical music performance dataset
for multimodal music analysis: Challenges, insights, and
applications,” IEEE Transactions on Multimedia, 2019.

[21] J. Lezama, “Overcoming the disentanglement vs re-
construction trade-off via Jacobian supervision,” Int.
Conference on Learning Representations, 2019.

[22] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi,
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