
WiSE-MNet

Wireless Simulation Environment for Multimedia Networks

User’s manual

(version 1.1)

Original version by Christian Nastasi (nastasichr@gmail.com)
Updated by Juan C. SanMiguel (juan.carlos.sanmiguel@qmul.ac.uk)

June 9, 2014

Contents
1 Introduction 2

2 Installation 2
2.1 Prerequisites . 2
2.2 Installing WiSE-MNet . 6
2.3 Software organization . 9
2.4 Documentation . 9
2.5 Compatibility issues . 10

3 Overview 10
3.1 Generalized sensor data-types . 12
3.2 Sensing . 12
3.3 Communication . 14
3.4 Processing . 16
3.5 Visualization . 19

4 Application Examples 20
4.1 Test applications . 20
4.2 Single target tracking . 22
4.3 Multiple target tracking . 23

5 Developing your own application 23
5.1 Required files . 23
5.2 Steps . 23

1

1 Introduction
The Wireless Simulation Environment for Multimedia Sensor Networks (WiSE-MNet) has been designed to
simulate distributed algorithms for Wireless Multimedia Sensor Networks (WMSNs) under realistic network
conditions. The simulation environment is based on one of the most popular network simulator: OMNeT++ .
Among the several simulation models for the OMNeT++ environment, Castalia is the one that has been
designed with similar goals, although it focuses on classic Wireless Sensor Networks (WSNs).

WiSE-MNet is proposed as an extension of the Castalia/OMNeT++ simulator. The main extensions
provided to the Castalia simulation model can be summarized as:

• generalization of the sensor data-type (from scalar-based to any type) in Section 3.1;

• idealistic communication and direct application communication in Section 3.3;

• concrete modules for sensing and processing: moving target, camera modeling, target tracking appli-
cation in Sections 3.2 and 3.4.

• simple GUI for 2D world representation in Section 3.5;

We assume the reader to be familiar with the OMNeT++ environment and to know the basics about
the Castalia simulation model. The reference versions over OMNeT++ and Castalia are respectively the
4.4.1 and the 3.1 . Documentations and tutorials about OMNeT++ can be found at the project documen-
tation page http://www.omnetpp.org/documentation. We particularly suggest to read the User Manual
first and then to use the API Reference when developing new modules. A copy of the Castalia user’s manual
is available at http://castalia.npc.nicta.com.au/documentation.php.

2 Installation
WiSE-MNet is based on OMNeT++ and is an extension of the Castalia simulation model. WiSE-MNet has
been developed using the version 4.4.1 of OMNeT++ and the 3.1 version of Castalia. Although OM-
NeT++ is available for Windows systems, Castalia has been designed for GNU/Linux-like systems (see
Castalia reference manual). For this reason we strongly recommend to use a GNU/Linux-like system to use
WiSE-MNet (the Ubuntu GNU/Linux distribution has been successfully used). However, installation for
Windows systems might be possible through the Cygwin environment, although this has not been tested.

2.1 Prerequisites
WiSE-MNet requires to install OMNeT++ and OpenCV. For this tutorial, Ubuntu 12.04 LTS is used and
the Ubuntu-specific command are indicated. Please refer to the Omnet or OpenCV installation guides for
other operative systems (OS). Please launch a bash shell and type the following commands:

1. Before installing please make sure that the system is updated and upgraded (Ubuntu-specific command)
$ sudo apt -get update
$ sudo apt -get upgrade

2. We assume to work in the home directory
$ cd ~

2

http://www.omnetpp.org/documentation
http://www.omnetpp.org/doc/omnetpp41/manual/usman.html
http://www.omnetpp.org/doc/omnetpp41/api/index.html
http://castalia.npc.nicta.com.au/documentation.php

Installing OMNeT++

For full instructions and details about the installation of OMNeT++ , refer to the Linux section of the
OMNeT++ installation guide (also available at http://www.omnetpp.org/pmwiki/index.php?n=Main.
InstallingOnUnix). The following steps should be performed for a fresh installation of OMNeT++ . In
this guide, we used the version 4.4.1 which is available at http://www.omnetpp.org/omnetpp/doc_details/
2272-omnet-441-source--ide-tgz.

1. Install required dependencies for OMNeT++ . (Ubuntu-specific command)
$ sudo apt -get install build - essential gcc g++ bison flex perl tcl -dev tk -dev blt

libxml2 -dev zliblg -dev openjdj -6- jre doxygen graphviz openmpi -bin libopenmpi -dev
libpcap -dev

2. Get the OMNeT++ sources from the download page or type.
$ wget -O omnetpp -4.4.1 - src.tgz http :// www. omnetpp .org/ omnetpp / doc_download /2272 -

omnet -441 - source --ide -tgz

A file omnetpp-4.4.1-src.tgz will be created.

3. Extract the source files
$ tar xvzf omnetpp -4.4.1 - src.tgz

A folder omnetpp-4.4.1 will be created.

4. Set the environment variables to point to the OMNeT++ binary paths:
$ export PATH= $PATH :~/ omnetpp -4.4.1/ bin
$ export LD_LIBRARY_PATH =~/ omnetpp -4.4.1/ lib

These two lines should be also appended to the ˜/.bashrc file.

5. Compile OMNeT++ 1

$ cd omnetpp -4.4.1
$. setenv
$./ configure
$ make

6. OMNeT++ should be successfully installed. The following command can be used to verify that the
OMNeT++ executables are in the execution path.

$ which opp_makmake

7. Testing the installation
$ cd samples /dyna
$./ dyna

After clicking through some options, you should see the output depicted in Figure 1.

1 NOTE: if you have a multi-core machine, compilation will be faster by running the make command with the ’-j’ option
and passing the number of cores plus one as argument. For instance, in a dual-core machine use ’make -j 3’.

3

http://www.omnetpp.org/pmwiki/index.php?n=Main.InstallingOnUnix
http://www.omnetpp.org/pmwiki/index.php?n=Main.InstallingOnUnix
http://www.omnetpp.org/omnetpp/doc_details/2272-omnet-441-source--ide-tgz
http://www.omnetpp.org/omnetpp/doc_details/2272-omnet-441-source--ide-tgz
http://www.omnetpp.org/omnetpp

Figure 1: Output of the dyna application of OMNeT++ after a successful install.

Installing OpenCV

For installation instruction of the OpenCV library, please refer to http://docs.opencv.org/doc/tutorials/
introduction/linux_install/linux_install.html. The following steps should be performed for a fresh
installation of OpenCV after OMNeT++ . In this guide, we used the version 2.4.1 which is available at http:
//downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.4.1/OpenCV-2.4.1.tar.bz2.

This tutorial is based on https://help.ubuntu.com/community/OpenCV.

1. Install required dependencies for OpenCV. (Ubuntu-specific command)
$ sudo apt -get install build - essential libgtk2 .0- dev libjpeg -dev libtiff4 -dev

libjasper -dev libopenexr -dev cmake python -dev python - numpy python -tk libtbb -dev

4

http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.4.1/OpenCV-2.4.1.tar.bz2
http://downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.4.1/OpenCV-2.4.1.tar.bz2
https://help.ubuntu.com/community/OpenCV

libeigen2 -dev yasm libfaac -dev libopencore -amrnb -dev libopencore -amrwb -dev
libtheora -dev libvorbis -dev libxvidcore -dev libx264 -dev libqt4 -dev libqt4 -opengl -
dev sphinx - common texlive -latex - extra libv4l -dev libdc1394 -22 - dev libavcodec -dev
libavformat -dev libswscale -dev

2. Get the OpenCV sources from the download page or type.
$ cd ~
$ wget http :// downloads . sourceforge .net/ project / opencvlibrary /opencv -unix /2.4.1/

OpenCV -2.4.1. tar.bz2

3. Extract the source files
$ tar -xvf OpenCV -2.4.1. tar.bz2

A folder OpenCV-2.4.1 will be created.

4. Generate the Makefile to compile OpenCV
$ mkdir build
$ cd build
$ cmake -D WITH_TBB =ON -D BUILD_NEW_PYTHON_SUPPORT =ON -D WITH_V4L =ON -D

INSTALL_C_EXAMPLES =ON -D INSTALL_PYTHON_EXAMPLES =ON -D BUILD_EXAMPLES =ON -D
WITH_QT =ON -D WITH_OPENGL =ON ..

A folder build will be created.

5. Compile OpenCV sources
$ make
$ sudo make install

6. Configure OpenCV (Ubuntu-specific command) by editing the configuration file
$ sudo gedit /etc/ld.so.conf.d/ opencv .conf

Add the following line /usr/local/lib at the end of the file (it may be an empty file).

7. Configure OpenCV (Ubuntu-specific command)
$ sudo ldconfig
$ sudo gedit /etc/bash. bashrc

Add the following lines PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig and export
PKG_CONFIG_PATH at the end of the file.

8. To check whether the OpenCV library are correctly installed
$ pkg - config opencv --cflags
$ pkg - config opencv --libs

These should print the include paths, compiler and linker options required to build the WiSE-MNet with
the OpenCV library.

9. Testing the installation
$ cd ~/ OpenCV -2.4.1/ samples /c
$ chmod +x build_all .sh
$./ build_all .sh
$./ facedetect --cascade ="/usr/ local / share / OpenCV / haarcascades /

haarcascade_frontalface_alt .xml" --scale =1.5 lena.jpg

After compiling and running the example, you should see the output depicted in Figure 2.

5

http://opencv.org/downloads.html

Figure 2: Output of the facedetect application of OpenCV 2.4.1 after a successful install.

2.2 Installing WiSE-MNet
The simulator source files are distributed as an extension of the Castalia simulation model. The steps
required to compile the simulator are equivalent to those for Castalia. We describe two methods using the
terminal and the OMNeT++ IDE.

From terminal

We assume to work in the home directory (type ’cd ˜’ to enter it) in a bash shell. The following proce-
dure creates an executable file located in WiSE-MNet-v1.1/out/gcc-release/wise-mnet which can be also
accessed via the symbolic link wise-mnet located in the directory WiSE-MNet-v1.1 .

1. Extract the source files
$ tar xvzf WiSE -MNet -v1 .1. tar.gz
$ cd WiSE -MNet -v1 .1

A folder WiSE-MNet-v1.1 will be created.

2. Set the environment variables to point to symbolic link wise-mnet of the WiSE-MNet executable:
$ export PATH= $PATH :~/ WiSE -MNet -v1 .1

This line should be also appended to the ˜/.bashrc file.

3. Create the makefiles to compile Castalia with the WiSE-MNet extensions
$./ makemake

4. Build 2

$ make

A symbolic link wise-mnet will be created in the directory WiSE-MNet-v1.1 after the successful build.

5. To properly clean the last WiSE-MNet build, the following can be used
$./ makeclean

6. Testing the installation
$ cd ~/ Wise -MNet -v1 .1/ wise/ simulations / wiseCamera_test_FOV_2D /
$ wise -mnet -c General

After compiling and running the example, you should see the output depicted in Figure 3.

2 NOTE: if you have a multi-core machine, compilation will be faster by running the make command with the ’-j’ option
and passing the number of cores plus one as argument. For instance, in a dual-core machine use ’make -j 3’.

6

Figure 3: Example of succesffull execution of WiSE-MNet .

From OMNeT++ IDE

The OMNeT++ IDE can be also used to develop applications for WiSE-MNet . A quick overview of the
IDE is available at htpp://www.omnetpp.org/doc/omnetpp/IDE-Overview.pdf.

1. Extract the source files
$ tar xvzf WiSE -MNet -v1 .1. tar.gz
$ cd WiSE -MNet -v1 .1

A folder WiSE-MNet-v1.1 will be created.

2. Start the IDE
$ omnetpp

If the command does not work or there no symbolic link to the OMNeT++ executable, please go to
the directory ~/omnetpp-4.4.1/ide and type again the command. As a result, you should see the
IDE environment as illustrated in Figure 4.

3. Create and configure the WiSE-MNet project. A video tutorial has been created at http://www.eecs.
qmul.ac.uk/~andrea/wise-mnet.html. Here we summarize the main steps.

(a) Create a new OMNeT++ empty project (File→New→OMNeT++ project)
(b) Import all source files into the newly created project (“Right Click” on the project name→Import)
(c) Go to the source NED files manager (“Right Click” on the project name→Properties→OMNeT++→NED

Source Folder) and tick two “src” boxes in the paths WiSE-MNet-v1.1/src and WiSE-MNet-v1.1/wise/src.

7

htpp://www.omnetpp.org/doc/omnetpp/IDE-Overview.pdf
http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html
http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

Figure 4: OMNeT++ IDE main window..

(d) Add required include OpenCV files. Go to the “includes” tab in the “Path and Symbols” menu
(“Right Click” on the project name→Properties→C/C++ General→Path and Symbols). Then,
add the paths /usr/local/include/opencv and /usr/local/include/opencv2 in “GNU C”
and “GNU C++”. These paths depend on the OpenCV installation and can be obtained by
running:

$ pkg - config opencv --cflags

(e) Add required libraries files for OpenCV. Go to the Makemake options (“Right Click” on the project
name-→Properties→OMNeT++ →Makemake). Then, click on makemake (deep, recurse–>)
and the button on the left will be enable. After clicking on this button, go to the link tab and in-
clude the Opencv libraries opencv_core, opencv_features2d opencv_imgproc opencv_highgui
opencv_video opencv_legacy in the “Additional libraries box”. In the “Additional objects”
box, include the path wise/src/wise/utils/gmm/c-gmm/c-gmm-64bit.a The final result can be
checked in the “Preview” tab which should similar to the following:
--deep -O out -lopencv_core -lopencv_features2d -lopencv_imgproc -lopencv_highgui

-lopencv_video -lopencv_legacy --meta: recurse --meta:auto -include -path --meta:
export - library --meta:use -exported -libs --meta:feature - cflags --meta:feature -
ldflags -- wise/src/wise/ utils /gmm/c-gmm/c-gmm -64 bit.a

(f) Finally, run the desired simulation by creating a configuration of the selected *.ini file (“Right
Click” on the project name-→Run or Debug as→OMNeT++ simulation)

8

2.3 Software organization
The WiSE-MNet root directory (according to installation instructions is ˜/WiSE-MNet-v1.1/) contains the
original Castalia source files and the extensions provided by WiSE-MNet . All WiSE-MNet files used to
define/redefine modules and to run simulations are contained in the wise/ folder in the root directory. The
native Castalia files can still be found in their original position (src/, and Simulations/). In this section,
we give an overview of the software organization in folders to help the reader browsing the source code.

The structure of the WiSE-MNet root directory is:
bin/ native Castalia python scripts
out/ output generated after compilation of WiSE-MNet files
src/ native Castalia NED/C++ sources
doc/ documentation of WiSE-MNet files
Simulation/ native Castalia simulation setups
wise/ WiSE-MNet NED/C++ sources and Simulation setups
makemake Script to configure the WiSE-MNet makefiles
makeclean Script to properly clean-up the WiSE-MNet build
... others

The WiSE-MNet simulation setup files are contained in the wise/Simulations/ sub-folder. The defini-
tions/redefinitions of the OMNeT++ modules (NED/C++ files) can be found in the wise/src/ sub-folder,
and in particular the wise/src/wise/ contains the main part of the software.

The structure of the wise/src/wise/ subtree is the following:
wise/src/wise/node/ Definition of the node’s components

/world/ Definition of the world’s elements (PhysicalProcess, terrain)
/wirelessChannel/ WirelessChannel and WiseDummyWirelssChannel
/gui/ simple GUI code
/utils/ Utilities (GMM, ParticleFilter, helper classes)

The structure of the wise/src/wise/node subtree is the following:
node/sensorManager/ Sensor Manager modules

/wiseEmptySensorManager Dummy sensor producing random numbers
/wiseCameraManager Camera Manager module

...
node/application/ Application modules

/wiseCameraApplication/ WiseCameraApplication base class
/wiseCameraSimplePeriodicTracker/ WiseCameraSimplePeriodicTracker base class
/wiseAppTest/ Example WiseAppTest module
/wiseCamera_test_FOV_2D/ Example wiseCamera_test_FOV_2D module
/wiseCameraAppTest/ Example WiseCameraAppTest module
/wiseCameraTrackerTest/ Example WiseCameraTrackerTest module
/wiseCameraMultiVideo/ Example WiseCameraMultiVideo module
/wiseCameraDPF/ WiseCameraDPF tracker
/wiseCameraKCF/ WiseCameraKCF tracker
/wiseCameraICF/ WiseCameraICF tracker
/wiseCameraICF-NN/ WiseCameraICF-NN tracker

...

2.4 Documentation
Doxygen style documentation has been created in HTML format for WiSE-MNet . This documentation
is available at doc/html/index.html and Figure 2.4 depicts an example for the module WiseCameraICF.
Additionally, a copy of the user manuals for Castalia, OpenCV and OMNeT++ is included in the directory
doc.

9

Figure 5: Example of documentation for module WiseCameraICF of WiSE-MNet .

2.5 Compatibility issues
WiSE-MNet has been successfully tested in various Linux systems: Ubuntu 12.04 LTS, Debian 7.5 and
Fedora 20-17. However, a compatibility issue has been detected for Fedora 17 regarding the drivers for the
video graphics card and the use of OpenCV within OMNeT++ , reporting the error X Error: BadWindow
(invalid Window parameter).

3 Overview
In this section, we present an overview of WiSE-MNet . The overall structure of the network and node model
is depicted in Figure 6. The structure of the node model contains the same modules as the Castalia simula-
tor (sensor, application, resource, communication and mobility). However, WiSE-MNet extends Castalia’s

10

Node (Wise) Node (Wise) Node (Wise)

Wireless Channel / Dummy Channel

WiseBasePhysicalProcess

Communication Module Manager
Mobility

Manager
Resource

WiseBaseApplication

WiseBaseSensorManager

to/from Wireless Channel to Wireless Channel

to/from other

to/from Physical Process
(WiseBasePhysicalProcess)

WiseBaseApplication

(a) Network Model (b) Node (Wise) Model

Figure 6: WiSE-MNet network and node model overview

Figure 7: Selected content of file wise/src/node/node.ned .

modules to provide functionalities for multimedia networks.
This node structure is described via the NED file node.ned available at the directory wise/src/node . The

description contains the parameters, the submodules, the gates to define connections from/to other modules
and the specific connections between modules. Figure 7 shows an extract of the file node.ned.

11

3.1 Generalized sensor data-types
The generalization of the sensor data-types is obtained by defining an abstract classWisePhysicalProcessMes-
sage that has to be derived to define any type of physical process information. Accordingly, other abstract
classes have been modified to redefine some of the original Castalia modules (see Figure 8). In particular:

• WiseBasePhysicalProcess, WiseBaseSensorManager and WiseBaseApplication that redefine respec-
tively the base classes for the physical process, the sensor manager and the application layer;

• WisePhysicalProcessMessage,WiseSensorManagerMessage andWiseApplicationPacket information ex-
change classes.

Node (Wise) Node (Wise) Node (Wise)

WisePhysicalProcessMessage

WiseBasePhysicalProcess

Wireless Channel

Communication Module Manager
Mobility

Manager
Resource

WiseBaseApplication

WiseBaseSensorManager

to/from Physical Process
(WiseBasePhysicalProcess)

to/from Wireless Channel to Wireless Channel

WiseBaseApplicationPacket

WiseSensorManagerMessage

WisePhysicalProcessMessage

(a) Network Model (b) Node (Wise) Model

Figure 8: Generic data-types (in red colour).

In the current distribution of WiSE-MNet , we included some concrete classes that have been used to
simulate distributed target tracking algorithms in simplified context. Figure 9 depicts the block diagram of
the modifications performed over the generalized sensor data-types. In the following sections, we describe
them focusing on the sensing, communication and processing operations.

3.2 Sensing
3.2.1 WiseMovingTarget

This module extends the WiseBasePhysicalProcess base class/module to implement a moving target in a 2D
ground plane. Targets are currently represented as (bounding) boxes and can move according to different
types of motion: linear, circular, linear-circular and random. This configuration of the 2D target behavior
can be established in the omnetpp.ini file (settings) of the defined simulation. An example is provided in
Figure 10.

3.2.2 WiseVideoFile

This module extends the WiseBasePhysicalProcess base class/module to implement the capture process of a
live video stream via files stored. The path to the video file must be defined in the *.ini file of the simulation

3.2.3 WiseCameraManager

This module extends the WiseBaseSensorManager module that implements the sensing logic of the node’s
camera. The module is strongly related to the type of physical process we are using. The WiseCameraMan-
ager has been designed to support different types of sensing through the WiseCameraHandler mechanism,
allowing the user to easily add different camera models (e.g. projection models). We currently support only
the WiseCameraDetections model, which is a simplified projection model that assumes a top-down facing
camera observing targets modeled according to the WiseMovingTarget module.

12

Communication Module

Wireless Channel

WiseBaseSensorManager
WiseSensorManagerMessage

WiseBasePhysicalProcess

WiseBaseApplication

WiseBaseApplicationPacket

WisePhysicalProcessMessage
WiseMovingTarget

WiseMovingTargetMessage

WiseCameraMessage

WiseCameraApplication

WiseCameraManager

Figure 9: WiSE-MNet concrete modules (in blue those modified to support the new datatypes).

Figure 10: Configuration of WiseMovingTarget in the omnetpp.ini file of the simulation.

13

Figure 11: Example of a packet format (msg file) in WiSE-MNet .

3.3 Communication
In WiSE-MNet , communication is done via packets whose format is encoded in *.msg files. These packets
depend on the developed application (e.g. the tracking algorithm) and contain all the variables and data
to be exchanged among nodes. Note that OMNeT++ automatically generates two files *_m.cc and *_m.h
for every defined packet when the compilation of the project starts. These two files should not be modified.
Figure 11 shows an example for defining a packet.

3.3.1 Idealistic communication mechanisms

There are two “idealistic” communication mechanisms that have been introduced: the WiseDummyWire-
lessChannel and the DirectApplicationMessage. The first one changes the network properties (to idealistic)
seemingly from the application point of view, the second one is rather a “magic” direct information exchange
channel. Figure 12 represents the two mechanisms.

WiseDummyWirelessChannel

Wireless Channel

WiseBaseApplication

Communication Module

WiseBaseApplication

Communication Module

Communication Module

WiseBaseApplication

Communication Module

WiseBaseApplication Direct Communication

Wireless Channel

(a) (b)

Figure 12: Idealistic communication through (a) WiseDummyWirelessChannel and (b) DirectApplication-
Message.

The WiseDummyWirelessChannel is a module that is used to bypass the Castalia communication stack
and wireless channel. This module allows to specify the node neighborhood and performs idealistic commu-
nication with no-delay or packet loss/corruption. The module is to be used alternatively to the Wireless-
Channel module proposed in Castalia. The interaction between application and communication module does
not change, the user can decide whether to change the network capability in the simulation configuration,
without changing the application logic. The WiseDummyWirelessChannel communication is selected in the
configuration file of the simulation (*.ini file). Figure 13 presents an example of this configuration.

14

Figure 13: Content of a omnetpp.ini file to select the dummy communication protocol.

The second mechanism provided for idealistic communication is the DirectApplicationMessage. This
is an OMNeT++ communication port that has been added to the application module so that two nodes’
application layers can interact directly without bypassing the communication modules. With this mechanism,
a part of the application can use a realistic (or idealistic) network communication (through either the
WirelessChannel or the WiseDummyWirelessChannel), while some part might assume ideal node-to-node
interaction.

3.3.2 Communication with other nodes

For communicating with other nodes, two mechanisms are provided for direct and neighbor data exchange.

Single nodes

For direct communication via the network or DirectApplicationMessages, the base class WiseBaseApplication
provides the required functionality via the functions toNetworkLayer and sendDirectApplicationMessage.
Both functions require to define the destination node and a packet (cPacket or WiseApplicationPacket)
which contains the information to exchange. Figure 14 provides the location and example of the function
toNetworkLayer.

Neighbors in the communication or vision graph

Additionally, default communication with all neighbor nodes is also provided in WiSE-MNet . Two types are
supported to communicate with nodes in the vision and communication graph. To determine the vision graph
(i.e. cameras sharing the Field of View), an initialization phase is performed via DirectApplicationMessages.
For the communication graph, nodes exchange test packets within their communication range to gather
information about the number of nodes that can be reached. This functionality is provided in the WiSE-
CameraSimplePeriodicTracker via the functions send_messageNeighboursCOM and send_messageNeighboursFOV
(see Figure 15).

15

(a)

(b)

Figure 14: (a) Location of functions for node-to-node communication in WiseBaseApplication class and (b)
usage example of toNetworkLayer function.

3.4 Processing
The processing is performed in the application layer of the node. Therefore, each node can implement a
different application layer or all the nodes can have the same processing routines. Note that this processing
layer does not only correspond to tracking algorithms as other distributed algorithms can be implemented.

The selection of the application layer is done in the omnet.ini file and its configurations depends on the
defined parameters for the layer. Figure 16 shows an example for the WiseCameraICF application.

3.4.1 Types

The processing in WiSE-MNet can be performed via two mechanisms:

• On demand via fromNetworkLayer function. This mechanism correspond to replies to received messages
from other network nodes.

• Periodically via timers using the timerFiredCallback function. This function corresponds to repetitive
tasks that the node has to perform (e.g. grab a video frame and analyze its content every second).
The timer type and alarm period have to be defined.

Figure 17 provides an example of these two functionalities.

3.4.2 Application Layer classes

The application module contains the algorithm of the distributed application. The user should typically
provide its own application module to implement a new distributed algorithm. The application module, de-
rived from WiseBaseApplication, interacts with a WiseBaseSensorManager and the Castalia communication
module in order to realize the logic of the distributed algorithm. In the current distribution of WiSE-MNet ,
we provided some application-layer classes according to the hierarchy shown in Figure 18.

16

Figure 15: Functions for graph-based communication in WiseCameraSimplePeriodicTracker .

Figure 16: Configuration of the application layer for WiseCameraICF (omnetpp.ini file).

17

(a)

(b)

Figure 17: Processing via (a) fromNetworkLayer function for network response and (b) timerFiredCallback
function for periodic processing.

WiseBaseApplication This is the base class for any application module in WiSE-MNet . The class
provides a mechanism to automatically calculate the set of radio neighbor nodes (a set of nodes that can be
reached by a give node with a single-hop wireless communication). The application WiseAppTest shows an
example of a class derived directly from this class.

WiseCameraApplication This is a base class to derive from when we are interested in creating an
application module that uses a WiseCameraManager. During the startup phase this class will query the
WiseCameraManager to collect information about the camera (e.g. FOV) and to create a list of overlapping-
FOV neighbor nodes. The node’s and other nodes’ camera information are available as protected member
respectively called camera_info and overlapping_fov_cameras. The application WiseCameraAppTest shows
an example of a class derived from WiseCameraApplication.

18

WiseCameraApplication

WiseBaseApplication

WiseCameraDPF

WiseCameraSimplePeriodicTracker

WiseCameraManager

Figure 18: Application class hierarchy

WiseCameraSimplePeriodicTracker This class is derived from WiseCameraApplication and is meant
to be used as a base class for periodic tracking algorithms based onWiseCameraApplication. This class defines
a set of callback-like functions that will be called at different steps of any periodic tracking algorithm. The
class defines some functions that will be called at startup (for initializations) and other functions that will
be periodically called when a new image is available. The application WiseCameraTrackerTest is a basic
example derived from WiseCameraSimplePeriodicTracker.

WiseCameraDPF It is a WiseCameraSimplePeriodicTracker that implements a distributed particle fil-
ter algorithm. The algorithm uses a sequential aggregation mechanism, exchanging the partial posterior
approximated with Gaussian Mixture Models. For more details the reader can refer to [3].

WiseCameraKCF It is a WiseCameraSimplePeriodicTracker that implements a distributed Kalman filter
algorithm. The algorithm uses a consensus mechanism, exchanging the final state among camera neighbors.
For more details the reader can refer to [4]

WiseCameraICF It is a WiseCameraSimplePeriodicTracker that implements a distributed Kalman filter
algorithm via its equivalent information matrix formulation. The algorithm uses a consensus mechanism,
exchanging the weighted final state among camera neighbors (information vector and matrix). For more
details the reader can refer to [1]

WiseCameraICF-NN It is a WiseCameraSimplePeriodicTracker that extends WiseCameraICF for
multiple targets. For the association stage, the algorithm uses a nearest-neighbor approach so tracks at one
time-step are linked with following one. For more details the reader can refer to [2]

3.5 Visualization
3.5.1 Simple GUI

We included a simple GUI that can be useful for testing and evaluation of distributed algorithm for WMSNs.
We currently used the GUI for a simple representation of a 2D-world (ground plane) where targets and sensor-
cameras can be displayed during the simulation (see Figure 19). The GUI could be further used to evaluate
distributed algorithms involving computer-vision processing.

19

Figure 19: Simple GUI for 2D-world scenarios

4 Application Examples
4.1 Test applications
4.1.1 WiseAppTest
The module is derived directly from the WiseBaseApplication base class. This is the simplest application
example and shows how to use the three basic elements of any distributed application for WMSNs: sensor
reading, network communication and time-triggered actions.

Source files: WiseAppTest.ned
WiseAppTest.h
WiseAppTest.cc

Run the example To try this example the simulation setup wise/Simulations/WiseSimpleApp_test/omentpp.ini
should be used. We assume to work in the home directory (type ’cd ˜’ to enter it) in a bash shell and to
have WiSE-MNet properly installed.

1. Enter the simulation directory:
$ cd WiSE -MNet -v1 .1/ wise/ Simulations / WiseSimpleApp_test /

2. Run the simulation using (WiSE-MNet extended) Castalia:
$ wise -mnet -c General

Running configuration 1/1

A myLog.txt will be created containing the application printouts.

4.1.2 WiseCameraAppTest
The module is derived from the WiseCameraApplication class. This example module is similar to the
WiseAppTest one. It shows a basic interaction with the WiseCameraManager (a camera-based sensor man-
ager that produces target detections). The example shows also a custom application message exchanged
among the nodes.

Source files: WiseCameraAppTest.ned
WiseCameraAppTest.h
WiseCameraAppTest.cc
WiseCameraAppTestPacket.msg

20

Run the example

To try this example the simulation setup wise/Simulations/WiseCamera_test/omentpp.ini should be
used. We assume to work in the home directory (type ’cd ˜’ to enter it) in a bash shell and to have
WiSE-MNet properly installed.

1. Enter the simulation directory:
$ cd WiSE -MNet -v1 .1/ wise/ Simulations / WiseCamera_test /

2. Run the simulation using (WiSE-MNet extended) Castalia:
$ wise -mnet -c General

Running configuration 1/1

A “WORLD” window will pop-up showing a simple 2D representation of the ground-plane world, the
cameras and the targets.

3. Press a button (on the WORLD window) to start the simulation. This will show an animation of the
three targets moving with different types of motion on the ground plane.

4. When the simulation is over, a myLog.txt will be created containing the application printouts.

4.1.3 WiseCameraTrackerTest
The module is derived from the WiseCameraSimplePeriodicTracker class. This example shows how the skele-
ton of a distributed target tracking application looks like when using the WiseCameraManager (producing
target detections) and adopting a classic periodic tracker approach.

Source files: WiseCameraTrackerTest.ned
WiseCameraTrackerTest.h
WiseCameraTrackerTest.cc
WiseCameraTrackerTestMessage.msg

Run the example

To try this example the simulation setup wise/Simulations/WiseTracker_test/omentpp.ini should be
used. We assume to work in the home directory (type ’cd ˜’ to enter it) in a bash shell and to have
WiSE-MNet properly installed.

1. Enter the simulation directory:
$ cd WiSE -MNet -v1 .1/ wise/ Simulations / WiseTracker_test /

2. Run the simulation using (WiSE-MNet extended) Castalia:
$ wise -mnet -c General

Running configuration 1/1

A “WORLD” window will pop-up showing a simple 2D representation of the ground-plane world, the
cameras and the targets.

3. Press a button (on the WORLD window) to start the simulation. This will show an animation of
two targets moving with different types of motion on the ground plane with 4 camera nodes (3 with
partially overlapping FOV).

4. When the simulation is over, a myLog.txt will be created containing the application printouts.

21

4.2 Single target tracking
4.2.1 WiseCameraKCF
This module implements a Distributed Kalman Filter (KCF) tracker based on a consensus mechanism to
exchange the Posterior (see Section 3).

Source files: WiseCameraKCF.ned
WiseCameraKCF.h
WiseCameraKCF.cc
WiseCameraKCF_utils.h
WiseCameraKCFMsg.msg

Run the example(s) A single simulation setups is provided to test this algorithm.

• wise/Simulations/WiseCameraKCF/omnetpp.ini:
shows an example with various camera nodes with partially overlapping FOV and two targets moving
inside a fully-overlapping region (all the cameras observing the target).

4.2.2 WiseCameraICF
This module implements a Distributed Kalman Filter (ICF) tracker based on a consensus mechanism to
exchange the Posterior and Observed data (see Section 3).

Source files: WiseCameraICF.ned
WiseCameraICF.h
WiseCameraICF.cc
WiseCameraICF_utils.h
WiseCameraICFMsg.msg

Run the example(s) A single simulation setups is provided to test this algorithm.

• wise/Simulations/WiseCameraICF/omnetpp.ini:
shows an example with various camera nodes with partially overlapping FOV and two targets moving
inside a fully-overlapping region (all the cameras observing the target).

4.2.3 WiseCameraDPF
This module implements a Distributed Particle Filter (DPF) tracker based on a sequential aggregation mech-
anism to exchange the (Partial) Posterior (see Section 3).

Source files: WiseCameraDPF.ned
WiseCameraDPF.h
WiseCameraDPF.cc
WiseCameraDPFMessage.msg
WiseCameraDPFMessage_custom.h

Run the example(s) Three different simulation setups have been provided to test this algorithm.

• wise/Simulations/WiseCameraDPF_example1/omnetpp.ini:
shows an example with 4 camera nodes with partially overlapping FOV and two targets moving inside
a fully-overlapping region (all the cameras observing the target).

• wise/Simulations/WiseCameraDPF_example2/omnetpp.ini:
4 cameras with partially- and non-overlapping FOV and a single target moving inside and outside the
FOVs.

22

• wise/Simulations/WiseCameraDPF_example3/omnetpp.ini:
20 cameras and a single moving target.

This simulation folders contain a Makefile to run and clean the simulation output. To run the simulation
enter the setup directory and type ’make’. Several files will be created after the simulation (with GUI
animation). The files ’dpf_results.txt’ and ’dpf_part_results.txt’ contain information respectively
about the tracking output and the intermediate tracking steps. To clean-up the simulation folder, type
’make clean’.

4.3 Multiple target tracking
4.3.1 WiseCameraICF-NN
This module implements a Distributed Kalman Filter (ICF-NN) tracker for multiple targets based on a
consensus mechanism to exchange the Posterior and Observed data (see Section 3). Multi-target association
is done via Nearest Neighbor algorithm.

Source files: WiseCameraICF-NN.ned
WiseCameraICF-NN.h
WiseCameraICF-NN.cc
WiseCameraICF-NN_utils.h
WiseCameraICF-NNMsg.msg

Run the example(s) A single simulation setups is provided to test this algorithm.

• wise/Simulations/WiseCameraICF-NN/omnetpp.ini:
shows an example with various camera nodes with partially overlapping FOV and two targets moving
inside a fully-overlapping region (all the cameras observing the target).

5 Developing your own application
For creating a new application, the WiseCameraSimplePeriodicTracker base class is provided which ex-
tends WiseBaseApplication. This class contains basic functions to initialize resources, send/receive messages
from/to network (or direct node-to-node communication) and handling of control messages. Prior to process
packets, this class discovers the communication graph for each node (i.e. neighbors nodes using network
communication).

The new distributed algorithm has to extend the WiseCameraSimplePeriodicTracker in order to use the
provided functionality. Please check the already defined classes WiseCameraICF or WiseCameraKCF for
examples of applications developed based on WiseCameraSimplePeriodicTracker.

5.1 Required files
At least, one file of the following types is required:

Source files: WiseCameraXXXX.ned Description of your application using NED language
WiseCameraXXXX.h Include file with the header of the application
WiseCameraXXXX.cc Source file with the code of the application
WiseCameraXXXMsg.msg Packet definition to exchange among nodes

Simulation files omnetXXX.ini Configuration of the simulation for the new application

5.2 Steps
The steps for developing a new application are:

23

Figure 20: Functions to be implement for developing a new application.

1. Define the new application as a new class (extending WiseBaseApplication for generic processing or
WiseCameraSimplePeriodicTracker for a distributed tracker).

2. Create the structures and classes to be used within your new application.

3. Implement the functions startupsand finishSpecific for the new application requirements.

4. Implement the function handleSensorReading to handle the data provided by the SensorManager.

5. Implement the functions fromNetworkLayer and handleDirectApplicationMessage to handle received
packets from, respectively the network and direct node-to-node communication.

6. Functions handleNetworkControlMessage, handleMacControlMessage and handleRadioControlMessage are
optional.

7. Implement the logic of your application via the processing functions (see Figure 20).

Note that the development of new application layers do not need to modify the sensing (WiseMovingTarget,
WiseVideoFile and WiseCameraManager) and communication (WiseDummyWirelessChannel and Wireless-
Channel) modules.

References
[1] J. Farrell A. Kamal and A. Roy-Chowdhury. Information weighted consensus filters and their application

in distributed camera networks. IEEE Transactions on Automatic Control, 58(12):3112–3125, Dec 2013.

[2] A. Kamal, J. Farrell, and A. Roy-chowdhury. Information consensus for distributed multi-target tracking.
In Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition, pages 2403–2410, Portland
(USA), 25-27 Jun. 2013.

[3] C. Nastasi and A. Cavallaro. Distributed target tracking under realistic network conditions. In Proc. of
Sensor Signal Processing for Defence (SSPD), pages 1–5, London (UK), 28-29 Sept. 2011.

24

[4] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In Proc. of the IEEE Int. Conf. on
Decision and Control, pages 5492–5498, San Diego (USA), 12-15 Dec. 2007.

25

	Introduction
	Installation
	Prerequisites
	Installing WiSE-MNet
	Software organization
	Documentation
	Compatibility issues

	Overview
	Generalized sensor data-types
	Sensing
	Communication
	Processing
	Visualization

	Application Examples
	Test applications
	Single target tracking
	Multiple target tracking

	Developing your own application
	Required files
	Steps

