Method for designing wave absorber: The wave absorber for a
small sphere can be designed directly from the zero backscattering
conditions for a coated conducting sphere such that the TE and
the TM component of both E, and E, cancel each other out; i.e.

EF =B (9)
EJF = —-EM (10)

It can be seen from the above equations that three parameters
need to be determined for a'given radius of conducting sphere; the
relative permittivity e.(= €’ — je), the relative permeability (=
W —ji,”), and the thickness of coating d(= b — a). If two parame-
ters including the thickness of the coating are fixed, the remaining
parameter which satisfies eqns. 9 and 10 can be numerically
searched for via the Newton-Raphson method. The initial guess
for the numerical search can be obtained from the value obtained
by plane absorber theory [7, §].

40

normalised RCS,dB

8 9 10 1 12
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Fig. 3 Normalised RCS for coated sphere in X-band

conducting sphere
— — — — coated sphere from g = oo
rrrrrrrrr coated sphere from a = 12,

Numerical results: Fig. 2 shows the change in p,” and p,” for the
zero backscattering condition when €, is fixed to (2, —0.5) and the
thickness of coating is increased from d = 0.05A, to d = 0.334,.
The line with a = o shows the nonreflection condition of the
plate-type absorber, and the other with a = 1A, shows the perfect
absorbing condition for a conducting sphere with radius 1A,. It
can be observed from Fig. 2 that two curves show a similar ten-
dency when the coating is thin. Fig. 3 shows the normalised RCS
for the coated sphere in the X-band (8-12GHz). The radius of the
conducting sphere is 3cm (a = 1A, at l0GHz ) and the thickness of
coating is 5.55 mm (d = 0.1852, at 10GHz), respectively. The rela-
tive permeability from the nonreflection condition of the plate-
type absorber and that obtained by this method are u, = (0.63115,
—70.52993) and p, = (0.64998, —j0.49441), respectively, when €, =
(2., —0.5) and d = 0.185), are given.

Conclusions: A method for designing a wave absorber for small
spheres has been presented. When the radius of a conducting
sphere is small in terms of the wavelength, absorbers designed by
flat plate absorber theory will not have maximum absorption per-
formance since curvature effects on the reflection coefficient and
creeping wave diffraction are not included in the design of the
wave absorber. The method suggested here can also be applied to
a large conducting sphere, but the design parameters are not very
different from those obtained by flat plate absorber theory. An
absorber designed using this method will exhibit superior absorp-
tion performance to that obtained using flat plate absorber theory
for a conducting sphere whose radius is 12,,.
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Efficient determination of Q factor by
structured nonorthogonal FDTD method

Yang Hao and C.J. Railton

A structured nonorthogonal finite-difference’ time-domain
(FDTD) method incorporating existing perturbation techniques is
used to determine the Q factor of an arbitrary three-dimensional
cavity resonator. The new scheme combines the efficiency of the
Cartesian mesh with the accuracy of the conformal grid. Good
results are achieved with little computational effort.

It is well-known that the finite-difference time-domain method [1]
is an efficient numerical algorithm in computational electromag-
netics. However, in the original scheme, it is hard to deal with
electromagnetic structures with curved boundaries. It has been
proved that the staircase approximation of the physical boundary
of a cavity resonator will often result in failure to detect all the
resonant modes and inaccuracies in the prediction of the Q fac-
tors. :

0,024
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Fig. 1 FDTD mesh for cylindrical resonant cavity

For resonant structures which are axially symmetrical, cylindri-
cal co-ordinates for a body of revolution (BOR) have been suc-
cessfully used to determine the resonant modes and predict the Q
factors [6]. Unfortunately, the scheme is limited to those regularly
axially symmetrical structures, and, in fact, this curvilinear co-
ordinate system may have singularities at isolated points such as
the origin in a polar system.
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In this Letter, we use this localised nonorthogonal FDTD
scheme [4, 5] combined with the traditional perturbation technique
to calculate the Q factor of a cavity resonator. All advantages of
the FDTD method for the prediction of Q factors will be retained;
moreover, as we use conformal grids at the curved boundary in
the Cartesian co-ordinate system, the calculation of the tangential
components of the electric and magnetic fields can be exactly
achieved with little computational effort. This scheme can be read-
ily extended to arbitrary resonant structures without being limited
to a specified curvilinear co-ordinate system.

By the use of vector analysis, the electric and magnetic fields at
the curved boundaries can be determined by their covariant and
contravariant components [3]. The equations for the iteration of
the discretised electric and magnetic fields are as follows:

oét

o 1egt
E*(i,j, k)™ = H—EE (0,5 )
ot 1
— H,(i,5,k—1
=\ 1+ t[ y(i,5,k—1)

—Hy(i7]7k)+Hz(lvjvk) '—H'(i j— 1 k)}n+_

HYGJ, 0 = BV R \f 41,38

—E.(i,4,k) —
Ey(iy5, k) = gou &
+EZ(Z7 17.77 - 1)+EZ(Z+%7]7k+ 1)+Ez(l_%
+ BB+ 4,5 = 1R+ B 1, - 1. b)
+EY(i+ 5,0+ 4,k) + EY(i— 1,7+ 1, k)] 1)
where 6 is the conductivity of the metallic surface of the resonant
cavity, W is the permeability and € is the permittivity of the mate-
rial.

In [6], it has been demonstrated that the perturbation technique
is very efficient and convenient for solving high Q and extra-high
Q value resonant problems. In this Letter, it is assumed that the
resonant cavity is filled with lossless material, and then only the

conductor loss is considered. The Q factor determined by the per-
turbation method can be written as follows [6]:

2 J, ulHPdv
o . u|H2ds
where & is the skin depth of the conductor wall and H, is the mag-

netic field tangential to the cavity wall. In the nonorthogonal co-
ordinate system, the above equation can be denoted as eqn. 2:

Ey(i,5,k + 1) + B (4,5, k)"
" k) + EEE G+ 4,5k — 8)
Jrk+13)]

Q.==

2 A

=53

A= Z,u >Ja ) 7]7k| \/g(z7]7
B,5.k

B= Z/HJJC)[ (3R \ gy - 922 — 2.
4,7,k
"V Grz " Yzz "ggz;:

+|H, G, g, k)

+|H-z(i7j)k)|2' \/gyy'gz.‘c"ggy (2)

where \ﬁ(i, J» k)| denotes the discrete Fourier transform of the
magnetic fields at cell (i, j, k), and g,,, (m, n = x, y, z) represents
the metric tensor of the electric and magnetic fields; this is the
important factor for determining the geometry of the curved struc-
tures and the time step, which should be carefully chosen for sta-
bility [3]. Note that x, y and z in eqn. 2 are generalised co-
ordinates instead of the Cartesian co-ordinates.

To determine the Q factor, the following procedures are per-
formed:
(1) excite the resonator with a short Gaussian pulse, and calculate
the electromagnetic field distribution in the time domain at a cer-
tain position in the cavity
(2) perform an FFT on the time-domain signal and determine the
resonant modes and resonant frequencies f; for each mode in the
cavity
(3) run the FDTD program again but, after each iteration, update
a DFT using eqn. 3 for the H field inside the cavity and on the
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surface of the cavity:
Re{H,,, .(i,j, k)} =
Re{H., . (i,5,k)} + cos(2m fo - niter - 6t) - H.
Im{f{z,y 2(7’ 37 } -
Im{HM 2(4,4,k)} —sin(2n fo - niter - 8t) - Hy y 2 (1,5, k)
®3)

where H,, (i, j, k) is the magnetic field in the time domain, niter is
the iteration number and f; is the resonant frequency

(5) calculate the Q factor using eqn. 2 with the H field obtained
from eqn. 3.

w2 (15 3, k)

Table 1: Some resonant frequencies and Q factors in cylindrical

cavity

Modes| From new |Theoretical | Q factors from | Theoretical

FDTF scheme | results this scheme |Q factors [6]

GHz GHz

TMy, 11.313 11.483 9654 9729
TE,;, 12.58 13.314 10286 10868
TM,,, 15.18 15.227 8000 8002
TM, 17.38 18.300 12243 12281

The scheme is verified by using the example structure shown in
Fig. 1. The cylindrical cavity has radius = lecm and height =
1.5cm and is meshed by 40 x 36 x 40 cells. The algorithm runs for
16384 time steps. The conductivity of the cavity is ¢ = 5.8 x 107 ¥/
m. Table 1 shows some resonant frequencies from this new
scheme, and they are in a good agreement with the theoretical
results. Fig. 2 shows the Q factors of the TE;,, modes in the reso-
nant cavity which are obtained by the nonorthognal FDTD
method and the convergence to the final value as the number of
FDTD time steps is increased.

R

2.0

Q factor (x10 )
5

Sk,

0 100 200 300
time,ps

Fig. 2 Q factors of TE,;; mode and its convergence
B TE,, mode

In conclusion, a localised structured nonorthogonal FDTD
method for predicting the resonant frequencies and Q factors in a
cylindrical resonant cavity is presented. The resonant structure is
meshed by structured grids and has no limitation to its geometry.
It has the benefit of requiring reduced computer resources and can
be readily extended to more complicated resonant structures.
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Fast nonlinear diffusion approach for object
segmentation

E. Izquierdo M. and M. Ghanbari

A low-complexity anisotropic diffusion technique for smoothing
textures preserving object contours is presented. Additional
features such as disparity or motion can be used to control the
evolution of the intensity diffusion. Drastic simplifications in the
iterative diffusion process are also introduced to reduce the
algorithmic complexity.

Introduction: The process of image segmentation by anisotropic
diffusion is usually carried out by solving a system of nonlinear
partial differential equations of porous medium type, with the
original image as the initial condition [1]. The evolution of the dif-
fusion process obtained by solving such a system yields a three
dimensional solution space. Regarding the segmentation task we
are not concerned with the estimation of the whole surface
obtained when the differential equation is solved continuously in
time. A cross-section of the surface at a particular time ¢ describes
the diffusion result in which we are interested (see Fig. 1). For
instance, in the case of linear isotropic diffusion modelled by the
heat equation, for any evolution time the cross-section is given by
the convolution of the initial datum with a Gaussian kernel with
width proportional to Vz. Analogously, selective smoothing by
nonlinear diffusion can also be performed by weighted Gaussian
filtering instead of solving a complex system of nonlinear differen-
tial equations. Moreover, to extract masks describing the shape of
physical objects from stereoscopic images, the coefficients of the
Gaussian kernels are calculated adaptively for each sampling posi-
tion depending on the image gradient and the variations in the dis-
parity field. .

Adaptive smoothing: The filtering process is carried out taking into

account information extracted from previously estimated disparity

fields. These fields are obtained by using the low-complexity dis-
parity estimator introduced in [2, 3]. In extracting object masks,
we propose to distinguish three types of regions:

(a@) regions with abrupt disparity variations and high intensity
entropy; these regions indicate the presence of an object
border

(b) regions with smooth disparity variations, but high intensity
variations; these regions are probably part of one object

(c) regions with smooth intensity variations; in these regions, the
results of disparity estimation are usually unreliable, but they
probably constitute parts of one object or background.

Our selective smoothing procedure treats -these three types of

regions in a different way. We apply anisotropic (intensity-edge

controlled) diffusion to regions of type a, while isotropic diffusion

(regardless of intensity variations) is performed in type b. Regions

of type ¢ are homogenised in a much simpler way: for each con-

nected uniform area, the average of intensity values over the whole
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area is assigned to all sampling positions. At the same time, we
mark an intensity smoothness label field 7S(z), which is set to 1 at
smooth area positions, and 0 elsewhere. All picture elements
marked with 1 are then excluded from the iterative Gaussian
smoothing.

original
image t=t°

v

cross-section of
solution space
at fme t=t'

to

Fig. 1 Continuous solution surface of diffusion equation with original
image as initial value

Cross-section of surface gives processed image as required

The degree of smoothness DS(z) of the disparity field at any
sampling position z = (x, y) is obtained by measuring the variance
of the disparity vectors inside a small observation window W cen-
tred at z:

DS(z) = 02w = /(02)* + (02)
where (62 ) and (c?) are the variances of the horizontal and verti-
cal components of the disparity vectors inside the window W.

The Gaussian convolution kernel of size N x N is adapted at
each sampling position z, unless the intensity smoothness label
IS(z) = 1. Let G = (¢, 1, j = 1, ..., N be the Gaussian convolution
kernel and denote #(z)) i, j = 1, ..., N as the intensity values within
the filter window around z and VI(z,), i, j = 1, ..., N, the respective
gradients. We then define the local gradient and intensity varia-
tions as d; = |VI(z) - VI(z,)l and ¢, = |[I[(2) - Iz))|, i, j = 1, ..., N.
The weighted convolution kernel is estimated by multiplying each
element ¢, of G by a non-negative weight w, € [0, 1], ,j =1, ...,
N, which is calculated by

wij = [f(dij) - g(ei)] - [1 = M(DS(2))] + H(DS(2)) (1)

f(), g() and A(") are continuous decreasing functions. Moreover
J)=1ifx<k, f(x) =0if x 22k, g(x) = 1if x < k,, g(x) =0 if
x 22k, i(x) = 1 if x < ky, h(x) = 0 if x = k,. Note that the param-
eters k;, k,, k; and k, control the directions in which it is allowed
to diffuse freely. R

Applying eqn. 1, the weighted convolution kernel G is defined
as: G = (y,), with

n
Yij = Cij 'wq;]/ Z Cij * Wij and 27] = 1,..‘,N
,j=1
In natural scenes, regions with smooth disparity variation and uni-
form regions typically constitute a large part of the image. For
this reason, the application of anisotropic diffusion only in the
remaining areas reduces the amount of necessary computations
considerably. However, to speed up the convergence of the diffu-
sion process even further, a suitable thresholding strategy is
applied after each diffusion iteration, to regions of type a and b.

Results: The performance of the algorithm has been tested with
several natural stereoscopic sequences. Here only selected results
obtained by processing the sequence SAXO are reported. In all
experiments the functions fand g in eqn. 1 are chosen to be linear.
The scale parameter for the central excitatory region of the
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