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Abstract

Person re-identification aims to recognize the same person viewed by disjoint cameras at different time instants and
locations. In this paper, after an extensive review of state-of-the-art approaches, we propose a re-identification method
that takes into account the appearance of people, the spatial location of cameras and potential paths a person can choose
to follow. This choice is modeled with a set of areas of interest (landmarks) that constrain the propagation of people
trajectories in non-observed regions between the field-of-view of cameras. We represent people with a selective patch
around their upper body to work in crowded scenes when occlusions are frequent. We demonstrate the proposed
method in a challenging scenario from London Gatwick airport and compare it to well-known person re-identification
methods, highlighting their strengths and limitations. Finally, we show by Cumulative Matching Characteristic curve
that the best performance results by modeling people movements in non-observed regions combined with appearance
methods, achieving an average improvement of 6% when only appearance is used and 15% when only motion is used
for the association of people across cameras.

Keywords: Person re-identification, non-overlapping cameras, people in crowd, trajectory propagation, appearance
features, London Gatwick airport dataset

1. Introduction

The surveillance of wide areas such as airports and train stations requires the deployment of networks of cameras
whose field-of-views (FOV) may be disjoint. Disjoint cameras make person re-identification a challenging problem,
because of changes in pose, scale and illumination that modify the perceived appearance of a person across cameras
(Fig. 1). Moreover, in a crowd, the full body is often not visible due to occlusions. Finally, people exiting the FOV
of a camera may enter in different regions of the FOV of the next camera so the time needed to travel across cameras
and the area of reappearance are variable and difficult to model.

We can identify four main phases in person re-identification, namely multi-person detection, feature extraction,
cross-camera calibration, and person association (Fig. 2). The first phase, multi-person detection, extracts image
regions corresponding to people (Enzweiler and Gavrila, 2009), based on a trained classifier, a motion detector or a
combination of both. The second phase extracts features from the detected people. Appearance features include color,
texture and shape, which can be used separately or combined (Gray and Tao, 2008). These features can be extracted
from a single snapshot of the target (Zheng et al., 2011) or, when intra-camera tracking information is available,
after grouping features over time (Berdugo et al., 2010). The third phase, cross-camera calibration, establishes the
color and spatio-temporal relationship across cameras and allows to account for the variability of observations of the
same person across different FOVs. Spatio-temporal calibration methods encapsulate information about the camera
deployment, the spatial relationship between cameras, the entry/exit points in the scene, and the traveling time across
cameras (Javed et al., 2008). Finally, the association of candidates across cameras matches different instances of the
same person using the information extracted in the previous phases.
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Figure 1: Change of appearance of people across cameras (iLIDS, 2008). Column 1: camera 1, full frame; Column 2: corresponding crop of a
person of interest; Column 3: camera 2, full frame; Column 4: corresponding crop of a person of interest. People appear under different illumination
conditions, as shown in (b) and (d), and under different poses and levels of occlusion, as shown in (f) and (h).

Multi‐person 
detection

Feature 
extraction Feature set 

Cam 1

database
External input

Re‐identificationRe‐identification
Association

Cross‐camera 
calibration

Multi‐person 
detection

Cam N
Feature 
extraction

Training

Figure 2: Unifying block diagram for person re-identification approaches.
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Figure 1: Change of people appearance across cameras (iLIDS, 2008). Column 1: camera 1, full frame; Column 2: corresponding crop of a person
of interest; Column 3: camera 2, full frame; Column 4: corresponding crop of a person of interest. People appear under different illumination
conditions, as shown in (b) and (d), and under different poses and levels of occlusion, as shown in (f) and (h).

Existing person re-identification methods are validated on snapshot-based or video-based datasets. VIPeR (Faren-
zena et al., 2010; Prosser et al., 2010) and i-LIDS-static (Farenzena et al., 2010; Bak et al., 2010; Prosser et al., 2010;
Zheng et al., 2011) are the most common snapshot-based datasets used to validate appearance-based methods mostly
containing people with full body visibility. VIPeR consists of 632 images taken from two outdoor views (Gray and
Tao, 2008), while i-LIDS-static contains from 44 (Bak et al., 2010) to 479 (Zheng et al., 2011) image pairs of people
taken from four cameras at London Gatwick airport. A video-based dataset is the Terrascope dataset (Jeong and
Jaynes, 2008) that consists of nine indoor cameras where eight people walk and act in an office environment. Javed et
al. (Javed et al., 2008) presented a video-based dataset with three sequences composed of up to three cameras from
indoor and outdoor scenarios with large illumination changes and up to four fully visible people. Finally, a more
challenging dataset in terms of occlusions is that with three outdoor cameras where up to ten people walk alone or in
small groups (Kuo et al., 2010).

In this paper, we present a unifying overall structure and an in-depth survey of the state-of-the-art for person re-
identification methods that allow us to identify the major common features and drawbacks of existing approaches.
Unlike previous method-based surveys (Doretto et al., 2011), our survey has a phase-based organization. Based on
the outcome of this survey, we propose a method that (i) integrates simple knowledge of the site under surveillance,
(ii) models people movements in non-observed regions using landmark points (regions of interest) in the scene, and
(iii) can cope with crowded scenes. The association method uses distances based on appearance, location, and their
combination. Appearance features are extracted from a selected area of the upper body (the most visible in case
of crowd) and candidate locations are generated using landmark points and people motion. We compare the most
representative state-of-the-art person re-identification methods and our proposed method on the London Gatwick
airport dataset (iLIDS, 2008) by Cumulative Matching Characteristic (CMC) curves (Gray and Tao, 2008; Prosser
et al., 2010; Zheng et al., 2011).
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Figure 2: Unifying block diagram for person re-identification approaches.

The paper is organized as follows. Section 2 discusses a comprehensive survey on person re-identification meth-
ods, based on their four main phases. Section 3 presents our framework for re-identification that uses a landmark-based
spatio-temporal modeling and an upper body representation. In Sec. 4, we validate the proposed approach and com-
pare it with the most common state-of-the-art methods. Finally, Sec. 5 discusses the results and draws conclusions.

2. Person re-identification: a survey

In this section, we discuss person re-identification methods presented in the literature based on the classification
in phases proposed in the previous section. The methods are summarized in Table 1. In the following, we consider
the first phase (multi-person detection) to have been already solved.

2.1. Features

Color, texture and shape are the appearance features commonly used in the state-of-the-art methods for person
re-identification, where features are usually combined in order to obtain a more representative descriptor of the target.
Furthermore, temporal consistency of features can be exploited to merge the available information of a person over
time.

Color is the most commonly used appearance feature encoded in the form of either histograms (Gheissari et al.,
2006; Gray and Tao, 2008; Javed et al., 2008; Oliveira and Luiz, 2009; Cheng et al., 2009; Farenzena et al., 2010;
Prosser et al., 2010; Kuo et al., 2010; Zheng et al., 2011) or cumulative histograms (Berdugo et al., 2010), which are
simple to compute and scale invariant. Different color channels and their combination can be used: the Hue channel
from the HSV color space (Oliveira and Luiz, 2009); the Hue and Saturation channels jointly (Gheissari et al., 2006);
or the three channels of the HSV color space (Farenzena et al., 2010). Also, the histogram of the RGB color space
is widely used (Prosser et al., 2008; Javed et al., 2008; Cheng et al., 2009; Berdugo et al., 2010). A concatenation
of histograms from RGB, YCbCr, and HS (from HSV) color channels (Fig. 3) is adopted in (Gray and Tao, 2008;
Prosser et al., 2010; Zheng et al., 2011). An analysis by boosting classifier (Gray and Tao, 2008) shows how, for
the re-identification task, the Hue channel is the most discriminative followed by Saturation, Blue, Red, and Green
channels. However this analysis is limited to scenes where people are fully visible. Alternatively, the two chrominance
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Table 1: State-of-the-art methods for person re-identification. Legend: Spatio-temp = Spatio-temporal, Distance = Distance based, Learning =

Learning based, Optim = Optimization based.
Table 1: State-of-the-art methods for person re-identification. Legend: Spatio-temp = Spatio-temporal, Distance = Distance based, Learning =

Learning based, Optim = Optimization based.

Ref. Appearance features Temporal grouping Calibration Association
Color Texture Shape Color Spatio-temp Distance Learning Optim

(Porikli, 2003) X X X
(Gheissari et al., 2006) X X X X
(Madden et al., 2007) X X X
(Wang et al., 2007) X X X X
(Hamdoun et al., 2008) X X X
(Prosser et al., 2008) X X X X
(Jeong and Jaynes, 2008) X X X
(Gray and Tao, 2008) X X X
(Javed et al., 2008) X X X X X
(Oliveira and Luiz, 2009) X X X
(Teixeira and Corte-Real, 2009) X X X
(Cheng et al., 2009) X X X X X
(Farenzena et al., 2010) X X X X
(Bak et al., 2010) X X X X
(Berdugo et al., 2010) X X X X X
(Prosser et al., 2010) X X X
(Bauml et al., 2010) X X
(Kuo et al., 2010) X X X X X X
(Zheng et al., 2011) X X X
(Mazzon and Cavallaro, 2012) X X

from four cameras at the London Gatwick airport. The Terrascope dataset (Jeong and Jaynes, 2008) is a video-based25

dataset with nine indoor cameras where eight people walk and act in an office environment. Javed et al. (Javed et al.,26

2008) present a video-based dataset with three sequences composed by up to three cameras from indoor and outdoor27

scenarios with large illumination changes and up to four fully visible people. Finally, a more challenging dataset in28

terms of occlusions is composed of three outdoor cameras where up to ten people walk alone or in small groups (Kuo29
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Unlike previous method-based surveys (Doretto et al., 2011), our survey has a phase-based organization. Based on33

the outcome of this survey, we propose a method that (i) integrates simple knowledge of the site under surveillance,34
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2. Person re-identification: a survey46

In this section, we discuss person re-identification methods presented in the literature based on the classification47

in phases proposed in the previous section. The methods are summarized in Table 1. In the following, we consider48

the first phase (multi-person detection) to have been already solved.49

2.1. Features50

Color, texture and shape are the appearance features commonly used in the state-of-the-art methods for person51

re-identification, where features are usually combined in order to obtain a more representative descriptor of the target.52

3

channels from the YUV space are used in (Jeong and Jaynes, 2008), where a Gaussian Mixture Model is applied to
find the most relevant color clusters, whose centers are adopted as descriptors. The Dominant Color Descriptor
(DCD) (Bak et al., 2010) and the Major Color Spectrum Histogram Representation (MCSHR) (Madden et al., 2007)
compute the most recurrent RGB color values that are then used to represent a patch. Moreover, Maximally Stable
Color Regions (MSCR) (Farenzena et al., 2010) extracts the homogeneous color in the person patch by grouping
neighboring color blobs. Finally, camera parameters and reflectance of the objects’ surface can be studied to obtain
the main appearance characteristic of the target (Javed et al., 2008). DCD, MCSHR, MSCR and object reflectance are
features applicable only when a person is captured at medium/high resolution (i.e. larger than 100 × 40 pixels) and
there is a full body visibility.

The spatial distribution of the intensities in a person patch can be a key feature for person re-identification. Gabor
and Schmid filters (Fig. 3) define two kernels for texture extraction applied to the luminance channel (Prosser et al.,
2010; Zheng et al., 2011; Gray and Tao, 2008). Gabor filters are linear filters similar to the way the human visual
system is expected to describe horizontal and vertical structures, while Schmid filters are rotational invariant Gabor-
like filters. HAAR-like features can be used to extract relevant textural information from the person patch with the
aim to find recurrent color distributions (Bak et al., 2010). Furthermore, the ratios between different regions in a
patch can be used as a discriminative feature. Ratios of colors, ratios of oriented gradients and ratios of saliency
maps can also be used as textural features (Berdugo et al., 2010). Similarly, Recurrent High-Structured Patches
(RHSP) extract the most common blobs in the person patch (Farenzena et al., 2010); in addition to this, salient spatio-
temporal edges (edgels) obtained from watershed segmentation carry information of the dominant boundary and of
ratios between RGB channels (Gheissari et al., 2006). The distribution of spatial patches can be directly extracted in
the frequency domain where Discrete Cosine Transform (DCT) coefficients can be used as textural features (Bauml
et al., 2010). Finally, spatial patch distribution can be extracted by computing the first and the second derivatives
of the person patch resulting in a covariance matrix (Wang et al., 2007; Kuo et al., 2010). Symmetric regions of a
patch can be an alternative to the covariance matrix. The symmetry within the person patch can also be exploited
in the extraction of local features, weighting each feature based on their position with respect to the symmetric part
(Farenzena et al., 2010). These filtering methods are robust to illumination changes but cannot deal with large pose
changes. In particular, Gabor and Schmid filters, and HAAR-like features are local descriptors suitable for small
patches, while the ratios, RHSP, salient edgels, DCT coefficients, and covariance matrix can only be applied to people
patches at medium/high resolution. Furthermore, a Histogram of Oriented Gradients (HOG) gives information on the
orientation of the edges in the patch (Wang et al., 2007; Kuo et al., 2010), creating a feature that models the shape of
the object by its edge distribution. However, HOG features are only invariant to changes in illumination and not to
changes in pose and scale. The silhouette of a person has also been used when cameras are geometrically calibrated.
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Figure 3: Example of color and texture features extraction. Color features can be extracted from different channels (top row). Textural features can
be extracted by applying Schmid (middle row) and Gabor (bottom row) filters on the Y channel (Gray and Tao, 2008).

The bounding box around each person coming from single-camera tracking can be exploited by extracting the angle
formed by the vertical edge and the diagonal of the bounding box (Cheng et al., 2009). A more general feature is
the height of the target when calibration information is available (Berdugo et al., 2010). Finally, interest points can
be used for re-identification in case of variations in scale, pose and illumination (Bauml and Stiefelhagen, 2011).
Examples are SIFT (Teixeira and Corte-Real, 2009), SURF-like features (Hamdoun et al., 2008; Oliveira and Luiz,
2009) and the Hessian Affine invariant operator (Gheissari et al., 2006).

When intra-camera tracking information is available, features extracted from single images can be grouped over
time either by temporal accumulation (Hamdoun et al., 2008) or by clustering (Farenzena et al., 2010). Then, the most
representative patch of the group is kept as representative for the specific person. A spatio-temporal over-segmentation
of patches over 10 frames can be used to create a signature for each person (Gheissari et al., 2006). However, the
most common approach is to keep all the available features extracted from single patches over time and then perform
association by analyzing the similarity among all the available features (Javed et al., 2008; Berdugo et al., 2010;
Kuo et al., 2010). Features can also be incrementally updated over time, for example using Incremental MCSHR
(IMCSHR) that updates MCSHR in order to increase robustness to abrupt changes in illumination (Madden et al.,
2007). Finally, features extracted from patches of the same person over time can be used as a set of positive samples
for training a learning based method (Bak et al., 2010). In general, using temporal information, the effects of light
variations within the same camera and short occlusion of people are reduced because more representative features for
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each target are created.

2.2. Cross-camera calibration
Cross-camera calibration includes color calibration and spatio-temporal calibration. Different illumination con-

ditions across cameras can be compensated by robust features, as discussed above, and via color calibration where
cross-camera color calibration models the color relationship between camera pairs (Porikli, 2003). This approach re-
quires a learning stage where, for each camera, a relationship must be found and updated over time to cope with daily
changes in the lighting conditions. Examples of color calibration include the Brightness Transfer Function (BTF)
(Javed et al., 2008) and the Color Transfer Function (Jeong and Jaynes, 2008). It is demonstrated that all BTFs lie in a
low dimensional space that is discovered using Principal Component Analysis (PCA) on RGB color intensities (Javed
et al., 2008). In this case, color calibration is based on a linear function. An improvement of this approach is the use of
the Cumulative BTF (CBTF) where the contribution of less common training samples is taken into account (Prosser
et al., 2008). On the contrary, clustering on the chromaticity space can be used to find an affine color calibration trans-
formation (Jeong and Jaynes, 2008). Color calibration can perform well in case of large inter-camera illumination
changes, however it can only be applied to scenes where abrupt illumination changes are unlikely to happen.

The knowledge of the environment in which the cameras are deployed can be used to restrict the re-identification
task within a certain time interval and certain regions of the monitored scenario, by estimating when and where people
are going to reappear in the next camera (spatio-temporal calibration). In (Javed et al., 2008; Kuo et al., 2010), the
learnt information are the average traveling time across cameras and the expected entry/exit points in the scene, while
Prosser et al. (Prosser et al., 2008) select entry/exit regions manually. Learning the traveling time across cameras can
be complemented by the learning of probable entry/exit regions in the camera network (Javed et al., 2008). However,
when the relative camera positions are known, people location and speed can be discriminative features for each
person (Cheng et al., 2009). The main limitation of these approaches is that they are only suitable for scenarios where
non-observed regions are easy to model and people always follow the most common paths.

2.3. Association
The core of a person re-identification method is the definition of how to match features of candidate people. In

order to associate the same person across cameras, we can measure the feature (dis)similarity, use a trained classifier,
or perform an optimization process.

Person association using direct measures estimate the point-to-point dissimilarity between feature vectors. The
Euclidean distance is used for vectors representing color values (Farenzena et al., 2010), interest points, or hypotheses
of location of people (Gheissari et al., 2006; Mazzon and Cavallaro, 2012). The Euclidean distance between two
colors is also included in an ad-hoc similarity measure created to compare two DCD feature sets (Bak et al., 2010).
Alternative measures are the sum of quadratic distances (Oliveira and Luiz, 2009) and the sum of absolute differences
(Hamdoun et al., 2008). Other distance measures include the Kullback-Leibler Distance, KLD (Jeong and Jaynes,
2008; Berdugo et al., 2010), and the Bhattacharyya Distance, BD (Prosser et al., 2008; Farenzena et al., 2010). An
additional measure derived from the Kolmogrov distance is introduced in (Madden et al., 2007) to compare IMCSHR
features. Correlation between color histograms and HOGs of the objects is used in (Kuo et al., 2010). In these
methods, the most challenging part is the selection of the best distance for the specific set of features usually performed
by trial and error.

Approaches based on measuring similarity between feature sets are not robust to illumination changes unless
cross-camera color calibration is performed, as discussed earlier. As an alternative, a classifier can be trained to
learn the changes between cameras using labeled features. Support Vector Machines (SVM) can be employed with
DCT features (Bauml et al., 2010) and SIFT (Teixeira and Corte-Real, 2009). An improvement is the Ensemble
SVM, which reduces the computational cost of rankSVM for high-dimensional feature spaces besides converting the
re-identification problem into a ranking problem (Prosser et al., 2010). Furthermore, AdaBoost is applied for person
re-identification to learn weak classifiers based on different feature sets and to identify the most discriminative features
(Gray and Tao, 2008). A different learning-based approach is based on Probabilistic Relative Distance Comparison
(PRDC) (Zheng et al., 2011). PRDC maximizes the probability of correct matches while minimizing that of wrong
matches by learning the best distance measure for the association. Unlike direct distances, these methods are less
sensitive to feature selection. However, their results can be biased by the selection of the classifier parameters, thus
making the methods less flexible to different scenarios.
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Other approaches use optimization-based algorithms. The concept of belief/uncertainty assignment can be ex-
ploited and the decision for the association problem can be made on specific ad-hoc rules (Cheng et al., 2009). An
alternative approach finds the maximum likelihood Probability Density Functions (PDF) of appearance and spatio-
temporal features of different observations of the same object, where the final decision is made by split graph (Javed
et al., 2008). Re-identification can also be performed by Hungarian algorithm using color, texture, and spatio-temporal
features (Kuo et al., 2010), where the ’potentially’ correct matches are selected by Multi Instance Learning (MIL)
boosting on the spatio-temporal features. Finally, dynamic programming is used to find the fitting of body models
across cameras (Gheissari et al., 2006). The main drawback of optimization-based approaches is that they operate in
a batch mode and cannot be run on-line.

When analyzing re-identification algorithms using the ranking score assigned to each person, results on methods
solely based on appearance usually achieve less than 40-50% (Prosser et al., 2010) for the first ranking position (the
real re-identification score). Re-identification algorithms that operate in batch mode exploit also spatio-temporal
features, achieving results usually over 90% (Javed et al., 2008) for the first ranking position in scenes with full body
visibility and linear transition of people in non-observed regions. Nevertheless, methods solely based on appearance
can be tested using single snapshots of people and they became very important when cameras are located far apart. In
this case, spatio-temporal calibration is very challenging and spatio-temporal features become unreliable.

3. Re-identification in crowd: proposed approach

3.1. Overview

The proposed person re-identification method deals with crowded scenes and scenarios with challenging non-
observed regions where spatio-temporal calibration is not straightforward. The method extracts appearance features
from the upper part of the body and models movements in non-observed regions. This modeling is performed using
the map of the site under surveillance where candidate positions for people reappearance are created. Then, the
association phase integrates information from appearance features and candidate positions for re-identification.

Appearance features are extracted from a representation model defined as a vertical stripe around the head location,
as in a typical surveillance setting the head and the upper body are the most frequently visible and recognizable part
of a person (Fig. 4). The probability of occlusion and the presence of the background in this patch are reduced by the
proposed shape while maintaining the most discriminative part of each person.

Candidate positions for people reappearance are obtained on the map by propagating people movements from the
first FOV, through the non-observed regions, to the entry points of the FOV of the next camera. People trajectories
in the first FOV are obtained in three steps. First, head positions over time are extracted. Then, feet trajectories
are estimated by going from the head trajectories down to the ground (Lv et al., 2006). Finally, feet trajectories are
projected from the image plane to the map. Here the speed of each person is estimated and we assume that this
speed is maintained after exiting the first FOV (Mazzon and Cavallaro, 2012). People trajectories are then propagated
toward regions of interest (landmarks) in the non-observed areas (Fig. 5(a)). We define crossing landmarks the regions
through which people transit and entry landmarks the regions where people may enter the FOV of the next camera
(Fig. 5(b)). These landmarks are extracted from the map of the site. We refer to the proposed motion propagation
based on regions of interest as Landmark-Based Model (LBM).

3.2. The Landmark-Based Model (LBM)

Let C1 and C2 be two cameras with non-overlapping fields-of-view andM be a rough map of the monitored site
(top view). Let x = (x, y) ∈ M be a point on the top view, which is made up by the union of the projection of the
cameras’ FOVs on the ground plane (Hartley and Zisserman, 2004) and the non-observed regions.

Let people P1, P2, . . . , PN , where N is the number of people, move onto M, exiting C1 and entering C2. If xi

and ti are the last position and time instant when person Pi was visible in C1, and x̂i and t̂i are the position and
time of reappearance in C2, our goal is to model the possible paths of Pi going from xi to x̂i through the landmarks
(see Sec. 3.1). Notice that xi and x̂i change for every person, while the landmarks are fixed for a specific map.
Also, in absence of other prior information, we assume that each landmark is equally likely to be traversed in the
propagation. When person Pi exits C1, the movement is propagated toward a first landmark, and then toward crossing
and entry landmarks according to specific transition rules. These rules define how people can move through the
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Figure 4: Spatial support for person representation. (a) Head detection bounding box. (b) Selected stripe whose height is twice the height h and
half the width w of the bounding box. (c) The stripe is shifted downward by h/4 to reduce the likehood of presence of background pixels in the
features used for association.

crossing landmarks and which entry landmarks can be reached from a crossing landmark (Fig. 5(c)). The entry
landmarks reached after the transitions are the candidate areas for reappearance of Pi in C2. A time step is associated
to each reached entry landmark and calculated by the speed equation using the speed of people registered in the first
observed region and the distance covered by the propagation through the landmarks on the top viewM.

We model crossing and entry landmarks with a set of vertices V of an oriented graph G = (V, E), where E is the set
of oriented edges that connect the vertices and correspond to the transitions across landmarks inM (Fig. 5(c)). Let l(e),
with e ∈ E, be the length of e. Let AV = {a1, a2, . . . , a|AV |} with AV ⊆ V and |AV | > 0, be the set of crossing landmarks
and BV = {b1, b2, . . . , b|BV |} with BV ⊆ V and |BV | > 0, be the set of entry landmarks. Let FV = { f1, f2, . . . , f|FV |} with
FV ⊆ AV and |FV | > 0, be the set of vertices where the propagation of people movements can start from. Let us define

E∗i = E ∪ {(xi, FV )}, (1)

where (xi, FV ) corresponds to the edges connecting xi to the set of vertices in FV , namely the connection between the
last visible position of Pi in C1 and the vertices where the propagation can start from. Then, let us define the ordered
set of edges that a person can follow to go from xi to all the entry landmarks v ∈ BV as:

φk
i =

(
e1, e2, . . . , eh, . . . , e|φk

i |
)
, (2)

where eh ∈ E∗i ; k = 1, 2, . . . , |Φi| and Φi is the set of all possible paths that person Pi can follow; e1 = (xi, FV ) is the
first edge of the sequence; e|φk

i | = (AV , BV ) indicates that the last edge of φk
i must go toward an entry landmark; and the

edges from e2 to e|φk
i |−1 are selected according to the transition rules. We now accumulate the time needed for person

Pi to travel through a possible path φk
i using the speed equation:

tφk
i

=

|φk
i |∑

h=1

l(eh)
si

, (3)

where si is the maximum speed calculated within a time window of Ts frames in C1. The sum of the time step when
person Pi exits C1, ti, and the time required for Pi to traverse φk

i , tφk
i
, defines the time step when person Pi reaches C2
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Figure 5: Landmark-Based Model (LBM): (a) Block diagram. (b) Example of setup (black line: environment map; blue and green line: FOV
of Camera 1 (C1) and Camera 2 (C2); orange lines: trajectories; orange arrow: direction of motion; red dots: crossing landmarks; cyan dots:
entry landmarks). (c) Transition graph ({a1, a2, . . . , a8}: crossing landmarks; cyan border: crossing landmarks from where entry landmarks can be
reached).

if φk
i is traversed:237

t∗ki = ti + tφk
i
. (4)238

The above process is repeated for each person exiting C1 and going to C2. When person P j, where j = 1, 2, . . . ,N,239

reappears in C2, the set of candidates for the association are the set of vertices V∗i = {v∗ki } ∈ BV reached by e|φk
i | that240

satisfy:241

t̂ j − T < t∗ki < t̂ j + T, (5)242

where T ∈ N, restricting the set of possible candidates from person Pi to the closest in time to the reappearance of P j.243

If T is set too small, the time window would be too restrictive and the method could not account for small variations244

in people speed, while if T is set too large, the time window would lose its significance to select only the “good”245

candidates for re-identification.246

Finally, the association between P j and the candidates from Pi is performed as a weighted sum of spatial and247

appearance distances. As spatial measure, we choose the Euclidean distance applied between the entering position of248

P j in C2, x̂ j, and the candidates from Pi, v∗ki . As appearance measure, we choose the Bhattacharyya distance, as it249

outperforms both L1-Norm and rankSVM, applied to color and texture features.250

The proposed method is evaluated and compared with state–of–the–art approaches in the next section.251
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if φk
i is traversed:

t∗ki = ti + tφk
i
. (4)

The above process is repeated for each person exiting C1 and going to C2. When person P j, with j = 1, 2, . . . ,N,
reappears in C2, the set of candidates for the association are the set of vertices V∗i = {v∗ki } ∈ BV reached by e|φk

i | that
satisfy

t̂ j − T < t∗ki < t̂ j + T, (5)

where T ∈ N, thus restricting the set of possible candidates from person Pi to the closest in time to the reappearance of
P j. If T is too small, the time window would be too restrictive and the method could not account for small variations
in speed. If T is too large, the time window would lose its significance to select only the “good” candidates for
re-identification.

Finally, the association between P j and the candidates from Pi is performed as a weighted sum of spatial and
appearance distances. As spatial measure, we choose the Euclidean distance applied between the entering position of
P j in C2, x̂ j, and the candidates from Pi, v∗ki . As appearance measure, we choose the Bhattacharyya distance, as it
outperforms both L1-Norm and rankSVM when applied to color and texture features.

The proposed method is evaluated and compared with state-of-the-art approaches in the next section.
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Figure 6: Time evolution of people from Camera 1 (C1) to Camera 2 (C2). Blue: time elapsed when a person is observed in C1. Dotted line: time
elapsed in non-observed regions. Green: time elapsed when a person is observed in C2.

4. Experimental results

4.1. Experimental setup

In this section, we evaluate the most representative re-identification algorithms and compare them with the pro-
posed LBM approach. Results are provided for methods based on appearance features only, spatio-temporal features
only, and a combination of them. Moreover, we validate our choice to extract appearance features from a vertical
stripe of the upper body (Fig. 4).

The experiments are run on the i-LIDS dataset from the London Gatwick airport (iLIDS, 2008) where similarly to
previous works (Javed et al., 2008) we consider 60 people that go from C1 to C2. The maximum speed of people (si)
registered in C1 within Ts = 50 frames varies from 0.527 units/frame to 1.489 units/frame onM (with mean 0.867
units/frame and standard deviation 0.192 units/frame). Note that 1.489 units/frame corresponds to a running person.
Furthermore, the two cameras present large illumination changes and people can reappear with different poses after
transiting in the non-observed regions where different paths can be followed. To better understand the traveling time
variability between C1 and C2, Fig. 6 shows the color-coded time evolution of people in the two cameras. Segments
correspond to time intervals during which a person is in the FOV of a camera and is not totally occluded. It is
interesting to notice that (i) some people stay in the FOV of C1 for more than 1000 frames (due to the presence of
shops), (ii) some people are visible in C2 for only a few frames (the minimum is 4 frames), and (iii) the traveling time
of people to go from one camera to the next is highly variable (see for example the large difference between person 36
and person 43). In addition to this, exit regions in C1 present illumination conditions that are more similar to C2 than
the entry regions of C1 and people are more likely to be occluded in the exit regions of C1 than in the entry regions
of C1 due to the perspective. Hence, we divide the dataset into two sets and we perform the re-identification between
entry regions of C1 and C2 (EN1EN2), and exit regions of C1 and entry regions of C2 (EX1EN2).

The appearance features for our method are extracted from the shape defined in Fig. 4: we use a concatenation
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of 16-bin histograms as in (Gray and Tao, 2008; Prosser et al., 2010; Zheng et al., 2011) (see also Fig. 3). In par-
ticular, we employ 8 color channels (R,G,B,Y,Cb,Cr,H,S) from RGB, YCbCr and HSV color spaces, 8 Gabor filters
(with the following parameters: (γ, θ, λ, σ2) = (0.3, 0, 4, 2), (0.3, 0, 8, 2), (0.4, 0, 4, 1), (0.3, π/2, 4, 2), (0.3, π/2, 8, 1),
(0.3, π/2, 8, 2), (0.4, π/2, 4, 1), (0.4, π/2, 8, 2)), and 13 Schmid filters (with the following parameters: (σ, τ) = (2, 1),
(4, 1), (4, 2), (6, 1), (6, 2), (6, 3), (8, 1), (8, 2), (8, 3), (10, 1), (10, 2), (10, 3), (10, 4)). For association, we compare the
use of the L1-Norm, the Bhattacharyya Distance (BD), and the rankSVM (rankSVM has comparable results to the
Ensemble SVM) adopted in (Prosser et al., 2008; Farenzena et al., 2010; Prosser et al., 2010; Zheng et al., 2011). The
training for the rankSVM is performed with 60 people patches from C1 and C2 (this set does not overlap with the
testing set).

4.2. Discussion
In order to evaluate our proposed representation model, we compare the results obtained with a full body model

and those obtained using the shape from Fig. 4. Figures 7(a) and 7(b) show the results by Cumulative Matching
Characteristic (CMC) curve. It is possible to notice that the upper body model is a more suitable shape to use for
re-identification than the full body. In particular, since people are more likely to be occluded when they exit C1,
Fig. 7(b) shows a higher improvement compared to Fig. 7(a) that considers the entry of C1. Moreover, the L1-Norm
and BD show a considerable improvement from Fig. 7(a) (EN1EN2) to Fig. 7(b) (EX1EN2) compared to rankSVM
that has a more stable behavior. This is because the rankSVM is a learning-based method with a cross-camera color
calibration implicitly performed in the training phase and hence more robust to illumination changes.

Next, we validate the proposed LBM approach with a combination of appearance and spatial association applied
to EX1EN2 where the propagation of paths is between exit regions of C1 and entry regions of C2. In the following
experiments, we use T = 50 frames (corresponding to two seconds) for a fair comparison with the state-of-the-art
methods (Mazzon and Cavallaro, 2012). Notice how LBM does not substantially change its performance by varying
T as we obtain a mean re-identification score of 31% and standard deviation of 3% by varying T from 20 to 80 frames
at steps of 5 frames.

The first comparison is between LBM with only Euclidean distance as association method, and three other meth-
ods: two spatio-temporal calibrations and one spatio-temporal modeling of people in non-observed regions. Let
TTALL be the first spatio-temporal approach that calculates the average time needed for all people to go from C1 to
C2, and consider it as the expected traveling time. Let TT4REG be the second method that divides C2 in four entrance
regions (Fig. 8) and calculates the average traveling time of people that only enter the specific region. This creates an
expected traveling time for each region. To have a fair comparison, in TTALL and TT4REG we consider a correct
association when a person arrives within a time interval of ±50 frames of the expected time (the same as T ). The
method used for spatio-temporal modeling is the Multi-Goal Social Force Model (MGSFM) (Mazzon and Cavallaro,
2012) that applies a crowd modeling method for the trajectory propagation. People speed in MGSFM and LBM is
calculated with Ts = 25 frames and Ts = 50 frames; let us call them MGSFM25 and MGSFM50, and LBM25 and
LBM50, respectively. Figure 7(c) shows the CMC. Poor results are obtained with TTALL and TT4REG due to the
high variability of people traveling times. In addition, LBM shows comparable results for MGSFM25 and MGSFM50
for the first 3 ranking positions and better results after ranking 3. However, LBM requires less time to be computed
and a smaller number of parameters to set, thus resulting in a better applicability of the method.

Finally, we perform re-identification using LBM50 where for association, L1-Norm, BD and rankSVM are used as
appearance method integrated with the Euclidean distance. Compared to only using the appearance methods, Fig 7(d)
shows that LBM improves the re-identification score by 28% for L1-Norm, 28% for BD and 20% for rankSVM.
These results highlight how LBM creates good candidates for re-identification. Then we weight 50% the association
ranking given by appearance and 50% the one given by Euclidean distance, since it has the highest re-identification
score among the possible weights (Fig. 9(a)). Fig 9(b) shows the CMC. The combination with L1-Norm gives 43%,
BD 50%, and rankSVM 38% for the re-identification score that on average improves the result by 6% as compared to
using only appearance and by 15% compared to using only Euclidean distance as association after performing LBM.

5. Conclusions

We proposed and validated a person re-identification method based on modeling people movements in non-
observed regions using a site map and regions of interest where people are likely to transit. The two main novel con-
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Figure 7: Cumulative Matching Characteristic (CMC) of person re-identification based on combination of spatio-temporal modeling of people
in non-observed regions and appearance methods. (d) Appearance methods and LBM with appearance measures. ?? Different weights given to
Bhattacharyya and spatial Euclidean distances in LBM.
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Figure 7: Cumulative Matching Characteristic (CMC) curves for person re-identification using different spatial supports for feature calculation
(a)-(b), different spatio-temporal modelings of people in non-observed regions (c), and different appearance methods with and without LBM (d).
Dataset: 60 people going from Camera 1 to Camera 2 in the i-LIDS dataset (iLIDS, 2008). (a)-(b): Full body is the left-most image in Fig. 4,
upper body is the right-most image in Fig. 4. (a) People entering Camera 1 associated with people entering Camera 2. (b) People exiting Camera 1
associated with people entering Camera 2. (c) Multi-Goal Social Force Model (MGSFM) and LBM where association is performed using Euclidean
distance; see text for details of TTALL and TT4REG. (d) Appearance methods and LBM where association is performed using different appearance
methods.
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Figure 9: Cumulative Matching Characteristic (CMC) curves for person re-identification using LBM. (a) Association performed by different
weighted sums of Bhattacharyya distance and Euclidean distance. (b) Association performed by weighted sum (50%-50%) of Euclidean distance
and different appearance methods (compared with 100% Euclidean distance).
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tributions of the proposed method are the integration of appearance information for association with spatio-temporal
modeling of people movements in non-observed regions, and the extraction of features from a vertical stripe partially
covering the upper body and the head, thus making the method suitable for crowded scenes. Moreover, using the
proposed Landmark-Based Model (LBM), the estimation of people movements is simplified compared to the para-
metric crowd modeling proposed in (Mazzon and Cavallaro, 2012), where people movements are constrained by the
presence of obstacles. We also organized and critically discussed the state-of-the-art for person re-identification based
on features, their processing and the approaches used for association. We used a challenging dataset from the London
Gatwick airport in order to compare the most relevant methods in a realistic crowded scene. In general, methods
solely based on appearance features extracted on full body have performances close to random, nevertheless when
they are extracted on part of the upper body they can reach 40% in the first 10 ranking positions. Using LBM, the
re-identification score (rank 1) can reach 41.67% when only appearance is used, 28.33% when only motion is used,
and 50% when their equally weighted sum is used for association across cameras.

As future work, we will study how different appearance features affect the performance of the proposed method,
and we will extend our analysis to different scenarios, on a larger camera network and on scalability issues. We will use
a dataset with people that only appear in one camera, creating the possibility to have false positive re-identifications
(Bauml and Stiefelhagen, 2011).
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