ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), COMO, ITALY, 30 AUGUST - 02 SEPTEMBER 2009

Localization of distributed wireless cameras

Paper ID: 108

Abstract— Cooperative cameras enable monitoring wide areas
and detecting actions and events on a large scale. Due to hardware
advancements and economic factors, distributed networks are
becoming widely used for a variety of applications ranging
from traffic monitoring and surveillance in shopping malls to
sports coverage. However, the localization of a large number of
cameras in a wide area is not a trivial task. Manual methods
are time consuming and can be inaccurate over time. For this
reason, we propose an algorithm that uses measurements from
the observed objects to perform pair-wise automatic localization
of a distributed set of cameras with non-overlapping fields of
view. We use the temporal information derived from trajectory
information to estimate unobserved trajectory segments, which
are then used to estimate the position the cameras on a common
ground plane. Furthermore, the exit-entrance direction of the
moving objects is used to estimate the relative orientation of
adjacent cameras. We demonstrate the algorithm on a distributed
network of simulated cameras with wireless communication and
compare it with state-of-the-art approaches. The abstract goes
here.

I. INTRODUCTION

Nowadays the deployment of a camera network is essential
in many applications such as traffic monitoring, surveillance
and sports coverage. Camera network provides substantial
advantages over a single camera e.g., reduction in occlusions,
fewer miss detections and less number of false negative/
positive alarms. However, the use of multiple cameras is not a
trivial task. It requires the internal calibration of each camera
as well as the external calibration (localization) with other
cameras. More often, the high density of cameras and com-
plexity of the environment makes it difficult or expensive to
employ manual or GPS-based calibration methods. Therefore,
a mechanism is needed that can calibrate the network of the
cameras automatically using the information observed in each
camera.

Furthermore, hardware advancements and high level soft-
ware support have enabled the use of distributed wireless
camera networks unprecidently at large scale. Each node
contains signal processing and communication capabilities.
However, these networks work on limited energy and memory
resources. This forces the calibration process had to be enough
accurate as well as resource efficient.

In this paper, we present a pair-wise camera localization al-
gorithm using trajectory estimation (CLUTE) for a distributed
wireless network. The algorithm addresses the problem of
recovering the relative position and orientation of multiple
cameras whose intrinsic parameters are known. CLUTE uses
temporal information derived from the available trajectory
information to estimate the unobserved trajectory segments, in
case of cameras with non-overlapping fields-of-view and then
used it to position the cameras on a common plane. The object

motion information is used to estimate the relative orientation
of the cameras. The algorithm is demonstrated on network
of distributed cameras simulated in Network Simulator (NS2)
and is compared its performance with a centralized approach.

This paper is organized as follows: Sec. II reviews related
work in the field of sensor localization. Sec. III formalizes
the problem under consideration. Sec. IV provides detailed
description of CLUTE. Sec. V demonstrates the results and
analysis of CLUTE on real and simulated data and also
compares its performance with two state-of-the-art techniques.
Lastly, Sec. VI draws the conclusions.

II. RELATED WORK

Localization of a sensor network has gained a considerable
attention in recent years [?], [?]. The algorithms presented
in this area can broadly be classified into centralized and
distributed. Centralized algorithms ([?], [?], [?], [?], [?]) pri-
marily works on single camera framework, where observations
from each camera is stored on a server (e.g., base station),
which localize the entire network in accordance with the
coordinates of the reference camera. On the other hand, in
distributed algorithms ([?], [?], [?], [?], [?]) each camera
adjusts itself in accordance with information received from
its neighbors. The details of each category of algorithms are
given below.

Fisher et al. [?] presented a centralized algorithm, which
exploits the moving scene features in the near and far fields to
calibrate the cameras. A strong assumption is made that object
motions are deterministic. Distant objects (e.g., stars) enable
the recovery of the orientation (rotation) of the cameras, while
close objects (e.g., people or cars) enable the recovery of the
translation of the cameras up to a scale factor. Taylor et al. [?]
used an iterative numerical approach network localization.
Each iteration contributes to the reduction of the residual errors
using the Newton Raphson’s method. Although the simplicity
of this approach is a key advantage, however, it heavily
depends upon the proper initialization and increment rate to
find the global minimum. Rahimi et al. [?] used the maximum
a posterior (MAP) framework for simultaneous calibration and
tracking. A network of non-overlapping cameras is localized
by using the motion of a target. The MAP estimates for the
calibration parameters are calculated using the trajectory prior
(i.e., the motion model) and the likelihood function, which
are constructed from the available observations. The MAP
approach is highly computationally complex. Furthermore, it
is also possible that the solution may place the target inside
the field of view of another sensor for which no observations
are available at that particular time instance. Javed et al. [?]
use the concept of velocity extrapolation to project the field

ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), COMO, ITALY, 30 AUGUST - 02 SEPTEMBER 2009

Field of view

Unobserved trajectory

Fig. 1. Example of a scenario with a wireless camera networ alongwith the
visual graph and communication graph.

of view of one camera onto the other. The projection is then
used as a tool to find the calibration parameters. However, the
approach assumes that people walk in a straight line in the
unobserved regions. Finally, Junejo et al. [?] use vanishing
points to find the relative orientation of the cameras whose
positions are already known.

Mantzel et al. [?] presented a localization approach of
distributed camera network with partially overlapping fields-
of-view. Several images from each camera are communicated
across the entire network to learn the scene representation. Ge-
ometrical calibration is then employed to localize the network.
The approach is simplistic, though, requires considerable re-
sources for understanding the scene. Compressed images may
make the approach more resource efficient. Alternatively, a
moving target can be used to learn the scene with less resource
requirements as used in [?] and [?]. In these approaches few
cameras are considered as anchors and the rest are adjusted
in the framework of the anchors. More recently, the approach
presented by Medeiros et al. [?] works in cluster-based way
using the moving object. Object tracks observed in overlapping
regions are used to calculate the homography matrix for
camera localization. However, these approaches are restricted
to the network of cameras with overlapping fields-of-view.

III. PROBLEM FORMULATION

Let v = {C',C?,..,CN} be a distributed network of
N wireless cameras with non-overlapping fields-of-view. Let
Ti(m) = (x}(m),yi(m)) be an observation of a moving
object O* within C?. Also, let each camera C?, with known
field-of-view, provide a vertical top-down view of the scene
(i.e., its optical axis is perpendicular to the ground plane or

t=tg t=to+r

Fig. 2. An illustration of broadcasting information about object’s pocession.

top-down view is approximated from the image plane view
using [?]). Under this assumption, the number of parameters
for the localization of each camera C’ is reduced to two,
namely the camera position, P* = (pl,,p!,), and the rotation
angle, ¢'. The rotation angle is the rotation of the camera
about its optical axis measured with respect to the horizontal
axis of the global ground plane. To summarize, the unknown
parameters O for camera C? are

O’ = [pL.pl, ¢']- (1)

Each camera contains a Nx/Nx3 table with overall inforamtion
of the configuration of the network.

A pair of cameras is considered adjacent if O object exits
from the field-of-view of C* and enters into the field-of-view
of C7, where j =i + 1 and 1 # 0, without being observed by
another camera. Figure 2 shows an example where an object
initially observed by C?, which propogates the information of
holding the target across the network. After T time, the object
observed by C7, which again propogates the information
of seeing the object. Since no other camera propogates the
information about holding the object. C* and C7 becomes the
adjacent cameras.

If O* at position (z%(m),y(m)) exits from C® at instant
m and then enters into the field-of-view of C” at time m + 7,
where 7 > 0, then T} represents the unoberserved trajectory
segment between the cameras from m to m + 7. A complete
trajectory T}, belong to Oy, is thus formed by integrating all
the observed trajectory segment(s) and the estimated trajectory
segment(s) in unobserved regions i.e.,

Ns
Ty = |J (T8 1),)
i=1
where (C?,C7) € ¢, C1p and Ny < N.
Once T}, is estimated, we place C7 on the global ground
plane with respect to C* according to the translation vector
D%, which is calculated as:

D* = (Tj(m) = Ty/(m + 7)), 3)

where t and ¢+ 7 are the instants when OF exits from C* and
enters into the field-of-view of C7.

ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), COMO, ITALY, 30 AUGUST - 02 SEPTEMBER 2009

Algorithm 1 One iteration of CLUTE incorporates 7} and Tg
to place C* and C7.

= (2t (m),yi(m)) : 0 <m < M}; T}Z = (2t (n),yi(n)) : M{+7 <
n < MIZC ;
Quv, Wy Error covariannces; K: Kalman gain; t. € Tg : instant of abrupt
change
(P Py» ¢)=(0,0,0)
1: Preprocessmg wavelet decomposition

2: Q(TZ)

3: = G(T?)

4: Estlmate unogserved trajectory segment

50 K(m) = Qu(m — 1)LILTQu(m — 1)L + Wy (m)] !

6: Forward estimation

7: Tz(m +1) = Tl(m) + K(m)(TJ (m) — (LTé(m))) m =0 <
m < M7 + 7

8: Backward estimation »

9: T (m) =T} (m+1)+ K(m+1)(T}(m+1) — (LT] (m + 1))):
m = MJ >m > M;

10: Fusion

11: Ti‘(m) = a(’flz)(m)+ﬁ(’fg)(m) m=0<m< M+ 7 a+p=1
12: Estimate: relative position and orientation)

13: 0 D" = (2 (M, +7) — 2 (My), yi (M, +7) — i (M)

14 (pz.py)= (pz + Dzmy + Dy)

15: ¢*I = arg Inax L(T} (te), TJ (te)|0: 0 = —m,...,+m)
. i = COS(¢”) —sin(¢")
16: R = (sin(¢ph7) cos(¢h7))

Furthermore, if (xg)(m +7), I(:)(m + 7)) and (& (m +

T), yk “(m+7)) are the observed and estimated object positions
in C7 on ground plane, then the orientation R%7 of CV with
respect to C* is calculated as:

i _ [cos(¢h7) —sin(¢™T)
R = (sin(¢™) cos(¢p™7)) ’ @)

where rotation angle ¢%7 is calculated from the observed and
estimated object’s positions.

IV. PROPOSED APPROACH

To localize network of the cameras in the environment, we
approximate the relative positions of the adjacent cameras
using estimated trajectory segments in unobserved regions.
If the object OF is observed by C* at t = 0, O broadcast
a flag informing the rest of the cameras that the object is
being seen by it. If ¢ = M object exits from C?, the camera
propogates this information as well and waits for it’s adjacent
camera’s flag. Suppose at t = M} +7 C7 observes the object, it
also propagates this information across the network. C keeps
recording the position of the object till the point of exit. C7
notify the exit of the object to the entire network. C* and
C7 share the trajectory segments observed in each camera’s
field-of-view to estimate the target’s positions in unobserved
region and then to find the relative position and orientation.
The details of the process is given in subsequent sections.

A. Trajectory estimation in unobserved regions

In order to estimate the objects’ positions in unobserved
regions using the observations from each camera, we first

smooth the trajectory segments as
T} = G(T). 5)

where, G(.) smooths T,i using multi-resolution wavelet de-
composition method [?]. The next step is to reconstruct
the trajectories across the unobserved regions. Suppose, the
motion model of an object (Oy,) is:

Tii(m) = H(Tji(m — 1), v(m — 1)), (6)

where, v is the noise with covariance Q.. For trajectory
estimation between two non- overlapplng cameras, we estimate
the sequence of positions T} (m + 1),.. T (m + 7) with
m is the last state known in C? and (m + T) is the first
state known in CY. There exists a function H; for which
Ti(m) = Hp(Tj(m — 1),v(m — 1)). This function is the
forward model and it computes the current state of the object
given the previous state. Similarly, 7} (m) = Hy(T) (m +
1),v(m + 1)) is the current state of the object given the next
state information. We have approximated the state estimates
using linear regression model of order 2, assuming that this
order is sufficiently model the object’s motion behavior. The
next step is to combine 77 (k) and Tk] (m) to have an estimated
current state 7}(m). A viable solution is to take weighted
average i.e.,

T (m) = a(m)Ti(m) + B(m) T},

where a(m) = m/m+7:m =1,...m+ 7 and 3(m) =
1 — a(m). This weighting scheme gives higher weights to
Tji(m) at the beginning of estimated trajectory and 77 (m)
at the end of the estimated trajectory. The begin state (exit
point in C?) and end state (entrance point in C7) are assumed
to be with minimum error. However, the implicit underlying
assumption is that both trajectories should equally contribute
to the reconstructed trajectory.

For short unobserved trajectory it is very likely that this
assumption is true. For longer unobserved trajectories it be-
comes more likely that one of the two trajectories performs
much better than the other, so that an equal contribution will
not result in the best possible reconstruction. To handle this,
we use the Kalman filter to correct the forward and backward
trajectories before they are combined. The filter is a two step
approach. It propagates the state using a prediction and an
update step. The state prediction equation (also see Eq. 6) and
error covariance matrix are defined as

T (m +1) = H(T{(m), v(m)) .
— ad ’ ()

Qu(m +1) = Q(Ty(m))
where T,i() is state estimate. H translates the object’s current
state to the next state and Q(.) propagates the error covariance

to next state given the current state estimate. The filter is
updated by computing the Kalman gain, K (m), as

K(m) = Qu(m — 1)LILYQ,(m — 1)L + W,(m)]™!, (9)

where W,, is the covariance of the observation noise and L
maps the state vector with the measurements. The object state

(m), (7

ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), COMO, ITALY, 30 AUGUST - 02 SEPTEMBER 2009

Fig. 3. An example of a comparison between trajectory estimation with
and without Kalman filter corrections. Green (solid) line shows the original
trajectory. Blue are the forward and backward estimations without corrections
and Red are the forward and backward estimations with corrections. Two
trajectories at the bottom show the forward estimation results. Two trajectories
at top show the backward estimation results. Arrow head shows the direction
of motion.

is updated using

{ Ti(m+1) =Ty (m) + K(m)(Z(m) — (LT}(m)))
Qu(m +1) =[I — K(m)L|Q,(m) ’

(10)
where Z is the observational model. Here, we have replaced
Z(m) with T,ﬂ in case of forward estimation i.e.,

Ti(m+1) = Ti(m) + K(m)(TL(m) — (LTi(m))), (11)

This modification ensures that object will be in correct state at
m+7 in accordance with the observation in C”. Similarly, for
backward estimation, we replace Z(m) in Eq. 10 with T} (m)
ie.,

Ti(m) = T (m +1) + K (m +1)(Ti(m +1)
—(LTi(m+1))).

12)

Equation 13 ensures that estimation results in correct object’s
state at instant m in accordance with observation in C°.
Figure 3 shows an example of a comparison between trajectory
estimation with and without Kalman filter corrections. From
the figure it is visible that without Kalman corrections, both
forward and backward estimates end far from the original
state of the object in cameras’ field-of-views. In this particular
example, the forward estimation performs poorer than the
backward. However, the corrected Kalman filtering method
ensures that both forward and backward estimations result
in correct objects’ states. Equation 7 is then applied on the
corrected forward and backward estimated trajectory segments
to have a fused reconstructed trajectory segment.

B. Orientation estimation

The relative orientation (¢*7) between two adjacent cameras
C' and C7 is computed by calculating the angle between
the observed object position (27,47) and the corresponding
estimated object position (%, %) in camera C7 as described
in Sec. 2?.

¢ = cos™! ((13)

However for stable estimation, we calculate the direction of
motion for the entire trajectory segment as

C=tan YT/ (m+7+8)/T)(m+71+5-1):s=1,... M. (14)

To find the instant of change, we use

t:{m+T+8 if |C(s)—C(s+1)|>¢

m+T+ M,i otherwise
We extrapolate further the trajectory estimate from instant m-+
T to t.. We rotate the observed chunk to all possible angles
between —7 and 47 with an increment of 7/180 (See Fig. ??)
and then the final relative orientation (¢*7) between cameras
C" and C7 is calculated as

¢" = argmax L(T!(t.), T)(t)|0: 0 = —=, ..., +7),
0

4 ' (16)
where Tg (t.) and Tg (t.) are chunks of estimated and observed
points in C7 to the instant . and the likelihood function £(.)
is defined as

, (15)

L =1/&(TL(te), Vo(T! (1)), (17)

where V() rotates T IZ(tp) at an angle 0 and £(,) calculates
the Lo distance between the estimated and (rotated) observed
trajectory chunks. The localization paramters of the pair of
cameras are then broadcast across the entire network.

C. Process termination criterion

Lastly we define the termination of the process as if the
change in overall network localization is less than pre-defined
€. We consider the current and the previous locations of each
camera for calculating point of stopping as as

N
Dol kr = Bkl +1(@))k—1 — Pyl <&, (18)

i=1
where k signifies the current iteration.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Simulation of network of N wireless cameras

ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), COMO, ITALY, 30 AUGUST - 02 SEPTEMBER 2009

Fig. 4. Simulation of network of N wireless cameras Fig. 5. Localization accuracy

VI. CONCLUSIONS

