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Context

• Wireless Sensor Networks (WSNs)
– networks of autonomous sensors used for pervasive applications
– large-number deployments, highly scalable
– resource-constrained
– scalar data (e.g. temperature, light, pressure)

The way ahead...

• Wireless Multimedia Sensor Networks (WMSNs)
– vectorial data (e.g. audio, video)
– raw data cannot (always) be transferred 
– local processing is required (but much more complex!)
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Application: multi-sensor tracking

• Objective
Continuous estimation of the target state 
given a set of measurements (observations) 
obtained from spatially distributed sensing nodes.

Measurements

State estimation
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Approaches

Centralized Decentralized Distributed

Distributed and decentralized multi-camera tracking
M. Taj, A. Cavallaro
IEEE Signal Processing Magazine, Vol. 28, Issue 3, May 2011
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Distributed tracking: strategies

consensus aggregation

start

estimate

• Distributed target tracking
– need a collaborative information exchange mechanism
– consensus-based algorithms

• Parallel (e.g. Kalman Consensus Filter [Olfati-Saber2005], Distributed Particle 
Filters [Gu2007])

– data aggregation algorithms 
• Sequential (e.g. Distributed Particle Filters [Hlinka2009]) 
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Distributed Particle Filters (DPFs)

• Basic ideas:
– each node executes a local Particle Filter (PF)
– measurements are synchronized, calibration is known
– some information is exchanged

• Likelihood sharing [Coates2004]
– exchange information to have a common model of the likelihood
– random number generators are synchronized

• Posterior sharing
– the network has a common knowledge of the posterior pdf
– consensus-based approach [Sheng2005, Gu2007]
– aggregation-based approach [Sheng2005, Hlinka2009]

• spatial sequence of aggregation steps
• Partial Posterior (PP) is exchanged among the nodes
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Problem: Particle dissemination is not feasible!
Solution: Gaussian Mixture Model of the Partial Posterior (GMM-PP)

Independence from the # of particles 



How to extend this tracking approach 
from WSNs to WMSNs?
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Proposed approach

• Objective
– Distributed tracking under realistic conditions in camera-based WMSNs

• Problems
– existing approaches are theoretical and designed for WSNs
– need adaptation for limited Field-Of-View sensors (cameras) 

• detection miss
• target hand-over
• target loss

– need mechanisms for the definition of the aggregation chain
• first node (starts iteration)
• intermediate nodes (aggregate local measurement to the PP)
• last node (performs estimation)

– a network-simulator environment is required
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First node

1
kz

1. Knows previous posterior 
and local measurement

2. Prediction and Update:
• re-sampling
• draw from state-transition
• weight update from likelihood

3. GMM-PP creation

4. Next-hop selection

5. Sends GMM-PP
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Intermediate node h
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1. Receives PP from node h-1

2. Importance sampling:
• use the incoming PP as 

importance function g()
• draw from importance function
• weight update: CONDENSATION

3. GMM-PP creation

4. Next-hop selection

5. Sends GMM-PP
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Last node

N
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1. Receives PP from node N-1

2. Importance sampling as for 
intermediate nodes

3. Last PP is also the global PP

4. Target state estimation

5. Next tracking step starts here!
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Experimental setups

• Simulations
• number of nodes: N = 10, 50, 100, 300, 500, 700, 1000
• number of particles: P = 100, 300, 500

• DPF with different GMM configurations
• No GMM approximation: DPF-0

• Variable number of GMM components: DPF-1, DPF-5

• realistic network conditions

Simulator: WiSE-MNet www.eecs.qmul.ac.uk/~andrea/wise-mnet.html
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Simulation setup

• Network
– T-MAC protocol, BW = 250 kbps
– request-to-send/clear-to-send mechanism
– acknowledged-transmission mechanism
– number of retransmissions: 10

• Cameras
– Covering 6000 sqm (random uniform distribution)
– Top-down facing cameras:  6m from the ground plane (FOV is 10m X 6m) 
– Frame rate = 1fps

• 100 simulation runs, each of 10 minutes
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What do we measure?

• Estimation efficiency
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• Average estimation delay

d(k) : Estimation delay for the k-th tracking step
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Conclusions

• Conclusions
– distributed target tracking for camera-based WMSNs with a DPF

• Dealing with limited-FOV sensors
• Operating on a network-simulator environment

– importance of co-design between tracking algorithms and 
communication protocols

• Future work
– Comparing other state-of-the-art protocols (e.g. consensus-based)
– Using the full vision-pipeline: more complex features

Simulator available as open source at
www.eecs.qmul.ac.uk/~andrea/wise-mnet.html


