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Abstract—We propose a framework for multi-target tracking  [6]. MHT explicitly postulates multiple association hypeses
with feedback that accounts for scene contextual informatin. We petween the set of observations and a finite set of multi-

demonstrate the framework on two types of context-dependen target hypothetical states; this allows one to correct past

events, namely target births (i.e., objects entering the sme or - . .
reappearing after occlusion) and spatially persistent cltter. The estimates with future data. The match between a detectidn an

spatial distributions of birth and clutter events are incrementally @ trajectory in a particular association hypothesis is aateqb

learned based on mixtures of Gaussians. The corresponding using a Kalman Filter. However, as the number of association
models are used by a Probability Hypothesis Density (PHD) hypotheses grows exponentially with the time and with the
filter that spatially modulates its strength based on the lemed number of targets, a gating procedure is necessary to discar

contextual information. Experimental results on a large vieo | . ot d t d th b f
surveillance dataset using a standard evaluation protocoshow €SS promising associations and to reduce the number o

that the feedback improves the tracking accuracy from 9% Kalman filter computations. A similar path is followed in [7]
to 14% by reducing the number of false detections and false where the marginal associatiguufs of the Joint Probability

trajectories. This performance improvement is achieved wthout  Data Association Filter (JPDAF) are sampled using a Particl

increasing the computational complexity of the tracker. Filter (PF). The approach is less complex than sampling the
Index Terms—Adaptive filtering, video surveillance, clutter, full multi-target state, as filtering is applied to indepent
tracking, GMM, context, PHD filter. association hypotheses. The data association problem can
also be modelled in a deterministic framework using graph
|. INTRODUCTION theory [8]. The graph structure accounts for target bireattl

MAGE-BASED trackers may fail in real world scenariosand missing detections, but a pre-filtering step is necgdsar
due to the performance limitations of object detectoremove spatial noise and clutter. A graph based method can
that generate noisy observations under illumination changsolve the association problem in a multi-sensor setup [9]. |
reflections and occlusions. Temporal filtering is usually aphis case data association is performed across time, space a
plied to cope with errors due to these uncertain obsenatiomultiple views. Jump Markov Systems (JMS) approximated
As the performance of a detector depends on the scdnePF have also been used to model a time-varying number
characteristics (such as object-background separalgiligas of targets in the scene, clutter and missing detections, [10]
of occlusions, entry and exit points and dynamic textureg}1l]. The JMS models the dependencies between targets
additional information on scene context may help the trackand allows for efficient design of the importance sampling
disambiguate real targets from clutter. Although the use tfnction. Recently, Rao-Blackwellization (RB) has beeedis
low-level contextual information has been investigated fdo reduce the computational cost of a multi-target Monte
improving the performance of the detector itself [1], [2]Carlo filter [12]. This filter integrates the state propagati
the use of contextual information for improving the spation closed form, while Monte Carlo integration is used foradat
temporal filtering performance is still an open issue. association. Also, in visual tracking the one-to one asgiomp
Bayesian recursion is a popular approach to filter noisyade by most of the data association algorithms does not hold
observations in target tracking [3], [4]. The Bayes filtestfir as the image region can be split into multiple blobs by the
predicts the target state based on a dynamical model dvatkground subtraction algorithm. A Markov Chain Monte
then updates the resulting distribution using new obsemat Carlo tracker can solve this problem by propagating both in
Unlike single-target Bayes trackers, which only removeigpa space and time the association hypotheses [13]. Howeveg, no
noise from the input data, multi-target trackers must antowf the trackers described so far is a natural extension of the
for target birth and target death, clutter and missing olzser single-target Bayes recursion to multi-target trackingckers
tions, and ideally smoothing the input both in space and.timiéke MHT [5] and JPADF [7] apply independent Bayes filtering
A popular solution to deal with clutter and missing obto each association hypothesis and not to the multi-tatges,s
servations is the Multiple Hypothesis Tracker (MHT) [5]thus reducing the filtering problem to a single-target ome. |
. . _ ) these filters the estimate of the current number of targeds is
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and evaluate the results on a large outdoor surveillan@eseit

oveat |7 Mo (the CLEAR-2007 dataset).
e i The paper is organized as follows. Section Ill introduces th
"Vﬁ M”) multi-target tracking framework based on the Particle PHD
Sotlecting Learning Sollecting filter. Section IV describes the density estimation techaiq
C'U"E'levems . T '( o bmhjvems used to enable the inclusion of contextual information i@ th

tracker. In Section V we discuss the results on a standard

Fig. 1. Feedback schema for target tracking based on obgettibn and dataset and in Section VI we draw conclusions.

on Particle PHD filtering. The outputZ{.) gathered by the detector and by

the tracker ) is filtered and used to extract contextual information ie th

form of statistics on the detector failure modalities£)) and on the object I1I. THE MULTI-TARGET TRACKING FRAMEWORK

entry areas in the scene({)). The PHD filter uses this feedback to modulat . . .
the filtering strength and improve the tracking performance HIS section Oﬁ?r_s an overview of our visual traCke_r based
I on Random Finite Sets (RFS) and the PHD filter. A

more detailed explanation of the RFS tracking theory and

observations as a single set of measurements of the m&adetailed description qf our implementation are presented
sensor [15]. As the dimensionality of the target state growd [15] and [21], respectively.

exponentially with the number of targets, the Probability- H

pothesis Density (PHD) filter can be used as a computatipnafl. Random Finite Sets for multi-target tracking

efficient algorithm to propagate the first-order moment @ th | et the target area be approximated withva h rectangle
multi-target statistics Only [14] The PHD filter maintaitis centered |n(y(1)7y(2)) Let the Sing|e-target state at time
same _moo_lehtng capa;blllltlzs OL'tTﬁ fuI(Ij Ba_yegan rgult;ﬁrgk be z, — (yg(ai)w-g(i)’y;?k)’y:(ﬂi)’wmk’hwk) € E,, where
T e, ity a1 isang obsenv (1. 12 is e speed of e aret ar, ' he sinle
scene. Experimental results have shown that a trackindjpépe arget space. Finally, let the single-target observatipn=

10 (2
based on the PHD filter achieves improved performance W'((%b'l:e étyzéce’tleuéfc;rhz\;v)ith% Er‘é k;gszn;iendat?]geleogsgf/ggg syagg
respect to standard methods like MHT [15]. ) ' o rep 9 pace.

. We then define the multi-target stat&;, and measurement,
¢ At\lsol,.A}trackte.zr bzt;\)sed"on.the T—:D filter czén usedS(igr;temcoB;, as the finite collection of the states and observations of
extual informaton by aflowing state-space-depende ._each target. I1fM (k) is the number of visible targets at time
of birth and clutter. As considering spatial dependenme% then the multi-target state, is the set
requires the introduction of additional parameters in therfi ' b
the complexity is usually limited either by working with X = {xkﬂl,...xk,]\f(k)} € F(Es), (2)
synthetic data, whose model matches exactly that used in the . . -
' : . e where F(F) is the collection of all the finite subsets &f.
filter [15], or by using uniform distributions [16], [17], §l, The mult(i-tz)slr ot measuremert. . is the set
[19]. The latter case leads to a filter that is independemhfro 9 koo
the scene context and does not exploit the full capabilidifes Zi = {21, 2en ) € F(Es), (2)

the RFS tracking framework. o )
which is formed by theN (k) observations. Note that some

observations may be due to clutter and some targets may fail
[1. CONTRIBUTION to generate observations.

HE h ted in thi build . The uncertainty in the state and measurement is introduced
T research presented In this paper bullds on Our Preylr yhe framework of finite sets statistic by modeling the
ous work on multi-target tracking with the particle PHD

. multi-target state and the multi-target measurement uisiog
filter [20], [21], where we showed that a tracker based on ttﬂ_@ g g

Particle PHD filter outperforms in visual scenarios a ctass\lle
graph-pased mu_lnple-hypotheses _data association mégfod Let =, be the RFS associated with the multi-target state:
In this paper instead we investigate the use of scene con-
textual information to improve the accuracy of the overall Ex = Sk (Xx—1) U B (Xg—1) UT, ©))
tracking result. First, we combine automatic and intevacti
feedback to extract scene contextual information (FigThgn
we use the natural modeling capabilities of the Bayesiartimu
target tracking framework to locate where objects are m
likely to appear in the scenedifth events) and where the
detector is expected to produce errocsuiter events). To
this end, we propose to model birth and clutter data using
a parametric model (GMM) learned incrementally [22]. Wevhere®, (X}) is the RFS of the measurements generated by
then use these models in the Bayesian tracker based onttietargetsX,, and K; models clutter and false detections.
PHD filter recursion to modulate the filter response dependin The goal is to estimatgy (Xx|Z1.x), thepdf of the objects
on the location of the candidate targets. We demonstrage theing in stateX, given all the observations; ., up to timek,
framework using background-subtraction—-based tracki3§) [ based on the previous two sets equations (Eg. (3) and Eq. (4))

where Sy (Xi—1) denotes the RFS of survived targets, while
IBk (Xk—1) is the RFS of target spawned from the previous
set of targetsX;_;, and I'y is the RFS of the new-born
0{§rgets [15]. The RFS);, associated with the measurement
is defined as

Q) = O (Xk)UKk7 (4)



The estimation is performed recursively in two steps, ngmelepresenting the state hypotheses of new targets appearing
prediction and update. Therediction step uses the dynamic the scene. The predicted weighfzﬁ)k_l, are defined as
model defined in Eq. (3) to obtain the pripdf as

b (300 )2,
Prjk—1(Xk|Z1:k-1) () ar (20127, 20 )
Wklk—1 = NONE :
= /fk|k71(Xk|Xk—1)pkfl\k71(Xk—l|lek—1)ﬂ(ka—1) T p%((;(’?) \)z ) i=Lp141,....,Lp_1+Jy
kPR \Z, | Zk

(®) 9)

where v;(.) is the intensity function of the new target

i=1,.., Ly

with pj,_1x—1(Xx—1|Z1.6—1) known from the previous itera- . . . .
tion and the transition densityj,,_(Xx|X,—1) determined birth RFS. The integral ofy(.) over a regionft gives
by Eq. (3). x is an appropriate dominating measure owe expected ”””?ber of new objects per .f_rame appearing
F(Es) (for a detailed description of RFSs, set integrals adg A. ¢k|k*1£x’§) is the pseudo—statﬁ transition prpbta;]bmty
formulation of 1, please refer to [14] and [15]). Thapdate Oklk—1(%:6) = ex—1(§) fan—1 (x[), whereey,_(€) is the

step uses the Bayes'’ rule once the observatifynis available _probabi_lity that the target still e_x_ists at tinﬁxa_a_ndfk‘k,l(:vlg)
is the single-target state transition probability.

e (Xel Zin) = 9121\ X1 )Pkip 1 (Xk| Z1:k-1) Once the new set of observations is available, the weights
| ' fgk(Zk|Xk)pk\k—1(Xk|lek71),LL(ka)'6 {5’1(@13@—1 1% are updated according to

possible [15], the number of particles required grows expen ~ “k — (z) + Cr(2) “hlk—17 (10)
tially with the number of targets. Therefore, an approxiorat
is necessary to make the problem computationally tractablghere Cy.(z) = Zf:kf”’“ wk,z(f;(:))wg,l,l- pu(x) is the
An example of approximation is the propagation of the firsmissing detection probabilitypm(x) = (1—pa(2)gr(z]z),
order moment of the multi-target posterior only, insteadhef , (»|2) is the single-target likelihood defining the probability

Although a Monte Carlo approximation of this recursion is _; N ujk_z(fc(i)) e
()_pM(xl(C))—i_Z,{k 2\ (1)

z2€Z},

posterior itself [14], as described in the next section. that z is generated by a target with stateand x(.) is the
clutter intensity.
B. The Particle PHD tracker As the bigger an object in the image, the larger its accelera-

rqion, we correlate the change of state with the target sihasT
éhe state transitiorfy ;i (zx|zx—1) is a first-order Gaussian
dynamic with State Dependent Variances (SDV), that is

The Probability Hypothesis Density (PHD) is a function i
the single-target state space whose peaks identify théy lik
position of the targets. The PHID=(x), is the first order

moment of a RFSZ, and is a function orf’;. The property G (1)
of the PHD is that for any regio® C A 0, 0y B 0, e
n
- _ zp=1|02 A O |21+ | B2 02 RE
ﬂLﬂRWiLDd@M, 7) 0 o 1 o B ||
where|.| denotes the cardinality of a set. Eq. (7) means that k (11)

by integrating the PHD on any regid® of the state space we yith
obtain the expected number of targetshn

T2
Let Dy, () be the PHD at timé associated with the multi- A= { (1) 7; } , Bi = ws,_, { % 8 } ,
target posterior densityy,,(Xx|Z1.x), then the Bayesian
iterative prediction and update @, (z) is known as the B 0 %2 [ Tw,, 0
PHD filter. Although no generic algebraic solution exist&2 = /o1 [ 0o T ]’ and By = { 0 The,_, ]’

for the PHD filter integrals, a Monte Carlo solution tha\t/vhereo and I. are then x n zero and identity matrices
approximates the PHD with a (large) set of weighted random ” n nxmn y )

(1) (2) (w) (h) . .
samples is possible (the Particle PHD filter [15]). Let th%nd {n!C }’{nk b {n_k } and {n, }a_re _mdependent white
; aussian noises with standard deviations.),o,,),0,,w)

(7) (1) Lk ; ; (i
set{wy,_y, 742 =l of Ly particles with stater;_, and and o,,), respectively.T = 1 is the interval between two
consecutive stepg; — 1 andk.

associated weithz,(jz1 approximate the PHD at timie—1. In
this case the densitigsx (zx|21.1) are approximated with a  gimjjarly to the state transition case, we correlate the

sum of L Dirac functions (i.e., particles) centeredfin{” }~ amplitude of the measurement noise to the target size. Thus,

Li_s we define the single-target likelihoagl (z|x) as a Gaussian
Di_1jps (7) ~ Z w6 (x _ Il(jll) . (8) With SDV, such thay.(z|z) = N'(z; Cz, 5(x)), whereN(.) is
= a Gaussian evaluated in centered irCx and with covariance
) (@) ~()1Lert matrix 3(x). C is defined as
Let a new set of particle§w,”, z,”},2;' """ be gener-
ated by drawingL;_; samples from the importance func- C = { D 023 } ,  with D = { 100 }
tion qk(.|:c§j21,Zk). These samples propagate the tracking O2xa 12 001

hypotheses from the samples at tithe- 1. ThenJ, samples and0,, ., is then x m zero matrix.X(x) is diagonal where
are drawn from the new-born importance functipn(.|Z), diag(3(z)) = [U“g“) Wy, ”g’” Ry O y0) Wty Ty Mg




............................................... approximated by particles is shown in Fig. 3. The peaks of
X e e the PHD are on the detected vehicles, and the M@@ ~3
estimates the number of targets.

As the PHD does not hold any information about the identity
il of the targets, we first use clustering with Gaussian Mixture
S Models (GMM) to detect the peaks of the PHD. To filter out
T the data due to clutter, after GMM, we select as candidate
states the centers of the clusters whose mass is at greater th
HHHH 0.5. The resulting candidate states validated over spade an
L time by the PHD filter are processed by a graph matching

o procedure for data association [8], [21], which considjent
P links the previous candidate states with the new ones thus
propagating the target identity (Fig. 3 (c)).

:@ ______ . IV. LEARNING BIRTH AND CLUTTER INTENSITY

R el A. Contextual information

HE propagation model defined in Eq. (9) and Eq. (10)
offers several degrees of freedom that help tuning the
filtering behavior depending on the tracking scenario adhan
Recent work on semantic region modeling has shown that
we can extract contextual information of the scene using the
output of a tracker and a parametric model [24], [25]. Common
MHHM activity paths, object entry and exit areas are detectediaed
T for higher level behavioural analysis. Similarly, in thiscg§on
ﬂ. .......... we detail the procedure to learn a parametric model of the
birth and clutter intensities, () andx(z) that introduces in
the tracker scene contextual knowledge.
Fig. 2. !”ushtration of the Palrt][dﬁj PSD liiltsr- Ffzm top ftottmhi a féglget A simple solution to model clutter and birth intensitiesas t
Sppsars n ne camers Veusl Tl (black 0. s o nedes (e considers (r) and (=) uniform on.z and =, respectively,
grows. In the case of missing detections, the particles keepropagating In this case, the absolute values of the intensities reptiege
according to the state transition and eventually join th@sneement. the average number of birth and clutter events per frame
are the only parameters to choose. However, as this solution
requires a compromise between the various image regions,
In the absence of any prior knowledge, the missing detectitnmay produce sub-optimal results. Fig. 4 (a)-(b) shows an
probability, pas (), the probability of survivale,,_1 (), the example of PHD-based tracker results where the filteringds t
birth and clutter intensities, () andry(z) are constant over weak. Spatially consistent detections caused by an illatitn
x and z. Sec. IV will show how to generate more complexhange are produced by the number plate of the car. Although
forms for+;(z) andx(2) to model contextual information. this object is in a position where a new target is unlikely to
At each iteration,J, new particles are added to the oldoe born, the filtering effect of the PHD is not strong enough
Ly, particles. To limit the growth of the number of particlesand the tracker generates a false track. Fig. 4 (c)-(d) slaows
a resampling step is performed after the update step. Téseample of results where filtering is too strong. A car in the
final set of particles with associated weigt{ts,(j)7x$)}f:’cl far field is detected for few frames. Although the probapilit
representing the PHD is defined in the single-target stateespof appearance of a vehicle is high in that image region, the
and is normalized to preserve the total mass. Figure 2 shoRidD filters out the detections, thus loosing the track.
a pictorial representation of the particle PHD propagation Fig. 5 (a) shows an example of image areas where new
in the single target case. When the target appears in theobjects are likely to appear. Hereby, the target birth model
camera visual field, a set of new born particles grows aroustould account for spatial variability in the scene andvallo
the measurements. If the series of measurements is deerhedfilter to reduce temporal smoothing over these locations
plausible by the state transition and observation modeés) t Likewise, Fig. 5 (b) shows an example of image areas where
the mass of the particles grows towards 1. When the targst daedetector based on background subtraction is expected to
not generate a measurement, then the number of resamfiid(on the white lines due to reflections and illumination
particles decreases. If after few steps the target reappeahanges and on waving vegetation). Therefore, the density o
then the surviving particles form again the cluster arolned ta birth and clutter event should depend on the scene comaiextu
measurement. Otherwise, the number of particles goes ¢ zénformation. The PHD filter can account for scene context
thus indicating the absence of a target. In thelti-target by varying its filtering strength according to the hypotbati
case, the set of particles also carries information about thetate of a target. This is possible as the birth intensijty:)
expectechumber of targets in the scene. An example of PHDnay depend on the state and the clutter intensitycx(z)
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Fig. 3. (a) Example of particles approximating the PHD (befthe resampling step) corresponding to the three visogéts of (b). The red boxes are the
detections used as input, whereas the green boxes indi@teehters of each cluster. (c) Output trajectories aftea dasociation.
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Fig. 6. Position of the centroids of the birth events (a) ahdhe clutter
events (b) for scenarios S101 from the CLEAR-2007 dataset.

B. Intensity learning

Learning intensity functions reduces to a density estiomati
problem by decomposing the birth and clutter intensities,
vi(z) and ki (z), as

(© | (d) V() = Srpr(z[b), (12)

Fig. 4. Examples of failures of a PHD-based tracker that uséerm birth and
and clutter intensities on the scenario S201 of the CLEAB?2@lataset. The ki (2) = Fepr(2]c), (13)
use of uniform densities leads to insufficient filtering thesults in a false

track on the number plate of the car (a)-(b) and on excessieeirfy that \wheres, and#, are the average birth/clutter events per frame
;isbti:fc't%?;Z%?ittﬁ;?;e;r(g;fktﬁ:%ﬁfg(g&tgﬁg: detestiom a background oy, ([b) and py,(z|c) are the distributions in the state and
observation spaces, respectively. For simplicity we asstinat

the two intensities are stationary and therefore we drop the
temporal subscripk. We can include this information in the
PHD filtering model by computing approximated versions of
s, 7, p(x|e) and p(z|c). The computation of and# simply
requires the cardinality of the sets and it is computed as the
average over all the frameg(x|b) andp(z|c) instead require
density estimation in 6D or 4D spaces.

Fig. 6 (a) shows the birth event centroids obtained from

is—e7-05 Mt eg - is—e7-85 Mt eg -
184 BROADWAY-CHURCH 184 BROADWAYCHURCH

(a) (b) the analysis of a 20-minute surveillance video clip. Clisste
Fig. 5. Image areas where target birth events (a) and cleients (b) are are mainly localized on the_ road and on the sidewalks. Birth
likely to happen. events are also generated in non-entry areas because lof trac

re-initializations due to object proximity and occlusions
To approximatep(z|b), we have to select a density estima-

tion technique. Density estimation models can be classified
may depend on the observatian The acquisition of event into three main groups: parametric, non-parametric and-sem
and clutter information for intensity learning is based be t parametric models [26]. As the target birth probability is
analysis of the output of the tracker and of the detectorhén tlikely to be multi-modal with localized peaks on few image
following we describe how we learn non-uniform models afegions (i.e., a door, a road, etc.) a fulgrametric model that
birth and clutter intensities. approximates the density with simple forms like a Gaussian i



not appropriate. ANon-parametric model like Kernel Density and by then updating the parameters as
Estimation (KDE) instead can represent complex distringi () /. (nt1)
as it builds the estimate over the data. Unfortunately, KBE i ;(n+1) _ ~(n) 4 [ 7 @) T :
potentially too demanding in terms of memory. In fact, the " 1-Mra " 1-Mra
estimation requires the original dataset of birth everds plo- (18)
tentially grows with the time. Consequently this method mai@r a Gaussian Mixture with., (z(6,,,) = N (x, tm, X, ) then

not be appropriate for real-world surveillance systemsrahe o™ (2 D)
m

the tracker runs on board of a smart camera with limited re- ("1 — /(") 4 o (x("+1) - Mgff)) . (19)
sources. Therefore, to modglxz|b) we use &Semi-parametric T

method where the sample joint-distribution is obtained with a o )(x("+1))

combination (a mixture) of simple parametric models [26]. ¥, (nt+1) — E(") +a #-

The parameters of the mixtures are usually learned by finding T (20)
the Maximum Likelihood (ML) solution via a numerical : ((x(n+l) — pm) (D) (T ES:})) ,

method like Expectation-Maximization (EM) [27]. However,

two problems arise with a classical ML-EM implementationvhere « determines the influence of the new sample on the
First, the likelihood is not a good indicator for model s¢i@e  ©0ld estimate. A component: is discarded when the weight
as it monotonically grows with the number of componentdm becomes negative.

Second, if new data becomes available, EM requires agairf\lthough mixture-of-Gaussian components may produce a
the complete dataset to update the model. A solution to tdeod approximation of the underlying distribution using a
first problem is to impose a prior on the parameters whidmall number of parameters, the final result may not be
favors simpler models and substitute ML with a Maximun@Ppropriate for tracking. In fact, at initialization, whea prior

a Posteriori (MAP) solution [28], [29] The second prob|erﬁ]f0rmati0n is available (|e7,’L = 0), it is difficult to obtain
can be solved by using a recursive form for the MAP-EN uniform distribution by mixing Gaussian components only.
equations [22], [30]. To model the distribution of birth eve Either we initializeX:,,, with large values, or we distribute a

we use a modified version of this MAP estimate [22]. large number of components on the data space. Both solutions
We approximate the distributiop(z|b) with a mixture-of- result in a slower learning process. Moreover, after trajni
Gaussian components that can be expressed as the probablllty of an event tends to zero far from the Gaussia
center. If a birth or clutter event happens in these regithres)
the tracking algorithm is likely to fail. A typical exampld o
p(alb) ~ Z TP ((0m ), With Z Tm =1, this problem is given by birth events generated by dynamic

(14) occlusions. In this case, to avoid a lost track, after anredetd
whered = {r1,..., 7, 61,...,0x ) is the set of parametersVvalidation delay a rebirth should still be possible.
defining the mixture,M is the number of components and To overcome this problem, we use a non-homogeneous
P (2]0,m) = N (2, fim, ) is the m-th Gaussian componentnixture composed of a uniform componentz), and the
with parameterd,, = {/im, S}, and i, and %, are the GMM of Eq. (14). We approximatg(z|b) with
mean and covariance, respectively. The goal is to find the p(alb) ~ muu(z) + 7,p(2]6), 21)

optimal setf,; 4 p that maximizes the log-posterior as
B whereu(z) = Lrect(z), V is the volume of the space, ang
Orap = arg max {logp(Xs|0) +logp(0)}.  (15) andr, are the weights associated with the uniform component
Starting with a large number of components, the algorith

FH‘d with the Gaussian mixture. We set at initializatign= 1
converges toward the MAP estimate férby selecting the andm, = 0 so that we have an uninformative initial estimate.
number of components important for the estimation using t¥ also setr, =10~ ? as the minimum value that, can get
Dirichlet prior during learning. Given this constraint, the algorithm reéin

M p(z|b) in a hierarchical fashion: we first use ML to compute

0) o< ] = (16) m, andm, (i.e., EQ. (17) and (18) withr = 0), and we then
updatef independently fromr, according to Egs. (17)-(20).

This approach introduces a bias in the estimate of the weight

as the ownerships of Eq. (17) are computed usihg and
not m,,, x m,. However, the update step of, and,, does
p Not depend omr,, (i.e.,m,, simplifies by substituting Eq. (17)
&o Eq. (19) and Eq. (20)), and in practice with localized
istributions and large: m, << m, thus the bias tends to
reduce with the amount of data available.

To learn the birth intensity fromX;, we initialize a grid
of 12x10 6D Gaussians equally spaced in the 2D positional
state space and centered on zero speed and on the objects
average size. The choice on the number of Gaussians depends
oM (D)) = () (D9 /(D9 (17)  on the complexity of the scene. However, as the components

where = N/2, and N is the number of parameters per
component in the mixture. In the Dirichlet distribution
represents the prior evidence of a component. Wheis
negative (i.e., improper Dirichlet) the prior allows foret
existence of a component only if enough evidence is gathe|J
from the data. The prior drives the irrelevant components
extinction, thus favoring simpler models.

Given the MAP estimaté™) obtained using: data points
{zM .. 2™} and the new datar(**!), we obtain the
updated estimaté(® 1) by first computing the ownerships
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Fig. 7. Example of learning with recursive update of thetbitensityp(x|b) for S101. The birth events used for density estimation asplayed in Fig. 6
(a). Althoughp(x|b) is defined on a 6D state space, for visualization purpose we she information related to the 2D position subspace ¢piy), y(?)).
First row: evolution of the birth density model with the nuenof samples processed. Second row: corresponding evolafithe GMM components.

-

Fig. 9. Example of inconsistent detections interpreted HD filter as
€) (b) clutter and therefore removed. Simple heuristics canrfferdntiate these data

from real clutter (red: observations; green: output of tiDHilter).
Fig. 8. Learned intensities for scenario S101 from the CLEZR7 dataset
superimposed on the original images. (a) Birth intensigtérthat the major T e ——

modes are associated with entry areas). (b) Clutter irttesgnote that waving EERARERL AT TR ' BN e
vegetation produces clutter that is correctly modeled ley@GMM). 7

are selected by the Dirichlet prior (Eq. (16)), we only need

to overestimate the number of entry regions Fig 7 shows tﬁig. 10. Sample detections that are marked interactivelglter and then
. . ' ) used for density estimation.

evolution of thep(x|b) estimate as more and more data become

available. The Dirichlet prior reduces the weight of the ®®d
that are not supported by sufficient evidence. After praogss the detections that are not associated with objects ofdster

320 trajectories (Fig. 7 (d) and Fig. 8 (a)) a few peaks (i"?n randomly chosen frames. Fig. 10 shows sample detections

entry regions) are clearly visible. TV.VO major peaks coroesp selected as clutter and Fig. 6 (b) displays the centroidbef t
to areas over the road where vehicles appear. Smaller pe ?ﬁ:ﬁer data collected on a real-world surveillance sdenar

are visible on the sidewalks. The remaining componentsef tRlote that most of the clutter is in this case associated with

mixture model birth events caused by track re-initializasi. waving vegetation and that a few false detections are also

The procedure for the estimation of the clutter intensityssociated with high contrasted regions due to shadowsnGiv
pk(Z|C) is similar to that of the birth intenSity. However, thqhe sets of eventy, = {Zc,i}ij\icla representing the locations
collection of the detection&’. due to clutter is not performed and sizes of the cluttered observations, we learn the clutte
automatically from the tracker output as these detectiop Mtensity by initializing a grid of 16x14 4D Gaussians edyal
contain the same errors we want to correct. Likewise f@paced in the 2D positional state space and centered on the
short trajectories as they could be generated either bkitrgc opjects average size. Because clutter data can be corteentra
errors or by partially undetected real objects. Fig. 9 shaws around small volumes of the observation space, we use a
example of a flickering detection on a small target with ledit |arger number of Gaussians than in the birth case to allow
contrast with respect to the background. for higher spatial resolution. Fig. 11 and Fig. 8 (b) show an

Clutter data are therefore collected with an interactive prexample of clutter density learned using 1800 false detesti
cedure, which requires a minimal user intervention. Aftex t collected with user interaction on the results from scenari
detector is applied on a training set of frames, the usecteleS101 (CLEAR-2007 dataset). The peaks of the probability



The tests are conducted on two real-world urlsegnarios
from the CLEAR-2007 dataset (i.e., scenario S101 and S201).
The videos have a frame size G20 x 480 pixels and are
recorded at 25Hz. The sequences contain global variatibns o
illumination, light flickering and waving trees.

The objectiveperformance evaluation follows the VACE-
CLEAR protocol [31], which uses four scores, namely Multi-
ple Object Detection Accuracy (MODA), Multiple Object De-
tection Precision (MODP), Multiple Object Tracking Accaya
(MQOTA) and Multiple Object Tracking Precision (MOTP). The
detection scores are

O
NG

m

MODP(k) = (22)

where N is the number of ground-truth detections mapped

N® 1aWnD®| o
onto the tracker output), = .’ GO quantifies

the overlap between the i-th ground-truth object ltié)’?) and
the mapped output detectidagk) in each framet, and

em(mi”) +cr(fpi”)
N

wherec,,(.) andcy(.) are the cost functiosor the number

of missing detectionsn,(cd) and false positivegfp,(cd). Finally

Ng“) is the number of objects in the ground-truth at fraine

MODP and MODA are averaged over the number of frames

of the evaluation segmend/s,.. The tracking scores are

MODA(k) = 1 — X))

) o ) ) ) N Ny, |G D™
Fig. 12. Filtering results of the Particle-PHD filter usireatned clutter and ZZ:"{ Zk:l T e
birth intensities (GM) on the same data as Fig. 4. First aird tlow: tracker MOTP = |G uD; |
output. Second and fourth row: the detections from a backgtsubtraction E]_Vfr Nj
algorithm are color-coded in red and the PHD output is cotmted in green. g=1-7m
The filtering strength is modulated by the Gaussian Mixturéhkand clutter nd
models. (a)-(b): strong filtering in a background area.({)-weak filtering

near an entry zone. EN” (cm(m(k)) + csf(fp;k)) + loge(idsw))

MOTA = 1 — == -
>t NG
distributions (in violet) correspond to areas of the imadere _ . (25) .
waving vegetation generates a large number of false detecti whereN% is the number of mapped objects o the entire
The comparison between clutter and birth intensities Rk, ;" is the number of missing trackgp;” is the
Fig. 8 (a)-(b) shows that in some cases regions with high bifftUmber of false positive tracks at frameand ids,, is the
rates overlap with regions with high clutter rates. Thisrtage NUMber of false identity switches.
might be only spatial, as the intensities also depend on the
target size and, for birth intensities, on the initial targgeed. B. Discussion
However, if the detections associated to clutter and birémes To assess the impact of the learning on the tracking perfor-
have similar positions and sizes, then the balance betwegsance we compare the results of the proposed method (GM)
strong and weak filtering will be naturally determined by thasing learned birth and clutter intensities against thaltesf

(24)

system based on the statistics of the training data. the baseline tracker (UM) using a preset uniform distrimuti
of birth and clutter. We trained the models on different feam
V. EXPERIMENTAL RESULTS spans than those used for the testing. After applying thoiéra
A. Experimental set-up on the training frame spans using uniform clutter and birth

T HIS section demonstrates the proposed multi-target tradRtensities and tlr(1e same set of mabr!ually tgneld parametelrs as
ing framework with learned intensities and assesses #e@Ur Prior work [21], we extract birth and clutter samples
rom the tracker output (see Section IV) and use these sample

contribution of learning clutter and birth density with mix : birth and ¢l , . del inallve th
ture models. Theletector used is a statistical change detecl® estimate birth and clutter intensity models. Finallye t

tor [23], followed by morphological filtering and connectetﬁracrl]«;rS are test_:adblon tue gvaluemon seg_m%nts V\;here g(\jround
component analysis. To facilitate experiments reprodlityib truth data is available. The intensity magnitudes of UMag

the files containing the detethr outpdy; are available at  17pese functions are internally defined in the CLEAR evahratioolbox,
http://www.elec.gmul.ac.uk/staffinfo/andrea/PHD- M available at http://www.clear-evaluation.org/ (lastessed: November 2007).
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Fig. 11. Example of learning with recursive update of thdtetudensityp(x|c) for S101. The input clutter events used are displayed in&id). Although
p(z|c) is defined on a 4D observation space, for visualization mepee show the information related only to the 2D positionspabe only(y(1), y(2)).
First row: evolution of the clutter density model with thennioer of samples processed. Second row: correspondingtievolef the GMM components.
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Fig. 13. Comparison of filtering results on the scenario STdst row: (a) 5% 4

tracker that uses learned clutter and birth intensities Y@écond row: tracker
that uses uniform intensities (UM). False detections duwdwing trees are
more consistently removed by using the Gaussian-Mixtaget birth and 15% 1
clutter models (red: detections; green: PHD filter output).

10% -

5) are the same as in the learning phase. We also compare
these two solutions with six other algorithms obtained by 5% 1
combining different clutter and birth learning strategi@sM
birth and uniform clutter intensities (A1); uniform birtma 0%
GMM clutter (A2); uniform birth and clutter but magnitudes MODP MODA MOTP MOTA
ands estimated from the data (A3); clutter as in A3 and GMM
birth (A4); birth as in A3 and GMM clutter (A5); GMM birth (b) °%°

and clutter intensitieS, but with birth interactive datdiemtion, Fig. 14. Comparison of tracking results on the CLEAR-200&nstios

performed as for the clutter data (A6). S101 (a) and S201 (b). The bars represent the score perdtemenite with
. . pect to the base-line algorithm (UM). The series Al-Aéenabtained with
Figure 12 shows sample results of GM on scenario Szgﬁ'fferent context learning strategies. See the text foaitfet

where contextual feedback improves the PHD filter perfor-

mance. As low birth intensity (i.e., strong temporal filtey)

is estimated over the parking areas (Fig. 12 (a)-(b)), false

detections on the number plate are consistently removiededom for filter tuning. Fig. 13 shows a comparison of the
(Fig. 12 (a)-(b)). Compare these results with those of UM and UM filtering results on scenario S201. The detections
in Fig. 4. On the same scenario high birth intensity (i.ecorresponding to waving branches are filtered out for a longe
weak filtering effect) is applied to the entry regions. Thisumber of frames due to the feedback from the GMM clutter
allows for correct detection and tracking of a fast car in thmodel (Fig. 13 (b)-(c)). Low clutter levels instead are gssid
camera far-field (Fig. 12 (c)-(d)). Similar consideraticare to the sidewalk regions, thus allowing the PHD filter to vatl
valid for the clutter model. When clutter is localized, thafter few frames the coherent detections corresponding to a
GMM-based density estimation introduces further degrdes medestrian (Fig. 13 (a)-(b)).
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Figure 14 compares the tracking results on the two scenarios 0.5 1
from the CLEAR-2007 dataset. The values of the bars are the
percent score differences with respect to the base-lirkdra
UM. In both scenarios the Gaussian mixtures used to model
birth and clutter intensities (GM and A6) outperforms the
other models, especially in terms of accuracy. GM and A6
improve the clutter removal capabilities of the PHD filter, Z Noor om
thus reducing false detections and false tracks. This is als " worhom
confirmed by the results in Fig. 15 obtained by varying the 0.3 ‘ ‘ ‘
values of clutter and birth magnitudesand 5 in UM. In 6.3E-04 2 5E-03 1.0E-02 4.0E-02
all cases GM outperforms UM in terms of accuracy. This (a)
is true also for the precision scores except when the clutter 0.5 -
intensity is overestimated. However, in this case UM aatsev
slightly better precision than GM, but at the cost of a large
drop of accuracy (Fig. 15 (d)). It is important to note that
the curves produced by UM are stable around their maximum
values as by changingand s the filtering behavior becomes
more suitable on a subset of targets but sub-optimal on anoth —MODAU
This leads to similar performance scores. Also, the resalts — - MOTAU
Fig. 14 show that, given the same average intensity, the GMM
density estimates improve the performance with respedteo t
uniform distributions (compare GM with A3). Both clutter
and birth intensity models contribute to the final perforeen
improvement. However, clutter intensity trained with malhy
labeled data achieves better results than GM birth intensit STSTT o TTimiTicimizimimimimimeee=iD
trained using the output of the tracker (compare Al with A2, o T
A3 with A4). This is due to the fact that the birth model must
account also for track re-initializations; the volume of state
space where a birth event is likely to happen is larger and thu
the model is less discriminative than that for clutter. Hoare —MOTP GM
a more precise birth model trained with manually annotated
data (A6) leads to ambiguous results (compare A6 and GM). 0.3 ; ; ;
On the one hand, when most false detections are generated /32 18 12 2 8 32 128
by background clutter, as in scenario S201 (Fig. 14 (b)), a (C)
tighter birth constraint allows A6 to outperform GM in terms 057
of accuracy. On the other hand, when a large percentage of
tracking errors is due to occlusions and blob merging (as
in scenario S101), the same constraint prevents a prompt
reinitialization of the tracks (Fig. 14 (a)).

We compared the performance of the proposed algorithm

Precision
o
N
.

Accuracy
o
N
.

0.3 T T
6.3E-04 2.5E-03 1.0E-02 4.0E-02
S

(b)

Pregision
~
L

(PROP) with that of the data association (DA) method from [8] —MODA GM

and the multiple hypothesis tracker (MHT) [6] on the same A

detections for all trackers. Also, as due to the Kalman propa 03 | | | | | |
gation of the hypotheses in the MHT implementation we could " im2 s ip 2 8 a2 128
not apply the SDV models used by the PHD filter, for a fair (d) r

comparison We resor.ted to tW(? mOde|§ with same transmqb. 15. Comparison of tracking performance on Scenaridl $diten varying

and observation matrices, but fixed variances. The parasetge birth and clutter magnitudes &nds) between the tracker with Gaussian-

of MHT were manually set by visually inspecting the finaMixture-based birth and clutter intensities (GM) and thecker with uniform

tracking result and we report them here for reproducibilif§/>tieutions (UM).

of the results. The variances for position measuremengenois

was 3 pixels; for the size measurement noise: 6 pixels; fr th

velocity state noise: 1.5; for the size state noise: 4 pjXels other two trackers in terms of accuracy. In particular, gkl

the initial velocity state: 200. The detection probabil&y.97; of an explicit clutter model heavily affects the performerod

Az = 150; the mean new targets is set to 0.0025; the me®A. In fact, DA validates detections using a simple procedur

false alarms to 0.00007; the maximal Mahalanobis distanbased on the distance from the prediction. MHT copes better

is 20; the tree depth is 10; the minimum likelihood ratio isvith the challenges of real-world tracking scenarios due to

0.001; the maximum number of hypotheses is 300. a better clutter model. Nevertheless, the PHD outperforms
Figure 16 shows that the proposed approach outperforms MEIT in terms of accuracy in both scenarios and has similar
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0.6 [@DA mMHT OPROP| for a multi-target tracker based on the PHD filter to adapt its
response according to the position in the target state space

051 Experimental results on real-world data show that it is

044 possible to learn contextual information via a combinatdn
automated and interactive feedback from the tracker, aad th

0.3 1 the proposed framework improves the capability of the PHD

filter in removing persistent clutter, and reduces the filielay

in regions where the birth event is likely to happen accaydin
0.1 to the learned model. The performance improvement is due
to the space-dependent birth and clutter models. The clutte
model strengthens the filter in presence of spatially laedalli
clutter and weakens the filter in clutter-free regions. Thithb

0.6 DA mMHT OPROP| - model instead allows us to increase the filtering strengtbrevh
targets are unlikely to appear. When compared with uniform
birth and clutter models the combined space-dependentisnode
(i) reduce the detection latency of the recursive filter urtelr-

free areas and (ii) reduce the number of false tracks geatkerat
by persistent clutter. The proposed approach is general and
can be applied to any multi-target Bayes tracker capable of
position-dependent birth and clutter modeling.

Future work includes the extension of the proposed frame-
work to continuous learning, and to non-stationary cludted
birth models. In the case of continuous learning, addifiona
data could be fed to the recursive GMM to update on-line
Fi@J-hlg-I Comparisog %f tracking performar?cgfbetween tgepcn?d clutter and birth intensities and a study is necessary t@-gua
e e T e, LT 3 ere S5 antee the convergence ofthe GMM algorithms to a meaningu

solution. Also, the continuous learning approach shouléeha
the capability to recognize wrong models to be removed and

precision in scenario S101 (Fig. 16 (a)) and better precisio 'ecomputed. Ideally, the design of non-stationary clutted
the more challenging scenario S201 (Fig. 16 (b)). Thre®fact birth models should cope with both the temporal evolution of
contribute to the improved performance: first, unlike MHiet @ Static context and with the movements of a camera. In the
PHD filter does not explicitly postulate association hysts, '2tter case the learning approach should condition birtth an
and this is advantageous with ambiguous associationsngecd!Utter intensities not to the absolute spatial locatiorttia
the Montecarlo approximation used by the PHD is molgage but to _the rel_atlve location with respect to r_ecogtniga
flexible in terms of model choice than the Kalman filtet@ndmark objects like roads, doors and vegetation. Finally
Third, the ability to model contextual information enhasce?lthough the PHD filter can cope with sporadic missing
the performance of the PHD filter. detections, a relevant source of error is associated wig-in

Finally, note that for simplicity, but without loss of gener ©Pi€ct occlusions (i.e., blob merging and splitting). Iresa
ality, in the models we assumed stationarity for clutter arfePnditions classifier—based trackers [34] could improve th
birth events. However, when the scene undergoes significsfUIts of change—detection-based trackers.
illumination changes, a non-stationary clutter model may b
necessary. For example, Fig. 5 (b) shows that clutterectdete REFERENCES
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