
Single camera calibration for trajectory-based behavior analysis

N. Anjum and A. Cavallaro ∗

Multimedia and Vision Group
Queen Mary, University of London

Mile End Road, E1 4NS London (UK)

Abstract

Perspective deformations on the image plane make the anal-
ysis of object behaviors difficult in surveillance video. In
this paper, we improve the results of trajectory-based scene
analysis by using single camera calibration for perspective
rectification. First, the ground-plane view is estimated from
perspective images captured from a single camera. Next,
unsupervised fuzzy clustering is applied on the transformed
trajectories to group similar behaviors and to isolate out-
liers. We evaluate the proposed approach on real outdoor
surveillance scenarios with standard datasets and show that
perspective rectification improves the accuracy of the tra-
jectory clustering results.

1. Introduction
Camera calibration plays a fundamental role in single and
multi-camera surveillance, and when cameras are mounted
on unmanned aerial vehicles. In this case, the camera may
pitch, roll or rotate thus generating video footage with geo-
metrical distortions. Calibration in such scenarios is highly
desirable for consistent and uniform display to survey the
monitored scene. Basic calibration techniques require only
2-D point matches in multiple views and work for known
cameras parameters or 3-D knowledge of the scene [2, 3, 4].
However, in case of a single camera or a multi-camera net-
work with non-overlapping views, these approaches cannot
be used for camera calibration.

Camera calibration is particularly important for analyz-
ing trajectories generated by moving objects, such as vehi-
cles, people, faces, or other body parts (Fig 1). The spatio-
temporal information encapsulated in the trajectories pro-
vides high-level cues about objects behavior and object in-
teractions. Trajectory analysis also helps determining the
lane geometry and type in traffic surveillance and is used for
calibration in non-overlapping multi-camera networks [1].
Assuming a calibrated monocular camera that allows the
correspondence between the image plane and the top-view
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Figure 1: Examples of accumulated object trajectories on
the image plane from surveillance videos

reconstruction of the scene where pedestrians can be de-
tected using accumulated trajectory information [5]. In tra-
jectory analysis, geometric effects (perspective) cause de-
formations in the trajectory shape that degrade the overall
performance of the analysis algorithm.

In this paper, we improve scene analysis by trajectory
clustering using single camera calibration based on perspec-
tive rectification. We map the trajectories from the image
plane to the ground plane thus reducing the projection ef-
fects. Next, we use an unsupervised fuzzy clustering based
on Mean-shift to cluster the trajectories.

The remaining sections of this paper are organized as fol-
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lows: Section 2 discusses the perspective view rectification
method. Section 3 covers related work in the field of trajec-
tory modeling and clustering and the clustering technique.
The experimental results are discussed in Sec. 4. Finally, in
Sec. 5 we draw the conclusions.

2 Ground-plane calibration

Instead of assuming a monitored scene as a 3D Euclidean
space containing a complete metric structure, we can con-
sider it as being embedded in an affine or even projective
space [6]. Under this assumption, Liebowitz describes the
geometry, constraints and algorithmic implementation for
metric rectification of planes [7]. Let ℵr and ℵi represent
the real and the image plane, respectively. The mapping be-
tween the two planes is a general planar homography on the
form ℵi = H ℵr, with H a 3× 3 matrix of rank 3. This pro-
jective transformation can be visualized as a chain of trans-
formations on the form

H = χςρ, (1)

where χ represents the similarity transformation, ς repre-
sents the affine transformation, and ρ represents the pure
projective transformation. The first step is to determine the
transformation ρ defiend as

ρ =

⎛
⎝ 1 0 0

0 1 0
l1 l2 l3

⎞
⎠ , (2)

where l∞ = (l1, l2, l3)T is the vanishing line of the plane.
Parallel lines on the real-plane intersect at vanishing points
in the image plane on the vanishing line. In this work, one
vanishing point is calculated, as we assume that the van-
ishing line is perpendicular to the optical axis of the cam-
era, passing through the vanishing point. A set of real
plane parallel lines are identified by selected four points
{P1, . . . , P4} on the image plane. The lines are projected
to find the intersection or vanishing point for the lines. An
illustration of vanishing line construction is given in Fig. 2.
Once ρ is determined, the image can be affine-rectified and
affine properties can be measured.

To remove affine projection, the transformation ς can be
represented with two degree of freedoms:

ς =

⎛
⎝ 1

β −α
β 0

0 1 0
0 0 1

⎞
⎠ , (3)

where α and β represent the image as of the circular points
in the complex domain. The assumption is useful for in-
variant representation of the image to Euclidean transfor-
mation. Liebowitz [7] presented various procedures to solve
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Figure 2: Example of vanishing line construction. The blue
lines represent pairs of parallel lines intersecting on the van-
ishing points. The white line represents the vanishing line.
{S1, . . . , S4} and {R1, . . . , R3} are used for known angles
and length ratio selection

for the values of the two parameters. To generate constraint
circles from known angles and length ratios in the image,
we select four points {S1, . . . , S4} (square structure on the
real plane) to represent line segments with known length ra-
tio and three points {R1, . . . , R3} to represent right angle
formed in real scene. The mentioned two affine invariant
properties on the ground plane are sufficient to obtain the
values of α and β. Fig. 2 also shows the selected points for
square and right-angled structures.

The circle parameters with known angles are calculated
as

{
c =

(
a+b
2 , a−b

2 cotθ
)

r =
∣∣∣ a−b

2sin(θ)

∣∣∣ , (4)

where c is the 2D coordinate of the center of the constraint
circle, r is the radius of the constraint circle, a and b are
the directions of lines. In this work, θ = π

2 to make circle
center on α-axis only.

To calculate circle parameters with known length ratio,
let dlx and dly represent the horizontal and vertical direc-
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tions of a line l and let s be the known length ratio. Then,⎧⎨
⎩

c =
(

d1xd1y−s2d2xd2y

d2
1y−s2d2

2y
, 0

)
r =

∣∣∣ s(d2xd1y−d1xd2y)

d2
1y−s2d2

2y

∣∣∣ , (5)

The final values of α and β are calculated by finding a point
of intersection of both constraint circles. The affine removal
makes it possible to get the metric properties of the plane.
The final matrix in the decomposition is a similarity trans-
formation,

χ =
(

R t
0 1

)
, (6)

where R and t are rotation matrix and translation vector, re-
spectively. Since the similarity transformation changes the
coordinates linearly and does not play any role in the per-
spective view, in this work we have not removed this trans-
formation from the image. The steps for the perspective
rectification procedure can be summarized as follows:

• Select {P1, . . . , P4} to define the vanishing line;
{S1, . . . , S4} and {R1, . . . , R3} that define known
angle and length ratios within a real-world structure.
The structures may exist at different heights in the
scene.

• Calculate the inverse projection transformation (Eq. 2).

• Rectify the pure projection from the image by applying
ρ.

• Calculate the inverse affine transformation (Eq. 4 and
Eq. 5).

• Rectify the affine transformation from the image by
applying ς .

Sample rectified images transformed using this procedure
are shown in Fig. 3.

3 Trajectory Clustering

3.1 Related work

Hidden Markov Models (HMM) [13] and their variants
like parameterized-HMMs [14] and coupled-HMMs [15]
parameter space representations have been extensively ap-
plied to activity recognition based on trajectories. These
approaches are robust against dynamic time warping of
trajectory data, but the structures and probability distribu-
tions are highly domain dependent. Moreover, for com-
plex events the size of the parameter space may grow ex-
ponentially. Statistical model-based approach for motion
trajectory representation [10] are used when each trajectory
has different statistical properties for corresponding motion
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Figure 3: Sample rectified images using single camera cali-
bration

classes. However, they are sensitive to the initial choice of
model parameters that may lead to poor clustering results.
Unsupervised techniques based on Self-Organising Maps
(SOMs) [16] attempt to learn behavior patterns from sam-
ple trajectories. For real motion sequences, convergence of
these techniques is slow and the learning phase is usually
carried out offline due to the high dimensionality of the in-
put data space. Recently, Principal Component Analysis
(PCA) [9], Independent Component Analysis (ICA) [8] and
Discrete Fourier Transform (DFT) coefficients [16] have
been used to reduce the dimensionality of the input data to
enhance performance of video indexing and retrieval sys-
tems. Trajectory Directional Histograms (TDH) [17] is an-
other way to represent the statistical directional distribution,
and to complement the information from resampled trajec-
tories for vehicle motion trajectory clustering.

After transforming the trajectories into an appropriate
feature space, the next step is to organize the data into
clusters based on some homogeneity criteria (distance mea-
sure). The most common homogeneity criteria are con-
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ventional (normalized) distance measures. Mean, Maxi-
mum, Minimum, modified Hausdorff-type distances ([12])
and Longest Common Subsequences (LCSS) ([11]) are also
popular similarity measures for trajectory clustering.

3.2 Fuzzy Mean-Shift Clustering

We use the approach presented in Sec. 2 to map the motion
trajectories measured on the image plane into real-plane co-
ordinates to reduce perspective deformations. After recov-
ering the ground plane (by finding the projective and affine
inverse transformations) the motion trajectories of the ob-
jects are reprojected to their ground plane coordinates. Let
a trajectory Tj be represented as

Tj = {(xi
j , y

i
j); i = 1, . . . , Nj}, (7)

where (xi
j , y

i
j) is the estimated position of the target in the

ground plane and Ni is the number of trajectory points.
Each trajectory needs to be transformed in appropriate fea-
ture spaces before clustering. Let Fm(.) be a transformation
functions defined as Fm(T ) → Ψm, with m = 1, ..., M .
The transformation Fm(.) maps each trajectory to a d-
dimensional feature space, Ψj , with j = 1, ..., J . We use
Ψ1, the space spanned by the first two components of the
trajectory data obtained through PCA, and Ψ2, the space
spanned by the average velocity vector of each trajectory.
After transforming the trajectories into the feature spaces,
we analyze the trajectory data using Mean-shift in each
space to seek the local modes and generate the clusters.

Let χl ∈ Ψj ; l = 1, ..., L be a set of L data points. The
multivariate density estimator f̂(x) is defined as

f̂(x) =
1

Lhd

L∑
l=1

K

(
x − χl

h

)
, (8)

where h is the bandwidth and K(.) is a kernel, defined as

K(x) =
{

1
2Vd

(d + 2)(1 − xT x) if xT x < 1
0 otherwise

, (9)

with Vd representing the volume of a d-dimensional sphere.
The density gradient estimate of the kernel can be written
as

∇̂f(x) = ∇f̂(x) =
1

Lhd

L∑
l=1

∇K

(
x − χl

h

)
. (10)

Equation (10) can be re-written as

∇̂f(x) =
d + 2
hdVd

⎛
⎝ 1

Lc

∑
χl∈S(x)

(χl − x)

⎞
⎠ , (11)

where S(x) is a hypersphere of radius h, with volume hdVd,
centered in x and containing L data points. The Mean-shift
vector ζh(x) is defined as

ζh(x) =
1
Lc

∑
χl∈S(x)

(χl − x) , (12)

and, using Eq. (11), we can express ζh(x) as

ζh(x) =
hdVd

d + 2
∇̂f(x)

f̂(x)
. (13)

The output of the Mean-shift procedure is the set of data
points associated to each mode.

To refine the clustering results, we apply a Cluster Merg-
ing (CM ) procedure that fuses two adjacent clusters if the
density modes are sufficiently close. The proximity condi-
tion is defined by the 10% of the kernel bandwidth h.

As a result of this procedure, each trajectory may have a
different degree of belongingness to more than one cluster,
in multiple feature spaces. To obtain the final clustering,
each trajectory is assigned to a particular cluster if its be-
longiness is consistent across all feature spaces.

Let ξk and ξk+1 be the number of clusters in Ψk and
Ψk+1, with ξk ≤ ξk+1 (note that different feature spaces
may generate different numbers of clusters). Also, let C k

i ∈
Ψk and Ck+1

j ∈ Ψk+1 be clusters in the respective feature
spaces. The next step is to find the correspondence among
the clusters found in feature spaces. Let ν̂ be the index of
the cluster in Ψk+1 that has the maximum correspondence
with the ith cluster of Ψk, i.e.:

ν̂ = argmax(Ck
i ∩ Ck+1

j ), (14)

with j = 1, ..., ξk+1. Let the cluster Bi = Ck
i ∩ Ck+1

ν̂ con-
tain the overlapping elements in C k+1

ν̂ and Ck
i . If { Δ }q

i ,
with q = 1, 2, represents non-overlapping elements, then

Δ1
i = Ck

i − (Ck
i ∩ Ck+1

ν̂ ) (15)

and
Δ2

i = Ck+1
ν̂ − (Ck

i ∩ Ck+1
ν̂ ), (16)

with Δ1
i and Δ2

i forming new independent clusters. Finally,
CM is applied again to merge adjacent clusters based on
the proximity condition and the modes associated to too few
data points are considered outliers. The outlier condition is
set as the 5% of the maximum peak in the dataset.

Trajectories far from all clusters’ center or belonging to
small clusters are considered as generated by outlier object
behaviors and then removed.

4. Experimental results
We demonstrate the trajectory clustering results on two real
outdoor traffic scenes for both image and ground plane view
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Figure 4: Trajectory clustering and outlier detection on
SEQ1 (left) and on SEQ2 (right). (a) Original trajectories
on the image plane; (b) rectified trajectories; (c) clustered
trajectories on the ground plane; (d) clustering results back-
projected on the image plane; (e) outliers backprojected on
the image plane

of the trajectories. The following test sequences are used:
SEQ1, a highway surveillance sequence from the MPEG-
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Figure 5: Comparison of clustering results. (left) Clusters
obtained on the image plane without rectification; (right)
Clusters obtained on the ground plane and reprojected on
the image plane

7 dataset with 134 object trajectories, and SEQ2, a traffic
monitoring sequence from the VACE evaluation dataset with
159 trajectories [18]. Both sequences are captured at 25Hz.
The trajectories are the ground-truth trajectories generated
by the center points of the bounding box of each object.

We compare the trajectory clustering results obtained di-
rectly on the image plane using the method presented in
Sec. 3.2 with the results obtained with the same method on
the ground plane and reprojected back to the image plane
for visualization and comparison. Fig. 4 shows the trans-
formed trajectories along with the clustering results. The
corresponding image plane view of the results is also shown
with the detected outliers. It is possible to notice that in
both dataset outliers are identified that correspond either
to objects moving abnormally (e.g., an object crossing the
highway and an object moving backwards in SEQ1) or to
objects that have not completed their trajectory due to the
limited length of the test sequence. In both cases they rep-
resent unusual behaviors compared to the majority of other
objects.

Fig. 5 compares the clustering results obtained on the
image plane without rectification with the results obtained
after transformation on the ground plane and subsequent re-
projection on the image plane. This second approach suc-
ceeded in identifying the correct cluster memberships for
the trajectories and to overcome a few misclassification gen-
erated when the clustering was performed on the image
plane. The ground plane view also helped in identifying
outlier trajectories especially at the boundaries of the image
plane where they are strongly affected by the perspective
projection.

5. Conclusions
We have proposed a two-step approach for object trajecto-
ries analysis to compensate for the distortions introduced
by the perspective view in surveillance video. In first step,
the trajectories are mapped on the ground plane in order
to rectify the perspective view on image plane. The recti-
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fied trajectories are then analyzed by an unsupervised fuzzy
clustering algorithm based on Mean-Shift. The procedure is
validated on real outdoor traffic scenarios from standard test
sequences. Experiments indicate that the proposed method
increases the accuracy of the clustering results. Our current
work is focused on utilizing the ground plane object’s tra-
jectories information for non-overlapping multi-sensor cal-
ibration.
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