
Distributed and decentralized multi-camera tracking:
a survey

Murtaza Taj and Andrea Cavallaro

In recent years the decreasing cost of cameras and advances

in miniaturization have favoured the deployment of large-

scale camera networks. This growing number of cameras

enables new signal processing applications that use cooper-

atively multiple sensors over wide areas. In particular, object

tracking is an important step in many applications related

to security, traffic monitoring and event recognition. Such

applications require the optimal trade-off between accuracy,

communication and computing across the network. The costs

associated to communication and computing depend on the

type and amount of cooperation performed among cameras

for information gathering, sharing and processing to validate

decisions as well as to rectify (or to reduce) estimation errors

and uncertainties. In this survey we discuss data fusion and

tracking methods for camera networks and compare their per-

formance. In particular we cover decentralized and distributed

trackers and the challenges to be addressed for the design of

accurate and energy-efficient algorithms.

I. INTRODUCTION

Let us consider a network C = {C1, · · · , Cc, · · · , CN} of

N cameras monitoring T targets. Let the state1 of target i
at time k be defined as xν,i

k , where ν ∈ {c, π} represents

either the cth camera view or an hypothetical top view π that

for simplicity we will consider to be a plane. The goal is to

estimate the target state xν,i
k by fusing the data gathered from

the cameras. Target state estimation on ν aims to associate

noisy measurements Zν,i
k = {zν,i

1 , · · · , zν,i
k } belonging to

the same object over time to obtain the trajectory Xν,i
k =

{xν,i
1 , · · · ,xν,i

k } for each object i.
The amount and type of information sharing for state

estimation differs from tracker to tracker. Depending on the

algorithm, type of cameras in the network and on the strategy

adopted for data fusion, multi-camera trackers incur different

computation and communication costs. Moreover, the data

gathering (fusion) strategy has a significant influence on the

scalability of the network and on the communication cost, thus

affecting the applicability of a tracker. Multi-camera trackers

can be categorized, based on inter-sensor communication [1],

in three main groups, namely centralized, decentralized and

distributed tracking.

Centralized tracking is performed in a single node that

receives (raw or processed) data from each camera in the

1The elements composing the state depend on the application. In the
simplest case, the state is defined by the position of the target. In more
complex cases, the state contains other elements such as for example shape
and velocity parameters.

network. Although centralized approaches can exploit directly

single-camera trackers on the fused data [2], the presence of a

single global fusion center [3]–[5] leads to high data-transfer

rates and to a lack of scalability and energy efficiency.

In decentralized tracking cameras are grouped into clusters

and member nodes communicate with their local fusion centers

only [6]–[8]. The communication overhead is reduced by

limiting the cooperation within each cluster and among fusion

centers. Object features are extracted in each camera view and

then projected to the fusion center for multi-camera tracking.

Finally, fusion centers communicate with each other to hand-

off tracking estimates over the network [9]. Energy efficiency

can be improved by selectively activating only cluster mem-

bers that are expected to observe the targets of interest [10].

To further increase scalability and to reduce communica-

tion costs, distributed tracking operates without local fusion

centers. The estimates generated in a camera are transmitted

to its immediate neighbours only. The received estimates are

used to refine the next-camera estimates and these refined

estimates are then transmitted to the next neighbour [10]–[16].

This process is completed after a pre-defined number of steps,

after all cameras viewing the target are visited or when the

uncertainty has decreased below a desired value.

In this survey we discuss decentralized2 and distributed

multi-camera tracking approaches and, for simplicity and

clarity, we restrict ourselves to stationary cameras and targets

moving on planar surfaces. Surveys on active camera networks

and on other general issues related to multi-view multi-target

tracking can be found in [17]–[21].

Before comparing specific tracking approaches, we will

cover common algorithmic steps that are essential stages

prior to applying a multi-camera tracking algorithm, such as

calibration, synchronization and the selection of fusion centers.

II. CALIBRATION AND SYNCHRONIZATION

To estimate the trajectory of objects moving across the

network, cameras share various types of data such as target

measurements (position, velocity, size, contour and appear-

ance), target states, estimate uncertainties (covariance matri-

ces) and other derived measures such as amount of activity in

a camera or visibility of certain features. To efficiently exploit

this shared information, cameras have to be aware of each

other and to recognize where and at what abstraction level the

information is fused.

2Centralized tracking is considered a special case of decentralized tracking
with a single fusion center.

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



Multi-camera fusion can be performed through correspon-

dence between measurements zc,i
k (e.g. positions, bounding

boxes, blobs) or trajectories. In decentralized camera networks,

measurement correspondence maps the features (measure-

ments) Zc
k = {zc,i

k |i = 1, · · · , M} from each camera view

to a common view ν using a projection matrix Hc,ν [17]:

zc,ν,i
k = Hc,νzc,i

k , (1)

where M is the number of measurements at time k and zc,ν,i
k

is the projection of the measured features from Cc to ν.

The correspondence between feature points is performed

using a similarity measure (e.g. Euclidean distance between

points or color histogram similarity [22], [23]). When the

feature is the occupancy mask of a target in each view, the

mask can be projected to obtain an aggregated occupancy on

a common view [2]. After correspondence, state estimation is

performed using as measurements Zν,i
k = {zc,ν,i

k |c ∈ Ci
v} the

features belonging to the same object, where Ci
v is the set of

cameras observing target i.
For trajectory correspondence, the states xc,i

k of the object

are projected from each view to a common view ν using

Hc,ν [17]:

xc,ν,i
k = Hc,νxc,i

k . (2)

After projection, the tracks Xc,ν,i
k =

{xc,ν,i
1 , · · · ,xc,ν,i

k }c=1,··· ,N ;i=1,··· ,M from different cameras

are put in correspondence. Figure 1 shows an example of

track correspondence used to generate a global track over the

network [5].

The projection matrix Hc,ν itself can be computed manually

by selecting control points [24] or automatically through

feature point correspondence in overlapping camera networks

using the Scale Invariant Feature Transform (SIFT) [2] or 3-

D feature points [25]. Track features such as field-of-view

lines [26], [27], trajectory correspondence [28] and activity-

related correspondence [29] are also used to compute Hc,ν for

overlapping cameras. In non-overlapping cameras, the relative

position and orientation of the sensors can be estimated by

assuming, for example, that the track of at least one target

is available in each camera [30]. A survey on calibration

techniques can be found in [31].

The performance of the correspondence generally relies on

synchronization among cameras [32]. Synchronization can be

achieved through a centralized server that distributes time-

stamp information [33] or through events such as flashes

that are simultaneously visible by several cameras [34]. The

use of dedicated hardware may not be cost-effective for

certain applications, whereas synchronization through events

may not be applicable in wide-area networks. Automatic

synchronization methods introduce a temporal shift in the

received measurements from multiple cameras during cor-

respondence till optimal correspondence is achieved. These

approaches exploits the invariance property of the projective

transformations and uses tracks, visual-hull [35] and geometric

constraints of line features [36] to rectify the temporal shift

between measurements. Any remaining temporal shifts (e.g.

�

�
� �

�

�
�

Fig. 1. Trajectory correspondence among multi-camera views.

between non-overlapping cameras) are handled as uncertainty

in the measurements during target-state estimation.

III. FUSION CENTERS

Fusion centers are nodes in a network that collect data from

the cameras within a cluster and perform state estimation. The

use of fusion centers favours scalability and reduces the overall

communication load by limiting the flow of measurements

from nearby nodes within a cluster. Then communication

among fusion centers enables the sharing of state estimations

among clusters.

Fusion centers can be chosen a priori (fixed fusion centers)

or dynamically. Fixed fusion centers are generally used in

networks where some nodes have higher processing power and

energy supply [7], [37]. Although fixed fusion centers reduce

the computational cost for cluster members and increase the

lifespan of the overall network, they do not necessarily use

the cameras with the best view of a target and hence may

generate lower quality observations. To compensate for this

limitation, fusion centers can be chosen dynamically, based

on trackability measures that evaluate the effectiveness of the

features observed by a camera [38]. The features extracted

from each view can then be transmitted and compared at a

fusion center to decide the next best view. Best-view selection

improves target tracking at the cost of an additional com-

putational and communication step due to feature extraction

and transmission. The computation overhead can be reduced

by using features already extracted for local target tracking,

whereas the communication load can be reduced by fusing

features at each node to obtain object-level scores [39]. The

object-level scores can be aggregated to obtain a view-level

score to be transmitted to the fusion center.

Although dynamic fusion centers can select the best view

in the cluster, they do not necessarily use the best cameras

for tracking. For example, let us consider a target moving

from one cluster to another when it is only visible in very

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



time

(a) (b) (c) (d)

Fig. 2. Multiple dynamic clusters observing a target. (a) Example with two camera clusters identified with yellow and violet triangles that represent the
fields of view of the cameras. Note that despite the target is visible in 3 cameras of the yellow cluster and in only 1 camera of the violet cluster, the chosen
active cluster could be the violet one as the target was first seen in this cluster. (b-d) Evolution of the camera cluster structure over time as a function of the
target position (cameras: green dots; fusion centers: blue dots; active fusion center: red circles).

few cameras within that cluster (Fig. 2(a)). Although there

might be cameras belonging to another cluster that can better

observe the target, these cameras may not be used as the

tracking task has not yet been handed-off to their cluster. In

such cases, camera clustering should be adapted on-line and

cameras should be added to and removed from the clusters

based on target observability [9]. This adaptive cluster-member

allocation assigns dynamically fusion centers thus requiring

nodes within a cluster to communicate with each other. The

clustering procedure can be initiated based on an event such

as an object entering a camera view. If an object is detected in

several clusters, then these clusters can be used to track a target

and may later be merged to form a new cluster. Figure 2(b-d)

shows an example of evolution of the cluster structure over

time with respect to a moving target.

Although on-line camera clustering introduces additional

communication and processing overheads, it allows not only

to use the sensors effectively but also to add or remove dy-

namically cameras to the network, thus improving scalability

and robustness against node failures.

IV. DECENTRALIZED TRACKERS

Traditional trackers can be extended to multi-camera track-

ing and used in fusion centers (cluster heads), which receive

raw or filtered data from the cameras in a cluster. Notable

algorithms such as Graph Matching, Hidden Markov Models,

Particle Filters and Kalman Filters (Table I) will be discussed

below. A generic flow diagram of decentralized multi-camera

tracking is presented in Fig. 3.

A. Graph Matching

Data association via Graph Matching (GM) can be applied

on fusion centers where measurements are considered as

vertices of a graph [40]. The edge between two vertices, za

and zb, is weighted by their similarity ζ(za, zb). GM computes

the vertex disjoint path cover as the sum of weights of all the

edges with the aim of finding the maximum-weight path cover

over a certain number of consecutive time-steps, which define

the depth of the graph [3]. The computational complexity of

this algorithm is O(n2.5), where n is the number of targets.

Instead of all measurements at each time-step, only the

observations at entry and exit points of each camera can be

considered as nodes of the graph. The similarity of the targets

observed in different cameras is usually measured based on

appearance features, such as color. As different camera views

are likely to have different illumination conditions, a path

smoothness function based on the variance of the observed

features can be used [41] to cater for object appearance

variations across views.

When cameras have overlapping fields of view, the fore-

ground mask corresponding to targets can be projected from

each view onto a top-view plane π, thus generating an occu-

pancy map. GM is then applied on this map [23]. To improve

the accuracy of the occupancy map, one can use a multi-level

homography generated by moving along the vertical vanishing

points and projecting planes parallel to π [2]. The collaboration

between the cameras and their fusion center is performed

prior to tracking in order to eliminate false detections. The

measurements from each view are projected to the fusion

center and then back-projected to all the other views for

Feature 

extraction

State 

estimation

Video

data

Projection to 

fusion center

Feature 

extraction

State 

estimation

Video

data

Projection to 

fusion center

Fusion
State 

estimation

Fusion
State 

estimation

Fig. 3. Data fusion and processing steps in decentralized multi-camera
tracking.

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



TABLE I
MAJOR STEPS OF TARGET STATE ESTIMATION ALGORITHMS

Algorithm Type Main steps
Graph matching Deterministic Bipartite graph Maximum path cover

Hidden Markov Model Probabilistic Emission probabilities Viterbi decoding

p(zν,i
k

|xν,i
k

= j)
Particle filter Probabilistic Prediction Update

xν,i
k|k−1

= Fkxν,i
k−1|k−1

+ vk ων,i,r
t ∝ ωi

k−1

p(zk|xν,i,r−1
k

)p(x
ν,i,r
k

|xν,i,r
k−1 )

q(x
ν,i,r
k

|xν,i,r
k−1 ,zk)

Kalman filter Probabilistic Prediction Update

xν,i
k|k−1

= Fkxν,i
k−1|k−1

+ vk xν,i
k|k = xν,i

k|k−1
+ Kk(zν,i

k
− Akxν,i

k|k−1
)

Ων,i
k|k−1

= FkΩν,i
k−1|k−1

FT
k + Qk Ων,i

k|k = (I − Kk)AkΩν,i
k|k−1

validation.

B. Hidden Markov Model

Multi-camera tracking on the occupancy map generated by

projecting foreground masks can be performed also based

on Hidden Markov Models (HMMs) [42]. Similarly to GM,

HMMs compute the target state through graphical modeling,

but use Bayesian inference for state estimation under the

assumption that the system can be modeled as a Markov

process.

Given the observation sequence Zν,i
k , the set of possible

states {xν,i
k (u, v)}(u,v)∈(U,V ) where (U, V ) is the set of all grid

locations, the state transition matrix and the initial probability

distribution, the likelihood of an observation belonging to the

jth state p(zν,i
k |xν,i

k = j) is computed. Then the state sequence

xν,i
1:k that maximizes the observation likelihood is obtained

using the Viterbi algorithm [42].

Since a HMM assumes a discrete set of states, the search

area (occupancy mask) can be divided into a regular grid and

the probability of the measurement and the state ending at

location a at time k is estimated. The posterior is computed

using the Bayesian recursion (see Eq. 6 and Eq. 7) as

p(xπ,i
k |Ψπ

k ) = p(Ψπ
k |xπ,i

k = a) max
K

p(xπ,i
k = a|xπ,i

k−1 = b) ×
×p(xπ,i

k−1|Ψπ
k−1), (3)

where Ψπ
k = {Ic,π

k |c ∈ Cv} is the set of projected occupancy

masks from the set Cv of cameras observing the target. The

likelihood p(Ψπ
k |xπ,i

k = a) is computed based on the color

similarity and {a, b} ∈ (U, V ). To estimate the track for each

object i, the recursion in Eq. 3 is solved using the Viterbi

algorithm. The estimated tracks are then re-projected to each

view for validation. Fleuret et al. [42] performed this validation

by analyzing the intersections between local estimates on a

view with the re-projection from the top view.

The Viterbi decoding makes the HMM-based tracker com-

putationally more efficient than GM-based algorithms. How-

ever, a delay is introduced when summing the estimates over

several frames.

C. Particle filter

Particle filtering (PF) can be applied in each camera of a

cluster to compute local state estimates that are then merged

at the fusion center [43]. The tracking problem is solved based

on the state equation

xν,i
k = fk(xν,i

k−1,vk), (4)

and on the measurement equation

zν,i
k = hk(xν,i

k ,wk), (5)

where fk and hk are non-linear and time-varying functions.

{vk}k=1,... and {wk}k=1,... are assumed to be independent

and identically distributed stochastic processes. Given the

set of measurements Zν,i
k up to time k, the objective is

to recursively quantify some degree of belief in the state

xν,i
k taking different values, i.e. to estimate the posterior pdf

p(xν,i
k |Zν,i

k ) using prediction and update. In the prediction
step, the prior density of the state at time k is obtained from

the state estimate at the previous time step using the Chapman-

Kolmogorov equation:

p(xν,i
k |Zν,i

k−1) =
∫

p(xν,i
k |xν,i

k−1)p(xν,i
k−1|Zν,i

k−1)dxk−1, (6)

where p(xν,i
k |xν,i

k−1) is the transition density defined by the

target motion and p(xν,i
k−1|Zν,i

k−1) is the posterior at time k−1.

In the update step, the posterior density of the state at time k is

obtained using the current measurement zν,i
k . The update step

is carried out using the measurement at time k by applying

the Bayes’ rule:

p(xν,i
k |Zν,i

k ) =
p(zν,i

k |xν,i
k )p(xν,i

k |Zν,i
k−1)∫

p(zν,i
k |xν,i

k )p(xν,i
k |Zν,i

k−1)dxk

, (7)

where p(zν,i
k |xν,i

k ) is the likelihood function.

In PF, Sampling Importance Resampling (SIR) [44] is used

where a posterior density is represented by a set of particles

with their associated weights {ων,i,r
k ,xν,i,r

k }. PF approximates

the densities p(xν,i
k |Zν,i

k ) with a sum of Dirac functions

centered in
{
xν,i,r

k

}
r=1,··· ,R

as

p(xν,i
k |Zν,i

k ) ≈
R∑

r=1

ων,i,r
k δ

(
xν,i

k − xν,i,r
k

)
, (8)

where R is the number of particles. In the prediction step,

particles are propagated using the motion model of Eq. 4. In

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



the update step, the particle weights are updated based on the

likelihood as

ων,i,r
k ∝ ων,i,r

k−1

p(zν,i
k |xν,i,r

k−1 )p(xν,i,r
k |xν,i,r

k−1 )

q(xν,i,r
k |xν,i,r

k−1 , zk)
, (9)

where q(.) is the importance density function.

Transferring particles and their weights across the network

may be too expensive in terms of energy consumption and

communication overhead. Instead of running one PF at each

node, running only one PF on the fusion center reduces energy

consumption. Kim and Davis [6] adopted this strategy and

projected the object heights across the camera views onto the

top view. The intersections of these lines generate a set of

points that are used to draw particles during the prediction

step (Eq. 6). During the update step, the position represented

by each particle is back-projected to the view (Eq. 2) and then

associated with the segmented target. The color histogram Hc,i

of the target is compared with the reference histogram H∗c,i

using an appropriate distance d, based for example on the

Bhattacharyya coefficient. The final likelihood p(zπ,i
k |xπ,i

k−1)
for the weight update (Eq. 9) is computed as

p(zπ,i
k |xπ,i

k−1) =
∏

c∈Cv

e−d(Hc,i,H∗c,i)2 . (10)

The communication load can be further reduced by using

multiple fusion centers, each using a PF [7]. After the mea-

surements from the cameras are transmitted to their associated

fusion center, the particles on each active fusion center can

be propagated using the state dynamic model (Eq. 4) and a

histogram of the expected measurement values is constructed.

The measurements are then transmitted to all the other fusion

centers that use the measurements to generate the global

estimate of the target state. To reduce data transmission over

the network, the product of likelihoods
∏

r p(zk|xr
k) performed

in the weight update step (Eq. 8, Eq. 9) can be approximated

with a parametric model Gc(xc
k; φc

k) [7], where φc
k are the

learned parameters for camera c. In this case, the weight

update equation (Eq. 9) is rewritten as

ωc,i,r
k|k−1 =

Gc(xc,i,r
k ; φc

k)p(xc,i,r
k |xc,i,r

k−1)

q(xc,i,r
k |xc,i,r

k−1 , zk)
. (11)

To further reduce the communication cost, Ing and

Coates [37] introduced a measurements quantization using

the Lloyd-Max algorithm and a vectorization step. The goal

of vectorization is to send multiple observations in a single

packet to reduce overhead costs. Instead of transmitting the

measurements at each time step, they are transmitted only after

several time steps have elapsed.

Although quantization, vectorization [37] and parameteri-

zation [8] significantly reduce communication costs, PF is

still computationally expensive due to the use of multiple

particles for state estimation. More economical solutions have

been designed, such as for example using a Gaussian Mixture

approximation of the particle filtering [8].

D. Gaussian Mixture Particle filter (GMMPF)

Given the high cost of transferring particles, individual PFs

can run in parallel in each node and partial results can be up-

dated on each camera sequentially, based on results forwarded

from neighbouring nodes and local observations. These local

estimates are forwarded to the local fusion center for the

estimation of the final output using a dynamic organization

of the sensors into clusters based on target trajectories.

Before propagating the information, to reduce computa-

tional and communication costs the local sufficient statistics

(belief) is approximated by a low-dimensional Gaussian Mix-

ture Model (GMM) as

p(xν,i
k |Zν,i

k ) =
Θ∑

θ=1

ων,i,θ
k N (μν,i,θ

k , σν,i,θ
k ), (12)

where Θ is the number of Gaussians and (μν,i,θ
k , σν,i,θ

k ) are the

mean and standard deviation of the Gaussian θ. The posterior

distribution estimated by such a distributed PF converges

almost surely to the posterior distribution estimated with a

centralized Bayesian formulation [8].

E. Track-before-detect Particle filter

To reduce the dependency on the quality of the top-view

occupancy map discussed in previous sections, simultaneous

detection and tracking can be performed using multi-target

track-before-detect [4], implemented using particle filtering

(TBDPF). Unlike detection-based tracking that may require

hard thresholding, TBDPF performs fusion prior to tracking

and the target intensity Iπ
k within the input signal is included

in the target state.

In the prediction step, particles are propagated using a

motion model (Eq. 4) and additional particles are generated

using an appropriate distribution (e.g. a uniform distribution

or a distribution based on normalized measurements). In the

update step, the particle weights are recomputed using the

likelihood based on target intensity (and not on the color

histogram) as

p(zπ
k (u, v)|xπ,r

k (u, v)) =
pS+N (zπ

k (u, v)|xπ,r
k )

pN (zπ
k (u, v))

, (13)

where pN (.) is the pdf of the background noise and pS+N (.)
is the likelihood of the target signal affected by noise. This ap-

proach allows us to filter components belonging to noise only,

thus enabling tracking without the need of hard thresholding.

The particles are then weighted by computing the product

of the likelihood as

ωπ,r
k|k−1 =

∏
u∈wi(x

π,r

k|k−1)

∏
v∈wj(x

π,r

k|k−1)

p(zπ
k (u, v)|xπ,r

k ), (14)

where wi(.) and wj(.) indicate that only the pixels affected

by the target are used in the likelihood computation and are

selected by using a fixed-size window. TBDPF requires the

transmission of the bounding box of each target or of all the

pixels defining the target area. For n targets, the complexity

of TBDPF is O(n3).

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



F. Kalman Filter

When the use of Monte Carlo methods [7], [37] is too

expensive in terms of computation and communication costs,

approaches based on the Kalman Filter (KF) are used. The

complexity of KF for n targets is O(n) [45]. KF is applica-

ble to linear Gaussian models, whereas for non-linear non-

Gaussian models the Extended Kalman filter (EKF) can be

used [9], [46]. EKF assumes local linearization and approxi-

mates the posterior to be Gaussian.

In the prediction step of the KF, the state and covariance

Ωk are estimated as

xν,i
k|k−1 = Fkx

ν,i
k−1|k−1 + vk, (15)

Ων,i
k|k−1 = FkΩν,i

k−1|k−1F
T
k + Qk, (16)

where Qk is the state noise covariance. In the update step,

given the observation zν,i
k , the posterior density of the state

and covariance are obtained as

xν,i
k|k = xν,i

k|k−1 + Kk(zν,i
k − Akx

ν,i
k|k−1), (17)

Ων,i
k|k = (I − Kk)AkΩν,i

k|k−1, (18)

where Kk is the Kalman gain, Ak is the measurement

transition matrix and I is the identity matrix.

The transmission over the network of the matrices (al-

though small) can introduce a communication load for high-

dimensional target states. Medeiros et al. [9] reduce the

communication cost by exploiting the sparsity of the Jacobian

matrix of F and A in Eq. 15 and Eq. 17. Moreover, the

Sign of Innovation Kalman filter (SOI-KF) can be used to

further reduce these costs [47]. Only the sign of the error

is transmitted (instead of the error covariance matrix), thus

reducing the communication overhead. However, the signs of

innovations have to be correctly received by each node of

the network, thus reducing scalability. SOI-KF can be im-

plemented using an observation-transmission algorithm where

a scheduler selects nodes that collect the observation and

executes the SOI-KF [47].

V. DISTRIBUTED TRACKERS

Unlike decentralized trackers, distributed trackers have no

specific local fusion centers: each node fuses its estimates

with information received from its neighbours and projects

the updated estimates to the next neighbour until the last node

is reached or a desired accuracy is achieved. State estimation

for distributed trackers can be based on Particle Filters [11]

or on Kalman Consensus Filters [10], [12]–[15]. A generic

flow diagram of distributed multi-camera trackers is shown in

Fig. 4.

A. Particle filter

Distributed trackers do not use occupancy masks due to

their high communication load. Instead, the bounding box of a

target in each view, represented for example by a 2D Gaussian,

can be projected to the neighbouring node. The overlap of

these Gaussians from multiple neighbours generates the target

Feature State Video Projection to 

Information

from neighbour

Information

Ci+1

Ci

Ci+2

Ci+6

Ci+10

extraction estimationdata neighbour

Feature 

extraction

State 

estimation

from neighbour

Global 

tracks

Projection to 

neighbour

Video

data

Ci+4

Ci+3
Ci+5

Ci+8

Ci+7

Ci+9

Fig. 4. Data fusion and processing steps in distributed multi-camera tracking.

position estimation with the uncertainty of the most accurate

measurement. This process of fusion and projection continues

until tracking is performed at a sink node.

Xue and Sheng [11] further improve state estimation using

PF for distributed tracking with a state transition p(xν,i
k |xν,i

k−1)
based on the Interacting Multi-Model (IMM) filter [44]. IMM

allows the use of multiple transition models λi
k, for which

the prediction and update equations (Eq. 6 and Eq. 7) can be

rewritten as

p(xν,i
k , λi

k = h|Zν,i
k−1) =

∑
g

γg,h

∫
p(xν,i

k |xν,i
k−1, λ

i
k = h) ×

×p(xν,i
k−1, λ

i
k−1 = g|Zν,i

k−1)dxk−1, (19)

p(xν,i
k , λi

k = h|Zν,i
k ) =

=
p(zν,i

k |xν,i
k , λi

k = h)p(xν,i
k , λi

k = h|Zν,i
k−1)∑

h

∫
p(zν,i

k |xν,i
k , λi

k = h)p(xν,i
k , λi

k = h|Zν,i
k−1)dxk

, (20)

where g and h are the state transition model of the ith target

at time k − 1 and k, respectively. The weighted estimate can

be obtained as [44]

ων,i,r
k = p(zν,i

k |xν,i,r
k , λi

k)p(xν,i,r
k |xν,i,r

k−1 , λi
k), (21)

where the parameter λi
k is generally modeled as a first-order

Markov model. Due to multiple prediction and update steps,

the use of IMM increases the computational complexity of

the tracker. The execution time can be improved by training

a Radial Basis Function Network (RBFN) for a faster conver-

gence [11].

B. Kalman Consensus Filter

The Kalman Consensus Filter (KCF) performs tracking

locally in each camera using information from neighbouring

nodes. As each camera may have an inconsistent information,

the goal of the filter is to achieve consensus over time by

exchanging data [48].

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



0
20

40
60

80
100

1

2

3

4
0

1000

2000

3000

4000

5000

6000

% of measurements usedMean error (pixels)

E
n
e
rg

y
 (

n
J
)

Fig. 5. Communication cost vs. accuracy while increasing the number of
measurements for KCF. Note that the rate of accuracy improvement with
respect to the communication cost is much reduced after adding more than
50% of the total measurements.

The cameras transmit the measurement consensus z̃i
k and the

inverse-covariance consensus R̃ [12] to the neighbouring node

Cj . For each target i, the two consensus terms are calculated

using the measurement matrix and the measurement noise

covariance R as

z̃c
k = Ac

K
T Rc

k
−1zc

k (22)

R̃c = Ac
K

T Rc
k
−1Ai

k. (23)

These consensus terms are received along with the estimated

state by the neighbouring node where the consensus terms

from all the neighbours are fused as

z̃Cj

k =
∑
c∈Cv

z̃c
k (24a)

SCj =
∑
c∈Cv

R̃c. (24b)

Because we can compute the average inverse covariance SCj

and the average measurement at each camera in the network,

the state estimate for KCF is obtained at each camera by

rewriting the update of the Kalman filter (Eq. 17) as [12]

xCj

k|k = xCj

k|k−1 + KCj

k (z̃Cj

k − SCj

k xCj

k|k−1), (25)

x̄Cj

k|k = Fkx̂
Cj

k|k, (26)

ΩCj

k|k = FkK
Cj

k FT
k + Qk, (27)

where KCj

k = (Ω−1
k|k−1 + SCj

k

−1
)−1 is the Kalman gain.

Note that the gain KCj

k in KCF is of dimension τ × τ instead

of τ × τ × N as in the conventional (decentralized) Kalman

filter [12]. In the decentralized approach, the target state xπ,i
k

was in fact estimated using a N×τ dimensional measurement,

where τ is the measurement dimensions. In case of distributed

tracking, the same state estimate can be obtained at a sink node

where the consensus is achieved by using just a τ -dimensional

measurement. This makes KCF computationally feasible for

distributed networks.

Fig. 6. Multi-camera network with N = 14 and T = 12 targets. Tracks are
shown with positions corrupted by various noise levels.

The accuracy of state estimation improves with the increase

of shared information, at the cost of additional energy dissi-

pation. Figure 5 shows a trade-off between accuracy, amount

of measurements and the communication cost for KCF, using

the data shown in Fig. 6. Although the communication cost

increases at the same rate as the amount of measurements, it is

important to notice that over 50% of the estimation errors are

removed by just increasing the measurements from 0% to 33%.

The remaining 77% of the measurements only contributes an

8% improvement in accuracy at the same cost.
A major challenge for KCF-based approaches [10], [15] is

the definition of a strategy for the appropriate selection of sink

nodes, that can be defined statically or selected dynamically

based on target positions.

VI. QUANTIFYING COMMUNICATION AND COMPUTATION

COSTS

A. Modeling costs
Sharing data among cameras uses a certain amount of

energy per bit when messages or p-bit packets are transmitted.

The communication cost depends on the packet size per target,

the number of targets and the number of messages transmit-

ted and received. Let for simplicity each message reach its

destination using a single hop. For wireless cameras, we can

use the Energy Consumption Models for the radio module

energy dissipation for communication and computation [49].

The energy ET (.) that is necessary for transmitting a p-bit

packet to distance d is

ET (p, d) = Eep + εapd2, (28)

where Ee is the electrical energy in Joules/bit and εa is the

power amplification needed to obtain an acceptable signal

strength at the receiver. Using the same model, the energy

ER(.) consumed in receiving the p-bit packet is

ER(p) = Eep. (29)

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



0

10

20

02468101214
0

0.5

1

1.5

2

x 10
9

time (secs)
Camera No.

E
n

e
rg

y
 (

n
J
)

KCF

TBDPF−BB

TBDPF−Blob

GM

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

11

time (secs)

E
n

e
rg

y
 (

n
J
)

KCF

TBDPF−BB

TBDPF−Blob

GM

0

1

2

3

4

0

5

10

15
0

1

2

3

4

x 10
10

AlgorithmsCluster head

E
n
e
rg

y
 (

n
J
)

KCF

GM

TBDPF−BB

(a) (b) (c)

Fig. 7. Comparison of communication costs for KCF, TBDPF (TBDPF-BB: TBDPF using the bounding box of targets only; TBDPF-Blob: TBDPF using
all the points defining a target) and GM. (a) Communication cost over time for each camera in the network. (b) Communication cost over the whole network.
(c) Communication cost when selecting one camera as fusion center.

In addition to the communication costs, each computation

cycle in a node has an associated cost in terms of energy con-

sumption. This energy Ec depends on the average capacitance

switched per cycle C and the number of cycles L required to

complete a task, and is defined as

Ec = LCV 2
s , (30)

where Vs is the supply voltage. As a certain amount of energy

is leaked in electrical components, the cost El(.) associated

to these leakages can be computed as

El(Vs, f) = Vs

(
Ioe

Vs
ηVT

) (
L

f

)
, (31)

where VT is the thermal power, f is the clock speed of the

processor and η is a CPU-dependent parameter.

The use of these measures allows us to understand if the

energy across the nodes is consumed evenly, which is an

important property as the lifetime of a camera network is equal

to the shortest lifetime of individual nodes [11].

B. Comparative example

In order to appreciate the differences among the algorithms,

let us consider a network of 14 cameras that observe 12 targets

that move with varying velocities on a plane and follow a

random walk (Fig. 6). We compare the following trackers:

Graph Matching (GM) [3], track-before-detect particle filtering

(TBDPF) [4] and Kalman Consensus filtering (KCF) [15].

The generated tracks are corrupted with different levels of

Gaussian noise, with σ = {1, 1.2, 1.4, 1.6, 1.8, 2.0}, in order

to quantify the robustness of the algorithms to each noise level.

The parameters of all the algorithms are kept the same for all

noise levels. For simplicity, but without loss of generality, we

consider rectified top-view cameras and discard distortions that

are common to all trackers and might be introduced by clutter,

illumination changes, occlusions, and synchronization issues.

We conduct three experiments to measure communication cost,

computation cost and tracking accuracy of each algorithm.

The communication cost depends on the packet size per

target, the number of targets and the number of messages

transmitted and received. We consider a simple simulation

environment where the packet size for each algorithm depends

only on the size of the state vector and it is equal to the number

of bytes required to store the data. We also assume that the

information for each target at each time-step can be associated

to a single packet that is transferred using one message in a

single hop. Let the position and velocity of a target be 32-bit

floating point numbers and the size be 16-bit integer. KCF

transmits a 4D state vector and the 4 × 4 covariance matrix

from one camera to the next to obtain the consensus. Assuming

that each target information is sent as a single packet, each

KCF packet requires 32 × (4 + 4 × 4) = 640 bits. GM needs

the target position (x, y) from each camera to be available at

the fusion node. Thus the packet size per target is 64 bits.

Unlike KCF and GM, TBDPF requires transmitting at least

the bounding box for each target or all the pixels belonging

to the target. In the former case the packet size is 96 bits per

target, whereas in the latter case an average of 800 bits per

target are transmitted if the size of each target is 5×10. We do

not consider in this comparison the additional bits associated

with each message, as they are common to all the algorithms.

The communication and computation costs are estimated

for each camera as well as for the entire network, including

the processing at the fusion centers, by varying the number

of targets appearing in each camera view. These costs are

estimated using data affected by the same amount of noise

for all the algorithms. The position and field of view of each

camera and the position of the fusion centers are also kept

constant. Regarding the estimation of L, as it would be difficult

to obtain a fair comparison of the actual number of floating

point operations per second because this would require equally

efficient implementations for all the algorithms, we compute

the number of targets n at each respective view (camera view

for KCF and estimated top-view for GM and TBDPF) to

be used in the respective complexity formula. Therefore, for

each time step k, O(n2.5) for GM, O(n3) for TBDPF, and

O(n(n+1)) for KCF with a nearest-neighbour (NN) track-to-

measurement association. In the example we assume that each

sensor is a μ AMPS node [49] with the following parameters:

C = 0.67nF, Vs = 0.85V, f = 74MHz, I0 = 1.196mA,

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



(a)

0
5

10
15

20

0

5

10

15
0

500

1000

1500

2000

2500

3000

3500

time (secs)Camera no.

E
n
e
rg

y
 (

n
J
)

KCF

TBDPF

GM

(b)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

time (secs)

E
n
e
rg

y
 (

n
J
)

KCF

TBDPF

GM

Fig. 8. Computation cost for KCF, TBDPF and GM. (a) Computation cost
over time for each camera in the network. (b) Computation cost over the
whole network (including fusion centers).

η = 21.26, VT = 1V, Ee = 50 nJ; εa = 0.1 nJ. Finally, we

do not consider in the comparison the data acquisition and

pre-processing steps that are common to all the algorithms.

C. Discussion

Figure 7 shows the communication cost both at camera

level and at network level. Although KCF has a higher

communication cost per camera (as it requires to transmit

not only the state but also the covariance matrix associated

to each target), it requires less energy for communication

over the whole network (Fig. 7(b)). In fact, as a distributed

algorithm, KCF communicates only with close-by neighbours

and therefore uses less energy for signal amplification. In a

decentralized algorithm, instead, the fusion center is close to

some nodes but farther from other nodes, thus requiring a

stronger amplification for transmission. The energy efficiency

of KCF can also be improved by exploiting the sparsity of

the matrix to be transmitted [9]. The cost for TBDPF can be

reduced if only the bounding box or contour information is

transmitted, instead of all the points (see Fig. 7(a-b), TBDPF-

BB vs. TBDPF-Blob).

In general, the cameras observing targets more frequently

and those farther away from the fusion center will incur a

higher energy consumption (e.g. C2, C3 and C10 in Fig. 7(a)).

To ensure comparable energy usage among cameras (i.e. to

increase the lifespan of the network), uniform energy con-

sumption can be imposed [11]. Moreover, energy dissipation

can be minimized in decentralized approaches by selecting as

cluster center the closest node that also shares view with most

of the nodes in the cluster (Fig. 7(c)). For example, C9 would

be the worst choice as fusion center, whereas C3 would be the

best choice to minimize energy dissipation.

Figure 8 compares the computational cost for the three

algorithms. Given a fixed number of targets, the cumulative

energy consumption for GM and TBDPF grows linearly over

time. Although the complexity of GM and KCF are very

similar, KCF has the lowest network-wide energy consumption

as it distributes the processing to the cameras observing a

target. Despite this lower overall energy cost and despite

requiring fewer parameters to be tuned compared to TBDPF,

the performance of KCF degrades if individual observations

are less accurate, as the distributed algorithm needs to calculate

the average consensus. Moreover, the NN-based track-to-

measurement association used by KCF is only applicable to

simple scenarios and a more sophisticated algorithm, such as

the Hungarian or the Joint Probabilistic data association [21]

should be employed in more complex scenarios, thus increas-

ing the energy consumption of a KCF-based algorithm com-

pared to a GM-based algorithm. Note that since consensus-

based algorithms such as KCF rely on individual sensors to

compute their own estimates, they can employ other methods

(e.g. an Extended Kalman filter) to improve performance in

challenging scenarios.

The accuracy of the tracking results is evaluated by mea-

suring the Euclidean distance between the estimated and the

ground-truth tracks. To measure the accuracy, we use data

with varying level of Gaussian noise while keeping the same

amount of computation and communication. The mean and

standard deviation of the error for up to 500 frames are

shown in Fig. 9. It is possible to notice that the accuracy of

GM decreases (both in terms of mean error and its standard

deviation) with the increase of the noise level3, whereas the

estimation errors for KCF and TBDPF increase at a slower

rate with the increase of the amount of noise. Moreover, as

the noise increases, the number of iterations for KCF to reach

consensus also increases [12].

In general, TBDPF performs state estimation with higher

accuracy, but it is less suitable for networks where energy

dissipation is to be kept to a minimum. KCF is an energy-

efficient alternative, but its energy efficiency is reduced with

the increase of noise in the observations. PF-based approaches

are therefore likely to outperform KCF in the presence of other

distortions due to noise, clutter and occlusions. To address

these limitations, closed-form solutions such as Gaussian

mixture approximations of Monte Carlo methods could be

used or, instead of performing association at each time-step,

associations could be enabled only at field-of-view lines for

consistent multi-camera labeling. Table II summarizes the

characteristics of the three algorithms analyzed in this section.

3Note that GM only solves the correspondence problem and does not
smooth the measurements.

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

σ of noise

M
e
a
n
 e

rr
o
r 

(e
u
c
lid

e
a
n
 d

is
ta

n
c
e
)

KCF

TBDPF

GM

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

σ of noise

E
rr

o
r 

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

KCF

TBDPF

GM

Fig. 9. Track estimation errors for KCF, TBDPF and GM as a function of
the measurement noise. (a) Mean error. (b) Standard deviation of the error.

VII. SUMMARY

We discussed emerging multi-camera tracking algorithms

that find their roots in signal processing, wireless sensor

networks and computer vision. Based on how cameras share

estimates and fuse information, we classified these trackers as

distributed, decentralized and centralized algorithms. We also

highlighted the challenges to be addressed in the design of

decentralized and distributed tracking algorithms. In particular,

we showed how the constraints derived from the topology of

the networks and the nature of the task have favoured so far

decentralized architectures with multiple local fusion centers.

Due to the availability of fewer fusion centers compared

to distributed algorithms, decentralized algorithms can share

larger amounts of data (e.g. occupancy maps) and can back-

project estimates among views and fusion centers to validate

results. Distributed tracking uses algorithms that can operate

with smaller amounts of data at any particular node and obtain

state estimates through iterative fusion.

Despite recent advances, there are important issues to be

addressed in order to achieve efficient multi-target multi-

camera tracking. Current algorithms either assume the track-

to-measurement association information to be available for

the tracker or operate on a small (known) number of targets.

Algorithms performing track-to-measurement association for

a time-varying number of targets with higher accuracy usually

incur much higher costs, whose reduction is an important open

problem to be addressed in multi-camera networks.

TABLE II
MAIN CHARACTERISTICS OF KALMAN CONSENSUS FILTER (KCF),

TRACK-BEFORE-DETECT PARTICLE FILTER (TBDPF) AND GRAPH

MATCHING (GM) FOR MULTI-CAMERA TRACKING.

Algorithm
GM TBDPF KCF

T
y

p
e

Deterministic �
Probabilistic � �
Multi-target � � �4

A
rc

h
.

Decentralized � �
Distributed �

F
ea

tu
re

Robustness to noise � �
Low communication cost � �
Low computational cost �
Low overall energy consumption �

VIII. ACKNOWLEDGMENT

This work was supported in part by the EU, under the FP7

project APIDIS (ICT-216023).

REFERENCES

[1] P. Baran, “On distributed communications networks,” IEEE Trans.
Communications Systems, vol. 12, no. 1, September 1964.

[2] S. Khan and M. Shah, “Tracking multiple occluding people by localizing
on multiple scene planes,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 31, no. 3, pp. 505–519, March 2009.

[3] M. Taj, E. Maggio, and A. Cavallaro, “Multi-feature graph-based object
tracking,” in CLEAR, Springer LNCS, vol. 4122, Southampton, UK,
April 2006.

[4] M. Taj and A. Cavallaro, “Multi-camera track-before-detect,” in Proc. of
ACM/IEEE Int. Conf. on Distributed Smart Cameras, Como, IT, August
2009.

[5] N. Anjum and A. Cavallaro, “Trajectory association and fusion across
partially overlapping cameras,” in Proc. of IEEE Int. Conf. on Advanced
Video and Signal Based Surveillance, Genova, IT, September 2009.

[6] K. Kim and L. S. Davis, “Multi-camera tracking and segmentation of
occluded people on ground plane using search-guided particle filtering,”
in Proc. of the European Conf. on Computer Vision, Graz, AT, May
2006.

[7] M. Coates, “Distributed particle filters for sensor networks,” in Proc. of
Int. Symp. Information Processing in Sensor Networks, Berkeley, CA,
USA, April 2004, pp. 99–107.

[8] X. Sheng, Y.-H. Hu, and P. Ramanathan, “Distributed particle filter with
GMM approximation for multiple targets localization and tracking in
wireless sensor network,” in Proc. of Int. Symp. Information Processing
in Sensor Networks, Los Angeles, CA, USA, April 2005, pp. 181–188.

[9] H. Medeiros, J. Park, and A. Kak, “Distributed object tracking using a
cluster-based Kalman filter in wireless camera networks,” IEEE Journal
of Selected Topics in Signal Processing, vol. 2, no. 4, pp. 448–463,
August 2008.

[10] R. Olfati-Saber and N. Sandell, “Distributed tracking in sensor networks
with limited sensing range,” in Proc. of the American Control Confer-
ence, Seattle, WA, USA, June 2008, pp. 3157–3162.

[11] X. Wang and S. Wang, “Collaborative signal processing for target
tracking in distributed wireless sensor networks,” Journal of Parallel
Distributed Computing, vol. 67, no. 5, pp. 501–515, May 2007.

[12] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” in Proc. of the IEEE Int. Conf. on Decision and Control -
European Control Conference, Seville, ES, December 2005.

[13] X. Wang, S. Wang, D. Bi, and J. Ma, “Distributed peer-to-peer target
tracking in wireless sensor,” Sensors, vol. 7, pp. 1001–1027, 2007.

[14] C. H. Yu, K. H. Lee, J. W. Choi, and Y. B. Seo, “Distributed single
target tracking in underwater wireless sensor networks,” in Conf. on
SICE, August 2008, pp. 1351–1356.

4Multi-target tracking with KCF requires an external data association
method whose performance may affect computational and energy efficiency
as well as robustness to noise.

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011



[15] B. Song, A. Kamal, C. Soto, C. Ding, J. Farrell, and A. Roy-Chowdhury,
“Tracking and activity recognition through consensus in distributed
camera networks,” IEEE Trans. on Image Processing, vol. 19, no. 10,
pp. 2564 –2579, October 2010.

[16] Y. Wang, S. Velipasalar, and M. Casares, “Cooperative object tracking
and composite event detection with wireless embedded smart cameras,”
IEEE Trans. on Image Processing, vol. 19, no. 10, pp. 2614–2633,
October 2010.

[17] M. Taj and A. Cavallaro, Computer Vision: Detection, Recognition and
Reconstruction. Springer Verlag GmbH, 2010, ch. 8: Multi-view multi-
object detection and tracking, pp. 263–280.

[18] H. Aghajan and A. Cavallaro, Multi-camera Networks: principles and
applications. Burlington, MA, USA: Elsevier, 2009.

[19] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, pp. 1–45, December 2006.

[20] D. Smith and S. Singh, “Approaches to multisensor data fusion in target
tracking: A survey,” IEEE Trans. on Knowledge and Data Engineering,
vol. 18, no. 12, pp. 1696–1710, 2006.

[21] J. Liu, M. Chu, and J. Reich, “Multitarget tracking in distributed sensor
networks,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 36–46,
May 2007.

[22] F. Porikli, “Inter-camera color calibration by correlation model function,”
in Proc. of IEEE Int. Conf. on Image Processing, vol. 2, Barcelona, ES,
September 2003.

[23] D. Delannay, N. Danhier, and C. D. Vleeschouwer, “Detection and
recognition of sports (wo)man from multiple views,” in Proc. of
ACM/IEEE Int. Conf. on Distributed Smart Cameras, Como, IT, August
2009.

[24] A. Zisserman and R. I. Hartley, Multiple View Geometry in Computer
Vision. Cambridge University Press, U.K, 2004.

[25] J. Kassebaum, N. Bulusu, and W.-C. Feng, “3-D target-based distributed
smart camera network localization,” IEEE Trans. on Image Processing,
vol. 19, no. 10, pp. 2530 –2539, October 2010.

[26] S. Khan and M. Shah, “Consistent labeling of tracked objects in multiple
cameras with overlapping fields of view,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1355–1360,
October 2003.

[27] E. Lobaton, R. Vasudevan, R. Bajcsy, and S. Sastry, “A distributed
topological camera network representation for tracking applications,”
IEEE Trans. on Image Processing, vol. 19, no. 10, pp. 2516 –2529,
October 2010.

[28] C. Stauffer and K. Tieu, “Automated multi-camera planar tracking
correspondence modeling,” in Proc. of IEEE Int. Conf. on Computer
Vision and Pattern Recognition, Madison, WI, USA, July 2003.

[29] E. Ermis, P. Clarot, P.-M. Jodoin, and V. Saligrama, “Activity based
matching in distributed camera networks,” IEEE Trans. on Image
Processing, vol. 19, no. 10, pp. 2595–2613, October 2010.

[30] N. Anjum, M. Taj, and A. Cavallaro, “Relative position estimation of
non-overlapping cameras,” in Proc. of IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, Honolulu, HI, USA, April 2007.

[31] R. J. Radke, Handbook of Ambient Intelligence and Smart Environments.
Springer, 2010, ch. A survey of distributed computer vision algorithms.

[32] A. Whitehead, R. Laganiere, and P. Bose, “Temporal synchronization of
video sequences in theory and in practice,” in IEEE Int. Workshop on
Motion and Video Computing, vol. 2, Breckenridge, CO, USA, 2005,
pp. 132–137.

[33] J. Lichtenauer, M. Valstar, J. Shen, and M. Pantic, “Cost-effective
solution to synchronized audio-visual capture using multiple sensors,”
in Proc. of IEEE Int. Conf. on Advanced Video and Signal Based
Surveillance, Genova, IT, September 2009.

[34] P. Shrestha, M. Barbieri, H. Weda, and D. Sekulovski, “Synchronization
of multiple video recordings based on still camera flashes,” in Proc. of
ACM Int. Conf. on Multimedia, Santa Barbara, CA, USA, 2006, pp.
137–140.

[35] S. N. Sinha and M. Pollefeys, “Visual-hull reconstruction from uncali-
brated and unsynchronized video streams,” in Proc. of the Int. Symp. on
3D Data Processing, Visualization, and Transmission, Washington, DC,
USA, 2004, pp. 349–356.

[36] C. Lei and Y. Yang, “Tri-focal tensor-based multiple video synchroniza-
tion with subframe optimization,” IEEE Trans. on Image Processing,
vol. 15, no. 9, pp. 2473–2480, September 2006.

[37] G. Ing and M. Coates, “Parallel particle filters for tracking in wireless
sensor networks,” in Workshop on Signal Processing Advances in
Wireless Communications, NY, USA, June 2005, pp. 935–939.

[38] R. Goshorn, J. Goshorn, D. Goshorn, and H. Aghajan, “Architecture for
cluster-based automated surveillance network for detecting and tracking
multiple persons,” in Proc. of ACM/IEEE Int. Conf. on Distributed Smart
Cameras, Vienna, AT, September 2007.

[39] F. Daniyal, M. Taj, and A. Cavallaro, “Content and task-based view
selection from multiple video streams,” Springer Journal of Multimedia
Tools and Applications, vol. 2–3, no. 46, pp. 235–258, January 2010.

[40] K. Shafique and M. Shah, “A noniterative greedy algorithm for mul-
tiframe point correspondence,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 27, pp. 51–65, January 2005.

[41] B. Song and A. Roy-Chowdhury, “Robust tracking in a camera network:
A multi-objective optimization framework,” IEEE Journal of Selected
Topics in Signal Processing, vol. 2, no. 4, pp. 582–596, August 2008.

[42] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people
tracking with a probabilistic occupancy map,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 30, no. 2, pp. 267–282, February
2008.

[43] M. Rosencrantz, G. Gordon, and S. Thrun, “Decentralized sensor fusion
with distributed particle filters,” in Proc. of Conf. on Uncertainty in AI,
Acapulco, MX, August 2003.

[44] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications. London, UK: Artech House,
2004.

[45] M. S. Grewal and A. P. Andrews, Kalman filtering: theory and practice
using MATLAB. Wiley Publishing, Inc., 2008.

[46] J. Yoder, H. Medeiros, J. Park, and A. Kak, “Cluster-based distributed
face tracking in camera networks,” IEEE Trans. on Image Processing,
vol. 19, no. 10, pp. 2551 –2563, October 2010.

[47] A. Ribeiro, G. Giannakis, and S. Roumeliotis, “SOI-KF: Distributed
Kalman filtering with low-cost communications using the sign of inno-
vations,” IEEE Trans. on Signal Processing, vol. 54, no. 12, pp. 4782–
4795, December 2006.

[48] M. Alighanbari and J. How, “An unbiased Kalman consensus algorithm,”
in Proc. of the American Control Conference, Minneapolis, MN, USA,
June 2006.

[49] A. Wang and A. Chandrakasan, “Energy-efficient dsps for wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 19, no. 4,
pp. 68–78, July 2002.

IEEE SIGNAL PROCESSING MAGAZINE, VOLUME 28, ISSUE 3, MAY 2011


