
WiSE-MNet

Wireless Simulation Environment for Multimedia Networks

User’s Manual

Christian Nastasi
(c.nastasi@sssup.it, nastasichr@gmail.com)

December 4, 2011

Contents

1 Introduction 1

2 Overview 2

2.1 Generalized sensor data-types . 2

2.2 Idealistic communication mechanisms . 2

2.3 Simple GUI . 3

2.4 Concrete modules . 3

2.4.1 WiseMovingTarget . 4

2.4.2 WiseCameraManager . 4

2.4.3 Application Layer classes . 4

3 Installation 5

3.1 Prerequisite . 6

3.2 Installing WiSE-MNet . 7

3.3 Software organization . 7

4 Application Examples 8

4.1 WiseAppTest . 8

4.2 WiseCameraAppTest . 8

4.3 WiseCameraTrackerTest . 9

4.4 WiseCameraDPF . 9

1 Introduction

The Wireless Simulation Environment for Multimedia Sensor Networks (WiSE-MNet) has been designed

to simulate distributed algorithms for Wireless Multimedia Sensor Networks (WMSNs) under realistic

network conditions. The simulation environment is based on one of the most popular network simulator:

OMNeT++ . Among the several simulation models for the OMNeT++ environment, Castaliais the one that

has been designed with similar goals, although it focuses on classic Wireless Sensor Networks (WSNs).

WiSE-MNet is proposed as an extension of the Castalia/OMNeT++ simulator. The main extensions

provided to the Castalia simulation model can be summarized as:

1

http://www.omnetpp.org/
http://castalia.npc.nicta.com.au/

• generalization of the sensor data-type (from scalar-based to any type);

• idealistic communication and direct application communication;

• simple GUI for 2D world representation;

• concrete modules for: moving target, camera modelling, target tracking application.

We assume the reader to be familiar with the OMNeT++ environment and to know the basics about

the Castalia simulation model. The reference versions over OMNeT++ and Castalia are respectively the

4.1 and the 3.1. Documentations and tutorials about OMNeT++ can be found at the project documentation

page http://www.omnetpp.org/documentation. We particularly suggest to read the User Manual first and

then to use the API Reference when developing new modules. A copy of the Castalia user’s manual is

available at http://castalia.npc.nicta.com.au/documentation.php.

2 Overview

In this section, we present an overview of WiSE-MNet . The overall structure of the network and node

model is depicted in Figure 1.

Node (Wise) Node (Wise) Node (Wise)

Wireless Channel / Dummy Channel

WiseBasePhysicalProcess

Communication Module Manager
Mobility

Manager
Resource

WiseBaseApplication

WiseBaseSensorManager

to/from Wireless Channel to Wireless Channel

to/from other

to/from Physical Process
(WiseBasePhysicalProcess)

WiseBaseApplication

(a) Network Model (b) Node (Wise) Model

Figure 1: WiSE-MNet network and node model overview

2.1 Generalized sensor data-types

The generalization of the sensor data-types is obtained by defining an abstract class WisePhysicalPro-

cessMessage that has to be derived to define any type of physical process information. Accordingly, other

abstract classes have been modified to redefine some of the original Castalia modules. In particular:

• WiseBasePhysicalProcess, WiseBaseSensorManager and WiseBaseApplication that redefine respec-

tively the base classes for the physical process, the sensor manager and the application layer;

• WisePhysicalProcessMessage, WiseSensorManagerMessage and WiseApplicationPacket information

exchange classes.

2.2 Idealistic communication mechanisms

There are two “idealistic” communication mechanisms that have been introduced: the WiseDummyWireless-

Channel and the DirectApplicationMessage. The first one changes the network properties (to idealistic)

seemingly from the application point of view, the second one is rather a “magic” direct information exchange

channel. Figure 3 represents the two mechanisms.

2

http://www.omnetpp.org/documentation
http://www.omnetpp.org/doc/omnetpp41/manual/usman.html
http://www.omnetpp.org/doc/omnetpp41/api/index.html
http://castalia.npc.nicta.com.au/documentation.php

Node (Wise) Node (Wise) Node (Wise)

WisePhysicalProcessMessage

WiseBasePhysicalProcess

Wireless Channel

Communication Module Manager
Mobility

Manager
Resource

WiseBaseApplication

WiseBaseSensorManager

to/from Physical Process
(WiseBasePhysicalProcess)

to/from Wireless Channel to Wireless Channel

WiseBaseApplicationPacket

WiseSensorManagerMessage

WisePhysicalProcessMessage

Figure 2: Generic data-types

WiseDummyWirelessChannel

Wireless Channel

WiseBaseApplication

Communication Module

WiseBaseApplication

Communication Module

Communication Module

WiseBaseApplication

Communication Module

WiseBaseApplication Direct Communication

Wireless Channel

(a) (b)

Figure 3: Idealistic communication through (a) WiseDummyWirelessChannel and (b) DirectApplicationMes-

sage.

The WiseDummyWirelessChannel is a module that is used to bypass the Castalia communication stack

and wireless channel. This module allows to specify the node neighborhood and performs idealistic commu-

nication with no-delay or packet loss/corruption. The module is to be used alternatively to the Wireless-

Channel module proposed in Castalia. The interaction between application and communication module does

not change, the user can decide whether to change the network capability in the simulation configuration,

without changing the application logic.

The second mechanism provided for idealistic communication is the DirectApplicationMessage. This

is an OMNeT++ communication port that has been added to the application module so that two nodes’

application layers can interact directly without bypassing the communication modules. With this mecha-

nismm, a part of the application can use a realistic (or idealistic) network communication (through either the

WirelessChannel or the WiseDummyWirelessChannel), while some part might assume ideal node-to-node

interaction.

2.3 Simple GUI

We included a simple GUI that can be useful for testing and evaluation of distributed algorithm for WMSNs.

We currently used the GUI for a simple representation of a 2D-world (ground plane) where targets and

sensor-cameras can be displayed during the simulation (see Figure 4). The GUI could be further used to

evaluate distributed algorithms involving computer-vision processing.

2.4 Concrete modules

In the current distribution of WiSE-MNet , we included some concrete classes that have been used to

simulate distributed target tracking algorithms in simplified context.

3

Figure 4: Simple GUI for 2D-world scenarios

2.4.1 WiseMovingTarget

This module is a WiseBasePhysicalProcess that implements moving target in a 2D ground plane. Targets

are currently represented as (bounding) boxes and can move according to different types of motion: linear,

circular, linear-circular and random.

2.4.2 WiseCameraManager

This module is a WiseBaseSensorManager that implements the sensing logic of the node’s camera. The

module is strongly related to the type of physical process we are using. The WiseCameraManager has

been designed to support different types of sensing through the WiseCameraHandler mechanism, allowing

the user to easily add different camera models (e.g. projection models). We currently support only the

WiseCameraDetections model, which is a simplified projection model that assumes a top-down facing camera

observing targets modelled according to the WiseMovingTarget module.

2.4.3 Application Layer classes

The application module contains the algorithm of the distributed application. The user should typically

provide its own application module to implement a new distributed algorithm. The application module, de-

Communication Module

Wireless Channel

WiseBaseSensorManager
WiseSensorManagerMessage

WiseBasePhysicalProcess

WiseBaseApplication

WiseBaseApplicationPacket

WisePhysicalProcessMessage
WiseMovingTarget

WiseMovingTargetMessage

WiseCameraMessage

WiseCameraApplication

WiseCameraManager

Figure 5: WiSE-MNet concrete modules

4

rived from WiseBaseApplication, interacts with a WiseBaseSensorManager and the Castalia communication

module in order to realize the logic of the distributed algorithm. In the current distribution of WiSE-MNet ,

we provided some application-layer classes according to the hierarchy shown in Figure 6.

WiseCameraApplication

WiseBaseApplication

WiseCameraDPF

WiseCameraSimplePeriodicTracker

WiseCameraManager

Figure 6: Application class hierarchy

WiseBaseApplication This is the base class for any application module in WiSE-MNet . The class

provides a mechanism to automatically calculate the set of radio neighbor nodes (a set of nodes that can

be reached by a give node with a single-hop wireless communication). The application WiseAppTest shows

an example of a class derived directly from this class.

WiseCameraApplication This is a base class to derive from when we are interested in creating an ap-

plication module that uses a WiseCameraManager. During the startup phase this class will query the

WiseCameraManager to collect information about the camera (e.g. FOV) and to create a list of overlapping-

FOV neighbor nodes. The node’s and other nodes’ camera information are available as protected member

respectively called camera info and overlapping fov cameras. The application WiseCameraAppTest shows

an example of a class derived from WiseCameraApplication.

WiseCameraSimplePeriodicTracker This class is derived from WiseCameraApplication and is meant to be

used as a base class for periodic tracking algorithms based on WiseCameraApplication. This class defines

a set of callback-like functions that will be called at different steps of any periodic tracking algorithm. The

class defines some functions that will be called at startup (for initializations) and other functions that will

be periodically called when a new image is available. The application WiseCameraTrackerTest is a basic

example derived from WiseCameraSimplePeriodicTracker.

WiseCameraDPF It is a WiseCameraSimplePeriodicTracker that implements a distributed particle filter

algorithm. The algorithm uses a sequential aggregation mechanism, exchanging the partial posterior ap-

proximated with Gaussian Mixture Models. For more details the reader can refer to “Distributed target

tracking under realistic network conditions” in the proceeding of Sensor Signal Processing for Defence

(SSPD 2011), London (UK), 27-29 September 2011.

3 Installation

WiSE-MNet is based on OMNeT++ and is an extension of the Castalia simulation model. WiSE-MNet has

been developed using the version 4.1 of OMNeT++ and the 3.1 version of Castalia. Although OMNeT++ is

available for Windows systems, Castalia has been designed for GNU/Linux-like systems (see Castalia

reference manual). For this reason we strongly recommend to used a GNU/Linux-like system to use WiSE-

MNet (the Ubuntu GNU/Linux distribution has been successfully used). However, installation for Windows

systems might be possible through the Cygwin environment, although this has not been tested.

Prerequisite:

5

• OMNeT++ 4.1

• OpenCV

3.1 Prerequisite

Installing OMNeT++

For full instructions and details about the installation of OMNeT++ , refer to the Linux section of the

OMNeT++ installation guide.

The following steps should be performed for a fresh installation of OMNeT++ . We assume to work in

the home directory (type ’cd ~’ to enter it) in a bash shell.

1. Get the OMNeT++ 4.1 sources from the download page.

2. Extract the source files

$ tar xvzf omnetpp -4.1-src.tgz

A folder omnetpp-4.1 will be created.

3. Set the environment variables to point to the OMNeT++ binary paths:

$ export PATH=$PATH :~/ omnetpp -4.1/ bin

$ export LD_LIBRARY_PATH =~/ omnetpp -4.1/ lib

These two lines should be also appended to the ~/.bashrc file.

4. Compile OMNeT++ 1

$ cd omnetpp -4.1

$./ configure

$ make

5. OMNeT++ should be successfully installed. The following command can be used to verify that the

OMNeT++ executables are in the execution path.

$ which opp_makmake

Installing OpenCV

For installation instruction of the OpenCV library, please refer to http://opencv.willowgarage.com/wiki/InstallGuide.

A binary of the OpenCV library is available for recent Ubuntu distributions. In such case, the following

command could be used for installation:

$ sudo apt -get install libcv -dev libcvaux -dev libhighgui -dev

To check whether the OpenCV library are correctly installed

$ pkg -config opencv --cflags

$ pkg -config opencv --libs

These should print the include paths, compiler and linker options required to build the WiSE-MNet with

the OpenCV library.

1 NOTE: if you have a multi-core machine, compilation will be faster by running the make command with the ’-j’ option and passing
the number of cores plus one as argument. For instance, in a dual-core machine use ’make -j 3’.

6

 http://www.omnetpp.org/omnetpp/doc_download/2217-omnet-41-source--ide-tgz

3.2 Installing WiSE-MNet

The simulator source files are distributed as an extension of the Castalia simulation model. The steps

required to compile the simulator are equivalent to those for Castalia. We assume to work in the home

directory (type ’cd ~’ to enter it) in a bash shell.

1. Extract the source files

$ tar xvzf WiSE -MNet -v0.1. tar.gz

$ cd WiSE -MNet -v0.1

A folder WiSE-MNet-v0.1 will be created.

2. Set the environment variables to point to the OMNeT++ binary paths:

$ export PATH=$PATH :~/WiSE -MNet -v0.1/ bin

This line should be also appended to the ~/.bashrc file.

3. Create the makefiles to compile Castalia with the WiSE-MNet extensions

$./ makemake

4. Build 2

$ make

5. To properly clean the last Castalia build, the following can be used

$./ makeclean

3.3 Software organization

The WiSE-MNet root directory (according to installation instruction is ~/WiSE-MNet-v0.1/) contains the

original Castalia source files and the extensions provided by WiSE-MNet . All WiSE-MNet files used to

define/redefine modules and to run simulations are contained in the wise/ folder in the root directory. The

native Castalia files can still be found in their original position (src/, and Simulations/). In this sec-

tion, we give an overview of the software organization in folders to help the reader browsing the source code.

The structure of the WiSE-MNet root directory is:
bin/ native Castalia python scripts

src/ native Castalia NED/C++ sources

Simulation/ native Castalia simulation setups

wise/ WiSE-MNet NED/C++ sources and Simulation setups

makemake Script to configure the WiSE-MNet makefiles

makeclean Script to properly clean-up the WiSE-MNet build

... others

The WiSE-MNet simulation setup files are contained in the wise/Simulations/ sub-folder. The defini-

tions/redefinitions of the OMNeT++ modules (NED/C++ files) can be found in the wise/src/ sub-folder,

and in particular the wise/src/wise/ contains the main part of the software.

The structure of the wise/src/wise/ subtree is the following:
wise/src/wise/node/ Definition of the node’s components

/world/ Definition of the world’s elements (PhysicalProcess, terrain)

/wirelessChannel/ WirelessChannel and WiseDummyWirelssChannel

/gui/ simple GUI code

/utils/ Utilities (GMM, ParticleFilter, helper classes)

2 NOTE: if you have a multi-core machine, compilation will be faster by running the make command with the ’-j’ option and passing
the number of cores plus one as argument. For instance, in a dual-core machine use ’make -j 3’.

7

The structure of the wise/src/wise/node subtree is the following:
node/sensorManager/ Sensor Manager modules

/wiseEmptySensorManager Dummy sensor producing random numbers

/wiseCameraManager Camera Manager module

...

node/application/ Application modules

/wiseCameraApplication/ WiseCameraApplication base class

/wiseCameraSimplePeriodicTracker/ WiseCameraSimplePeriodicTracker base class

/wiseAppTest/ Example WiseAppTest module

/wiseCameraAppTest/ Example WiseCameraAppTest module

/wiseCameraTrackerTest/ Example WiseCameraTrackerTest module

/wiseCameraDPF/ WiseCameraDPF tracker

...

4 Application Examples

4.1 WiseAppTest

The module is derived directly from the WiseBaseApplication base class. This is the simplest application

example and shows how to use the three basic elements of any distributed application for WMSNs: sensor

reading, network communication and time-triggered actions.

Source files: WiseAppTest.ned

WiseAppTest.h

WiseAppTest.cc

Run the example

To try this example the simulation setup wise/Simulations/WiseSimpleApp test/omentpp.ini should

be used. We assume to work in the home directory (type ’cd ~’ to enter it) in a bash shell and to have

WiSE-MNet properly installed.

1. Enter the simulation directory:

$ cd WiSE -MNet -v0.1/ wise/Simulations/WiseSimpleApp_test /

2. Run the simulation using (WiSE-MNet extended) Castalia:

$ Castalia -c General

Running configuration 1/1

A myLog.txt will be created containing the application printouts.

4.2 WiseCameraAppTest

The module is derived from the WiseCameraApplication class. This example module is similar to the

WiseAppTest one. It shows a basic interaction with the WiseCameraManager (a camera-based sensor man-

ager that produces target detections). The example shows also a custom application message exchanged

among the nodes.

Source files: WiseCameraAppTest.ned

WiseCameraAppTest.h

WiseCameraAppTest.cc

WiseCameraAppTestPacket.msg

Run the example

To try this example the simulation setup wise/Simulations/WiseCamera test/omentpp.ini should be

used. We assume to work in the home directory (type ’cd ~’ to enter it) in a bash shell and to have

WiSE-MNet properly installed.

8

1. Enter the simulation directory:

$ cd WiSE -MNet -v0.1/ wise/Simulations/WiseCamera_test /

2. Run the simulation using (WiSE-MNet extended) Castalia:

$ Castalia -c General

Running configuration 1/1

A “WORLD” window will pop-up showing a simple 2D representation of the ground-plane world, the

cameras and the targets.

3. Press a button (on the WORLD window) to start the simulation. This will show an animation of the

three targets moving with different types of motion on the ground plane.

4. When the simulation is over, a myLog.txt will be created containing the application printouts.

4.3 WiseCameraTrackerTest

The module is derived from the WiseCameraSimplePeriodicTracker class. This example shows how the

skeleton of a distributed target tracking application looks like when using the WiseCameraManager (pro-

ducing target detections) and adopting a classic periodic tracker approach.

Source files: WiseCameraTrackerTest.ned

WiseCameraTrackerTest.h

WiseCameraTrackerTest.cc

WiseCameraTrackerTestMessage.msg

Run the example

To try this example the simulation setup wise/Simulations/WiseTracker test/omentpp.ini should be

used. We assume to work in the home directory (type ’cd ~’ to enter it) in a bash shell and to have

WiSE-MNet properly installed.

1. Enter the simulation directory:

$ cd WiSE -MNet -v0.1/ wise/Simulations/WiseTracker_test/

2. Run the simulation using (WiSE-MNet extended) Castalia:

$ Castalia -c General

Running configuration 1/1

A “WORLD” window will pop-up showing a simple 2D representation of the ground-plane world, the

cameras and the targets.

3. Press a button (on the WORLD window) to start the simulation. This will show an animation of

two targets moving with different types of motion on the ground plane with 4 camera nodes (3 with

partially overlapping FOV).

4. When the simulation is over, a myLog.txt will be created containing the application printouts.

4.4 WiseCameraDPF

This module implements a Distributed Particle Filter (DPF) tracker based on a sequential aggregation

mechanism to exchange the (Partial) Posterior (see Section 2).

Source files: WiseCameraDPF.ned

WiseCameraDPF.h

WiseCameraDPF.cc

WiseCameraDPFMessage.msg

WiseCameraDPFMessage custom.h

9

Run the example(s)

Three different simulation setups have been provided to test this algorithm.

• wise/Simulations/WiseCameraDPF example1/omnetpp.ini:

shows an example with 4 camera nodes with partially overlapping FOV and two targets moving inside

a fully-overlapping region (all the cameras observing the target).

• wise/Simulations/WiseCameraDPF example2/omnetpp.ini:

4 cameras with partially- and non-overlapping FOV and a single target moving inside and outside

the FOVs.

• wise/Simulations/WiseCameraDPF example3/omnetpp.ini:

20 cameras and a single moving target.

This simulation folders contain a Makefile to run and clean the simulation output. To run the simulation

enter the setup directory and type ’make’. Several files will be created after the simulation (with GUI

animation). The files ’dpf results.txt’ and ’dpf part results.txt’ contain information respectively

about the tracking output and the intermediate tracking steps. To clean-up the simulation folder, type ’make

clean’.

10

	Introduction
	Overview
	Generalized sensor data-types
	Idealistic communication mechanisms
	Simple GUI
	Concrete modules
	WiseMovingTarget
	WiseCameraManager
	Application Layer classes

	Installation
	Prerequisite
	Installing WiSE-MNet
	Software organization

	Application Examples
	WiseAppTest
	WiseCameraAppTest
	WiseCameraTrackerTest
	WiseCameraDPF

