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Abstract

We introduce the use of dimensionality reduction for video event detection without explicitly using motion estimation or object

tracking. Raw data from video sequences are used to construct a low dimensional mapping representing the input frames. We compare

Principal Component Analysis, Multidimensional Scaling, Isomap, Maximum Variance Unfolding and Laplacian Eigenmaps and

implement an approach based on local, non-linear dimensionality reduction. We propose an approach with a graph based on the

similarity of frames and enriched with the temporal information from the sequence processed by Laplacian Eigenmaps. This makes

it possible to visualise the manifold of motion in the scene and to detect unusual events in a low dimensional space. We demonstrate

the approach on standard traffic surveillance test sequences.
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1. Introduction

Continuous remote monitoring for automated scene un-
derstanding is becoming an increasingly studied problem
for its expected benefits in applications such as proactive
telecare (Skubic, 2005), distributed surveillance (Valera
and Velastin, 2005) and, in general, ambient intelligence.
Such systems can provide real-time alarms and warnings
for security or medical personnel to act and intervene. In
the long term, statistical information gathered can prove
useful to redesign safety procedures and improve services.

Automatic video surveillance systems aim to provide re-
liable answers to questions, like how many and what kind
of objects are in the scene and what actions are performed.
An important goal for automated scene understanding is to
identify unusual events. An unusual event corresponds to a
set of subsequent frames where an action (motion) produces
a deviation from a known pattern. A simple taxonomy of
frameworks to detect unusual events could divide them into
on-line and off-line approaches. On-line approaches process
incoming streams of video. Where as off-line approaches
process the entire video sequence (batch processing). Off-
line (unusual) event detection is important for training data
preparation, sequence segmentation and video indexing.

Email addresses: ioannis.tziakos@elec.qmul.ac.uk (Ioannis
Tziakos), andrea.cavallaro@elec.qmul.ac.uk (Andrea Cavallaro),
li-qun.xu@bt.com (Li-Qun Xu).

In this paper we show that events can be visualised and
unusual events can be identified in low dimensional projec-
tions of the video frames. The proposed approach is based
only on the raw video frame data from the camera us-
ing a dimensionality reduction algorithm, Laplacian Eigen-
maps (Belkin and Niyogi, 2003), adapted to include tempo-
ral information. The main contribution of this work is that
we do not need object extraction and tracking. Moreover,
temporal information is incorporated in the neighbouring
graph of frames with an elegant neighbourhood threshold-
ing scheme.

The rest of the paper is organised as follows. Section 2
presents previous work on unusual event detection and Sec-
tion 3 describes the proposed approach. Experimental re-
sults are shown in Section 4. Finally, conclusions and future
work are described in Section 5.

2. Related Work

Event detection is mainly performed in two stages, fea-
ture extraction and event classification. The initial stage
uses either features: object based and non-object based.
The first consists in extracting features of moving objects
from the video sequence such as colour histograms or tra-
jectories. The second relies on video content descriptors like
ensemble of patches and frame similarity. The extracted
information is used in the final stage to classify the cur-
rent actions in the scene as usual or unusual using Hidden
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Markov Models (HMM), neural networks, graphs and spec-
tral clustering methods.

Several approaches address this challenge based on fea-
tures retrieved from an object tracking module. The trajec-
tories from the object tracker are used by the event detec-
tion module that categorises them into “usual” and “un-
usual” trajectories. A set of neural networks can be used to
achieve this goal by performing vector quantisation (VQ)
to define prototypes that approximate the spatial and tem-
poral distributions of the trajectories in sequence (Johnson
and Hogg, 1996) or in parallel (Mecocci et al., 2003). Af-
ter training, the new trajectories are characterised as un-
usual based on the learnt probability densities. A different
approach uses tree structures to represent trajectories (Pi-
ciarelli and Foresti, 2006). Each node describes a cluster of
similar partial paths. Unusual events are detected based on
statistical analysis of the path the object follows through
these trees. Hybrid approaches (Porikli and Haga, 2004),
use Hidden Markov Models (HMM) followed by spectral
clustering to classify patterns of trajectories and discover
unusual events based on conformity scores.

The above mentioned techniques are hindered by the per-
formance of the object detection and object tracking mod-
ules, thus being sensitive to scene changes (illumination
variations, rain and wind) that produce clutters which ul-
timately lead to false detection and misclassification. Nev-
ertheless, they have a real-time or close to real-time perfor-
mance.

Zhong et al. (2004) extract object features from video
segments in a high-dimensional space and co-embeds them
with prototypes in a low-dimensional space to discover pat-
terns of events in an off-line process. Zhang et al. (2005)
investigate the use of a semi-supervised iterative adapted
HMM to cluster data as common and uncommon. The
algorithm is tested both on video and (synthetic) audio
sequences. Xiang and Gong (2005) propose a relevance
learning algorithm to cluster features representing video
segments. Multi-observation HMMs are trained on these
classes to detect patterns of behaviour. Other approaches
detect foreground objects in the scene and convert them
to graph representations of actions with techniques similar
to those used in document analysis. For simple scenes in
a stationary indoor environment, Hamid et al. (2006) con-
vert moving object detections into event-motifs and clas-
sify actions as usual and unusual using spectral clustering
methods.

There are a few approaches that do not rely on object
features. Ensembles of patches, which provide a relaxed
similarity measure between actions in video sequence and
actions in a database are used for unusual event detec-
tion (Boiman and Irani, 2005). This is an on-line approach
that combines a space-time video descriptor with heuristic
database search techniques.

A summary of the methods described above is presented
in Table 1. The methods are grouped based on the features
used to detect unusual events and by the type of detection
algorithm used.

Table 1
Summary of Unusual event detection methods

Features Approach Reference

Trajectories

Neural Net
Johnson and Hogg (1996)

Mecocci et al. (2003)

HMM Porikli and Haga (2004)

Trees Piciarelli and Foresti (2006)

Objects

Spectral Zhong et al. (2004) *

HMM
Zhang et al. (2005)

Xiang and Gong (2005)

Graphs Hamid et al. (2006)

Patches Database Boiman and Irani (2005)

(*) Off-line algorithm

3. Proposed approach

Dimensionality reduction techniques applied directly to
video frames usually aim to create a shot summary of the
sequence for video clustering and indexing applications (Xu
and Luo, 2007; Li et al., 2006). Unlike commercial movies,
the sequences acquired from static CCTV cameras do not
present scene cuts and rapid changes in camera view point
or scenery. This generally results in a smooth change of
motion in the frames and as a consequence there exists a
smooth manifold of motion over time.

The novelty of this work is the use of manifold learning
algorithms, like Laplacian Eigenmaps, to discover the ab-
stract manifold of motion in the scene, without performing
object detection and tracking. We aim to acquire a sum-
mary of the video sequence in order to understand the ac-
tion patterns and thus detect those that correspond to in-
teresting events. In general, the motion in a video sequence
will lie close to a low dimensional non-linear manifold. If the
scene or region of interest (ROI) has the view of a single ob-
ject, then the manifold will describe its motion. If the scene
includes more than one object, then the discovered mani-
fold will approximate the general flow of movement/change
in the scene over time. With Laplacian Eigenmaps we un-
fold the manifold of motion in the scene and we expect to
generate a representation of the events and also provide
clues about unusual and uncommon patterns of frames.

3.1. Laplacian Eigenmaps

Graph dimensionality reduction algorithms rely on met-
rics defined on a neighbourhood graph. Based on these
metrics and under certain constraints, the mapping is pro-
duced by solving an eigenvalue problem to find the so-
lution that minimises the projection error. For example,
Isomap (Tenenbaum et al., 2000) is an extension to mul-
tidimensional Scaling (MDS) where the distance metric is
the geodesic distance defined on a neighbouring graph con-
structed from the input data. Using this metric, Isomap can
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achieve adequate results to learn (unfold) manifolds that
have a non-linear global structure. Another global dimen-
sionality reduction algorithm is Maximum Variance Un-
folding (MVU) (Weinberger and Saul, 2006) (previously
known as Semi-Definite Embedding), which solves an op-
timisation problem that maximises the distance between
the nodes in a neighbouring graph while preserving the dis-
tances along the edges and the angles between the edges.
This optimisation problem is solved using Semi-definite
Programming techniques.

Locally Linear Embedding (LLE) (Roweis and Saul,
2000) and Laplacian Eigenmaps (LE) (Belkin and Niyogi,
2003) use similar graphs to embed data accounting for
the local data structure around each point in the high di-
mensional space. Specifically, LE is based on the commute
times between the graph nodes, which takes into account
all the paths from one node to another, and not just the
shortest path, thus preserving local structure.

In the following, to improve readability of the descrip-
tion we consider the terms vector and node of a graph as
alternative representations of the same entity, i.e. the mul-
tivariate observation acquired from the sequence of frames.
Special notice is provided when these terms are not any
more compatible.

We also assume that the graph has the following char-
acteristics: (i) it is connected, which guarantees that there
is always a path (not necessarily a direct connection) to
travel between all the possible node pairs; (ii) it is undi-

rected, which guarantees that the representing matrix is
symmetric; (iii) the graph-matrix is semi-definite, so that
the eigenvalues are also composed of real positive values.

We exploit the non-linear manifold learning locality pre-
serving characteristics of LE. The LE-technique is an ap-
plication of spectral graph theory for the Graph Laplacian.
Given a set of N multivariate observations embedded as
vectors x1, x2, . . . , xN in R

l(l ≫ 1), a weighted graph G

is built over the endpoints of these vectors. It consists of
N nodes, one for each point and a set of edges connecting
neighbouring points. Consider the problem of mapping the
weighted graph G to a map of m dimensions so that con-
nected points stay as close as possible. If two points are
close enough, then there is an edge between them. Let Y =
{y1, y2, . . . , yN} be such a map. A reasonable criterion for
choosing a good map is to minimise the following objective
function:

∑

ij

∥

∥yi − yj

∥

∥

2
Wij with i, j = {1, . . . , N} (1)

where W is the weight matrix defined as follows:

Wij =







exp
−‖xi−xj‖

2

σ2 if xi, xj are connected,

0 otherwise.
(2)

The scale parameter σ is a free parameter that defines
the importance of the neighbouring points. The objective
function (Eq.(1)) with our choice of weights Wij incurs a
heavy penalty if neighbouring points xi, xj are mapped far

(a) Original (b) PCA (c) MDS

(d) Isomap (e) MVU (f) LE

Fig. 1. Examples of dimensionality reduction of the trefoil mani-
fold (a) using linear (b,c), global- nonlinear (d,e) and local-nonlinear
(f) dimensionality reduction algorithms

apart. It turns out that the minimisation problem reduces
to finding:

Y opt = argmin
Y

T
DY =I

tr(Y T LY )

where L = D − W is the Graph Laplacian matrix. D is
the diagonal weight matrix such that its entries are col-
umn (or row, since W is symmetric) sums of W , Dii =
∑

j W ij . Standard methods show that the solution is pro-
vided by the matrix of eigenvectors corresponding to the
lowest, non-zero, eigenvalues of the generalised eigenvalue
problem Ly = λDy.

The procedure to perform LE is formally stated below:
(i) Create the neighbouring graph matrix G from the

multidimensional vectors xi.
(ii) Compute the combinatorial graph Laplacian L.
(iii) Solve the generalised eigenvalue problem of the graph

Laplacian

Ly = λDy. (3)

(iv) Embed into m-dimensional space using the m eigen-
vectors in ascending order of eigenvalues, starting
from the first non-zero eigenvalue:

with λ0 = 0 < λ1 < λ2 < . . . < λm

xi → (y1(i), y2(i), . . . , ym(i))
(4)

An example of dimensionality reduction is presented
in Figure 1. The data consist of 539 points (Weinberger
and Saul, 2006) sampled from a trefoil knot in three di-
mensions. In this case, the underlying manifold is a one-
dimensional curve. Due to the fact that the loop is closed,
it can only be represented in a two-dimensional space (by
a two-dimensional closed loop). The application of LE to
this manifold produces the correct projection. The graph
was created by the k-nearest neighbours rules (two nearest
neighbours) and σ → ∞. The same graph was used for
Isomap and MVU, which also perform adequately. On
the other hand, PCA and MDS, fail to find the internal
structure of the data.
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Algorithm 1 minimum k-nearest neighbours
1: procedure Minknn(data) ⊲ Find connected graph of the data

with the minimum k

2: k ← 1 ⊲ Initial number of neighbours
3: g ← k-nn(data, k) ⊲ Create graph
4: while g 6= connected do ⊲ Loop while unconnected
5: k ← k + 1 ⊲ Increase neighbours
6: gprevious ← g ⊲ Save previous graph
7: g ← k-nn(data, k) ⊲ Create new graph
8: end while

9: g ← gprevious ⊲ Restore the last connected graph
10: return g ⊲ Return the graph
11: end procedure

3.2. Neighbour graphs

The neighbouring graph is crucial to the success of the
manifold learning process. The graph neighbour parame-
ters define what is considered “local”. An inappropriate se-
lection of these values produces a distorted embedding. In
general, a smaller number of neighbours better represents
the local structure. However, the solution becomes more
sensitive to the selected weighting scheme.

The most commonly used neighbouring graphs are the
k-nearest neighbours. The Laplacian Eigenmaps formali-
sation is not restricted to these type of relational graphs
only. Due to its simple definition and effective approxima-
tion of the manifold structure, they are usually preferred
over other more complex graphs, e.g. Delaunay Graphs.

The k-nearest neighbour graph is based on the rule that
each node is connected to at least k neighbouring (closest)
nodes sorted by a similarity measure, usually the Euclidean
distance between vectors. As a set of connection rules, node
i is connected to node j if node j is among the k closest
neighbours of i or node i is among the k closest neighbours
of j.

The main advantages are that it usually provides a con-
nected graph and low average number of connections per
node, which gives a very sparse matrix such that the numer-
ical eigensolver executes faster. To automatically choose
the number of neighbours we follow the iterative process
(Algorithm 1) that provides a connected graph with the
minimum possible k.

The graph creation completes with the selection of
weights. The simple scheme is to use a binary representa-
tion and to assign “1” where there is an edge between two
nodes and “0” otherwise. We can achieve this result by
setting σ → ∞ in Equation (2). In this way it preserves the
general information about the local structure in the prox-
imity of each vector, but discards the relative importance
between them. By setting the value of σ ∈ (0,∞), we can
scale the influence that neighbouring (connected) nodes
have among them. In theory, the latter weighting strategy
holds more information about the manifold. Both weight-
ing schemes produce similar results when the number of
nodes increases. However, the latter needs careful selection
of the scale parameter σ to avoid errors in the numerical
solution of the generalised eigenvalue problem. For our

Fig. 2. Block diagram of the proposed approach

work we use the binary scheme or the σ value selected as:

σ =

∑

ij Gij

Nv

, (5)

where Nv is the number of vertexes in the graph G.

3.3. Algorithmic steps

The proposed framework to visualise a video sequence
in a low dimensional space is shown in Figure 2. Given
a video sequence, we extract the raw image frames and
then convert each frame into a high-dimensional feature
vector. This is performed by concatenating each pixel of
the frame as a new dimension in the vector (i.e, a frame of
100x100 pixels will reshape to a vector of 10000 dimensions
if the original frame is grey-scale or 30000 dimensions if the
original is colour RGB). The above step results in a set of
vectors whose number is equal to the number of frames in
the sequence.

Laplacian Eigenmaps is applied to this set of vectors and
provides a mapping to a 3-dimensional space. The inter-
mediate steps are also presented in Figure 2. From left to
right, we create the neighbouring graph and then compute
the graph Laplacian. Finally we solve the generalised eigen-
value problem (Eq. (3)) to find the first three, smallest non-
zero eigenvalues and their corresponding eigenvectors. The
concluding step is to use these eigenvectors and create a
new set of endpoints in a three-dimensional space (Eq. (4)).
Each vector represents a frame in the original video se-
quence. This visualisation of reduced dimensionality pro-
vides us with cues about the characteristics of the entire
video sequence and an abstract description of the events.

3.4. Frame similarity

In order to construct the neighbouring graphs and to es-
tablish a similarity measure between the high-dimensional
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Fig. 3. A sample matrix of a graph constructed with the temporal
ε-graph rules. Nodes (frames) are divided into popular and lonely.
The regions of low connectivity (frames: 45-75 and 146-207) corre-
spond to frames with slow changing actions in the sequence

feature vectors (frames), we selected the squared Euclidean
distance. This index of similarity provides reasonable re-
sults without increasing the complexity of the overall algo-
rithm. Nevertheless a good amount of spatial information
is lost since the vector distance provides only an average
index of the total distortion, due to motion, between two
frames. This loss is acceptable since we are only interested
in an abstract description of the scene and do not aim to-
ward objects detection explicitly.

3.5. Temporal ε-graph

To further enhance the graph representation we add prior
knowledge about the video sequences that come from sta-
tionary surveillance cameras. Hence there is consistency
(similarity) between subsequent frames.

There are two ways to incorporate prior knowledge into
the graph. It is possible to add the information as new
dimension to the input vectors and weight accordingly to
increase or decrease the influence in the total similarity
measure. A fine example of such an approach can be found
in normalized cuts for image segmentation (Shi and Malik,
2000) where the spatial information is combined with the
colour information of the pixels for the graph generation.

There is also a more elegant and simpler way to achieve
the same effect without introducing another free parameter
to the framework. We can use the intra-frame relation to
threshold the local neighbourhood of the nodes. As a result,
the graph is formed in compliance to the following connec-
tion rules. Given a video sequence of N frames and their
conversion to N vectors, vector xi is always connected to
the next vector xi+1. For the rest of the vectors, xj , where
j 6= {i, (i + 1)}, we threshold the radius of allowed connec-
tions based on the rule d(xj , xi) ≤ d(xi+1, xi), where d is
the similarity measure.

This graph gives a strong affinity between subsequent
vectors. The nodes of the graph are divided into popular

and lonely nodes (Fig. 3). Frames nodes that have a large

Table 2
Data-set description

Seq.
Number

of
frames

ROI
Size

(pixels)
Events Frames

SEQA 451 54x51
Car passing 45-75

Man crossing 146-207

SEQB 6000 54x51

Car reversing 762-881

Car entering highway 1917-1961

Man crossing 3303-3353

SEQC 2900 54x51

Man crossing 211-261

Car crossing (synthetic) 415-496

Man crossing 2194-2246

SEQD 1057 54x51 Car using auxiliary lane 173-848

Table 3
Parameter variations used for LE in 3D projections

Set Graph Weight

LE-C k-nn binary

LE-CW k-nn Eq. (5)

LE-CT temporal binary

LE-CTW temporal Eq. (5)

difference from adjacent frames, have their neighbouring
threshold relaxed popular. Frames with small differences in
subsequent frames are hardly connected to any other nodes
lonely, except the previous and next frame. These rules will
make slow changing actions to be considered outliers and
thus stand out in the projection.

4. Experimental results

In this section we compare the results obtained with
state-of-the-art dimensionality reduction algorithms on the
highway surveillance videos from the MPEG-7 data-set.
These videos have a variety of moving vehicles (cars, vans
and trucks): Figure 4 shows samples from the region of in-
terests (ROIs), whereas Table 2 summarises the contents
of the sequences.

SEQA (Fig. 4: row 1) covers a small area of the scene, that
is comparable to the size of an object. SEQB (Fig. 4: row 2)
has three unusual events, namely a car reversing in the aux-
iliary lane, the same car moving forward in the auxiliary
lane and a man crossing the road. SEQC (Fig. 4: row 3)
contains two instances of the scene of a man crossing the
road. The third unusual event is generated with an artificial
scene of a car that is moving from left to right. The car has
been scaled to 70% of the original size to produce less dis-
tortion, thus creating a slow moving artefact scene similar
to the one of the pedestrian. Finally, SEQD (Fig. 4: row 4)
contains multiple objects including a car using the auxil-
iary lane before it returns to the highway.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(ℓ) (m) (n)

Fig. 4. SEQA: (a) Null event (frame 12) , (b) Car passing (frame 56)
and (c) man crossing (frame 175). SEQB: (d) Car reversing
(frame 808), (e) Blue van passing (frame 1348), (f) Man crossing
(frame 3323) and (g) Truck passing (frame 5357). SEQC: (h) Man
crossing (frame 235), (i) Car crossing “sideways” (frame 440), (j)
White van passing (frame 912) and (k) Man crossing (frame 2235).
SEQD: (l) Car passing (frame 1), (m) Car parked on the auxiliary
lane (frame 220) and (n) Car leaving the auxiliary lane (frame 795)

The projection results are compared with PCA, MDS
and Isomap along with variations (Table 3) of LE. For the
nearest neighbour graph in Isomap and MVU, we used the
same graph created as input to the LE-C variation (other
parameters are set to default values). MVU was used in
combination with the CSDP solver (Borchers, 1997). The
projections for SEQB and SEQC were acquired using the
alternative incremental approach of MVU. For PCA and
MDS we defined the number of dimensions to three.

The events are colour coded in all the plots. The events
of low interest are coloured with the same colour as the
null event frames, except in SEQA where for clarity both
motion actions (car and man) have different colouring.

4.1. Event projection

When the region of interest has comparable size to the
objects, then the projections are expected to hold infor-
mation about their actions. Sequence SEQA contains two
events. All projections (Fig. 5) are expected to hold mean-
ingful information about these events. The PCA projection
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Fig. 5. Comparison of dimensionality reduction algorithms applied
on the video sequence SEQA using colour frames

separates the two events. The man generates a small loop
inside the bigger loop of the car. MDS also provides a sim-
ilar embedding. Isomap results in an projection where dif-
ferent events are mapped in different loops of points. MVU
projects the two events in opposite directions but the path
that the objects follow in this space is not as clear as in the
case of the other algorithms. Changes in angle of the trace
of the man correspond to changes in the shape (size) of the
man while he runs across the highway.

When we compare with the LE variations (Fig. 6),
Isomap and LE-C generate projections with similar ap-
pearance. The events are placed in loops that start and
end in the null event. The weighted LE-WC variation
mapping has a topology similar to the PCA projection,
but reveals additional interesting features. The pedestrian
performs a periodical movement, while crossing the road
from right to left and periodically change his shape and
size, thus the sequential frames have maxima and minima
in distance between them. In this projection the periodic
movement of the man generates angles like in MVU and
density differences.

The LE embedding gives a more natural explanation of
the scene. If the temporal information (LE-CT) is included
in the graph, then the two events are better separated.
Since both events have a different scale of distances between
sequential frames, they are not connected by the temporal
ε-graph (Fig. 3). Additionally when the weighting changes
to the average scheme, LE-CTW, the car frames collapse
to a small area close to the background frame, while the
pedestrian frames generate a loop with density and angle
changes.

This ability of LE to separate the two events in the se-
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Fig. 6. Comparison of four LE variations on the video sequence
SEQA using colour frames

quence (the car and the man) justifies our choice in a man-
ifold learning technique to visualise the events on the video
sequence. Although the other dimensionality algorithms
perform well on this simple scenario, LE combines their dis-
tinct characterises under a single framework. It is true that
PCA (Fig. 5(a)) provides a descriptive summary of the ac-
tions in the video. Isomap while discovering the underlying
manifold forces each action to project in a distinct loop.
LE gives a fusion of these properties in various degrees de-
pending on the graph and weighting schemes used, from
the Isomap style (Fig. 6(a)) to the combination of PCA

and MVU style projection (Fig. 6(b)) and even further to
extreme and selective projections (Fig. 6(c and d)) using
the temporal ε-graph.

4.2. Unusual event separation

To further explore the advantages and limitations of LE
as a means to acquire frame projections for event detection,
we apply the LE variations to SEQB and SEQC.

Figure 7 compares the dimensionality reduction algo-
rithms against a longer and more complex video, SEQB.
The linear dimensionality reduction algorithms (PCA and
MDS) fail to understand the local nonlinear structure of
the frame manifold as they use only the variance or dis-
tance information in the high dimensional space. The inter-
nal structure is also not discovered by Isomap, while only
MVU is able to project the two highlighted events involing
the car away from the main null events.

When LE-C (Fig. 7(e)) is used, it is possible also to notice
the loops that describe the car (green and light blue dots)

but not the man crossing the road. The remaining frames
are distributed on a triangular surface. The lower corner
holds the frames that show a car (or truck) in the centre of
the frame. The two top corners correspond to frames un-
der different illumination conditions and some small move-
ment of the camera. The area in between is occupied by the
frames where the cars move in or move out of the view. The
trace associated with each vehicle follows similar path: It
starts at the top corner, moves down to the low corner and
returns to the original position when it is out of the view.

The temporal ε-graph embedding (Fig. 7(f)) changes
the mapping in a drastic way. This behaviour is expected
since the temporal ε-graph creation rules penalise only slow
changing sequential frames. Both the man and the car in
reverse events are slow, thus in the graph structure they
are lonely nodes and embedded as outliers. But when the
car is moving forward the movement is not slow and there
are multiple objects in the scene. The average distortion of
sequential frames is large and the nodes are popular, which
results in high connectivity.

SEQC is another example that demonstrates the effect of
the temporal ε-graph for slow changing scenes. In this case
the sequence that combines an artificial and two real-life
unusual events. The alternative projections (PCA, MDS,
Isomap) cannot provide any visual clues about the high-
lighted events, while LE-C projection (Fig. 8(e)) shows the
highlighted events in separate loops, with the loop of the
man more easily identified. Since the sequence has usual
events similar to SEQB, there are features that are present
also in Figure 7(e and f). The usual events are visualised
in a triangular shaped surface and the unusual events form
a loop moving out of the surface. A large portion of this
loop is still is very close to the cloud of no event frames.
MVU provides a clearer distinction for the events. Clearly
the “car crossing“ event is easier to spot.

The results are improved by applying LE-CT (Fig. 8(e)).
The two scenes of the man crossing the highway are mapped
together, but now the points follow a straight line. The
same applies to the synthetic event. Although these events
are both slow, they are not embedded close to each other in
the embedded space. In fact, the difference between them
is large enough so that the frames are not connected in the
graph. The LE-CT variation projects slow changing scenes
into lonely points in the projections, but those points are
not going to be close (Euclidean distance) to each other,
unless they are also similar.

4.3. Objective evaluation

The existence of visible structures in the projections, as
discussed in the previous subsection, provides us with clues
about the characteristics of the motion/action in the scene.
Another property is the separation of the highlighted events
from the no event set. This can be evaluated by calculating
the average squared Mahalanobis distance of these frames
against the no event frames in the projection.
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Fig. 7. Comparison of projections for the video sequence SEQB, using colour frames

Given the projections Y = {y1, y2, . . . , yN} of the N
frame and the set S of the “no-event” frames, we compute
the distance Di of every highlighted frame yi /∈ S as

Di = (yi − µ)T P−1(yi − µ), (6)

where P is the covariancematrix of S in the projected space
and µ is the corresponding mean. We compute the aver-
age frame distance of each highlighted event from S. The
quality score is computed as logarithm of the distance, so
that negative values denote a poor separation (e.g., when
interesting event frames are inside the cloud of the no event

frames). Values close to zero account for event projections
that have a good amount of overlapping with the no event

set. Finally, values greater that zero correspond to projec-
tions where the highlighted events are further away from
the no event frames. Score values larger than 1.50 are usu-
ally enough to visually identify the event in the projections.

Table 4 reports the event separation scores of the projec-
tions (PCA, MDS, Isomap, MVU, LE-C and LE-CT) for
sequences SEQA, SEQB and SEQC. Note that since for LE-
CW and LE-CTW the application of the weighting scheme
results in an unstable solution of the eigenvalue problem
for the longer sequences, we do not report their results. We
observe that the projections of SEQA (Fig. 5 and 6) are
equivalent in terms of separating the selected events, with
the exception of LE-CT, which outperforms the other ap-
proaches achieving a score of 9.58 for the separation of the

Table 4
Separation scores for projections on SEQA, SEQB and SEQC

Algorithm

SEQA SEQB SEQC

man

crossing

car

passing

man

crossing

car

reversing

car

entering

highway

man

crossing

car

crossing

PCA 3.31 4.46 −0.20 −0.93 −0.40 −0.25 0.45

MDS 3.31 4.46 −0.20 −0.93 −0.40 −0.25 0.45

Isomap 2.45 4.15 −0.98 −0.52 −0.46 0.16 0.57

MVU 4.62 4.19 0.57 2.50 2.44 0.51 1.75

LE-C 4.44 3.42 1.15 4.48 4.14 0.43 0.79

LE-CT 9.58 4.13 6.38 7.32 −0.39 2.62 8.05

“man crossing”. In SEQB, PCA, MDS and Isomap give
poor results (below zero), while MVU is the only alterna-
tive dimensionality reduction algorithm that has positive
scores for this sequence (good scores for the events involv-
ing the car). On the other hand, LE-C performs well (bet-
ter than MVU) for the events with the car in the scene but
the score for the man event is still low (i.e., it will not be
easily visible). Similarly LE-CT has good results for two
out of three uncommon events in the sequence. The last
set of scores describe the projections of SEQC. In this case,
PCA and MDS fail to provide good scores, especially for
the synthetic event. Isomap improves the results by having
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Fig. 8. Comparison of projections for the video sequence SEQC, using colour frames

a positive score for that event. MVU performs better and
achives score higher that LE-C. A large part of the traces
of the projected events is very close to the no event frames,
a fact that can be verified also by the visual inspection of
the LE-C projection. Nevertheless LE-CT provides the best
results for both events in this sequence.

To summarize, the objective evaluation (Table 4) con-
firms that Laplacian Eigenmaps is more suitable for this ap-
plication and can provide clues about the interesting events
in the sequence, as previously discussed based on visual
evaluation of the projections.

4.4. Multiple objects in the ROI

When the scene involves several moving objects we ex-
pect the produced three-dimensional visualisation to pro-
vide an abstract summary of the total motion flow and not
that of individual objects. SEQD presents such a case. Ev-
ery movement in the video creates a new path in the pro-
jected space (Fig. 9(a)). These paths cross each other in
various places corresponding to frames with similar con-
tent.

When the weighted temporal ε-graph (LE-CTW) is used,
the complete sequence is projected as one loop (Fig. 9(b)).
The successive events of the car passing appear in the se-
quence one after the other without null event frames to
separate them. Each moving object generates a spatio-
temporal difference in the sequential frames. Since neigh-
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Fig. 9. Comparison of LE-C and LE-CTW on a multiple object scene
(SEQD)

bouring graphs, k-nearest neighbours and ε-nearest neigh-
bours are created based on the total Euclidean distance
between frames, they provide a manifold of this index.
The projection improves by adding the temporal informa-
tion into the graph construction phase. The slow chang-
ing frames form a separate chain that is mapped as a loop
or a line. The popular, fast changing frames have more
nodes connected to them, since they enjoy a relaxed (larger)
threshold. This is the effect of the dynamic threshold im-
posed by the temporal ε-graph rules.

The forced temporal connection leads to concatenating
the events together. Thus we are able to visualise the repet-
itive nature of the general motion. The points of higher den-
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sity correspond to the frames where a car is far and moves
slowly out of the scene. The frames where a new car appears
in the scene are placed on the sparse areas of the loop.

5. Conclusions and Future work

We proposed an unsupervised framework based on LE
to produce a three dimensional visualisation of surveillance
video sequences using dimensionality reduction. The pro-
posed framework enables the separation of actions with-
out the need of an object detector or object tracker. We
compared the performance of five standard dimensional-
ity reduction approaches using visually inspection as well
as an objective score on a standard Highway surveillance
data-set. We showed that the proposed approach based on
LE is able to map the video sequence in a low-dimensional
space such that the general characteristics of motion can be
preserved. The framework is also capable to provide cues
about the existence of statistically unusual events in the se-
quence and outperforms alternative dimensionality reduc-
tion algorithms in this task. Furthermore LE was naturally
extended to take into account temporal information, thus
giving improved results in the visualisations and the scores.

Our future work includes the exploration of more elab-
orate graph rules to apply in more complex scenarios and
the definition of an unsupervised algorithm to analyse the
projected mapping.
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