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Learning scene context
for multiple object tracking

Emilio Maggio*, Andrea Cavallaro

Abstract—We propose a framework for multi-target tracking
with feedback that accounts for scene contextual information. We
demonstrate the framework on two types of context-dependent
events, namely target births (i.e., objects entering the scene or
reappearing after occlusion) and spatially persistent clutter. The
spatial distributions of birth and clutter events are incrementally
learned based on mixtures of Gaussians. The corresponding
models are used by a Probability Hypothesis Density (PHD)
filter that spatially modulates its strength based on the learned
contextual information. Experimental results on a large video
surveillance dataset using a standard evaluation protocolshow
that the feedback improves the tracking accuracy from 9%
to 14% by reducing the number of false detections and false
trajectories. This performance improvement is achieved without
increasing the computational complexity of the tracker.

Index Terms—Adaptive filtering, video surveillance, clutter,
tracking, GMM, context, PHD filter.

I. I NTRODUCTION

I MAGE-BASED trackers may fail in real world scenarios
due to the performance limitations of object detectors

that generate noisy observations under illumination changes,
reflections and occlusions. Temporal filtering is usually ap-
plied to cope with errors due to these uncertain observations.
As the performance of a detector depends on the scene
characteristics (such as object–background separability, areas
of occlusions, entry and exit points and dynamic textures),
additional information on scene context may help the tracker
disambiguate real targets from clutter. Although the use of
low-level contextual information has been investigated for
improving the performance of the detector itself [1], [2],
the use of contextual information for improving the spatio-
temporal filtering performance is still an open issue.

Bayesian recursion is a popular approach to filter noisy
observations in target tracking [3], [4]. The Bayes filter first
predicts the target state based on a dynamical model and
then updates the resulting distribution using new observations.
Unlike single-target Bayes trackers, which only remove spatial
noise from the input data, multi-target trackers must account
for target birth and target death, clutter and missing observa-
tions, and ideally smoothing the input both in space and time.

A popular solution to deal with clutter and missing ob-
servations is the Multiple Hypothesis Tracker (MHT) [5],
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[6]. MHT explicitly postulates multiple association hypotheses
between the set of observations and a finite set of multi-
target hypothetical states; this allows one to correct past
estimates with future data. The match between a detection and
a trajectory in a particular association hypothesis is computed
using a Kalman Filter. However, as the number of association
hypotheses grows exponentially with the time and with the
number of targets, a gating procedure is necessary to discard
less promising associations and to reduce the number of
Kalman filter computations. A similar path is followed in [7]
where the marginal associationpdfs of the Joint Probability
Data Association Filter (JPDAF) are sampled using a Particle
Filter (PF). The approach is less complex than sampling the
full multi-target state, as filtering is applied to independent
association hypotheses. The data association problem can
also be modelled in a deterministic framework using graph
theory [8]. The graph structure accounts for target birth, death
and missing detections, but a pre-filtering step is necessary to
remove spatial noise and clutter. A graph based method can
solve the association problem in a multi-sensor setup [9]. In
this case data association is performed across time, space and
multiple views. Jump Markov Systems (JMS) approximated
by PF have also been used to model a time-varying number
of targets in the scene, clutter and missing detections [10],
[11]. The JMS models the dependencies between targets
and allows for efficient design of the importance sampling
function. Recently, Rao-Blackwellization (RB) has been used
to reduce the computational cost of a multi-target Monte
Carlo filter [12]. This filter integrates the state propagation
in closed form, while Monte Carlo integration is used for data
association. Also, in visual tracking the one-to one assumption
made by most of the data association algorithms does not hold
as the image region can be split into multiple blobs by the
background subtraction algorithm. A Markov Chain Monte
Carlo tracker can solve this problem by propagating both in
space and time the association hypotheses [13]. However, none
of the trackers described so far is a natural extension of the
single-target Bayes recursion to multi-target tracking. Trackers
like MHT [5] and JPADF [7] apply independent Bayes filtering
to each association hypothesis and not to the multi-target state,
thus reducing the filtering problem to a single-target one. In
these filters the estimate of the current number of targets isa
consequence of the selection of the best association hypothesis.

Recently Mahler proposed a new formulation of the multi-
target tracking problem and of the Bayes recursion which
makes use of Finite Set Statistics (FISS) [14]. This framework
considers the multi-target state as a single meta-target and the

0000–0000/00$00.00c© 2009 IEEE



2

Object 

detector

Tracks

Multi-target tracker 
based on 

Random Finite Sets

XkZk

Collecting

evidence of 
clutter events

Learning
Collecting

evidence of 
birth events

XbZc

(z) (x)

Fig. 1. Feedback schema for target tracking based on object detection and
on Particle PHD filtering. The output (Zk) gathered by the detector and by
the tracker (Xk) is filtered and used to extract contextual information in the
form of statistics on the detector failure modalities (κ(z)) and on the object
entry areas in the scene (γ(x)). The PHD filter uses this feedback to modulate
the filtering strength and improve the tracking performance.

observations as a single set of measurements of the meta-
sensor [15]. As the dimensionality of the target state grows
exponentially with the number of targets, the Probability Hy-
pothesis Density (PHD) filter can be used as a computationally
efficient algorithm to propagate the first-order moment of the
multi-target statistics only [14]. The PHD filter maintainsthe
same modeling capabilities of the full Bayesian multi-target
recursion in terms of clutter, birth and missing observations
but with linear complexity with the number of targets in the
scene. Experimental results have shown that a tracking pipeline
based on the PHD filter achieves improved performance with
respect to standard methods like MHT [15].

Also, A tracker based on the PHD filter can use scene con-
textual information by allowing state-space-dependent models
of birth and clutter. As considering spatial dependencies
requires the introduction of additional parameters in the filter,
the complexity is usually limited either by working with
synthetic data, whose model matches exactly that used in the
filter [15], or by using uniform distributions [16], [17], [18],
[19]. The latter case leads to a filter that is independent from
the scene context and does not exploit the full capabilitiesof
the RFS tracking framework.

II. CONTRIBUTION

T HE research presented in this paper builds on our previ-
ous work on multi-target tracking with the particle PHD

filter [20], [21], where we showed that a tracker based on the
Particle PHD filter outperforms in visual scenarios a classic
graph-based multiple-hypotheses data association method[8].

In this paper instead we investigate the use of scene con-
textual information to improve the accuracy of the overall
tracking result. First, we combine automatic and interactive
feedback to extract scene contextual information (Fig. 1).Then
we use the natural modeling capabilities of the Bayesian multi-
target tracking framework to locate where objects are more
likely to appear in the scene (birth events) and where the
detector is expected to produce errors (clutter events). To
this end, we propose to model birth and clutter data using
a parametric model (GMM) learned incrementally [22]. We
then use these models in the Bayesian tracker based on the
PHD filter recursion to modulate the filter response depending
on the location of the candidate targets. We demonstrate this
framework using background–subtraction–based tracking [23]

and evaluate the results on a large outdoor surveillance dataset
(the CLEAR-2007 dataset).

The paper is organized as follows. Section III introduces the
multi-target tracking framework based on the Particle PHD
filter. Section IV describes the density estimation technique
used to enable the inclusion of contextual information in the
tracker. In Section V we discuss the results on a standard
dataset and in Section VI we draw conclusions.

III. T HE MULTI -TARGET TRACKING FRAMEWORK

T HIS section offers an overview of our visual tracker based
on Random Finite Sets (RFS) and the PHD filter. A

more detailed explanation of the RFS tracking theory and
a detailed description of our implementation are presented
in [15] and [21], respectively.

A. Random Finite Sets for multi-target tracking

Let the target area be approximated with aw× h rectangle
centered in
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) is the speed of the target andEs is the single-
target space. Finally, let the single-target observationzk =

(y
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zk , wzk

, hzk
) ∈ Eo be a rectangle generated by an

object detector, withEo representing the observation space.
We then define the multi-target state,Xk, and measurement,
Zk, as the finite collection of the states and observations of
each target. IfM(k) is the number of visible targets at time
k, then the multi-target state,Xk, is the set

Xk =
{
xk,1, ...xk,M(k)

}
∈ F(Es), (1)

whereF(E) is the collection of all the finite subsets ofE.
The multi-target measurement,Zk, is the set

Zk =
{
zk,1, ...zk,N(k)

}
∈ F(Eo), (2)

which is formed by theN(k) observations. Note that some
observations may be due to clutter and some targets may fail
to generate observations.

The uncertainty in the state and measurement is introduced
in the framework of finite sets statistic by modeling the
multi-target state and the multi-target measurement usingtwo
Random Finite Sets (RFS). An RFS is a finite set of random
vectors for which the cardinality is also a random variable.
Let Ξk be the RFS associated with the multi-target state:

Ξk = Sk (Xk−1) ∪Bk (Xk−1) ∪ Γk, (3)

whereSk (Xk−1) denotes the RFS of survived targets, while
Bk (Xk−1) is the RFS of target spawned from the previous
set of targetsXk−1, and Γk is the RFS of the new-born
targets [15]. The RFSΩk associated with the measurement
is defined as

Ωk = Θk (Xk) ∪Kk, (4)

whereΘk (Xk) is the RFS of the measurements generated by
the targetsXk, andKk models clutter and false detections.

The goal is to estimatepk|k(Xk|Z1:k), thepdf of the objects
being in stateXk given all the observationsZ1:k up to timek,
based on the previous two sets equations (Eq. (3) and Eq. (4)).
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The estimation is performed recursively in two steps, namely
prediction and update. Theprediction step uses the dynamic
model defined in Eq. (3) to obtain the priorpdf as

pk|k−1(Xk|Z1:k−1)

=

∫

fk|k−1(Xk|Xk−1)pk−1|k−1(Xk−1|Z1:k−1)µ(dXk−1)

(5)

with pk−1|k−1(Xk−1|Z1:k−1) known from the previous itera-
tion and the transition densityfk|k−1(Xk|Xk−1) determined
by Eq. (3). µ is an appropriate dominating measure on
F(Es) (for a detailed description of RFSs, set integrals and
formulation ofµ, please refer to [14] and [15]). Theupdate
step uses the Bayes’ rule once the observationZk is available

pk|k(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)

∫
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)µ(dXk)

.

(6)
Although a Monte Carlo approximation of this recursion is
possible [15], the number of particles required grows exponen-
tially with the number of targets. Therefore, an approximation
is necessary to make the problem computationally tractable.
An example of approximation is the propagation of the first-
order moment of the multi-target posterior only, instead ofthe
posterior itself [14], as described in the next section.

B. The Particle PHD tracker

The Probability Hypothesis Density (PHD) is a function in
the single-target state space whose peaks identify the likely
position of the targets. The PHD,DΞ(x), is the first order
moment of a RFS,Ξ, and is a function onEs. The property
of the PHD is that for any regionR ⊆ Es

E[|Ξ ∩R|] =

∫

R

DΞ(x)dx, (7)

where|.| denotes the cardinality of a set. Eq. (7) means that
by integrating the PHD on any regionR of the state space we
obtain the expected number of targets inR.

Let Dk|k(x) be the PHD at timek associated with the multi-
target posterior densitypk|k(Xk|Z1:k), then the Bayesian
iterative prediction and update ofDk|k(x) is known as the
PHD filter. Although no generic algebraic solution exists
for the PHD filter integrals, a Monte Carlo solution that
approximates the PHD with a (large) set of weighted random
samples is possible (the Particle PHD filter [15]). Let the
set{ω(i)

k−1, x
(i)
k−1}

Lk−1

i=1 of Lk−1 particles with statex(i)
k−1 and

associated weightω(i)
k−1 approximate the PHD at timek−1. In

this case the densitiespk|k(xk|z1:k) are approximated with a

sum ofL Dirac functions (i.e., particles) centered in{x(i)
k }L

i=1:

Dk−1|k−1(x) ≈

Lk−1∑

i=1

ω
(i)
k−1δ

(

x− x
(i)
k−1

)

. (8)

Let a new set of particles{ω̃(i)
k , x̃

(i)
k }

Lk−1+Jk

i=1 be gener-
ated by drawingLk−1 samples from the importance func-
tion qk(.|x

(i)
k−1, Zk). These samples propagate the tracking

hypotheses from the samples at timek − 1. ThenJk samples
are drawn from the new-born importance function,pk(.|Zk),

representing the state hypotheses of new targets appearingin
the scene. The predicted weights,ω̃

(i)
k|k−1, are defined as

ω̃
(i)
k|k−1 =
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k
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|Zk

) i = Lk−1 + 1, . . . , Lk−1 + Jk

.

(9)
where γk(.) is the intensity function of the new target
birth RFS. The integral ofγk(.) over a regionR gives
the expected number of new objects per frame appearing
in R. φk|k−1(x, ξ) is the pseudo-state transition probability
φk|k−1(x, ξ) = ek|k−1(ξ)fk|k−1(x|ξ), whereek|k−1(ξ) is the
probability that the target still exists at timek andfk|k−1(x|ξ)
is the single-target state transition probability.

Once the new set of observations is available, the weights
{ω̃

(i)
k|k−1}

Lk−1+Jk

i=1 are updated according to

ω̃
(i)
k =

[

pM (x̃
(i)
k ) +

∑

z∈Zk

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)

]

ω̃
(i)
k|k−1, (10)

whereCk(z) =
∑Lk−1+Jk

j=1 ψk,z(x̃
(i)
k )ω

(j)
k|k−1, pM (x) is the

missing detection probability;ψk,z(x) = (1−pM (x))gk(z|x),
gk(z|x) is the single-target likelihood defining the probability
that z is generated by a target with statex and κk(.) is the
clutter intensity.

As the bigger an object in the image, the larger its accelera-
tion, we correlate the change of state with the target size. Thus
the state transitionfk|k−1(xk|xk−1) is a first-order Gaussian
dynamic with State Dependent Variances (SDV), that is

xk =

G
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(11)
with

A =

[
1 T
0 1

]

, B1 = wxk−1

[
T 2

2 0
T 0

]

,

B2 = hxk−1

[

0 T 2

2
0 T

]

, and B3 =

[
Twxk−1

0
0 Thxk−1

]

,

where0n and In are then × n zero and identity matrices,
and{n(1)

k },{n(2)
k }, {n(w)

k } and{n(h)
k } are independent white

Gaussian noises with standard deviationsσn(1) ,σn(2) ,σn(w)

and σn(h) , respectively.T = 1 is the interval between two
consecutive steps,k − 1 andk.

Similarly to the state transition case, we correlate the
amplitude of the measurement noise to the target size. Thus,
we define the single-target likelihoodgk(z|x) as a Gaussian
with SDV, such thatgk(z|x) = N (z;Cx,Σ(x)), whereN (.) is
a Gaussian evaluated inz, centered inCx and with covariance
matrix Σ(x). C is defined as

C =

[
D 02×3

02×4 I2

]

, with D =

[
1 0 0
0 0 1

]

and0n×m is then×m zero matrix.Σ(x) is diagonal where
diag(Σ(x)) = [

σ
v(w)

2 wx,
σ

v(h)

2 hx, σv(w)wx, σv(h)hx].
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Fig. 2. Illustration of the Particle PHD filter. From top to bottom: a target
appears in the camera visual field (black box). A set of new particles (blue
dots) grows around the measurements (red crosses). The cumulative mass
grows. In the case of missing detections, the particles keepon propagating
according to the state transition and eventually join the measurement.

In the absence of any prior knowledge, the missing detection
probability,pM (x), the probability of survival,ek|k−1(x), the
birth and clutter intensitiesγk(x) andκk(z) are constant over
x and z. Sec. IV will show how to generate more complex
forms for γk(x) andκk(z) to model contextual information.

At each iteration,Jk new particles are added to the old
Lk−1 particles. To limit the growth of the number of particles,
a resampling step is performed after the update step. The
final set of particles with associated weights{ω(i)

k , x
(i)
k }Lk

i=1

representing the PHD is defined in the single-target state space
and is normalized to preserve the total mass. Figure 2 shows
a pictorial representation of the particle PHD propagation
in the single target case. When the target appears in the
camera visual field, a set of new born particles grows around
the measurements. If the series of measurements is deemed
plausible by the state transition and observation models, then
the mass of the particles grows towards 1. When the target does
not generate a measurement, then the number of resampled
particles decreases. If after few steps the target reappears,
then the surviving particles form again the cluster around the
measurement. Otherwise, the number of particles goes to zero,
thus indicating the absence of a target. In themulti-target
case, the set of particles also carries information about the
expectednumber of targets in the scene. An example of PHD

approximated by particles is shown in Fig. 3. The peaks of
the PHD are on the detected vehicles, and the massM̂k|k ≈ 3
estimates the number of targets.

As the PHD does not hold any information about the identity
of the targets, we first use clustering with Gaussian Mixture
Models (GMM) to detect the peaks of the PHD. To filter out
the data due to clutter, after GMM, we select as candidate
states the centers of the clusters whose mass is at greater than
0.5. The resulting candidate states validated over space and
time by the PHD filter are processed by a graph matching
procedure for data association [8], [21], which consistently
links the previous candidate states with the new ones thus
propagating the target identity (Fig. 3 (c)).

IV. L EARNING BIRTH AND CLUTTER INTENSITY

A. Contextual information

T HE propagation model defined in Eq. (9) and Eq. (10)
offers several degrees of freedom that help tuning the

filtering behavior depending on the tracking scenario at hand.
Recent work on semantic region modeling has shown that
we can extract contextual information of the scene using the
output of a tracker and a parametric model [24], [25]. Common
activity paths, object entry and exit areas are detected andused
for higher level behavioural analysis. Similarly, in this section
we detail the procedure to learn a parametric model of the
birth and clutter intensitiesγk(x) andκk(z) that introduces in
the tracker scene contextual knowledge.

A simple solution to model clutter and birth intensities is to
considerγk(x) and κk(z) uniform on x and z, respectively.
In this case, the absolute values of the intensities representing
the average number of birth and clutter events per frame
are the only parameters to choose. However, as this solution
requires a compromise between the various image regions,
it may produce sub-optimal results. Fig. 4 (a)-(b) shows an
example of PHD-based tracker results where the filtering is too
weak. Spatially consistent detections caused by an illumination
change are produced by the number plate of the car. Although
this object is in a position where a new target is unlikely to
be born, the filtering effect of the PHD is not strong enough
and the tracker generates a false track. Fig. 4 (c)-(d) showsan
example of results where filtering is too strong. A car in the
far field is detected for few frames. Although the probability
of appearance of a vehicle is high in that image region, the
PHD filters out the detections, thus loosing the track.

Fig. 5 (a) shows an example of image areas where new
objects are likely to appear. Hereby, the target birth model
should account for spatial variability in the scene and allow
the filter to reduce temporal smoothing over these locations.
Likewise, Fig. 5 (b) shows an example of image areas where
a detector based on background subtraction is expected to
fail (on the white lines due to reflections and illumination
changes and on waving vegetation). Therefore, the density of
a birth and clutter event should depend on the scene contextual
information. The PHD filter can account for scene context
by varying its filtering strength according to the hypothetical
state of a target. This is possible as the birth intensityγk(x)
may depend on the statex and the clutter intensityκk(z)
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Fig. 3. (a) Example of particles approximating the PHD (before the resampling step) corresponding to the three visual targets of (b). The red boxes are the
detections used as input, whereas the green boxes indicate the centers of each cluster. (c) Output trajectories after data association.

(a) (b)

(c) (d)

Fig. 4. Examples of failures of a PHD-based tracker that usesuniform birth
and clutter intensities on the scenario S201 of the CLEAR-2007 dataset. The
use of uniform densities leads to insufficient filtering thatresults in a false
track on the number plate of the car (a)-(b) and on excessive filtering that
results in missed target (black car) (c)-(d) (red: detections from a background
subtraction algorithm; green: the PHD output).

(a) (b)

Fig. 5. Image areas where target birth events (a) and clutterevents (b) are
likely to happen.

may depend on the observationz. The acquisition of event
and clutter information for intensity learning is based on the
analysis of the output of the tracker and of the detector. In the
following we describe how we learn non-uniform models of
birth and clutter intensities.

(a) (b)

Fig. 6. Position of the centroids of the birth events (a) and of the clutter
events (b) for scenarios S101 from the CLEAR-2007 dataset.

B. Intensity learning

Learning intensity functions reduces to a density estimation
problem by decomposing the birth and clutter intensities,
γk(x) andκk(z), as

γk(x) = s̄kpk(x|b), (12)

and
κk(z) = r̄kpk(z|c), (13)

wheres̄k and r̄k are the average birth/clutter events per frame
andpk(x|b) andpk(z|c) are the distributions in the state and
observation spaces, respectively. For simplicity we assume that
the two intensities are stationary and therefore we drop the
temporal subscriptk. We can include this information in the
PHD filtering model by computing approximated versions of
s̄, r̄, p(x|e) and p(z|c). The computation of̄s and r̄ simply
requires the cardinality of the sets and it is computed as the
average over all the frames;p(x|b) andp(z|c) instead require
density estimation in 6D or 4D spaces.

Fig. 6 (a) shows the birth event centroids obtained from
the analysis of a 20-minute surveillance video clip. Clusters
are mainly localized on the road and on the sidewalks. Birth
events are also generated in non-entry areas because of track
re-initializations due to object proximity and occlusions.

To approximatep(x|b), we have to select a density estima-
tion technique. Density estimation models can be classified
into three main groups: parametric, non-parametric and semi-
parametric models [26]. As the target birth probability is
likely to be multi-modal with localized peaks on few image
regions (i.e., a door, a road, etc.) a fullyParametric model that
approximates the density with simple forms like a Gaussian is
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not appropriate. ANon-parametric model like Kernel Density
Estimation (KDE) instead can represent complex distributions
as it builds the estimate over the data. Unfortunately, KDE is
potentially too demanding in terms of memory. In fact, the
estimation requires the original dataset of birth events that po-
tentially grows with the time. Consequently this method may
not be appropriate for real-world surveillance systems where
the tracker runs on board of a smart camera with limited re-
sources. Therefore, to modelp(x|b) we use aSemi-parametric
method where the sample joint-distribution is obtained with a
combination (a mixture) of simple parametric models [26].
The parameters of the mixtures are usually learned by finding
the Maximum Likelihood (ML) solution via a numerical
method like Expectation-Maximization (EM) [27]. However,
two problems arise with a classical ML-EM implementation.
First, the likelihood is not a good indicator for model selection
as it monotonically grows with the number of components.
Second, if new data becomes available, EM requires again
the complete dataset to update the model. A solution to the
first problem is to impose a prior on the parameters which
favors simpler models and substitute ML with a Maximum
a Posteriori (MAP) solution [28], [29]. The second problem
can be solved by using a recursive form for the MAP-EM
equations [22], [30]. To model the distribution of birth events
we use a modified version of this MAP estimate [22].

We approximate the distributionp(x|b) with a mixture-of-
Gaussian components that can be expressed as

p(x|b) ≈ p(x|θ) =
M∑

m=1

πmpm(x|θm), with
M∑

m=1

πm = 1,

(14)
whereθ = {π1, . . . , πM , θ1, . . . , θM} is the set of parameters
defining the mixture,M is the number of components and
pm(x|θm) = N (x, µm,Σm) is the m-th Gaussian component
with parametersθm = {µm,Σm}, andµm and Σm are the
mean and covariance, respectively. The goal is to find the
optimal setθMAP that maximizes the log-posterior as

θMAP = argmax
θ

{log p(Xb|θ) + log p(θ)} . (15)

Starting with a large number of components, the algorithm
converges toward the MAP estimate forθ by selecting the
number of components important for the estimation using the
Dirichlet prior

p(θ) ∝
M∏

m−1

π−τ
m , (16)

where τ = N/2, and N is the number of parameters per
component in the mixture. In the Dirichlet distributionτ
represents the prior evidence of a component. Whenτ is
negative (i.e., improper Dirichlet) the prior allows for the
existence of a component only if enough evidence is gathered
from the data. The prior drives the irrelevant components to
extinction, thus favoring simpler models.

Given the MAP estimateθ(n) obtained usingn data points
{x(1), . . . , x(n)} and the new datax(n+1), we obtain the
updated estimateθ(n+1) by first computing the ownerships

o(n)
m (x(n+1)) = π(n)

m pm(x(n+1)|θ(n)
m )/p(x(n+1)|θ(n)) (17)

and by then updating the parameters as

π(n+1)
m = π(n)

m + α

(

o
(n)
m (x(n+1))

1 −Mτα
− π(n)

m −
τα

1 −Mτα

)

,

(18)
for a Gaussian Mixture withpm(x|θm) = N(x, µm,Σm) then

µ(n+1)
m = µ(n)

m + α
o
(n)
m (x(n+1))

π
(n)
m

(

x(n+1) − µ(n)
m

)

, (19)

Σ(n+1)
m = Σ(n)

m + α
o
(n)
m (x(n+1))

π
(n)
m

·

·
(

(x(n+1) − µ(n)
m )(x(n+1) − µ(n)

m )T − Σ(n)
m

)

,

(20)

whereα determines the influence of the new sample on the
old estimate. A componentm is discarded when the weight
θm becomes negative.

Although mixture-of-Gaussian components may produce a
good approximation of the underlying distribution using a
small number of parameters, the final result may not be
appropriate for tracking. In fact, at initialization, whenno prior
information is available (i.e.,n = 0), it is difficult to obtain
a uniform distribution by mixing Gaussian components only.
Either we initializeΣm with large values, or we distribute a
large number of components on the data space. Both solutions
result in a slower learning process. Moreover, after training,
the probability of an event tends to zero far from the Gaussian
center. If a birth or clutter event happens in these regions,then
the tracking algorithm is likely to fail. A typical example of
this problem is given by birth events generated by dynamic
occlusions. In this case, to avoid a lost track, after an extended
validation delay a rebirth should still be possible.

To overcome this problem, we use a non-homogeneous
mixture composed of a uniform component,u(x), and the
GMM of Eq. (14). We approximatep(x|b) with

p(x|b) ≈ πuu(x) + πgp(x|θ), (21)

whereu(x) = 1
V
rect(x), V is the volume of the space, andπu

andπg are the weights associated with the uniform component
and with the Gaussian mixture. We set at initializationπu = 1
andπg = 0 so that we have an uninformative initial estimate.
We also setπu = 10−3 as the minimum value thatπu can get
during learning. Given this constraint, the algorithm refines
p(x|b) in a hierarchical fashion: we first use ML to compute
πu andπg (i.e., Eq. (17) and (18) withτ = 0), and we then
updateθ independently fromπu according to Eqs. (17)-(20).
This approach introduces a bias in the estimate of the weights
as the ownerships of Eq. (17) are computed usingπm and
not πm × πg. However, the update step ofπm andΣm does
not depend onπm (i.e.,πm simplifies by substituting Eq. (17)
into Eq. (19) and Eq. (20)), and in practice with localized
distributions and largen πu << πg thus the bias tends to
reduce with the amount of data available.

To learn the birth intensity fromXb we initialize a grid
of 12x10 6D Gaussians equally spaced in the 2D positional
state space and centered on zero speed and on the objects
average size. The choice on the number of Gaussians depends
on the complexity of the scene. However, as the components
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Fig. 7. Example of learning with recursive update of the birth densityp(x|b) for S101. The birth events used for density estimation are displayed in Fig. 6
(a). Althoughp(x|b) is defined on a 6D state space, for visualization purpose we show the information related to the 2D position subspace only(y(1) , y(2)).
First row: evolution of the birth density model with the number of samples processed. Second row: corresponding evolution of the GMM components.

(a) (b)

Fig. 8. Learned intensities for scenario S101 from the CLEAR-2007 dataset
superimposed on the original images. (a) Birth intensity (note that the major
modes are associated with entry areas). (b) Clutter intensities (note that waving
vegetation produces clutter that is correctly modeled by the GMM).

are selected by the Dirichlet prior (Eq. (16)), we only need
to overestimate the number of entry regions. Fig. 7 shows the
evolution of thep(x|b) estimate as more and more data become
available. The Dirichlet prior reduces the weight of the modes
that are not supported by sufficient evidence. After processing
320 trajectories (Fig. 7 (d) and Fig. 8 (a)) a few peaks (i.e.,
entry regions) are clearly visible. Two major peaks correspond
to areas over the road where vehicles appear. Smaller peaks
are visible on the sidewalks. The remaining components of the
mixture model birth events caused by track re-initializations.

The procedure for the estimation of the clutter intensity
pk(z|c) is similar to that of the birth intensity. However, the
collection of the detectionsZc due to clutter is not performed
automatically from the tracker output as these detection may
contain the same errors we want to correct. Likewise for
short trajectories as they could be generated either by tracking
errors or by partially undetected real objects. Fig. 9 showsan
example of a flickering detection on a small target with limited
contrast with respect to the background.

Clutter data are therefore collected with an interactive pro-
cedure, which requires a minimal user intervention. After the
detector is applied on a training set of frames, the user selects

Fig. 9. Example of inconsistent detections interpreted by aPHD filter as
clutter and therefore removed. Simple heuristics cannot differentiate these data
from real clutter (red: observations; green: output of the PHD filter).

Fig. 10. Sample detections that are marked interactively asclutter and then
used for density estimation.

the detections that are not associated with objects of interest
in randomly chosen frames. Fig. 10 shows sample detections
selected as clutter and Fig. 6 (b) displays the centroids of the
clutter data collected on a real-world surveillance scenario.
Note that most of the clutter is in this case associated with
waving vegetation and that a few false detections are also
associated with high contrasted regions due to shadows. Given
the sets of eventsZc = {zc,i}

Mc

i=1, representing the locations
and sizes of the cluttered observations, we learn the clutter
intensity by initializing a grid of 16x14 4D Gaussians equally
spaced in the 2D positional state space and centered on the
objects average size. Because clutter data can be concentrated
around small volumes of the observation space, we use a
larger number of Gaussians than in the birth case to allow
for higher spatial resolution. Fig. 11 and Fig. 8 (b) show an
example of clutter density learned using 1800 false detections
collected with user interaction on the results from scenario
S101 (CLEAR-2007 dataset). The peaks of the probability
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(a) (b)

(c) (d)

Fig. 12. Filtering results of the Particle-PHD filter using learned clutter and
birth intensities (GM) on the same data as Fig. 4. First and third row: tracker
output. Second and fourth row: the detections from a background subtraction
algorithm are color-coded in red and the PHD output is color-coded in green.
The filtering strength is modulated by the Gaussian Mixture birth and clutter
models. (a)-(b): strong filtering in a background area. (c)-(d): weak filtering
near an entry zone.

distributions (in violet) correspond to areas of the image where
waving vegetation generates a large number of false detections.

The comparison between clutter and birth intensities in
Fig. 8 (a)-(b) shows that in some cases regions with high birth
rates overlap with regions with high clutter rates. This overlap
might be only spatial, as the intensities also depend on the
target size and, for birth intensities, on the initial target speed.
However, if the detections associated to clutter and birth events
have similar positions and sizes, then the balance between
strong and weak filtering will be naturally determined by the
system based on the statistics of the training data.

V. EXPERIMENTAL RESULTS

A. Experimental set-up

T HIS section demonstrates the proposed multi-target track-
ing framework with learned intensities and assesses the

contribution of learning clutter and birth density with mix-
ture models. Thedetector used is a statistical change detec-
tor [23], followed by morphological filtering and connected
component analysis. To facilitate experiments reproducibility
the files containing the detector outputZk are available at
http://www.elec.qmul.ac.uk/staffinfo/andrea/PHD-MT.html.

The tests are conducted on two real-world urbanscenarios
from the CLEAR-2007 dataset (i.e., scenario S101 and S201).
The videos have a frame size of720 × 480 pixels and are
recorded at 25Hz. The sequences contain global variations of
illumination, light flickering and waving trees.

The objectiveperformance evaluation follows the VACE-
CLEAR protocol [31], which uses four scores, namely Multi-
ple Object Detection Accuracy (MODA), Multiple Object De-
tection Precision (MODP), Multiple Object Tracking Accuracy
(MOTA) and Multiple Object Tracking Precision (MOTP). The
detection scores are

MODP(k) =
Or

N
(k)
m

, (22)

whereN (k)
m is the number of ground-truth detections mapped

onto the tracker output,Or =
∑N(k)

m

i=1
|G

(k)
i

∩D
(k)
i

|

|G
(k)

i
∪D

(k)

i
|

quantifies

the overlap between the i-th ground-truth object boxG
(k)
i and

the mapped output detectionD(k)
i in each framek, and

MODA(k) = 1 −
cm(m

(d)
k ) + cf (fp

(d)
k )

N
(k)
G

, (23)

wherecm(.) andcf (.) are the cost functions1 for the number
of missing detectionsm(d)

k and false positivesfp(d)
k . Finally

N
(k)
G is the number of objects in the ground-truth at framek.

MODP and MODA are averaged over the number of frames
of the evaluation segment,Nfr. The tracking scores are

MOTP=

∑Nm

i=1

∑Nfr

k=1
|G

(k)

i
∩D

(k)

i
|

|G
(k)
i

∪D
(k)
i

|
∑Nfr

j=1 N
j
m

(24)

and

MOTA = 1 −

∑Nfr

j=1(cm(m
(k)
j ) + csf (fp

(k)
j ) + loge(idsw))

∑Nfr

i=1 N
i
G

,

(25)
whereNm is the number of mapped objects over the entire
track, m(k)

j is the number of missing tracks,fp(k)
j is the

number of false positive tracks at framej and idsw is the
number of false identity switches.

B. Discussion

To assess the impact of the learning on the tracking perfor-
mance we compare the results of the proposed method (GM)
using learned birth and clutter intensities against the results of
the baseline tracker (UM) using a preset uniform distribution
of birth and clutter. We trained the models on different frame
spans than those used for the testing. After applying the tracker
on the training frame spans using uniform clutter and birth
intensities and the same set of manually tuned parameters as
in our prior work [21], we extract birth and clutter samples
from the tracker output (see Section IV) and use these samples
to estimate birth and clutter intensity models. Finally, the
trackers are tested on the evaluation segments where ground-
truth data is available. The intensity magnitudes of UM (r̄ and

1These functions are internally defined in the CLEAR evaluation toolbox,
available at http://www.clear-evaluation.org/ (last accessed: November 2007).
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Fig. 11. Example of learning with recursive update of the clutter densityp(x|c) for S101. The input clutter events used are displayed in Fig.6 (b). Although
p(x|c) is defined on a 4D observation space, for visualization purpose we show the information related only to the 2D position subspace only(y(1) , y(2)).
First row: evolution of the clutter density model with the number of samples processed. Second row: corresponding evolution of the GMM components.

(a) (b) (c)

Fig. 13. Comparison of filtering results on the scenario S101. First row:
tracker that uses learned clutter and birth intensities (GM). Second row: tracker
that uses uniform intensities (UM). False detections due towaving trees are
more consistently removed by using the Gaussian-Mixture-based birth and
clutter models (red: detections; green: PHD filter output).

s̄) are the same as in the learning phase. We also compare
these two solutions with six other algorithms obtained by
combining different clutter and birth learning strategies: GMM
birth and uniform clutter intensities (A1); uniform birth and
GMM clutter (A2); uniform birth and clutter but magnitudesr̄
ands̄ estimated from the data (A3); clutter as in A3 and GMM
birth (A4); birth as in A3 and GMM clutter (A5); GMM birth
and clutter intensities, but with birth interactive data collection,
performed as for the clutter data (A6).

Figure 12 shows sample results of GM on scenario S201
where contextual feedback improves the PHD filter perfor-
mance. As low birth intensity (i.e., strong temporal filtering)
is estimated over the parking areas (Fig. 12 (a)-(b)), false
detections on the number plate are consistently removed
(Fig. 12 (a)-(b)). Compare these results with those of UM
in Fig. 4. On the same scenario high birth intensity (i.e.,
weak filtering effect) is applied to the entry regions. This
allows for correct detection and tracking of a fast car in the
camera far-field (Fig. 12 (c)-(d)). Similar considerationsare
valid for the clutter model. When clutter is localized, the
GMM-based density estimation introduces further degrees of

(a) -5%
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0%

5%

10%

15%

MODP MODA MOTP MOTA

A1

A2

A3

A4
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Fig. 14. Comparison of tracking results on the CLEAR-2007 scenarios
S101 (a) and S201 (b). The bars represent the score percent difference with
respect to the base-line algorithm (UM). The series A1-A6 were obtained with
different context learning strategies. See the text for details.

freedom for filter tuning. Fig. 13 shows a comparison of the
GM and UM filtering results on scenario S201. The detections
corresponding to waving branches are filtered out for a longer
number of frames due to the feedback from the GMM clutter
model (Fig. 13 (b)-(c)). Low clutter levels instead are assigned
to the sidewalk regions, thus allowing the PHD filter to validate
after few frames the coherent detections corresponding to a
pedestrian (Fig. 13 (a)-(b)).
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Figure 14 compares the tracking results on the two scenarios
from the CLEAR-2007 dataset. The values of the bars are the
percent score differences with respect to the base-line tracker
UM. In both scenarios the Gaussian mixtures used to model
birth and clutter intensities (GM and A6) outperforms the
other models, especially in terms of accuracy. GM and A6
improve the clutter removal capabilities of the PHD filter,
thus reducing false detections and false tracks. This is also
confirmed by the results in Fig. 15 obtained by varying the
values of clutter and birth magnitudes̄r and s̄ in UM. In
all cases GM outperforms UM in terms of accuracy. This
is true also for the precision scores except when the clutter
intensity is overestimated. However, in this case UM achieves
slightly better precision than GM, but at the cost of a large
drop of accuracy (Fig. 15 (d)). It is important to note that
the curves produced by UM are stable around their maximum
values as by changinḡr and s̄ the filtering behavior becomes
more suitable on a subset of targets but sub-optimal on another.
This leads to similar performance scores. Also, the resultsin
Fig. 14 show that, given the same average intensity, the GMM
density estimates improve the performance with respect to the
uniform distributions (compare GM with A3). Both clutter
and birth intensity models contribute to the final performance
improvement. However, clutter intensity trained with manually
labeled data achieves better results than GM birth intensity
trained using the output of the tracker (compare A1 with A2, or
A3 with A4). This is due to the fact that the birth model must
account also for track re-initializations; the volume of the state
space where a birth event is likely to happen is larger and thus
the model is less discriminative than that for clutter. However,
a more precise birth model trained with manually annotated
data (A6) leads to ambiguous results (compare A6 and GM).
On the one hand, when most false detections are generated
by background clutter, as in scenario S201 (Fig. 14 (b)), a
tighter birth constraint allows A6 to outperform GM in terms
of accuracy. On the other hand, when a large percentage of
tracking errors is due to occlusions and blob merging (as
in scenario S101), the same constraint prevents a prompt
reinitialization of the tracks (Fig. 14 (a)).

We compared the performance of the proposed algorithm
(PROP) with that of the data association (DA) method from [8]
and the multiple hypothesis tracker (MHT) [6] on the same
detections for all trackers. Also, as due to the Kalman propa-
gation of the hypotheses in the MHT implementation we could
not apply the SDV models used by the PHD filter, for a fair
comparison we resorted to two models with same transition
and observation matrices, but fixed variances. The parameters
of MHT were manually set by visually inspecting the final
tracking result and we report them here for reproducibility
of the results. The variances for position measurement noise
was 3 pixels; for the size measurement noise: 6 pixels; for the
velocity state noise: 1.5; for the size state noise: 4 pixels; for
the initial velocity state: 200. The detection probabilityis 0.97;
λx = 150; the mean new targets is set to 0.0025; the mean
false alarms to 0.00007; the maximal Mahalanobis distance
is 20; the tree depth is 10; the minimum likelihood ratio is
0.001; the maximum number of hypotheses is 300.

Figure 16 shows that the proposed approach outperforms the
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Fig. 15. Comparison of tracking performance on Scenario S101 when varying
the birth and clutter magnitudes (r̄ ands̄) between the tracker with Gaussian-
Mixture-based birth and clutter intensities (GM) and the tracker with uniform
distributions (UM).

other two trackers in terms of accuracy. In particular, the lack
of an explicit clutter model heavily affects the performance of
DA. In fact, DA validates detections using a simple procedure
based on the distance from the prediction. MHT copes better
with the challenges of real-world tracking scenarios due to
a better clutter model. Nevertheless, the PHD outperforms
MHT in terms of accuracy in both scenarios and has similar
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Fig. 16. Comparison of tracking performance between the proposed
methodology (PROP), the data association method from [8] (DA) and Reid’s
multiple hypothesis tracker (MHT). (a): Scenario S101. (b): Scenario S201.

precision in scenario S101 (Fig. 16 (a)) and better precision in
the more challenging scenario S201 (Fig. 16 (b)). Three factors
contribute to the improved performance: first, unlike MHT, the
PHD filter does not explicitly postulate association hypotheses,
and this is advantageous with ambiguous associations. Second,
the Montecarlo approximation used by the PHD is more
flexible in terms of model choice than the Kalman filter.
Third, the ability to model contextual information enhances
the performance of the PHD filter.

Finally, note that for simplicity, but without loss of gener-
ality, in the models we assumed stationarity for clutter and
birth events. However, when the scene undergoes significant
illumination changes, a non-stationary clutter model may be
necessary. For example, Fig. 5 (b) shows that cluttered detec-
tions may be localized close to the borders of strong shadows,
whose position is time variant. Similar considerations canbe
made for the changes of birth intensity caused by different
traffic levels. In both cases, a jump Markov system [32] could
be used to switch between multiple models based on external
triggers (e.g., time constraints) or on content-based cues(e.g.,
results of the scene analysis) [33].

VI. CONCLUSIONS

W E presented a framework to learn contextual informa-
tion from tracking data and user feedback. The results

of the learning enable a multi-target Bayes filter to spatially
adapt its behavior. A parametric model based on Gaussian
mixture is used to estimate state and observation dependent
birth and clutter intensities. These models are used as input

for a multi-target tracker based on the PHD filter to adapt its
response according to the position in the target state space.

Experimental results on real-world data show that it is
possible to learn contextual information via a combinationof
automated and interactive feedback from the tracker, and that
the proposed framework improves the capability of the PHD
filter in removing persistent clutter, and reduces the filterdelay
in regions where the birth event is likely to happen according
to the learned model. The performance improvement is due
to the space-dependent birth and clutter models. The clutter
model strengthens the filter in presence of spatially localized
clutter and weakens the filter in clutter-free regions. The birth
model instead allows us to increase the filtering strength where
targets are unlikely to appear. When compared with uniform
birth and clutter models the combined space-dependent models
(i) reduce the detection latency of the recursive filter in clutter-
free areas and (ii) reduce the number of false tracks generated
by persistent clutter. The proposed approach is general and
can be applied to any multi-target Bayes tracker capable of
position-dependent birth and clutter modeling.

Future work includes the extension of the proposed frame-
work to continuous learning, and to non-stationary clutterand
birth models. In the case of continuous learning, additional
data could be fed to the recursive GMM to update on-line
clutter and birth intensities and a study is necessary to guar-
antee the convergence of the GMM algorithms to a meaningful
solution. Also, the continuous learning approach should have
the capability to recognize wrong models to be removed and
recomputed. Ideally, the design of non-stationary clutterand
birth models should cope with both the temporal evolution of
a static context and with the movements of a camera. In the
latter case the learning approach should condition birth and
clutter intensities not to the absolute spatial location inthe
image but to the relative location with respect to recognizable
landmark objects like roads, doors and vegetation. Finally,
although the PHD filter can cope with sporadic missing
detections, a relevant source of error is associated with inter-
object occlusions (i.e., blob merging and splitting). In these
conditions classifier–based trackers [34] could improve the
results of change–detection–based trackers.
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