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Abstract

We propose a tracking algorithm that combines the Mean Shift search in a Particle
Filtering framework and a target representation that uses multiple semi-overlapping
color histograms. The target representation introduces spatial information that ac-
counts for rotation and anisotropic scaling without compromising the flexibility
typical of color histograms. Moreover, the proposed tracker can generate a smaller
number of samples than Particle Filter as it increases the particle efficiency by
moving the samples toward close local maxima of the likelihood using Mean Shift.
Experimental results show that the proposed representation improves the robust-
ness to clutter and that, especially on highly maneuvering targets, the combined
tracker outperforms Particle Filter and Mean Shift in terms of accuracy in estimat-
ing the target size and position while generating only 25% of the samples used by
Particle Filter.

Key words: Object representation, color histogram, tracking, Mean Shift, Particle
Filter

1 Introduction

Image-based tracking is an important component in many applications, such as
video surveillance, medical image sequence analysis, augmented reality, smart
rooms and object-based video compression. The goal of image-based tracking is
to estimate the position and the shape of an object or a region over time. This
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requires the definition of a target model and of a process that first generates
candidate targets and then evaluates the similarity between the model and a
candidate.

A simple and widely used target model is the template [1], which stores
luminance or color values, and their location. Although template computa-
tion is simple and fast, the values stored in the template may become non-
representative of the object appearance in presence of noise, partial occlusions,
pose or scale changes. Solutions have been proposed to update the template
over time [2–4] and to cope with occlusions [5] and pose changes [6]. However
the complete pixel information may be unnecessary for the tracking task: a
target representation should be descriptive enough to disambiguate the object
from the background, while allowing a certain degree of flexibility to cope with
changes of target scale, pose, scene illumination and partial occlusions. To this
extent, color histograms have been used as target models for their invariance
to scaling and rotation, robustness to partial occlusions, data reduction and
efficient computation [7–10]. However, the descriptiveness of color histograms
is limited by the lack of spatial information, which makes it difficult to dis-
criminate targets with similar color properties. To overcome this problem, the
information of the first two spatial moments associated to the location of the
related color can be added to each bin of the histogram [11]. Alternatively,
multiple histograms on different parts of the target can be used [8,12,13],
although there is no widely accepted solution. The multi-part representation
in [12] divides a target into two non-overlapping areas (top and bottom parts).
This solution is effective for the specific application (i.e., tracking ice-hockey
players), as it generally corresponds to the shirt and the trousers, but it is not
necessarily effective on a generic target. An alternative to improve the dis-
tinctiveness of the target model is the use of multiple features. For example,
gradient information can be used to complement color information [9,14,15].
However, computing several features for each candidate target may be com-
putationally expensive for real-time applications.

After the definition of a target model, a search method is needed to select the
candidate target locations to be evaluated against the model. To this extent,
Particle Filters (PF) have been widely used in image-based tracking [16,8,17,2].
PF is a probabilistic method based on Monte Carlo sampling that can deal
with multi-modal probability density functions (pdf s). PF-based trackers use
the multiple hypotheses associated with the samples (i.e., the particles) to
cope with occlusions and to recover from lost tracks. As the number of par-
ticles required to model the underlying pdf increases exponentially with the
dimensionality of the state space, efficient proposal distributions for particle
sampling are desirable. A popular choice is to draw the samples according to
the target dynamic model, thus resorting to an algorithm known as CON-
DENSATION [18,16] (here referred to as PF-C). However, sampling in PF-C
does not account for information from the most recent measurement. As a
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consequence, when the dynamic model is not accurate, the area of the state
space around the target is not densely sampled. To account for the latest
measurement many sampling strategies have been proposed [19–23]. Markov
Chain Monte Carlo (MCMC) samplers have been used to sample the particles
in high-dimensional state spaces (e.g., 3D body tracking) [20,24,25]. However,
due to the relatively large number of steps necessary for MCMC to converge,
no improvements in terms of efficiency are reported on low-dimensional state
spaces [20]. Simulated Annealing is an alternative approach for particle sam-
pling [26]: first particles are randomly spread over the state space, then a lay-
ered procedure re-draws the samples proportionally to their likelihood. When
the relationship between state and measurement can be linearized, an alter-
native is to sample from the Gaussian estimate computed by an Extended
Kalman Filter associated to each particle [19]. Similarly, EKF can be substi-
tuted with an unscented transform that does not require linearization [19,27].
Both methods assume that the modes of the pdf are well represented by their
first and second order moments. Furthermore, while PF-C requires explicit
definition of the likelihood only, the last two methods also require the explicit
formulation of the measurement equation.

A different approach to particle sampling is to drive the particles accord-
ing to point estimates of the gradient of either the posterior or the likeli-
hood [21,20,24,25,28,29]. When the appearance model is a template, optical
flow can be used to drive the particles towards peaks of the likelihood. How-
ever, as motion blur can affect the accuracy of optical flow, the particle shifting
procedure is enabled only when the momentum of the object is small [21]. A
more principled solution, known as Kernel Particle Filter, uses kernel density
estimation to produce from the particle set a continuous approximation of the
posterior pdf. Then, sample-based Mean Shift (MS), a kernel-based iterative
procedure, is used to approximate the gradient of the pdf and to climb its
modes [22,23]. However, as the accuracy of density estimate and of its gradi-
ent depends on the sampling rate, a reduction of the number of samples may
affect the quality of the final approximation. An alternative to sample-based
MS is color-based MS [7], a very popular tracking algorithm that uses color his-
tograms. Color-based MS performs a gradient descent of the model-candidate
distance using the kernel-weighted color density (and not the sample density)
estimate. Unlike PF, which requires the costly computation of one candidate
model (e.g., a color histogram) per particle, color-based MS has a low com-
putational cost. In fact the gradient estimate requires the computation of one
histogram per iteration only. However, while sample-based approaches such
as PF are flexible in terms of search region, the search of color-based MS is
limited by the kernel size. For this reason, color-based MS fails to track small
and fast moving targets as well as to recover the position of a target after a
total occlusion. Given the complementarity of the two algorithms, combina-
tions of MS and PF have been studied [28,29]. However, the convergence of the
MS procedure with the used flat kernel is not demonstrated [28]. Moreover,
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Fig. 1. Parameters defining the ellipse bounding the target area.

as the particles are re-displaced by MS, it is not clear how the new sampling
distribution can be approximated to correctly compute their weights [28,29].

In this paper we propose an algorithm that improves the robustness of the
target representation and increases tracking flexibility and effectiveness. The
target representation uses semi-overlapping color histograms that improve the
sensitivity to rotations and anisotropic scale changes, while maintaining the
robustness and flexibility typical of single color histograms. Related to this
partition, an extension of MS is proposed, which is used to find local minima
of the model-candidate distance in the state space. Particles generated by PF
are shifted toward these minima, which represent positions with high proba-
bility of locating a target, thus increasing the efficiency of the particles. The
increased efficiency is obtained on low-dimensional state spaces (3-D to 5-D),
where other gradient-based sampling methods are ineffective [20].

The paper is organized as follows. Section 2 discusses the use of spatial in-
formation in target representation and introduces the color histogram repre-
sentation. The proposed tracker is presented in Sec. 3. Section 4 describes the
evaluation procedure used in Sec. 5 to assess the experimental results. Finally,
in Sec. 6 we draw conclusions and discuss future research directions.

2 Target Representation

Let us approximate the target shape with an ellipse and represent the target
state with x = [y, s], where y = [x, y] is the center of the ellipse and s =
[e, θ, h1]. The variable e is the ellipse eccentricity, θ is its clockwise rotation
and h1 is the length of the semi-axis used as reference for the rotation. In the
following we will also use h2 as the length of the second semi-axis (Fig. 1).

Let the target representation of the pixels inside the ellipse be their weighted
color distribution approximated by a normalized color histogram. Given an
image z the normalized color histogram r(x, z) = {ru(x, z)}u=1,...,U with U
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bins of a target candidate x can be calculated by selecting for each pixel in
the ellipse the bin index u corresponding to its color and then cumulating
on the bin the values obtained with a weighting kernel k(.). The kernel k(.)
usually gives higher weight to pixels near the center of the ellipse as they are
less likely to be occluded by other objects [7]. Given the coordinates of the
n(x) pixels inside the ellipse {wi}i=1,...,n(x), the Dirac’s delta function δ(.), a
function b(wi, z) that associates a pixel of the image z with position wi to the
histogram bin, and

A(s) =





cos θ
h2

− sin θ
h2

sin θ
h1

cos θ
h1



 ,

the matrix used to scale and rotate the kernel, the computation of the bin
value ru(x, z) can be formalized as

ru(x, z) = C(x)
n(x)
∑

i=1

k
(

‖A(s)(y − wi)‖2
)

δ [b(wi, z) − u] u = 1, . . . , U ; (1)

where and C(x) is a normalization function defined as

C(x) =
1

∑n(x)
i=1 k

(

‖A(s)(y −wi)‖2
) . (2)

Then, we define the target model as the color distribution of the object at
track initialization, i.e., o = r(xI , zI), where xI and zI are the state and the
image frame at initialization.

The matching quality of a candidate is defined by the candidate-model dis-
tance, d, between the normalized histograms r(x, z) and o:

d [r(x, z), o] =
√

1 − ρ [r(x, z), o], (3)

where ρ is the Bhattacharyya coefficient [30]

ρ [r(x, z), o] =
U
∑

u=1

√

ru(x, z) · ou. (4)

Despite their success in image-based tracking, as color histograms do not en-
code spatial information, errors are likely to happen, as shown in the example
of Fig. 2. The tracker is attracted to false targets with similar color properties,
such as the shadow of a car (similar to the trousers) and the white car (simi-
lar to the shirt). Some knowledge of the color spatial distribution is needed to
overcome this limitation. For this reason we propose a simple yet effective and
general solution for target representation based on multiple histograms calcu-
lated over semi-overlapping regions. This representation incorporates global
and local target information in a single model. The first histogram is calcu-
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(a) (b) (c)

Fig. 2. Example of failure due to the target representation using a single color
histogram.
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Fig. 3. Semi-overlapping histogram-based target representation. (a) Single his-
togram of the whole target, (b) rotation-sensitive partition, (c) size-sensitive parti-
tion.

lated over the whole target (Fig. 3(a)). To account for rotations, four parts
are then obtained from the partition created by the two axes (Fig. 3(b)). Fi-
nally, to account for scale changes, the inner and outer areas of a concentric
ellipse with same eccentricity, but half axis size than the whole ellipse, are
considered (Fig. 3(c)). The proposed target model is referred to as Multi-Part
model (MP).

Eq. (4) can be extended to multiple histograms as

ρMP [r(x, z), o] =

∑N
j=1 ρ [rj(x, z), oj]

N
, (5)

where N is the number of parts (in our case, N = 7), rj and oj are the model
and candidate histograms calculated on the jth part. The model-candidate
distance is computed as in Eq. (3), using Eq. (5).

Fig. 4 visualizes the values of the model-candidate coefficients of Eq. (4) and
Eq. (5) for the problem described in Fig. 2. It is possible to notice that the area
with high model-candidate matching (red area) is narrower for MP (Fig. 4 (c)),
thus reducing the probability of attraction to the false target.
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(a) (b) (c)

Fig. 4. Comparison of the model-candidate Bhattacharyya coefficients ρ using the
single color histogram and the coefficients ρMP using the proposed multi-part (MP)
representation. (a) Sample frame; (b) ρ; (c) ρMP . Red indicates higher model-can-
didate similarity.

3 Target tracking

3.1 Target state as a particle

After the definition of a target model (Sec. 2), a method is needed to search
for candidate objects based on the previous states and on the current image.
Using PF, the tracking problem can be addressed using the dynamical and
measurement equations [16]

xt = ft(xt−1,vt), (6)

zt = ht(xt,nt), (7)

where xt is the state at time t, ft and ht are non-linear time-varying functions,
{vt}t=1,..., {nt}t=1,... are assumed to be independent and identically distributed
stochastic processes and the measurement zt is the current image frame cap-
tured by the camera sensor. The pdf p(xt|z1:t) is estimated recursively in two
steps, namely prediction and update. The prediction step uses Eq. (6) to obtain
the predicted pdf as

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (8)

with p(xt−1|z1:t−1) known from the previous iteration and p(xt|xt−1) deter-
mined by Eq. (6). The update step uses the Bayes’ rule once the measurement
zt is available:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

∫

p(zt|xt)p(xt|z1:t−1)dxt
. (9)
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The densities p(xt|z1:t) are approximated with a sum of Ns Dirac functions
centered in {xi

t}i=1,...,Ns
as

p(xt|z1:t) ≈
Ns
∑

i=1

ωi
tδ
(

xt − xi
t

)

, (10)

where ωi
t, the weights associated to the particles, are

ωi
t ∝

p(xi
t|z1:t)

q(xi
t|z1:t)

. (11)

q(.) is the importance density function defined as the density that generated
the current set of particles.

Assume that p(xt−1|z1:t−1) is approximated by the set of particles
{

xj
t−1

}

j=1,...,Ns

as in Eq. (10). Substituting this approximation in Eq. (8) and then applying
Eq. (9) we obtain

p(xt|z1:t) ∝ p(zt|xt)
Ns
∑

j=1

ω
j
t−1p(xt|xj

t−1). (12)

The mixture of the transition probabilities weighted by the weights at time
t − 1 approximates the predicted pdf p(xt|z1:t−1). Given an importance sam-
pling function q(.), from Eq. (10) and Eq. (12) the updated set of weights
{ωj

t}i=1,...,Ns
at time t is determined as

ωi
t ∝

p(zt|xi
t)
∑Ns

j=1 ω
j
t−1p(xi

t|xj
t−1)

q(xi
t|z1:t)

. (13)

3.2 Particle propagation

The particles are first drawn from the predicted pdf (i.e, q(xi
t|z1:t) = p(xi

t|z1:t−1))
using a zero-order state transition model

xt = xt−1 + vt, (14)

where vt is a multivariate Gaussian random variable with 0 mean vector and
constant standard deviations. This is equivalent to performing a standard
resampling procedure at each iteration and then propagating according to the
transition model. A new predicted set of particles {x̃i

t}i=1...,Ns
is now available.

The choice of a relatively uninformative motion model (i.e., a zero–order au-
toregressive model) is motivated by the fact that we aim to track also highly
maneuvering targets. Although a more complex motion model could improve
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tracking performance with targets having a predictable behavior, the same
model would not be appropriate for highly maneuvering (unpredictable) tar-
gets. Unfortunately, with CONDENSATION the use of an uninformative mo-
tion model together with sampling from the predicted pdf p(xt|z1:t−1) results
in a largely suboptimal filter in terms of variance of the Bayes state estimator
for a given number of particles [16]. In fact, if the motion model is uninfor-
mative, the posterior pdf can significantly differ from the prior (the pdf used
by CONDENSATION to sample from). A sampling criterion that uses the
current observation to distribute particles around regions of high likelihood
is expected to increase the filter efficiency. To this end we propose a method
based on the MS search, as described below.

3.3 Mean Shift

After propagation, each particle in {x̃i
t}i=1...,Ns

is independently re-located in
the position state subspace using color-based MS [7]. This process iteratively
minimizes the distance in Eq. (3) using gradient information. The algorithm
is initialized at xa = x̃i

t, the particle position, and converges to the nearest
local minimum by shifting at each iteration the particle centroid from ya to
yb. Given g(z) = −k′(z) (i.e., −g(.) is the first order derivative of the kernel
k(.)), the weights

wi =
U
∑

u=1

√

ou

ru(xa, zt)
δ [b(wi, z) − u] , (15)

and

B(s) =









(

h1

h2
cos θ

)2
+ (sin θ)2 sin θ cos θ

(

1 − h2
1

h2
2

)

sin θ cos θ
(

1 − h2
1

h2
2

) (

h1

h2
sin θ

)2
+ (cos θ)2









.

a correction matrix used to account for kernel rotation and anisotropic scaling,
the new location yb is defined as

yb = B(sa)





∑n(xa)
i=1 wiwig

(

‖A(sa) (ya − wi)‖2
)

∑n(xa)
i=1 wig

(

‖A(sa) (ya −wi)‖2
) − ya



+ ya. (16)

Eq. (16) extends the classical MS formulation [7] to anisotropic and rotated
kernels. When h1 = h2 and θ = 0 it was proved that yb − ya is in the gra-
dient direction [7]. For generic h1, h2 and θ demonstration is provided in the
Appendix. The iterative process stops when ‖yb − ya‖ < ǫ. Usually ǫ = 1
pixel [7]. If the condition is not met ya takes the value in yb and another MS
step is performed.

When multi-part histograms are used (Sec. 2), the coefficient to maximize is
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the ρMP defined in Eq. (5). We can derive a MS iterative procedure equivalent
to Eq. (16) for multiple histograms using

yb = B(sa)





∑N
j=1 Cj(xa)

∑nj(xa)
i=1 wj,iwj,ig

(

‖A(sa) (ya −wj,i)‖2
)

∑N
j=1 Cj(xa)

∑nj(xa)
i=1 wj,ig

(

‖A(sa) (ya − wj,i)‖2
) − ya



+ ya,

(17)
where wj,i is the coefficient defined in Eq. (15) for the jth histogram and the
contribution of each part is weighed by the normalization factor Cj(xa). It is
possible to demonstrate that the multi-part MS steps, similarly to the single
histogram case [7], are in the direction of the gradient of ρMP ; the validity of
this result is independent from the partition (for the demonstration, see the
Appendix).

Although it is possible to modify Eq. (17) to use different kernels on different
parts, to reduce computational cost we use a single kernel with Epanechnikov
profile [31], that is

k(z) =

{

1 − z if z < 1
0 otherwise

. (18)

The weight of each pixel is proportional to the distance from the ellipse cen-
troid and is independent on the shape of the partition. As the derivative k′(.)
is constant Eq. (17) reduces to

yb = B(sa)





∑N
j=1 Cj(xa)

∑nj(xa)
i=1 wj,iwj,i

∑N
j=1 Cj(xa)

∑nj(xa)
i=1 wj,i

− ya



+ ya. (19)

Fig. 5 shows an example of convergence of the multi-part coefficient of Eq. (5)
to a local maximum. In the example the target is a face and 40 different
initializations are selected. The corresponding paths of the MS procedure are
shown with red arrows. The MS procedures initialized on the mode of the
Bhattacharyya coefficient generated by the target converge to the actual target
location.

To summarize, let MS be defined as M : RD → RD, where D is the state space
dimensionality. The final set of particles {xi

t}i=1...,Ns
is obtained by applying

xi
t = M(x̃i

t), i = 1, . . . , Ns. (20)

M takes each particle x̃i
t as input and modifies the state position, y, guiding

each particle over the position sub-space independently from all others.
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Fig. 5. Multi-part Mean Shift iterations using semi-overlapping color histograms.
(a) Target; (b) Mean Shift vectors superimposed on the isolevel curves representing
the value of the Bhattacharyya coefficient ρMP .

3.4 Weighting and state estimation

To compute the particle weights, we derive the likelihood p(zt|x) from the
distances of Eq. (3) as

p(zt|x) = exp

{

−d [r(x, zt), o]2

σ2

}

, (21)

The value of σ depends on the histogram dimensionality. The higher the di-
mensionality, the larger the average distance of Eq. (3), hence the higher the
value for σ used to obtain a smoother likelihood.

In CONDENSATION (PF-C) [16], q(xt|z1:t) = p(xt|z1:t−1), is the predicted
prior (Sec. 3.3), thus the weighting reduces to

ωi
t ∝ p(zt|xi

t), (22)

i.e., the weights are proportional to the likelihood. As the particles are shifted
by the MS procedure, the importance sampling function q(.) is no more the
predicted prior. Weighting according to Eq. (22) would introduce a bias in the
posterior approximation. To prevent this we approximate, as in Kernel Particle
Filter [22], q(xt|z1:t) ≈ q̂(xt) using a Gaussian kernel density estimation as

q̂(xt) =
1

Ns

Ns
∑

i=1

q̂i(xt), (23)

where q̂i(xt) is the Gaussian kernel with smoothing bandwidth β defined as

q̂i(xt) = Z(β, Σ̂t) · exp

(

− 1

2β2

(

xt − xi
t

)T
Σ̂−1

t

(

xt − xi
t

)

)

. (24)
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T denotes the transpose and

Z(h, Σ̂t) =
1

(

β
√

2π
)D
√

|Σ̂t|
. (25)

D is the dimensionality of the state space, and Σ̂t is the covariance matrix of
the particles state parameters computed as

Σ̂t =
1

Ns

Ns
∑

i=1

(xi
t − x̄)(xi

t − x̄)T ,

where x̄ is the particle mean. In order to select the kernel bandwidth β,
we use a result from Silverman [32]. The value of β that gives the optimal
rate of convergence in probability to zero of the integrated squared error
∫

(q̂(xt) − q(xt)) dxt is

β = c · N
−1

(D+4)
s , (26)

where the constant c is c =
(

4
D+2

)1/(D+4)
.

Finally, the best state at time t is estimated from the discrete approximation
of Eq. (10). The most common solution is to use the Bayes Least Squares
estimate defined as

E[xt|z1:t] ≈
1

Ns

Ns
∑

i=1

ωi
tx

i
t. (27)

3.5 Discussion

The hybrid algorithm (here referred to as HY) presents several advantages
compared to MS and PF-C. In MS, the target search is limited to the image
area spanned by the kernel (Eq. (16)). For this reason, if the shift of the target
center is larger than the kernel size, the track is likely to be lost. Also, MS
minimizes ρ with respect to the centroid estimate y but does not estimate the
other parameters in s. HY overcomes both these problems thanks to the mul-
tiple MS initializations generated by the particles. HY extends the volume of
the state space under analysis to the space spanned by the particles as defined
by the importance sampling function q(.). Also, the extra three state param-
eters in s describing target rotation and anisotropic scaling are estimated by
HY as in PF-C. Furthermore, HY inherits from PF-C the possibility to treat
multi-modal pdf s and to recover from short-term occlusions. However, unlike
PF-C, HY operates on particles that are concentrated near local maxima of
the likelihood (Fig. 5). In Sec. 5 we will show how this property makes the
hybrid algorithm more efficient than PF-C.

To conclude, we highlight the difference between the proposed approach and
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Kernel Particle Filter (KPF) [22], as both algorithms move the particles using
MS. KPF estimates the MS vector in an arbitrary state x from a set of kernels
centered on the position of the particles. As the contribution of each particle
depends on its distance from x, then the estimate depends on the particle
configuration and can be critical when the number of particles is small. Unlike
KPF, the proposed approach uses the color-based version of MS [7] where the
kernels are centered on the single pixel positions (Eq. (16)). Although more
specific to the appearance-based tracking problem, the proposed algorithm
shifts each particle independently from the configuration of the other samples
and consequently the shift is not influenced by the sample density.

4 Objective evaluation

The quality of the tracking results is evaluated by a combination of visualiza-
tion and objective measures. Objective evaluation measures have attracted a
considerable interest [33–39] and are used for the final assessment of an algo-
rithm as well as for the development process to compare different parameter
sets of an algorithm on large datasets.

The properties to be evaluated in tracking results are the error of the estimated
target shape, the error of the estimated target position, and the percentage
of lost tracks. We associate to each property a performance measure, namely
dice, the normalized centroid error, and the lost track ratio.

Dice, D(t), measures in each frame t the match between set of pixels Ae(t)
and Ag(t), defined by the estimated and ground-truth ellipses, as

D(t) = 1 − 2|Ae(t) ∩ Ag(t)|
|Ae(t)| + |Ag(t)|

, (28)

where |.| denotes the cardinality of a set. D(t) rewards candidates with a
high percentage of true positive pixels, and with few false positives and false
negatives.

The normalized centroid error, η(t), evaluates the precision of the algorithm in
estimating the centroid of a target, normalized by the target size. Let l1,g, l2,g,
and θg be the length of the two semi-axes and the rotation of the ground-truth
target area. The normalized error in x and y is then defined as

ǫx =
cos θg(xe − xg) − sin θg(ye − yg)

l1,g
(29)
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and

ǫy =
sin θg(xe − xg) + cos θg(ye − yg)

l2,g

, (30)

where (xe, ye) and (xg, yg) are the centroid coordinates of the estimated and
ground truth ellipses respectively. The normalized Euclidean error at frame t

is
η(t) =

√

ǫx(t)2 + ǫy(t)2. (31)

If the estimated centroid is outside the ground-truth area, then η(t) > 1.

The lost track ratio, λ, is the ratio between the number of frames where the
tracker is unsuccessful and the target life span. Using Eq. (28), a lost track at
t is declared when D(t) > 0.85.

The above measures are used in the final performance vector (λ, D̄, η̄), which
is composed of λ; the average value of D(t) over the frames where the track is
not lost, D̄; and the average value of η(t) over the frames where the track is not
lost, η̄. Care is necessary while analyzing the numerical results as the values of
D̄ and η̄ are dependent on λ. A lower λ means that D̄ and η̄ are evaluated on
a larger number of frames; the added frames are usually in more challenging
portions of a sequence. Therefore, the value of λ has to be analyzed first, and
then, if the values obtained by two trackers are similar, we analyze the other
two performance measures.

To evaluate stochastic algorithms like PF, we calculate the average (λR, D̄R, η̄R)
and standard deviation (σ(λR), σ(D̄R), σ(η̄R)) over R runs for each target in
each sequence of the dataset. A good tracker should have consistent results on
all the runs (i.e., low standard deviation). Each measure is also averaged over
the K targets in a sequence

ER =
1

R

R
∑

r=1

∑K
j=1 Fj · ej
∑K

j=1 Fj

, (32)

where ej is one of the components of (λ, D̄, η̄) for the target j that is weighted
proportionally to the number of visible frames Fj .

5 Results

In this section we compare the results of the proposed Hybrid tracker (HY)
with MS and PF-C. We test these three algorithms with the classic single color
histogram and with the multi-part target representation (MS-MP, PF-C-MP,
HY-MP).
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Fig. 6. The targets of the dataset used for the evaluation. A hand from sequence
S1 (a), a table tennis ball from sequence S2 (b); a football from sequence S3 (c); 5
pedestrians from sequence S4 (d)-(h); a face from sequence S5 (i); a vehicle from
sequence S6 (j).

5.1 Dataset

We evaluated the trackers on a dataset containing 10 heterogeneous targets 2

extracted from 6 sequences (Fig. 6 and Table 1). The total number of target
frames used in the evaluation is 5098. Three out of the six sequences (i.e., S2,
S3 and S6 ) are shot with non-static cameras.

Although the sequences present more than the selected moving objects, for
the purpose of objective evaluation we manually annotated targets presenting
different motion behaviors and different levels of distinctiveness with respect
to the background. The dataset includes three sequences (S1, S2 and S3 )
with fast moving targets. In S1, shot with a low-quality web camera, a hand
performs abrupt and unpredictable movements. Also, the tracker can be misled
by skin areas other than the hand, like the face, with similar color properties.
In S2 (the MPEG-4 test sequence Table tennis), the target is a table tennis ball
with fast speed changes. In S3 (the MPEG-4 test sequence Soccer), the aim
is to track a football. An abrupt acceleration is caused by a player kicking the

2 The ground-truth annotation for all the targets of the dataset, the test sequences
and sample results are available at http://www.elec.qmul.ac.uk/staffinfo/

andrea/HY-MP.html

15



Table 1
Description of the tracking dataset. Frame sizes are in pixels. The target size is the
number of pixels inside the ground-truth ellipse.

Seq. Frame Frame Target size Tracking Static
size rate (Hz) Min Max challenges camera

S1 320 × 240 12.5 1004 2725
Highly maneuvering,

Yes
clutter

S2 352 × 288 24 131 310 Highly maneuvering No

S3 352 × 288 30 314 452
Highly maneuvering,

No
occlusion

S4 768 × 576 25 282 2543 Clutter, occlusions Yes
S5 384 × 258 25 942 18362 Clutter, occlusion Yes
S6 352 × 240 25 125 3306 Aerial camera No

ball, which is then occluded in two instances by the legs of the players for 3 and
21 frames, respectively. Five pedestrians are extracted from S4 (PETS2001,
dataset 1, sequence camera1 ). The targets share similar color properties with
some parked cars in the background. Also, the pedestrians are briefly occluded
by a lamp post. Finally, the images are affected by high level of sensor and
compression noise. Sequence S5, shot with a low quality camera, presents a
face tracking scenario where a desk partially occludes the target for 22 frames
and clutter is generated by a bookshelf in the background. Finally, one off-road
vehicle is extracted from the aerial sequence S6, Redteam [40].

5.2 Testing conditions

To enable a fair comparison, each algorithm under analysis is initialized man-
ually using the first target position defined by the ground-truth annotation.
The parameter setting is described in the following. Color histograms are cal-
culated in the RGB space quantized with 8x8x8 bins and MS runs 5 times
with different kernel sizes up to +/-10% than the previous frame. We test the
algorithms with two state models with 3 dimensions (3D) and 5 dimensions
(5D), respectively. The 3D state model is composed of target position, (x, y),
and target size h1. The 5D state model is composed of eccentricity, e, and
rotation, θ, in addition to position and size. PF-C and HY use the 3D and
the 5D state models; while MS, uses the 3D state model only, as in [7]. The
Gaussian random variable vt has standard deviations σx = σy = 7 pixels,
σh1 = 0.07%, σe = 0.03, and σθ = 5.0o. Note that the scale change is a per-
cent and the angle is given in degrees. We chose the values of σx and σy as a
compromise between slow and fast targets. PF-C uses 150 samples in the 3D
case and 250 in the 5D case. HY uses 25% of the samples used by PF-C. To
limit the computational cost of HY and to avoid particle degeneration (due to
MS all the particles converge to similar states), the number of MS iterations
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Fig. 7. Comparison of tracking results for the proposed algorithm (HY) and for
the proposed target representation (MP suffix). The bar plots show the average
performance scores over the targets in the evaluation dataset. HY lowers the errors
with respect to MS and PF-C for all the performance scores. Also, MP improves
the tracking result for all the three algorithms.

in HY is limited to 3 for each particle.

5.3 Evaluation

Figure 7 summarizes the results for the three algorithms under analysis (i.e.,
MS, PF-C and HY) with and without the proposed multi-part target rep-
resentation (MP), by displaying the average scores over the whole dataset.
The complete results for each sequence are available in Table 2. HY greatly
reduces the lost tracks (lower λR) with respect to MS and PF-C. Also, the
state estimates produced by HY are in average more accurate than those of
PF-C and MS (Fig. 7). More in detail, from Table 2 we note that HY out-
performs MS all over the dataset, except for S6 (D̄R is 0.26 and 0.28 for MS
and HY, respectively), thus confirming the stability of MS on targets with a
limited motion. Compared with PF-C, a clear advantage of HY is when the
state transition model does not predict correctly the behavior of the target. In
PF-C particles are denser around the previous state position. The faster the
target, the smaller the density of the particles around it. HY eliminates this
problem using the MS procedure, leading to a largely improved performance
for S1, S2, and S3. As discussed in Sec. 4, the low value of η̄R retuned by PF-C
in S3 has to be disregarded due to the large performance gap indicated by
λR. HY shows similar performance to PF-C in tracking slow targets like these
in S4, S5, and S6. The results of Table 2, and the observation that HY uses
75% less particles than PF demonstrates our claim on the improved sampling
efficiency of HY compared to PF-C.

By comparing the results of the 5D and 3D state models (Fig. 7) it is inter-
esting to observe that adding extra degrees of freedom does not improve the
results: HY achieves similar performance on the two models, while PF-C with
the 5D state is worse than with the 3D state. In fact, although extra state
parameters should add flexibility to the ellipse fitting process, this flexibility
requires a larger number of particles and is counterproductive when the ap-
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pearance model is not sufficiently discriminative, for example when the target
appearance is similar to the background.

Sample results from the test sequences S2 and S3 are shown in Fig. 8. The
targets are moving in unexpected directions with shifts larger than the kernel
size. Moreover, the targets are affected by motion blur that decreases the
effectiveness of the MS vector. HY is more stable in maintaining the track of
the balls (Fig. 8 (a)-(c)) and reduces by 75% and 83% the value of λR (Table 2)
for the two ball targets, respectively. In S2, PF-C recovers the target after
losing it, but then it fails again. In S3, MS and PF are not able to track the
ball, whereas HY is fast in reacting to the abrupt shifts (Fig. 8 (d)-(e)). Also,
Fig. 8(f) shows the behavior of HY when the target is completely occluded by
the legs. HY maintains the occlusion recovery properties of PF, as the spread
of the particles is sufficient to recover the target when it reappears.

Figure 7 also shows that MS-MP, PF-C-MP and HY-MP (the algorithms
with the proposed multi-part representation) have better performance than
their counterparts (MS, PF-C and HY) in terms of average lost tracks (λR),
shape (D̄R) and centroid (η̄R) errors. Overall, the best algorithm is HY-MP.
In particular, MP improves the tracking performance when a target has a
non-uniform color distribution (Table 2). For example, HY outperforms HY-
MP only on the small and uniformly colored table tennis ball (S2). Also, due
to the lower sampling of the sub-parts, the multi-part estimation of the MS
vector becomes more unstable than that based on a single color histogram.
This problem can be solved by analyzing the target and using a target-size
threshold under which the single histogram representation should be used. A
few results of Table 2 need further discussion: in S1 (3D case) HY and HY-
MP have similar λR, but HY-MP improves by around 20% in terms of D̄R

and η̄R; in the easier sequences S5 and S6, the track is never lost, but better
performance is achieved again on shape and centroid position estimation. A
visual comparison is shown in Fig. 9 and Fig. 10. Unlike HY, HY-MP is not
attracted to false targets with similar color properties: the spatial information
introduced in the model avoids a lost track (Fig. 9, third row) and improves
the overall quality (Fig. 9, fourth row). HY using a single color histogram
generates a wrong orientation and size estimation ( Fig. 10, top ) as the target
and the background have similar colors, and the representation is not able
to distinguish correctly the face. The spatial information in HY-MP solves
this problem (Fig. 10, bottom). Moreover, when a target is partially occluded
(Fig. 10 (a)) the spatial information improves the final estimate.

To analyze the algorithms performance with highly maneuverable targets, Fig. 11
shows the tracking results while varying σx and σy. As a reference, the results
of MS and MS-MP are also presented. For all the values of σx = σy, HY
outperforms PF-C and MS in terms of the number of lost track frames. Like-
wise when we compare HY-MP with PF-C-MP and MS-MP. As the target
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Fig. 8. Comparison of tracking performance. (a)-(c) S2 (frames 3, 8, 25, 51), (d)-(f)
S3 (frames 1, 9, 18 and 52). Left column: MS; central column: PF-C; right column:
HY.
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Table 2
Comparison of tracking performance between the proposed algorithm (HY), Mean
Shift (MS) and CONDENSATION (PF-C) for sequences with decreasing complexity
(from top to bottom). Also, the multi-part representation (MP) is compared with
the classic one based on a single color histogram (SH). Bold indicates the best result
for the corresponding performance measure. Due to the deterministic nature of MS,
standard deviation on the results is presented for PF-C and HY only.

3D 5D
MS PF-C HY PF-C HY

SH MP SH MP SH MP SH MP SH MP

H
IG

H
L
Y

M
A

N
E

U
V

E
R

IN
G

S1

λR .46 .44 .30 .25 .02 .03 .33 .29 .05 .03
σ(λR) .18 .06 .01 .01 .16 .11 .10 .02
D̄R .33 .25 .40 .35 .29 .23 .43 .36 .29 .23
σ(D̄R) .03 .02 .01 .00 .03 .03 .01 .00
η̄R .30 .24 .35 .32 .30 .23 .36 .32 .30 .23
σ(η̄R) .02 .01 .00 .00 .02 .02 .01 .00

S2

λR .84 .68 .40 .43 .10 .14 .37 .45 .08 .09
σ(λR) .07 .08 .06 .10 .08 .10 .02 .06
D̄R .53 .24 .36 .31 .15 .15 .31 .33 .14 .15
σ(D̄R) .06 .06 .02 .01 .04 .07 .01 .02
η̄R .37 .19 .28 .26 .14 .15 .27 .25 .13 .14
σ(η̄R) .03 .03 .02 .01 .02 .02 .01 .02

S3

λR .91 .91 .30 .11 .05 .04 .46 .23 .04 .04
σ(λR) .37 .21 .05 .02 .42 .34 .02 .01
D̄R .15 .13 .30 .30 .25 .25 .25 .28 .25 .22
σ(D̄R) .09 .05 .02 .01 .12 .08 .01 .01
η̄R .18 .16 .17 .17 .19 .19 .15 .17 .19 .17
σ(η̄R) .02 .02 .01 .01 .03 .03 .01 .01

C
L
U

T
T

E
R

S4

λR .26 .31 .17 .02 .16 .01 .23 .04 .19 .02
σ(λR) .04 .02 .06 .00 .05 .02 .04 .02
D̄R .28 .22 .26 .20 .25 .20 .31 .24 .31 .24
σ(D̄R) .01 .01 .01 .00 .02 .01 .02 .00
η̄R .32 .24 .24 .15 .23 .15 .29 .17 .30 .16
σ(η̄R) .01 .00 .01 .00 .02 .01 .02 .02

S5

λR .04 .01 .01 .01 .01 .01 .01 .01 .02 .01
σ(λR) .00 .00 .00 .00 .00 .00 .01 .00
D̄R .25 .18 .20 0.18 .20 .17 .28 .23 .24 .19
σ(D̄R) .00 .00 .00 .00 .01 .01 .01 .01
η̄R .22 .16 .18 0.17 .19 .16 .19 .17 .19 .17
σ(η̄R) .00 .00 .00 .00 .00 .00 .00 .00

E
A

S
Y

S6

λR .00 .00 .00 .02 .00 .00 .00 .00 .00 .00
σ(λR) .00 .00 .00 .00 .00 .01 .00 .00
D̄R .26 .25 .29 .29 .28 .25 .31 .32 .30 .29
σ(D̄R) .03 .00 .01 .00 .03 .02 .01 .00
η̄R .27 .20 .20 .13 .21 .15 .21 .13 .21 .14
σ(η̄R) .00 .00 .00 .00 .00 .02 .00 .00
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Fig. 9. Sample tracking results for the test scenario S4 using different target rep-
resentations: HY (first and third row) and HY-MP (second and fourth row). First
and second row, Camera 1, training, frames 1520, 1625 and 1758; third and fourth
row, Camera 1, testing, frames 1108, 1174 and 1235.

performs abrupt and fast movements, the sampling based on the predicted
prior (PF-C and PF-C-MP) is inefficient, whereas particles concentrated on
the peaks of the likelihood (HY and HY-MP) produce a better approximation.
As a matter of fact the MS procedure increases the robustness of the algorithm
to inappropriate parameter settings. Also, thanks to a higher distinctiveness,
the MP representation achieves better performance than the traditional single
histogram when the noise parameters are large and an error due to clutter is
more probable.

To test the robustness of the algorithms we run the tracker on several temporal
subsampled versions of the sequence S5. This test simulates possible frame
losses in the video acquisition phase or an implementation of the algorithm
embedded in a platform with limited computational resources (lower frame
rate). The results (Fig. 12) show that HY and HY-MP are less affected than
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(a) (b) (c)

Fig. 10. Sample tracking results for the test sequence S5 (frames 715, 819, and 864)
using different target representations: HY (top) and HY-MP (bottom).
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Fig. 11. Comparison of tracking results when varying the displacement random noise
(σx = σy) of the motion model for the sequence S1 (3D state space). The results of
MS and MS-MP are shown as a reference. For all values of σx HY outperforms PF.
Also, for high σx the proposed representation MP improves the result.

the other algorithms by a frame rate drop. HY and HY-MP perform similarly
in terms of λR. However, on this type of test, HY-MP is always 10% to 15%
better than HY in terms of σ(D̄R) and σ(η̄R).

To evaluate sensitivity to initialization, we tested the trackers by adding noise
to the initial centroid yI (Fig. 13, left). We normalized the Gaussian noise
with respect to the target size by multiplying its standard deviation σI by
the length of the initial ellipse minor axis. For a fair comparison we used
sequence S5, where the trackers perform similarly at zero noise level. For
each algorithm we computed the average lost track ratio λR over the same 100
random initializations for different levels of initialization noise (Fig. 13, right).
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Fig. 12. Comparison of tracking results when varying the temporal subsampling
rate of the input sequence S5. As the subsampling rate increases the movement of
the object becomes less predictable; HY and HY-PF have more stable results than
PF-C and MS, and achieve a lower λR (lost track ratio).
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Fig. 13. Comparison of tracking results when the initialization (centroid) is affected
by noise (S5). Left: sample random initializations (σI = 0.4). Right: average lost
track ratios, λR, plotted against σI . As the noise increases, PF-C and HY show
similar performance and are both more stable than MS. Also, the multi-part repre-
sentation (MP) has lower λR (more stable) than the standard color histograms.

The curves are plotted up to σI = 0.4; for larger values several initial ellipses
have more than 50% of their area outside the actual target. The results show
that the trackers are fairly insensitive to initialization when σI < 0.2. For
larger σI , HY and PF-C perform similarly and are less sensitive then MS due
to multiple tracking hypotheses. Also, Fig. 13 shows that MP is more stable
than the classical single histogram, especially with MS. In fact, unlike the
whole ellipse, some sub-parts used in MP still fully overlap the actual target
after the centroid shift and therefore their histograms are not biased by pixels
belonging to the background.

As for the computational cost, we measured the running time of the C++
implementation of the algorithms (Pentium 4, 3GHz, with 512MB of RAM).
For a fair comparison, we used S5, where none of the trackers fails. Also, the
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computational cost is linearly dependent with the number of pixels inside the
target area (Eq. (1)); consequently, the results on S5, the largest target (see
Table 1), represent an upper bound over the dataset.

MS, PF-C and HY, using the single histogram representation on the 3D state
space, take 1.1ms, 6.9ms and 5.1ms per frame, respectively 3 ; whereas using
the MP representation, the values are 2.4ms (MS-MP), 15.6ms (PF-C-MP)
and 15.9ms (HY-MP). When the target is represented with a single color
histogram, HY is 6.3 times slower than MS, and 15% faster than PF-C. Com-
pared to PF-C, the higher computational cost per particle of HY (due to MS
iterations) is compensated by a higher sampling efficiency. In fact, HY out-
performs PF-C using only 25% of the samples. When the MP representation
is used, the computational cost of HY-MP is higher than that of MS-MP and
comparable with that of PF-C-MP. MP makes HY proportionally slower with
respect to PF-C, due to the larger number of histogram bins and consequently
to the grater number of evaluations of Eq. (15). HY-MP, MS-MP and PF-C-
MP are two to three times slower than their single histogram counterparts.
This can be explained by analyzing our implementation. To compute a single
color histogram, the image pixels inside the ellipse are scanned sequentially
(row by row). Then, for each pixel, the bottleneck is to calculate the index of
the bin to be incremented based on the pixel color (i.e., the evaluation of b(.)
in Eq. (1)) and to access its memory location. These operations account for
about 45% of the overall computational cost 4 . In the multi-part case, each
pixel belongs to three parts: the whole ellipse, one of the four sectors and
inner or outer ellipse. Therefore we increment three bins for each pixel. We
align in memory the histograms of the seven parts in such a way that, once
we know the position of the first bin to increment, the memory location of
the remaining two can be recovered by simply incrementing the pointer. This
process adds two extra memory accesses to the computations.

6 Conclusions

We presented a tracking algorithm that uses a target representation based on
multiple semi-overlapping color histograms and effectively combines Particle
Filtering and Mean Shift in a principled way. The proposed target represen-
tation is general and takes into account target rotations and anisotropic scale
changes, and achieves more accurate results in predicting target orientation
and size than the single histogram and the multiple non-overlapping ones.

3 The computational time measures were obtained using the C function clock()

and does not include frame acquisition and decoding.
4 This figure was obtained by profiling the C++ implementation of the algorithm.
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The target partition is independent from the target class and incorporates
global and local target information in a single model. The partition maintains
the flexibility and robustness of the color histogram, while improving the per-
formance of the traditional single histogram based tracker. The extension of
the MS procedure to multiple histograms allows us to use the new target rep-
resentation with the proposed HY algorithm. HY overcomes the drawbacks of
both MS and PF-C, and makes each particle independent and more flexible to
local conditions. Each particle is driven by MS in the position state sub-space
directly using the color information to approximate the gradient.

Experimental results show that the proposed hybrid algorithm is more reliable
than MS and, as the particles drawn are more efficient, HY is more accurate
than PF-C even when only 25% of the particles are used. The best perfor-
mance improvements are achieved with fast moving objects. The results show
also that HY can handle short occlusions by propagating multiple tracking
hypotheses generated by Monte Carlo sampling.

As future work, we will investigate the treatment of longer occlusions by means
of a predictive higher-order dynamic model. Also, an occlusion detection strat-
egy to trigger the switch to a different observation model may be adopted [41].
As for the appearance model, temporal adaptation will be investigated to cope
with large pose changes. To this extent, when a priori information on the tar-
get appearance is available, a solution to fuse this information in a multi-pose
model will be studied.

A Appendix: proof of Mean Shift for multi-part target represen-
tations

We demonstrate that, for multi-part color histograms (Eq. (17)), the iterative
step yb−ya of the Mean Shift (MS) procedure is in the direction of the gradient
of ρMP , with respect to y (Eq. (5)). The Taylor expansion of ρMP , computed
around {rj(xa, zt)}j=1,...,N , is

ρMP [r(x, zt), o] ≈ 1

2N





N
∑

j=1

Uj
∑

u=1

√

ρ [rj,u(xa, zt), oj,u]+

+
N
∑

j=1

Uj
∑

u=1

rj,u(x, zt)

√

oj,u

rj,u(xa, zt)



 .

(A.1)
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By substituting Eq. (1) into Eq. (A.1), we obtain

ρMP [r(x, zt), o] ≈ 1

2N





N
∑

j=1

Uj
∑

u=1

√

ρ [rj,u(xa, zt), oj,u]+

+
N
∑

j=1

Cj(x)
nj(x)
∑

i=1

wj,ik
(

‖A(s) (y − wj,i)‖2
)



 .

(A.2)

The first term on the right hand side of Eq. (A.2) is independent from y.
Hence, to maximize ρMP , we have to maximize the second term on the right
hand side. This second term is the kernel density estimate in y, computed over
the pixel positions wj,i, and weighted by wj,i. This motivates the use of MS,
which is a well-known solution to find the modes of a density function [42].
By computing the derivative of the Taylor expansion of ρMP with respect to
y yields to

∂ρMP [r(x, zt), o]

∂y
≈ 1

h2
1N

N
∑

j=1

Cj(x) ·

·
nj(x)
∑

i=1

wj,ig
(

‖A(s) (y −wj,i)‖2
)

B(s) (wj,i − y) ,

(A.3)

where g(x) = −k′(x) as in the single histogram case. Then

∂ρMP [r(x, zt), o]

∂y
≈ 1

h2
1N

B(s)





N
∑

j=1

Cj(x)
nj(x)
∑

i=1

wj,iwj,ig(.)+

−y
N
∑

j=1

Cj(x)
nj(x)
∑

i=1

wj,ig(.)



 ,

(A.4)

and, by multiplying outside and dividing inside the square brackets by the

term
∑N

j=1 Cj(x)
∑nj(x)

i=1 wj,ig(.), we obtain

∂ρMP [r(x, zt), o]

∂y
≈ 1

h2
1N





N
∑

j=1

Cj(x)
nj(x)
∑

i=1

wj,ig(.)



 ·

· B(s)





∑N
j=1 Cj(x)

∑nj(x)
i=1 wj,iwj,ig(.)

∑N
j=1 Cj(x)

∑nj(x)
i=1 wj,ig(.)

− y



 ,

(A.5)

where the argument of g(.) is omitted for improved readability. By comparing
this result with the classic sample-based MS formulation [43], we note that
the term inside the square brackets multiplied by the matrix B(s) is the MS
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vector V (x), that is

V (x) = B(s)





∑N
j=1 Cj(x)

∑nj(x)
i=1 wj,iwj,ig(.)

∑N
j=1 Cj(x)

∑nj(x)
i=1 wj,ig(.)

− y



 ,

where the contribution of each part is weighed by the normalization factor
Cj(x). An important difference with respect to [43] is the introduction of
the matrix B(s) to account for kernel rotation and anisotropic scaling. Given
the initial centroid ya, the mean-shifted centroid position yb for multiple his-
tograms is derived by adding to ya the MS vector evaluated in xa, that is

yb =V (xa) + ya

=B(sa)





∑N
j=1 Cj(xa)

∑nj(xa)
i=1 wj,iwj,ig

(

‖A(sa) (ya −wj,i)‖2
)

∑N
j=1 Cj(xa)

∑nj(xa)
i=1 wj,ig

(

‖A(sa) (ya − wj,i)‖2
) − ya



+ ya.

(A.6)

When the target is represented by one histogram only (i.e., N = 1), Eq. (A.6)
reduces to Eq. (16). Also, the original MS formulation ([7]) can be seen as a
special case of Eq. (A.6) with h1 = h2 and θ = 0. Finally, if we rewrite V (x)
as a function of the gradient we obtain

V (x) =
h2

1N
∑N

j=1 Cj(x)
∑nj(x)

i=1 wj,ig(‖A(s) (y − wj,i)‖2)

∂ρMP [r(x, zt), o]

∂y
. (A.7)

This demonstrates our claim that, for multi-part color histograms, the MS
vector V (x), and consequently the MS step V (xa) = yb − ya, are in the
direction of the gradient of ρMP .

Note that V (x) is rescaled with respect to the gradient magnitude by the
weighted kernel density estimate in y with kernel g(.). In practice, MS is an
adaptive gradient estimate that gives large response when the candidate in y
poorly matches the model [7].
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