WiSE-MNet: an experimental environment for wireless multimedia sensor networks

Christian Nastasi

c.nastasi@sssup.it

Andrea Cavallaro andrea.cavallaro@eecs.qmul.ac.uk

www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

WMSNs: context

- Wireless Multimedia Sensor Networks (WMSNs)
 - Evolution of WSNs to more complex (vectorial) data e.g. audio, video
 - Several challenges
 - high network scalability
 - resource-constrained devices
 - raw data cannot be (generally) transferred
 - local processing is required (but it is much more complex than in WSNs)
 - Multi-disciplinary problem
 - networking
 - sensor signal processing
 - embedded system design

Need a simulation environment for WMSNs!

Network simulators

- Several existing network simulators
 - NS-2
 - OPNET
 - TrueTime
 - OMNeT++
- What are we looking for?
 - Configurability (e.g. scripting languages, configuration interfaces)
 - Support for standard and state-of-the-art communication protocols
 - Extensibility
 - Programming language

NS-2: a popular open-source network simulator

- Modules written in C++
- Simulation interface based on O-Tcl
- Originally designed for TCP/IP computer networks
 - Extensions to support wireless network (external contribution)
 - Integration of wireless and wired networks not simple
 - Mobility requires extensions
- Network stacks
 - generally much more complex than WSN's stacks
- Maintainability and extensibility are difficult

http://www.isi.edu/nsnam/ns/

OPNET: a commercial network simulation software

- Modules written in C++
- GUI for simulation scenarios and network models
- Three levels of configurability
 - Network level
 - defines topology
 - Node level
 - · defines node behaviour and data flow
 - Process level
 - defines protocols' logic through finite state machine formalism

http://www.opnet.com/

TrueTime: a Matlab/Simulink toolbox

- Mainly for control applications
 - to simulate (distributed) control
- Node behaviour in Matlab/Simulink
- Configuration through Simulink
- Simple networking models
 - including IEEE 802.15.4
- Integration with Matlab-based software is straightforward

http://www3.control.lth.se/truetime/

OMNeT++: open-source (generic) network simulator

- Generic discrete-event simulation engine
- Generic modules interactions can be defined
 - behaviour is coded in C++
 - interconnections/composition
 specified through a
 Network Description (NED) language
 - parameters can be set through configuration files
- Highly flexible and extensible with external libraries
- Network elements
 - nodes, protocols, channels
 - provided (externally) as simulation models (INET, MiXiM, Castalia)

http://www.omnetpp.org/

Which simulation model?

- Simulation Model: Castalia
 - Designed to model distributed algorithm for WSNs
 - Realistic wireless channel and radio models
 - Physical process (real-world events) and sensing model
 - Node Mobility
 - Resource management (e.g. CPU, battery)

http://castalia.npc.nicta.com.au/

Castalia simulation model

WiSE-MNet: an experimental environment for wireless multimedia sensor networks

Proposed extensions to the Castalia model

- Generalization of the sensor data-type
 - from scalar-based to any data type
- Idealistic communication & direct application communication
- Specific modules
 - moving target
 - simple camera modelling
 - target tracking application
- Simple GUI
 - for 2D world representation

Generalized data-types

Castalia supports only scalar-based applications

Generalized data-types

We want to have any possible data-type: object-oriented approach

Idealistic communication

Seemingly from the application point of view: bypass communication

New specific modules

- WiseMovingTarget physical process
 - moving target on a ground plane
 - different types of motion: e.g. linear, circular, random
 - target represented as a box
- *WiseCameraManager* sensor manager
 - top-down facing camera
 - object detections produced: bounding boxes
 - can be extended to any FOV, projection model or to use real-world images
- WiseCameraApplication application layer
 - hierarchy of modules implementing a distributed tracking algorithm

Simulation example

Tracking algorithm

- Distributed Particle Filter (DPF)
- Sequential measurement aggregation through partial posterior exchange
- Guassian Mixture Modelling (GMM) to approximate the partial posterior

C. Nastasi, A. Cavallaro

WiSE-MNet: an experimental environment for wireless multimedia sensor networks

Network delay problem

Analysis of performance degradation with increased network load

- 0-GMM (exchanging the whole particle set)
- 5-GMM (mixture of 5 Gaussians to approximate the particle set)

Simulation setup

- Network
 - T-MAC protocol, BW = 250 kbps
 - request-to-send/clear-to-send mechanism
 - acknowledged-transmission mechanism
 - number of retransmissions: 10
- Cameras
 - Covering 6000 sqm
 - 500 sensors (random uniform distribution)
 - 6m from the ground plane (top-down facing)
 - Frame Rate = 1fps

C. Nastasi, A. Cavallaro

WiSE-MNet: an experimental environment for wireless multimedia sensor networks

Conclusions

- Conclusions
 - Realistic simulation environment for WMSNs
 - Extension of the Castalia/OMNeT++ simulation model
 - Generic data-type support
 - Simplistic world model
 - Application example: distributed target tracking

Simulator available as open source at www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

- Future work
 - More complex networking conditions
 - Support for real-world images