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Abstract: The application of finite-difference
time-domain methods to the analysis of structures
having . curved boundaries is a long-standing
problem. Traditionally, either the staircasing
approximation which is simple but inaccurate, or
the generalised nonorthogonal grids which are
accurate but complex have been used. In this
contribution a novel approach is presented which
combines the efficiency of the Cartesian mesh
with the accuracy of the conformal grid. Results
are presented for some example structures which
are in good agreement with other methods.

1 Introduction

Finite-difference time-domain (FDTD) methods origi-
nally put forward by Yee [1] have proved to be very
efficient numerical algorithms in computational electro-
magnetics. However, the traditional FDTD algorithm
is based on a Cartesian co-ordinate system, and it is
difficult to generate meshes exactly for electromagnetic
structures with curved boundaries. It is usual to utilise
a staircase approximation in the FDTD method for
curved structures and an accurate solution can only be
obtained by using very fine grids and consequently, a
very small time step. In addition, the staircase approxi-
mation of the physical boundary of a resonator will
often result in a failure to detect all the resonant modes
and in the prediction of @ factors which are lower than
in reality. Apart from the staircase approximation,
there are two main modifications to the FDTD method
which have been put forward to analyse the elec-
tromagnetic structures with curved boundaries: the
contour path (CPFDTD) algorithm [2-5], and the non-
orthogonal FDTD method [6-9]. The CPFDTD algo-
rithm is based on the integral form of Ampere’s and
Faraday’s laws. The update equations must be modi-
fied in those distorted cells which are near the curved
boundaries. This is readily achieved for curved perfect
conductors because the tangential components of the
electric field on the boundaries are zero. Even so,
although good results have been obtained by Jurgens,
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[2, 3], the generation of the mesh is nontrivial and, in
addition, it has been shown that the basic scheme must
be modified to ensure stability [4, 5]. For dielectric
objects, where the tangential £ field is nonzero, addi-
tional equations are needed to calculate the tangential
components of electric field from the equation of
Ampere’s law. This makes the algorithm much more
complex and unwieldy and, with the exception of a
simple 2D example in [2], no published results are
known to the authors.

The generalised nonorthogonal FDTD algorithm was
put forward by Holland [6] and refined by others [7, §].
The underlying mathematics dealing with the geometry
and its application to electromagnetic fields can be
found in [10]. Many numerical results have been
obtained successfully [7, 8, 11]. However, compared
with the conventional FDTD scheme, two additional
equations are needed in each iteration step to realise
the transform between the contravariant and covariant
components of electric and magnetic fields. Moreover,
extra computer memory 18 needed to store the metric
tensor of both E and H nodes, which are essential
parameters in nonorthogonal co-ordinate systems. For
these reasons, the method is limited to relatively small
structures. Although the nonorthogonal FDTD scheme
is a generalised method, it is difficult to make it com-
patible with existing FDTD software which is based on
the Cartesian co-ordinate system.

To take advantage of the nonorthogonal FDTD
algorithm which is powerful for the computation of
structures with curved boundaries, we have developed a
combined method, which uses the theory of the non-
orthogonal FDTD scheme within an underlying Carte-
sian co-ordinate system. In the combined method most
of the grid is in the Cartesian co-ordinate system with
only those cells near the curved boundaries being
treated as nonorthogonal cells. The relative advantages
and disadvantages of the new method compared with
existing techniques are given in Table 1.

Table 1: Advantages (+) and disadvantages (-) of.
methods

CPFDTD Nonorthogona!l This research
Computer

+ - +
resources
Accuracy - + +

General material

. + +
boundaries

Ease of mesh
generation

IEE Proc.-Microw. Antennas Propag., Vol. 144, No. 5, October 1997



The fundamental concepts and some simulation work
using the combined method on closed curved metal
structures have been presented in [12]. In this contribu-
tion the method is developed to allow the electromag-
netic analysis of dielectrically loaded waveguides with
arbitrary cross-sections, which include dielectric rod
and slabs inside rectangular and circular waveguides.
The simulation results will be compared with those
from analytical method and the FDTD methods using
the staircase approximation.

2 Description of new method

The new FDTD algorithm which combines the advan-
tages of the nonorthogonal FDTD program with con-
ventional Cartesian FDTD technique has been used to
compute the cut-off frequencies of circular, rectangular
and elliptical hollow waveguides. In the combined algo-
rithm, the majority of the mesh is Cartesian which
allows the use of the conventional FDTD and only
near the oblique surfaces are non-Cartesian cells used.
This leads to a more accurate formulation than
CPFDTD but much less computational resources than
a generalised nonorthogonal method.

A good understanding of the algorithm can be
started by considering the metric tensor, which is one
of the important components in the analysis of vectors
in a nonorthogonal  co-ordinate system. It can be
obtained from g; = A4, - A;, where A;, A; are the bases
of a covariant vector. For an orthogonal co-ordinate
system only the diagonal components will be nonzero
(as shown in eqn. 1). Moreover, the contravariant and
covariant components will be collinear in an orthogo-
nal co-ordinate system. Extra memory is not needed to
store the metric tensors and contravariant or covariant
components. Only the values of those parts of the mesh
which are close to the material boundaries need to be
stored.

gi; = Ai [ Aj = Iaiajl . COS&ij

= |asa;| - 6;; if Ay, A, are orthogonal

1 i=y
61J - {0 i 7& j (1)
6 is the angle between two generalised axes, which it is
easy to obtain when these axes are straight lines, other-

wise, the angle can be obtained from their tangential
lines.

2.1 Generation of the meshes

Let an arbitrary curve pass through a standard FDTD
cell so that the original cell is bisected. The two basic
types of cells near the curved boundary are defined as
either ‘flag’ or ‘triangle’. In ‘flag’ cells the original cell
is split by the material boundary into two cells which
are still quadrilateral. In this case the neighbouring cell
is extended as shown in Fig. 1 and the E, or E, node is
replaced by an E, node on the material boundary. The
‘second type of cell, called a ‘triangle’, can not be
treated directly as an FDTD cell, the mesh needs to be
reconstructed so that all the cells are quadrilateral. To
do this, an additional point is defined on the material
boundary. such ag (' 1n Flg 2 and the edges of the
intercepted cell and its neighbours are modified as also
shown in Fig. 2. The new nonorthogonal FDTD
meshes on the curved boundary for those triangular
and quadrilateral meshes are then obtained. It is not
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difficult to establish the functions of the two types of
cells. The ‘triangle’ cell is always placed where the cur-
vature of a curved boundary changes abruptly. To
some extent, it looks like the triangular element near
the curved boundary in the finite-element method. The
difference is that in FDTD the ‘triangle’ is actually a
generalised quadrilateral cell, and the vector of the
electromagnetic field is denoted in a nonorthogonal co-
ordinate system. The ‘flag’ cells always appear on the
curved boundary while the curvature changes slowly.
In general, these two cells are enough to denote a
curved or an oblique boundary in FDTD computations
in the underlying Cartesian co-ordinate system.
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Fig.1 ‘Flag’ cell extending to neighbouring cells
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Fig.2 Reconstruction of a ‘triangle’ cell
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Fig.3 Oblique structure with a corner meshed by new FDTD method

2.2 Treatment of corners in angular objects

If we consider oblique structures with corners, such as
the rotated rectangular waveguide shown as Fig. 3, the
cell containing the corner will be treated as a ‘triangle’,
but in this case the extra node point is placed precisely
on the corner. By this means, the exact position of the
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corners has been taken into consideration, leading to
improved accuracy. The example of an oblique rectan-
gular disk modelled by CPEDTD is shown in Fig. 4. It
shows that the small quadrilateral area labelled A4 has
not been taken into consideration in the CPFDTD
‘mesh. This will introduce an inaccuracy if the mesh is
coarse, which is avoided in the method described here.

i

!

Fig.4 Oblique structure with a corner meshed by CPFDTD

2.3 Choosing the position of the nodes in
modified cells

Once the new co-ordinates including those ‘triangle’
and ‘flag’ cells are determined, it is easy to set the E
and H nodes in each cell. Following Yee’s scheme, the
middle points of the cell boundaries are chosen on the
x axis and the z axis, respectively, as F, and the cen-
troid of the cell as H nodes, but x, y, z cannot now be
regarded as Cartesian co-ordinates. This arrangement
of field nodes allows existing FDTD algorithms which
have been developed for a Cartesian co-ordinate system
to be immediately. incorporated into new FDTD pro-
gram. These include absorbing boundary conditions
and near-far field transformations. A further advantage
of the new FDTD scheme is that it reduces to conven-
tional FDTD codes when those structures to be studied
are simple rectangles. Those components of clectric
field (for TE modes) and magnetic field (for TM
modes) on the interface of material are moved along
the boundary, which is used to approximate the curva-
ture of structures in practical computer programming.
Having determined the node position is of the electric
and magnetic fields, the components of the metric
tensor g; in nonorthogonal cells can be calculated and
stored (shown as eqn. 1).

3  FDTD iteration formulae in new meshes

In the previous Section, the meshing of a curved
boundary on a Cartesian co-ordinate system was
defined. This approach ensures that the new mesh con-
forms both to the material boundaries and to the sur-
rounding Cartesian mesh. Thue the conventional
FDTD approach can be used on the Cartesian cells
and nonorthogonal method on the nonorthogonal cells,
and the values are passed directly to the common
nodes without the need for interpolation.

As an example, consider the structure shown in
Fig. 3. Cell (i, k) is a Cartesian node and the tradi-
tional FDTD iteration formula shown in eqn. 2 can be
used to obtain the £ and H components. During itera-
tion, the covariant and contravariant components need
not be introduced, and therefore the memory require-
ments are the same as for the standard FDTD
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where dx and dz are variable space steps given by

ér = |$i+1 e l‘il
0z = |zj41 — 24
The contravariant and covariant components of the E

and A fields on the nonorthogonal cells can be defined
as

Ez' = E ' A;'

Bi=F.A

1, =%,y Or 2
where the covariant vector bases of the vector A(A,
and A,) are defined along the x and z axes, respec-
tively, and their dual bases, known as the contravariant
bases (A* and A?), are defined to be orthogonal to the
original bases A, and A, which are shown in Fig. 5
(2D cases only).

:ﬁA;
Hi=H. A

A? Az (zaxis)
'S

Ay (xaxis)

Fig.5 Definition of contravariant and covariant vector bases

Cell (i + 1, k£ + 1) is a nonorthogonal node, so the
nonorthogonal FDTD method is used to find the val-
ues of the F and H components. The equations for this
cell are shown as

E*(i+1,k+ 1)~
= Em(i+ 1L,k+1)"

S+ 1,k) — Hy(i + 1,k + 1)]"F3

e

E7(i+1,k+ 1)~
=F*i+1,k+1)"
5t . .
+—[=Hy(i,k +1) + Hy(i + 1,k + 1)]"*=

CEy

NI =
Gyy g
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(3)
In the above equations, the contravariant components
in cell (i, k) need not be transformed into covariant
components because they are collinear in Cartesian
cells. In nonorthogonal cells, transformation is neces-
sary, using eqn. 4.

E,(i4+1,k+1) =GB +1,k+1)

Gz , 1
+——=|E*(i+1+=k+1—=
1 { (z 1 2,k 1

1
+E7 <z’+1—§,k+1~

1
2
1
2

‘ 1 1
+E i+ 1+ S k+ 1+
2 2

e 1
HE i+ 1= skt 14 g

Hy(i+1L,k+1)=HYi+1,k+1)

Gz
sz = *Grz 4
Vo (4)

where x, y, z denote generalised co-ordinates in a non-
orthogonal co-ordinate system, they will reduce to Car-
tesian co-ordinates in those Cartesian cells.

For the conventional FDTD algorithm, the bound-
ary condition of the material interfaces has automati-
cally been taken into consideration in eqns. 3 and 4. In
this paper all outer boundaries of waveguides are
assumed to be perfect metal, so one can let ¢ = o in
the formulae. For dielectric materials, one simply
inputs the value of permittivity, and allows ¢ = 1 if it is
in a free space. It should be emphasised here that all
the above equations can be rewritten so as to include
materials of finite conductivity. In this case the meth-
ods used in conventional FDTD can be directly applied
to the new algorithm.

4 Numerical results

Several numerical examples of useful dielectric-loaded
waveguides are presented in this Section. The structures
considered here are: first, dielectric-slab-loaded
waveguides with homogeneous and inhomogeneous fill-
ings; secondly, dielectric-rod-loaded square waveguides;
and finally, circular waveguides loaded with dielectric
cylinders. The numerical results obtained using the new
FDTD algorithm will be compared with data from
other methods such as the variation-iteration method
[13], analytical method (14], [15] and FDTD method by
staircase approximation.

4.1 Dielectric-slab-loaded waveguides with
homogeneous or inhomogeneous fillings

Fig. 6 shows the mesh of the slab-dielectric-loaded
waveguide, where all the cells which are near to the
material boundary have been made conformal to the
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material. The position of the slab in the rectangular
shield with the dimensions b/a = 0.5, ¢ = 0.3m can be
described as x| = (a — 1)/2, x, = (a + ©)/2, where a and
b are the width and height of the rectangular
waveguide, respectively, and ¢ is the thickness of the
dielectric slab. As presented in the previous Section,
this combined method shows the advantage of dealing
with electromagnetic structures with corners which do
not coincide with the Cartesian mesh boundary. This
avoids the constraints involved in choosing the grid
sizes in the standard or graded grid FDTD algorithm
which result from ensuring that the mesh coincides
with the material boundaries. Fig. 7 shows the results
for the cut-off frequencies of the LSE;; mode as func-
tions of ¢ and ¢, of the homogencous diclectric slab.
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Fig.6 Dielectric-slab-loaded waveguide meshed in Cartesian grids
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Fig.7 Cut-off frequencies of LSE,) mode in dielectric-slab-loaded
waveguides

They show a good agreement with the results by Yu
and Chu [13]. In this case, the dielectric-loaded
waveguide is meshed by 14 x 14 cells with the computa-
tion area of 0.38m x 0.38m. Table 2 shows the cut-off
frequencies of some higher order modes existing in the
homogeneous dielectric-slab-loaded waveguide with
g, = 2. Results by FDTD algorithm with staircase
approximation are also listed in Table 2. The approxi-
mate algorithm fails to detect all of the resonant modes
and shows less accuracy than the combined FDTD.
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homogeneous dielectric centrally loaded waveguide with
bla=tla=1]2, x,=a~0/2, x,={a+ /2, and (x}) =2

Table 2: Results of cut-off frequencies (GHz) of LSE,,,, modes in a

Combined Combined Staircase Staircase

Staircase

Modes  FDTD FDTD FDTD FDTD FDTD ;r;)]m
(14x14)  (28x28)  (14x14) (28x28) (50 x 50)

LSE,  0.3718 03718 — — - 03701
LSE;  0.7984 0.8080 07348 07855 07940  0.8058
LSE;;  0.8151 0.8240 — — — 0.8224
LSE,;  1.1846 1.1883 10020  — — 1.1261
LSEs,  1.2346 1.2608 11144 — — 1.2739
LSE;;  1.4634 1.5039 13562  1.3898  1.4981  1.4970
LSEy  1.6183 1.5397 14939 — — 1.5244
LSEs  1.7018 1.6636 15835  1.6615  1.6674  1.6978
LSE;;  1.8066 1.7542 16771 — — 1.7331
LSE,  1.8948 1.9091 17890 18283  — 1.9083

It is interesting to note that in some cases the use of a
finer staircased mesh leads to more modes being
missed. The corresponding results in the offset dielec-
tric-loaded waveguide are listed in Table 3. Both of
them show a good agreement with values given by [13].

Table 3: Results of cut-off frequencies (GHz) of LSE
modes in a homogeneous dielectric offset loaded
waveguide with b/a=t/a=1/2, x,=t, X, = a,and g{x) = 2

From combined

Modes  torp(ogxag — TromItdl
[SE;,  0.3980 0.4029
LSEy  0.8413 0.8489
LSE;;  0.8699 0.8666
LSE,;  1.2012 1.2151
LSEs,  1.2251 1.2195
LSEs;  1.4396 1.4837
LSE,  1.4849 15291
LSE,,  1.6755 1.6750
LSE,,  1.8185 1.8315
LSE;  1.8972 1.8691
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Fig.8 Plot of cut-off frequencies of LSE;y mode in an inhomogenous
dielectric-slab-loaded waveguide

Calculations were also carried out for the case of an
inhomogeneous dielectric filling with &, = 4(g, yay — 1)
(x — x1)(xy — x)/(x, — x1). The cut-off frequencies of the
waveguide of LSE|; mode with various slab thickness
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and different dielectric &, ,, values were calculated. In
the simulation, it is difficult to obtain more precise
results for those thinner slabs in the waveguide, as
many more sampling points are needed to describe the
variations of the inhomogeneous dielectric material.
The results for the cut-off frequencies showing an aver-
age error of approximately 1.5% for a 14 x 14 mesh
and 0.5% for a 28 x 28 mesh on waveguides with inho-
mogeneous dielectric fillings are presented in Figs. 8
and 9.
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epsr(maximum) of inhomogeneous dielectric fillings
Fig.9 Errors achieved by different meshes

relative errors in resonant frequency
compared with results from [13]

4.2 Dielectric-rod-loaded square waveguides

A square waveguide (side length 4) with a centred die-
lectric rod (radius ag) will be investigated in this sec-
tion. This exemplifies the meshing of a dielectric-loaded
electromagnetic  structure with curved boundaries
within a Cartesian mesh. The mesh is shown in Fig. 10,
which indicates that the computational region of 0.38m’
x 0.38m is meshed by 14 x 14 cells. The modes in this
structure are very complicated and their properties
have been studied in [14]. The simulation results using
the combined FDTD method are displayed in Fig. 11

where they compared with values from [14] and also
show good agreement with them. All expected higher-
order modes are detected. The displayed results show
the cut-off frequencies of HE modes in the guides plot-
ted against rod radius and confirm the validity of the
combined FDTD algorithm.
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4.3 Circular waveguides with dielectric
cylinders

Fig. 12 shows the structure of a uniform circular guide
consisting of two concentric dielectric cylinders. The
radius of the inner one is a with a relative permittivity
&, and the radius of the outer one is b with a relative
permittivity &,. The dominant modes in it are angularly

symmetric E, or Hy, modes [15]. To determine the cut-
off frequencies it is possible to solve the transcendental
equations which contain radial functions. This is a
complicated process compared with numerical meth-
ods. Table 4 gives the cut-off frequencies of the domi-
nant TM mode in the waveguide calculated using the
combined algorithm and the staircase approximation of
the FDTD method using two different cell sizes. This
shows that with the staircase approximation, the solu-
tions only converge when a fine mesh is used whereas,
with the combined method accurate results are
obtained using only 12 x 12 mesh.

038
019
. [
0 019 0.38
Fig.12 Circular guide with dielectric cylinders meshed in Cartesian

grids
5 Conclusion

A new FDTD scheme has been introduced, which is
based on using a nonorthogonal FDTD algorithm so
as to deal with an arbitrary electromagnetic structure
on an underlying Cartesian grid. The validity has been
confirmed by the simulation of dielectrically-loaded
waveguides with arbitrary cross-sections. The new com-
bined method has the benefit of reduced computer
resources and easily generated meshes when compared
with schemes based on generalised nonorthogonal co-
ordinate systems and of improved accuracy when com-
pared to a staircase approximation. The numerical sim-
ulation shows that the new method is very efficient and
the results are in excellent agreement with those from
other methods. The application and extension of the
method to three dimensional structures is being studied
and will be reported in a future contribution.
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