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Abstract—Distributed target tracking has been a widely stud-
ied problem for different applications, more recently considering
distributed particle filter techniques for Wireless Sensor Net-
works (WSNs). However, the adaptation of distributed tracking
filters to sensor networks with limited field-of-view and large
raw-data management constraints under realistic networking
conditions has not yet received enough attention. In this work,
we extend the distributed particle filter formulation and enable
its operation in realistic scenarios by introducing a next-hop
selection mechanism for the aggregation chain and a target hand-
over strategy that is capable of handling detection misses and
target losses. The filter is tested using a network simulation
environment over an area of 6000 m

2 and networks of up to
1000 sensors.

I. INTRODUCTION

Unlike traditional wireless sensor networks (WSNs) that

rely on scalar sensor measurements, e.g. temperature or lu-

minosity, Wireless Multimedia Sensor Networks (WMSNs)

manipulate more complex information producing vectorial

data, e.g. video. The extension of WSN algorithms such as

distributed tracking to WMSNs is particularly challenging

because of the complexity of raw vectorial-data with respect

to raw scalar-data under limited resource conditions.

Multi-sensor tracking aims at estimating the target state,

x, given a set of measurements (observations) obtained from

N sensor-nodes, each producing a local measurement zn,
with n = 1...N . The global measurement vector is Z =
(z1, z2, ..., zN ). Early approaches for multi-sensor tracking use

a centralized filter, where all the measurement zn are sent

to a central node that holds the vector Z and executes a

classic single-node tracker. This approach is not scalable and

it is not feasible in bandwidth-constrained wireless networks,

where the physical communication link is potentially shared

by all the nodes in the network. A solution to this problem

is the use of a decentralized or distributed approach [1].

In decentralized tracking, the network is partitioned into

clusters according to some sensing relationship between the

nodes [2]. For each cluster, a cluster-head is responsible

of performing centralized tracking. This solution is effective

when nodes observing the same target belong to the same

cluster. In distributed tracking, the estimation is cooperatively

The work reported in this paper was carried out while the first author was
visiting Queen Mary University of London

performed through collaboration protocols. The network has a

common “distributed” knowledge of the posterior probability

function f(xk|Z1:k−1), where k represents the sampling index.

This can be achieved through two different information ex-

change paradigms, namely consensus and token passing. The

consensus-based approach is equivalent to a data dissemina-

tion mechanisms, but is more efficient in terms of communica-

tion bandwidth [3]. Token passing is a sequential aggregation

mechanism: each node receives a partial aggregate, creates a

new aggregate with its local information and sends the new

aggregate to the next node.

In this work we present a token passing approach for dis-

tributed tracking that enables the applicability of a distributed

particle filter (DPF) [4], [5] to WMSNs. The extension of a

DPF to deal with WMSN in realistic deployment scenarios

requires several issues to be addressed. In particular, the

proposed algorithm deals with the limited field of view (FOV)

of the sensors, gaps between sensors (cameras) and introduces

active nodes to allow the observation of a target only from

a portion of the network. Moreover, we introduce a next-

hop selection mechanism for the aggregation chain and a

target hand-over strategy that is capable of handling detection

misses and target losses. Experimental results using a network

simulator for WMSNs [6] on an area of 6000m2 and sensor

configurations of up to 1000 sensors show the effectiveness of

the algorithm in dealing with realistic network conditions.

The remainder of the paper is organized as follows. In

Section II we review the state of the art for distributed particle

filters, while in Section III we present the proposed algorithm

and the extensions that are necessary to deal with WMSN

issues. Section IV discusses results obtained by implementing

the algorithm on network simulator and, finally, we draw our

conclusion in Section V.

II. RELATED WORK

Distributed Particle Filters (DPFs) for WSNs have been

proposed by Coates in [7]. Each node of the network executes

a local Particle Filter (PF), a slightly modified version of

the classic PF. In particular, each node has a particle set

and exchanges some partial information with other nodes

according to a specific protocol with the goal of keeping all

the particle sets consistent in all the nodes, i.e. an agreement



on the particle set is reached by the nodes at each time step.

Although Coates has the merit of formulating the problem of

the DPF for the first time, it is unclear what type of information

the nodes should exchange.

Solutions based on the definition of a common posterior

distribution were proposed in [4], [8], [5]. Each node executes

the PF by drawing particles from an importance function

chosen as the common posterior distribution at the previous

step. The goal is therefore to have the same posterior in all the

nodes. However, exchanging the particle set among nodes to

approximate the posterior probability is not efficient and does

not scale with the size of the target’s state and the number of

particles.

To reduce the amount of data exchanged, i.e. the particles

and the weights, independence from the number of particles

is obtained by approximating the posterior with a Gaussian

Mixture Model (GMM). In [4] the authors proposed two

approaches based on a two-level hierarchical architecture in

which nodes with correlated measurements are organized in

sensor cliques, and then clique-heads are organized in clusters

observing the same target. Data within a clique are sent

towards the clique-head and the distributed algorithm takes

place at the cluster level, i.e. among clique-heads. The first

solution in [4] is based on a spatially sequential approximation

of the posterior with a GMM. The mechanism is based on a

chain similar to that in [7], but, rather than the likelihood, the

posterior is approximated and transferred. The second solution

in [4] uses a parallel approach and each node derives its own

GMM for the posterior. Then, all the GMMs are exchanged

among the nodes and the k-means algorithm is used to create

the final GMM approximation of the posterior. A similar

sequential solution is used in [5]. The two have a slightly

different formulation of the weight update function and the

GMM parameter generation, although the underlying idea is

the same. The authors also propose an alternative “look-ahead”

technique to design a more accurate proposal distribution for

the importance sampling process, making use of a two-step

Gaussian sum filter. Finally, the approach presented in [8]

is based on consensus algorithms. The problem is to have

the same GMM approximation in all the nodes. The global

parameters of the GMM are obtained by averaging local

statistics of the nodes using a consensus algorithm.

III. THE DISTRIBUTED TRACKING ALGORITHM

The algorithms discussed in the previous section are defined

at a high level of abstraction, without considering issues

related to their applicability to realistic networking scenarios.

To address issues related to the distributed implementation in

the context of a realistic network environment and line-of-sight

sensors (cameras), in this section we discuss our extensions of

the algorithms presented in [4], [5] for realistic WMSNs.

Let us consider for now that all the nodes, N , in the network

observe the target, i.e each node has a measurement and is

involved in the DPF iteration. A set of P particles and its

relative set of weights is held by each node. The nodes’

observations are synchronized, i.e. the k-th measurement is
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Fig. 1. Example of aggregation sequence using GMM-PP

generated at the same time in each node. The DPF algorithm

is based on a sequence of aggregation steps, the aggregation

chain. The aggregation chain is performed every time a new

sample (measurement) is available. Let k indicate a specific

instance of the aggregation chain, i.e. a tracking step; whereas

h indicates the steps of the aggregation chain, i.e. the aggre-

gation steps.

In order to apply DPF to FOV-based sensors (cameras),

we have to address the algorithmic constraints introduced

by their limited FOV. The “content” of the measurement znk
is generated from the detection process performed by node

n at time k. If the target is not in the node’s FOV, such

content cannot be generated. This problem, here referred to

as detection miss, is not considered in the original algorithm

and has an impact in the cooperative protocol. Since the target

can exit the FOV of a node, we will introduce a mechanism

to manage the target hand-over, i.e. when a target that was

detected in the previous step is no longer detected in the

current one. This mechanism is dependent on the role of the

node in the aggregation chain. Note that we are not considering

here false positive detections.

Let us refer to the posterior probability obtained at the

intermediate steps of the aggregation mechanism as Partial

Posterior (PP). In case of a GMM approximation, the expres-

sion GMM-PP can be used:

fh
GMM−PP ≈ fh

PP = f(xk|z1:k−1, z
1:h
k ).

Figure 1 shows the token passing mechanism used to exchange

the (GMM-) PP.

At initialization, P particles x(i) are set equal to the initial

target state x0 and all the weights w(i) are set equal to 1/P .

One of the nodes is selected to be the first node starting the

aggregation process.

The mechanism to select the next node in the aggregation

chain is an important component of the algorithm. The node

currently holding the token, nh, queries the nh+1 node that

is closer to the (partially) estimated target position x̂h
k . The

queried node can refuse if it has already been included in the

aggregation process or if it determines that its local measure-

ment is not accurate enough [5]. Unlike the original approach,



in our case the nodes are aware of the FOV information of

the cameras that could be in the same active set (its logical

neighborhood). However, it could be also sufficient to know

only which are the cameras of the node’s neighborhood. In this

case the node shall query all the nodes in the neighborhood

without any preference or filter related to the estimated target

state. The choice is based on the current node estimation (x̂h
k)

and on the knowledge of the FOV of the neighboring nodes.

In our implementation, nh+1 is selected as the node whose

center of the FOV is the closest to the target position.

Another important limitation of the original algorithm is

that all the nodes in the network must observe the target at

any time, which in case of cameras would mean that the FOVs

of all the nodes overlap and that a target only moves inside

the overlapping region. To remove this unrealistic assumption

we define a subset of active nodes that, for a given tracking

step, are able to generate a detection of the target.

The first node, n1, starts the iteration for the current track-

ing step k. The node n1 has the global posterior probability

from time k − 1 (and does not receive a PP at time k). This
could be possible, for instance, if the first node in the current

tracking step is also the last one of the previous one. Node

n1 performs the posterior prediction and measurement update

steps in order to create the first PP from the previous posterior.

The particle set {x(i)

k−1
, w(i)

k−1
}Pi=1 from the previous track-

ing step describes the previous posterior probability. This

particle set is re-sampled, generating the set

{x̄(i)

k−1
, w̄(i)

k−1
}Pi=1.

The prediction step is obtained by drawing a new particle from

the state transition function for each re-sampled particle:

x(i)

k ∼ f(xk|x̄
(i)

k−1
) ∀i = 1, . . . , P . (1)

The measurement update uses the local measurement z1k to

update the weights for the new particle set through the

likelihood function,

w(i)

k =
f(z1k|x

(i)

k )
∑P

j=1
f(z1k|x

(j)

k )
∀i = 1, . . . , P . (2)

The new particle set {x(i)

k , w(i)

k }Pi=1 represents the PP in the

first node. The GMM-PP is then created and sent to the next

node. The creation of the GMM-PP is based on unsupervised

algorithm that uses expectation maximization and minimum

description length order estimation [9].

In case of a detection miss in the first node of the aggre-

gation chain, the algorithm shall not start until a new first

node is found. A solution could be to restart the first-node

selection mechanism, but this will require several iterations

to converge. In the proposed solution the first node with a

detection miss selects the next node, according to the standard

procedure, to which it forwards the previous GMM-Posterior

and a notification of its failure. The receiving node is now in

charge of starting the aggregation chain. If also this node fails,

the procedure is repeated until a new first node is found. Note

that no first nodes are found when there are not any nodes

observing the target. We define this condition as target loss.

The intermediate nodes, nh with h = 2, . . . , N − 1, i.e.
all nodes but the first and the last one, receive a PP as input

and send a new PP as output. Each nh receives the (GMM-)PP

from the previous aggregation step (h−1), updates the PP with

its local measurement zh−1

k , creates a GMM approximation of

the PP and sends it to the next node nh+1.

The received GMM-PP is used as importance function

gk(xk) for the importance sampling process. A new particle

set is created by drawing P particles from the received GMM-

PP:

x(i)

k ∼ fGMM−PP(xk|z
1:h−1

k ) ∀i = 1, . . . , P . (3)

The relative weights are calculated according to the importance

sampling rule

w̃(i)

k =
f(z1k|x

(i)

k )fGMM−PP(xk|z
1:h−1

k )

gk(x
(i)

k )
∀i = 1, . . . , P

w(i)

k =
w̃(i)

k∑P

j=1
w̃(j)

k

.

However, since the importance function is equal to the incom-

ing GMM-PP, the weight calculation is simplified as in (2):

w(i)

k =
f(zhk |x

(i)

k )
∑P

j=1
f(zhk |x

(j)

k )
∀i = 1, . . . , P . (4)

The new PP is then approximated with a GMM-PP that is sent

to the next node nh+1.

In case of a detection miss in an intermediate nodes, the

problem is solved by skipping the local processing (since the

detection is not available) and by forwarding the incoming

GMM-PP to the next node directly.

The last node of the aggregation chain, nN , reconstructs the

global posterior probability and performs the estimation of the

target state. The global posterior is reconstructed following the

same mechanism described for the intermediate nodes.

In the last node, the PP outcoming from Equations (3) and

(4) is also the global posterior,

fN
PP = f(xk|z

1:N
k ) = f(xk|Zk) .

The target’s state estimation is then possible in nN as

x̂k =
P∑

i=1

w(i)x(i) . (5)

This last node will act as first node in the next tracking

step [5]. Note that, however, the algorithm could be easily

modified by selecting a different first node, provided the final

global posterior is transferred from nN,k to n1,k+1.

A detection miss at the last node does not require particular

procedures. The node will produce the estimate considering

the incoming GMM-PP as the final GMM-posterior.

If all the nodes appear to have lost the target, a target

loss condition happens. This condition is due to the target

hand-over and takes place when no first node can be selected

from the candidate neighborhood. As soon as the target is

lost, the node detecting this condition notifies all the nodes in



the network with a broadcast message. This message includes

the last known posterior. When the target is visible again,

the node currently observing it shall start the first node

selection process. Note that, owing to imprecisions of the state

estimation, it might be possible that the target was visible by

other nodes not originally included in the neighborhood. In

this case the tracking will immediately restart.

IV. EXPERIMENTS

In this section, we evaluate the performance of the dis-

tributed particle filter we presented in the previous section with

(and without) limited resources. Without resource limitations,

the target state estimation is immediately produced for each

new observation by the distributed tracking algorithm. With

resource limitations, network delays and packet losses may

reduce the number of estimations, compared to the total

number of available measurements.

Let Ktr be the number of estimations and let an estimation

be available after a certain delay d(k). The average estimation

delay, D, is defined as

D =
1

Ktr

Ktr∑

k=1

d(k) , (6)

whereas the network estimation efficiency, E, is defined as

E =
Ktr

K
. (7)

E quantifies the total number of estimations (detected events)

over the total number of observations K (all the events).

We define an area of 100m × 60m surveilled by the N
cameras having a FOV of 10m × 6m and with a top-down

view. The FOV of a camera is calculated considering angles

of view of cameras and assuming a distance of 6m from

the ground plane. The cameras are positioned according to a

random uniform distribution. The sampling period is Ts = 1s
and there are K = 600 observations per run. The network

is based on the T-MAC protocol [10], configured with the

request-to-send/clear-to-send and acknowledged-transmission

mechanisms and with a number of retransmissions set to 10.

The bandwidth is BW = 250 kbps. The target motion is a

linear motion with a random walk that follows a zero-mean

normal distribution with a variance of 0.3m. We reproduce the

realistic networking environment using a network simulator

engine [?] based on Castalia [11] and Omnet++ [12]. Due to

the probabilistic nature of the filter, 100 simulation runs, each

of 10 minutes, are generated by varying the number of nodes

in the network from N = 10 to N = 1000. The average values
with standard deviation are considered in the analysis.

Figure 2(a) compares under ideal (i.e. no delays) and

realistic networking conditions the efficiency of a DPF (0-

GMM), when the whole particle set is exchanged across nodes,

while varying the number of sensors from 10 to 1000 and the

number of particles from 100 to 500. It is possible to notice

that in case of ideal networking conditions, the efficiency

improves as the number of nodes increases, as deploying more

nodes gives a higher degree of coverage of the surveillance
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Fig. 2. (a) Efficiency of a DPF (0-GMM) while varying the number of
sensors and particles, under ideal and realistic networking conditions. (b)
Average delay of a DPF (0-GMM) under realistic networking conditions.
Error bars represent standard deviations, whose small values overlap with
the X representing the average values

area. However, when realistic networking conditions are mod-

eled, the performances of the system are sensibly different.

While E is still decreasing in the first part of the curves

(N = 10, 50, 100), for larger values of N it increases with

the number of nodes. This loss of performance is related

to network delays, which are clearly visible in Figure 2(b).

Because of the limited communication bandwidth, the delay

required to completely perform a tracking step increases with

N . Indeed, more and more nodes have to be involved in the

iteration mechanism of the aggregation process, thus delaying

the time when the estimation is ready. The larger the number

of particles, the steeper the slope of D when increasing the

number of sensors. When the delay is larger than the sampling

time, some observations are ignored: if a new sample is ready

but the network is still completing the aggregation process,

that sample is dropped.

Figure 3 shows the impact of using the GMM approx-

imation, as opposed to sending the entire particle set, on
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Fig. 3. (a) Efficiency and (b) average delay of the methods under analysis
under realistic network conditions. Error bars represent standard deviations,
whose small values overlap with the X representing the average values

the efficiency E when using the realistic network model.

We consider three configurations, namely the DPF with no

GMM (0-GMM); the single Gaussian approximation of the

DPF (1-GMM); and the approximation with a mixture of five

Gaussian components (5-GMM). The GMM approximation

considerably reduces the amount of information that the nodes

have to exchange. As it can be observed from Figure 3(b), the

delay increases much more slowly for 1-GMM and 5-GMM

than for 0-GMM. When the GMM approximation are used, the

delay remains sufficiently below the sampling time limit (1s).
It can be also observed that transferring 5 components of the

GMM demands clearly more bandwidth (higher delay) than 1

component only. Notice also that the performance of the 1-

GMM and 5-GMM are almost comparable to those obtained

with 0-GMM under ideal assumptions.

V. CONCLUSIONS

We have addressed the problem of distributed target tracking

for WMSNs using distributed particle filters and extended

the formulation of a sequential algorithm to deal with real-

istic network scenarios. More specifically, we designed the

algorithm to work with sensors with limited field of view,

dealing with problems such as detection miss, target hand-

over and target-loss. We demonstrated the proposed algorithm

using a network simulator [?]. Simulation results showed the

importance of the co-design of distributed tracking algorithms

and communication protocols.
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