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Abstract: In many cases, antenna array design and modelling are performed by the finite difference
time domain (FDTD) method. The method is robust but very demanding in computer memory
and CPU power. The authors present a new method that allows otherwise impractical FDTD
simulations to produce valid results with no great dissipation of computer power. This is achieved
with a combined effort of reduced full-wave simulations and matrix manipulations in the proposed
array geometry. With the new scheme, the computational limitations of the conventional FDTD
analysis are surpassed and the scope of the analysis itself is broadened; changes in electrical
characteristics of an array, such as beam scanning, do not necessitate new simulation runs.

1 Introduction

Along with the increasing use of complex antenna arrays in
broadband mobile communications and advanced radar
systems, there have been intensive efforts in accurate
prediction of array performance such as near-field distribu-
tions, far-field radiation patterns and mutual couplings [1].
For example, the method of moments (MoM) has been
used to solve the integral equations pertaining to the mutual
coupling effect [2]. However, the computational resources
needed are proportional to some power of the number of
unknowns and therefore it makes numerical simulation on
medium size arrays impractical on a personal computer. In
the FDTD algorithm, the problem remains, although the
computational burden is only linearly proportional to the
simulated space [3]. According to our knowledge, so far
there have been very few attempts for implementing an
efficient FDTD algorithm to analyse the medium sized
arrays [4, 5]. In [4] a general method is presented using a
basic reaction integral approach to achieve improvements in
computer time of an order of magnitude for the case of a
5-element array. It is estimated that this improvement
would be about two orders of magnitude for arrays of
between 20–30 elements. Furthermore the method is only
demonstrated for some specific antenna types (e.g. wire
dipoles [4] and printed dipoles [5]).

In this paper we present a novel method for dramatically
reducing the amount of computer resources needed for an
FDTD analysis of antenna arrays. The purpose is to predict
the electric and magnetic fields without resorting to a full
wave simulation of the whole array structure but rather
taking a small part of it into account. Radiating and
scattering fields are computed from the single elements and
then manipulated in accordance with the array geometry.
The manipulations are performed by the use of matrix
operations leading to a generalised array factor. Two study

cases are presented: one with an array of conical horn
antennas and the other with open-ended rectangular
waveguides. All simulations are achieved by the conven-
tional FDTD algorithms combined with a MATLABt
code that provides the matrix manipulations and performed
on a personal computer. Numerical results are compared
with those from full FDTD simulations and the measure-
ment data in good agreement.

2 Methodology

2.1 Matrix formulation
The formulation is based on an element-by-element
approach. It breaks up the array into constituent elements
of which a small part will be modelled by the FDTD and
then forms them as an entity again. This procedure can be
reflected from a matrix representation, that is one global
matrix fEgglobal to stand for near electric fields in the whole

array, comprised of sub-matrices fEgk ðk ¼ 1; 2 . . . nÞ that
represent the constituent elements as shown in (1):

fEgglobal ¼

fEg1 fEg2 fEg3 . . .
�

�
fEgn

2
664

3
775 ð1Þ

It is understood from (1) that the position of an entry
ðfEg1; fEg2 . . . fEgnÞ in the global matrix represents the
spatial information of the near-field data (radiated or
scattered fields) of the corresponding elements ð1; 2 . . . nÞ.
Normally, the aforementioned data is extracted from a
virtual surface located in the near field region of the array.
This surface can always be placed in a uniform grid (since it
is in the free space), making the notation in (1) applicable
even when non-uniform grids are introduced to mesh the
array itself. In general, the radiating near-field from a planar
antenna array depends on two parameters: radiating fields
of individual elements and scattering fields from their
neighbours responsible for the mutual coupling. Thereby,
two quantities are required in the array analysis:

~Erad : radiating field from each element with the neglecting of
mutual coupling;

~Esc: scattering field owing to the presence of other elements.
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Consequently, each sub-matrix in (1) will be the
summation of radiating and scattering fields, hence:

fEgi ¼ fEradgi þ fEscgi ð2Þ
Eventually, the global matrix fEgglobal consists of a

global radiating matrix fEradgglobal and a global scattering

matrix fEscgglobal. It is clear that the global radiating

matrix will be equal to fEradg1 in the hypothetical situation
of one-element array. However, if two elements are
present in distance l �D (D is the uniform spatial grid
increment measured on the virtual near-field surface
and l an integer), the global radiation matrix can be
arranged as:

ð3Þ

Since each grid point in the near-field surface has a one-
to-one mapping in the global matrix, the separation distance
of l �D between two antenna elements can be translated
into l columns in (3). Dimensions of the global matrix
(n� n) are determined by the span of the near-field area,
which must be large enough for accurately predicting its far-
field pattern.

2.2 Matrix manipulation
A single FDTD run of one stand-alone antenna element in
free space can produce all the necessary radiation sub-
matrices for the entire array. Let us consider a 5-element
cross-shaped open-ended rectangular waveguide array
depicted in Fig. 1. Only simulation of the central antenna
element is needed and other sub-matrices for radiating fields
can be derived from

absðfEradgiÞ ¼ Xi � absðfEradg1Þ ð4Þ

phaseðfEradgiÞ ¼ phaseðejyi � fEradg1Þ ð5Þ
Xi is the power ratio of the feeds and yi is their phase
difference. Both operators of abs and phase are applied to
the individual elements of each sub-matrix. Once the
radiating sub-matrices are obtained from the FDTD
simulation, they will be placed inside the global matrix in

line with the array topology. For example in this situation:

ð6Þ

And the scattering matrix:

ð7Þ

The procedure to obtain the scattering matrix in (7) is
somewhat different from the procedure used for calculating
the radiation matrix in (6). Whereas in (6) only one element
(unit cell) simulation was enough to produce all the
radiation sub-matrices, (7) can be obtained after the
simulation of the field in the presence of a second element.
The introduction of the second element, placed at the
adjacent unit cell provides the scattering field information
needed for (7). It has to remain inactive so that only its

scattered field ~Esc is added to the already calculated ~Erad
field of the radiating element. There are other issues involved
in the construction of (7) that are going to be elucidated in
the two case studies presented in the following Sections.

As a remark in the notation we specify that the sub-
matrix fEscgj represents scattered fields owing to radiations

from the jth element; fEradgi stands for radiation fields

from the ith element. Also, the global matrices Erad½ �i and
Esc½ �i will be identified by the superscript i that denotes the
number of elements in the array.

In (6), fEradg2 is placed in such a position, so as to
represent the distance in physical space between the
elements 1 and 2 or equivalently the shifting of coordinates:
ðx; yÞ ! ðxþ l � D; yÞ. Since the global matrices represent
the physical space of antenna arrays, the corresponding
operation to the shifting of coordinates in the matrices is to
reallocate the columns by l places to the right. We denote
the operator/matrix to perform the above function as Sn

and its properties are indicated in the Appendix. Accord-
ingly S�n shifts the columns of a matrix, n places to the left.
With the help of the aforementioned operators we can
establish other radiation sub-matrices from ½Erad �1: ½Erad �2
¼ ½Erad �1 � ½S�n and similarly for the third element
½Erad �3 ¼ ½Erad �1 � ½S��n.

In addition, when two antenna elements in the array have
the same radiation characteristics then the scattered fields at
the antenna 1 owing to the radiation of antenna 2 C1-2, is
symmetrical to those at the antenna 2 owing to the
radiation of the antenna 1, C2-1. Hence, such a property of
imaging symmetry can be denoted as a matrix [O]x,y (details
of its definition can be found in the Appendix). It should be
noted that the symmetry matrices do not alter the operating
mode characteristics when the mode is symmetrical but it
will introduce a 1801 phase shift when it is anti-symmetrical.
Therefore the scattering parameters must follow this change
accordingly. Of course if the radiation characteristics of two
antennas differ in amplitude and phase, (4) and (5) are
applicable to the scattered fields as well.

Figure 2 shows simulated results of the 5-element array
(Fig. 1) by using the proposed matrix manipulation
technique and the full FDTD method, respectively. It can
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m

Fig. 1 Field snapshot of 5-element array with open-ended
rectangular waveguides
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be seen that the near-field snapshots obtained from both
methods agree with each other very well. However, the full
FDTD approach requires the computation of all the
antenna elements and it becomes impractical when the
antenna array size increases. On the contrary, in the matrix
manipulation method, a reduced FDTD programme was
used to calculate only the radiation of one open-ended
waveguide and its interaction with two neighbouring
elements. The whole array behaviour is then calculated
with the help of aforementioned operators in the matrix
manipulation. Its efficiency can be further evident from two
case studies in the following Section.

3 Two case studies

3.1 Conical horn antenna array
The first example is a conical horn antenna array fed by
circular waveguides and excited in the TE11 mode. It is a
part of a 7-element cluster. The central element is excited in
phase with and 10.5dB above the 6 surrounding elements
(Fig. 3). By inspection, the interaction between elements 1
and 2 and that between 1 and 4 should provide all the
necessary information needed for modelling scattering fields
in the antenna array under an assumption that:

� Only the scattering from the closest elements is
considered;

� Only the coupling effect produced by the central element
is taken into account.

The above conditions are based on the fact that the
surrounding elements radiate 10.5dB below the central one.
Apart from the radiation of element 1 alone (Fig. 4c), the
matrix method records the interaction of the elements 1 and
2 (Fig. 4a) and that of elements 1 and 4 (Fig. 4b). In all
three cases it is worth noting that only element 1 is radiating

while the others remain inactive. The purpose of these
simulations is:

(i) To account for radiations of all the 7 elements: from the
local distorted nonorthogonal FDTD simulation [6] on the
element shown in Fig. 4c, radiation fields are computed and
denoted as ½Erad �1 � ej�y1 . Therefore radiation fields from the

other 6 elements can be obtained as ½Erad �k � ej�yk , k¼ 2,
3y7, where ½Erad �k ¼ ½Erad �1 � 10:5 dB and yk ¼ y1.
(ii) To account for the coupling between the central element
and all the other elements: for calculating mutual couplings
between the central element and its neighbours, C1,3 and
C1,5 will be viewed as the mirror images through the vertical
axis of C1,2 and C1,4; C1,6 and C1,7 are the mirror images
through the horizontal axis of C1,4 and C1,5, respectively.
Therefore, the only couplings that have to be computed are
corresponding to the scattering sub-matrix denoted as C1,2,

yielding ½Esc�21!2 and C1,4, yielding the sub-matrix ½Esc�21!4.
Finally we obtain the global scattering matrix as:

½Esc�71 ¼ ½Esc�21!2 þ ½Esc�21!3 þ ½Esc�21!4

þ ½Esc�21!5 þ ½Esc�21!6 þ ½Esc�21!7 ð8Þ
where,

½Esc�21!3 ¼ ½Esc�21!2 � ½O�y ð9Þ

½Esc�21!5 ¼ ½Esc�21!4 � ½O�y ð10Þ

½Esc�21!6 ¼ ½Esc�21!4 � ½O�x ð11Þ

½Esc�21!7 ¼ ½Esc�21!5 � ½O�x ð12Þ
Now that both the radiation and coupling effects have

been calculated as sub-matrices, we can gather them into
one radiation and one scattering global matrix (Figs. 5
and 6). The total field is then:

½Etotal� ¼ ½Erad �7 þ ½Esc:�7 ð13Þ

½Htotal� ¼ ½Hrad �7 þ ½Hsc:�7 ð14Þ
Equations (13) and (14) contain all the data needed for

the near-to-far field algorithm. Figure 7 shows the
comparison of the conical horn antenna array radiation
patterns obtained from the measurement [7], the full FDTD
and the proposed matrix manipulation technique. All
results show very good agreement. In Table 1, the computer
resources needed by the FDTD and the matrix manipula-
tion method are listed. The difference between two
approaches is expected to increase in favour of the matrix
manipulation method in large size arrays. Moreover,
changes in the array’s electrical characteristics such as beam

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

matrix method FDTD simulation

H-field intensity A
m

Fig. 2 Comparison of magnetic field intensity (for array shown in
Fig. 1) obtained from full FDTD and proposed matrix manipulation
technique

5 4

7 6

3 1 2

radius a = 0.513 λ
flare angle = 5°
guide radius = 0.356 λ

Fig. 3 Prototype of conical horn antenna array and its dimensions

1
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C2,1 C1,4

C4,1
C1,2

a b c

Fig. 4 Illustration of matrix manipulation method in conical horn
antenna array modelling
a Interaction of elements 1 and 2
b Interaction of elements 1 and 4
c Radiation of element 1
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scanning do not necessitate new simulation runs in the
matrix manipulation method.

3.2 Diamond’s array
Here is studied an array of 23 elements presented by
Diamond [8], in which only the central element is driven.
An illustration is given in Fig. 8 along with the array
dimensions. A full FDTD simulation is constrained by
computer resources and hence only a reduced size array
excluding the edge elements can be simulated. Since the
array is very small compared to the operating wavelength,
the edge diffraction components may well be significant and
could cause distortions in the pattern shape. The matrix
manipulation method however can be used to analyse the
entire array without neglecting the edge elements. In this

case, the second order mutual coupling (defined as coupling
from elements marked as ‘2’ in Fig. 8 in contrast to
elements marked as ‘1’ which denotes the first order mutual
coupling) cannot be dismissed. Since only the central

element is excited, the global radiating matrix ½Erad �23 will
be the same as fEradg1. The global scattering matrix

however will be more complicated. ½Esc�81 accounts for the
scattered field produced by the central element in the
presence of the 7 neighbouring elements enumerated in
Fig. 8 (upper right part of the array). By means of the
matrix manipulations we can acquire the scattering upper
left part of the array as mirror symmetry through the
vertical axis:

½Esc�81 � ½O�y ! upper left part ð15Þ

5 4

7 6

3 1 2

5 4

7 6

3 1 2

n . ∆
k . ∆

� . ∆

Fig. 5 Configuration of conical horn antenna array
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Fig. 6 Matrix representation of elements in conical horn antenna
array

Table 1: Computer resources used by full FDTD and matrix
manipulation method

Time
(min)

Memory
(Mbytes)

Time (min) to simulate the
same array when changes
occur (phase or power)

FDTD 16 370 16

MM 13 280 0
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Fig. 7 Comparison on radiation patterns of conical horn antenna
array obtained from matrix manipulation, full FDTD and measure-
ment
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Fig. 8 Prototype of Diamond’s antenna array
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By doing so, the summation of the two parts yields the
complete scattering upper part:

½Esc�81 � ðIn þ ½O�yÞ ! upper part ð16Þ

And the final step is to complete the array with the bottom
part, which is the mirror image of the upper part through

the horizontal axis:

½Esc�81 � ðIn þ ½O�yÞ � ½O�x ! bottom part ð17Þ

The resulting global scattering matrix can be summed up as:

½Esc�23global ¼ ½Esc�81 � ðIn þ ½O�yÞ � ðIn þ ½O�xÞ ð18Þ

In Fig. 9, radiation patterns obtained from the full
FDTD simulation on a truncated array and the proposed
matrix manipulation method on the original array are
compared with measured results [9]. It can be seen that the
full FDTD simulation of the confined Diamond’s array is
not adequate. The exclusion of the edge elements results in
the shift of the null in radiation pattern, while the
measurements [9] indicate a local minimum at 35 degrees.
However, the matrix manipulation method though has
given a correct prediction in the position of the null and a
more acceptable pattern shape (Fig. 9).

4 Conclusions

A combination of FDTD and matrix manipulation
techniques has been proposed for fast analysis of medium
size planar antenna arrays. Conventionally, a full FDTD
simulation on such antenna arrays is very demanding in
computer memory and CPU power. On some occasions,
only confined models can be simulated and hence result in
inaccurate results. The proposed matrix manipulation
method has been demonstrated to reduce the computational

0
−25

−20

−15

−10

−5

0
measurement
FDTD calculation
matrix manipulation method

ra
di

at
io

n 
fie

ld
, d

B

10 20 30 40 50 60
angle, deg

70 80

Fig. 9 Comparison on radiation patterns of Diamond antenna
array obtained from matrix manipulation, full FDTD and measure-
ment

radiation field scattering field

simulate the radiation of one element alone
in a free environment

a) produce the radiation/scattering characteristics of all the other elements from the previous  
simulation by the use of matrix operators. 

b) adjust the power and phase of each element
c) place them in the correct position in the global matrix using the shifting operators

acquire the global
radiation matrix

acquire the global
scattering matrix

total field

define the base vectors that  
produce the nodes of the array grid

((x,y ) in the previous example)

simulate the scattering produced by one
radiating element with each first neighbour

defined from the base vectors

Fig. 10 Flow chart illustrating matrix manipulation method
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efforts dramatically with the help of matrices/operators that
utilise symmetrical properties of antenna elements in the
array topology. The method has been validated by
simulating a conical antenna array and a Diamond’s array
in good agreement with measurement results. A flow chart
that sums up the method is given in Fig. 10. The method
can lead to a group of generalised equations that can be
applied to simulate not only medium size phased arrays, but
also finite size periodic structures such as electromagnetic
bandgap structures.
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6 Appendix

In this Appendix, some details of matrix transformations
are illustrated.

6.1 Shifting of the coordinates
6.1.1 Shifting to the right: It is the operation
ðx; yÞ ! ðxþ n � D; yÞ. Its equivalent transformation in
the matrix space is to shift the original matrix n columns to
the right. Such an operator is:

ð19Þ

When it is multiplied from the left by a matrix of the
same dimensions it produces the desired result:

ð20Þ

6.1.2 Shifting to the left: It is the operation
ðx; yÞ ! ðx� n � D; yÞ. The matrix for this operation is

denoted as [S]�n :

ð21Þ

As that in 6.1.1:

ð22Þ

6.1.3 Shifting upwards: It is the operation
ðx; yÞ ! ðx; y þ n � DÞ. The transformation matrix is
the same as the one used in 6.1.1, but now multiplied
from the left. If we denote it as [U]n we will have [U]n¼ [S]n
and

ð23Þ

6.1.4 Shifting downwards: It is the operation
ðx; yÞ ! ðx; y � n � DÞ. The transformation matrix is the
same as the one used in 6.1.2. As that in 6.1.3, we will have
[U]�n¼ [S]�n and

ð24Þ

6.2 Mirror/reflection images
6.2.1 Reflection of the space in the y-axis: The
matrix operator that produces the transformation ðx; yÞ !
ð�x; yÞ is denoted as [O]y:

½O�y ¼

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 : : : 0
0 0 1 0
0 1 0 0
1 0 0 0

2
666666664

3
777777775

ð25Þ
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So if a matrix [E] consists of the columns {a}1, {a}2y {a}n,
then its reflected matrix will be:

E½ � ¼

..

. ..
.

� � � ..
.

fag1 fag2 � � � fagn

..

. ..
.

� � � ..
.

2
6664

3
7775 � ½O�y

¼
..
. ..

.
� � � ..

.

fagn fagn�1 � � � fag1
..
. ..

.
� � � ..

.

2
664

3
775 ð26Þ

6.2.2 Reflection of the space in the x-axis: The
matrix will be the same as the previous one but now it must
multiply from the left. So if a matrix [E] consists of the lines
{a}1, {a}2y {a}n then the ðx; yÞ ! ðx; �yÞ is represented
by: [O]x¼ [O]y and

E½ �¼½O�x �

� � � fag1 � � �
� � � fag2 � � �
..
. ..

. ..
.

� � � fagn � � �

2
6664

3
7775¼

� � � fagn � � �
� � � fagn�1 � � �
..
. ..

. ..
.

� � � fag1 � � �

2
6664

3
7775
ð27Þ
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