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Abstract

We propose a generic online multi-target track-before-detect (MT-TBD) that is
applicable on confidence maps used as observations. The proposed tracker is
based on particle filtering and automatically initializes tracks. The main novelty
is the inclusion of the target ID into the particle state, enabling the algorithm
to deal with unknown and large number of targets. To overcome the problem
of mixing IDs of targets close to each other, we propose a probabilistic model
of target birth and death based on a Markov Random Field (MRF) applied to
the particle IDs. Each particle ID is managed using the information carried by
neighboring particles. The assignment of the IDs to the targets is performed using
Mean-Shift clustering and supported by a Gaussian Mixture Model. We also show
that the computational complexity of MT-TBD is proportional only to the number
of particles. To compare our method with recent state-of-the-art works, we include
a postprocessing stage suited for multi-person tracking. We validate the method
on real-world and crowded scenarios, and demonstrate its robustness in scenes
presenting different perspective views and targets very close to each other.
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1. Introduction

Multi-target tracking is a challenging task in real-world scenarios due to the
variability of target movements, shapes, clutter and occlusions. Moreover, the
computational cost may exponentially increase with the number of co-occurring
targets and the maximum number of targets may have to be fixed a priori. Single-
target tracking generally represents the state of each target with a single state vec-
tor [1]. In multi-target tracking the size of state vector increases with the number
of targets [2, 3,4,5,6,7,8,9, 10, 11, 12] unless a single-target tracker is initialized
for each target [13, 14, 15, 16, 17, 18, 19, 20]. We refer to the former approach as
one-state-per-target (OSPT) and to the latter one-filter-per-target (OFPT). OSPT
methods perform tracking optimization at each time step on the overall state space.
Only a predefined number of targets can be tracked [14] or ad-hoc stages can be
used to estimate the number of targets in the scene [2, 5]. OFPT methods perform
tracking by a local optimization for each target, thus limiting their application to
situations with a small number of targets that are easily distinguishable.

Target locations may be gathered from sensors (e.g. laser, sonar, camera) via
confidence maps that provide multiple measurements per target and carry infor-
mation in the form of intensity levels over space (Fig. 1). These intensity levels
are affected by different types of noise on background areas and/or on the targets
themselves, thus resulting in inaccurate position estimations. Tracking algorithms
employ target locations as measurements, either directly as confidence maps (un-
thresholded data) [13, 21, 20, 22] or as binary maps (target/non-target informa-
tion) obtained by thresholding the confidence values [3, 4, 6, 10]. Although the
latter strategy is the most commonly used, relevant data may be lost with this
process. Tracking-by-detection methods [20] perform target-tracker association,
and initialization and termination of tracks with greedy algorithms. Track-before-
detect (TBD) methods perform tracking of targets using unthresholded data [23]
and target-tracker association is implicitly computed by the tracker. TBD is a
Bayesian filter, generally built on the concept of particle filter, and commonly
used for radar tracking [23, 24]. Multi-target tracking is performed on noisy in-
tensity levels and the targets are assumed to be point targets. Initialization and
termination of tracks are performed by the tracker using target birth and death
models.

In this paper we propose a novel multi-target tracker based on TBD algo-
rithm [23] and applied to confidence maps. To enable multi-target tracking, we
develop a method where target IDs are assigned based on Mean-Shift clustering
and Gaussian Mixture Model (GMM). The birth and death of targets are mod-



Figure 1: Sample confidence map that we use as input (observation) to simultaneously track mul-
tiple objects. In this example, the confidence map is obtained with a head localization method
based on [25].

eled with a Markov Random Field (MRF). Unlike [24], we do not need to define
the maximum number of targets a priori and, unlike [20], the initialization of a
track may occur in any location of the image, thus making the multi-target track-
before-detect (MT-TBD) automatic and flexible to different scenarios. MRF en-
ables multi-target tracking without augmenting the state (OSPT methods, e.g. [2])
or the number of filters (OFPT methods, e.g. [13]), caused by an increase in the
number of targets. Moreover, the use of MRF overcomes the limitations of [24]
by allowing a reliable tracking of close targets without loss of performance and
leads to a computational complexity depending only on the number of particles.
Compared to the recent work by Benfold and Reid [10], the tracking accuracy of
the proposed MT-TBD improves by 11% with 2 seconds of latency and by 10%
with 4 seconds of latency on a publicly dataset from Oxford town center.

The paper is organized as follows. Section 2 discusses the related work for
multi-person tracking. Section 3 gives an overview of the proposed approach and
introduces MT-TBD. The ID management via MRF is explained in Sec. 4. Sec-
tion 5 illustrates the application of MT-TBD to multi-person tracking. Section 6
discusses the experimental results, the comparisons with existing methods and the
analysis of the computational complexity. Finally, in Sec. 7 we draw the conclu-
sions and present possible research directions.



2. Related work

In this section we discuss recent works on multi-person tracking, we analyze
their main contributions and classify each method in its corresponding category.
Multi-target video trackers can be classified into causal and non-causal methods.
Causal methods use information from past and present observations to estimate
trajectories at the current time step. Non-causal methods use also information
from future observations, thus resulting in a delayed decision. Although non-
causal approaches are not suitable for time-critical applications, they can achieve
a global optimum leading to more robust results during occlusions.

Examples of causal trackers are Bayesian filters [17, 10, 16, 15, 20]. Yang
et al. [17] use a Bayesian-based detection association obtained by Convolutional
Neural Network (CNN) trained on color histograms, elliptical head model, and
bags of SIFTs. Benfold and Reid [10] find the optimum trajectories within a four-
second window by a Minimum Description Length (MDL) method applied on
trajectories from a forward and backward Kanade-Lucas-Tomasi (KLT) tracking
and from a Markov Chain Monte Carlo Data Association (MCMCDA). Alterna-
tively, the particle filter is used in [16, 15, 20]. Ali and Dailey [16] track heads
obtained by Haar-like features and AdaBoost; whereas Xing et al. [15] employ
the Hungarian algorithm for the optimization of short but reliable trajectories ob-
tained by tracking the upper human body. Depending on the scenario, Breitenstein
et al. [20] track people detected by Histogram of Oriented Gradients (HOG) or Im-
plicit Shape Model (ISM). Here the association between detections and tracks is
performed by a greedy algorithm and boosting. A different approach is presented
in Rodriguez et al. [7] where tracking is obtained on four points per head by KLT
and head detection is optimized by crowd density estimation and camera-scene ge-
ometry. Tag-and-track methods for high-density crowd are proposed in [26, 27],
where targets are assumed to follow a learned crowd behavior. Ali and Shah [26]
deal with crowds with coherent motion by modeling their global behavior, the en-
vironment structure and the local behavior of people. Rodriguez et al. [27] focus
on crowds with non-coherent motion where the modeling is performed by Corre-
lated Topic Model (CTM) that predicts the next position of a person by exploiting
the optical flow. Note that among causal methods, only Benfold and Reid [10]
and Rodriguez et al. [7] use an OSPT framework. This is because the OSPT is
generally more complex than OFTP, but the modeling for multi-person tracking is
more flexible and computationally cheaper [10].

As for non-causal trackers, short-term tracks (tracklets) [3, 4, 8, 6, 9, 11, 12]
can be associated over time by using a modification of the Multi-Hypothesis



Tracking (MHT) algorithm [28], where the detections are obtained with a person
detector [29]. Huang et al. [3] associate tracklets by Hungarian algorithm using
position, time and appearance features, and then refine them using entry and exit
points in the scenes, which are in turn learned from tracklets. Li et al. [4] show
how the association can be improved by using a combination of RankBoost and
AdaBoost in a hierarchical approach where longer trajectories are generated using
a set of 14 features per tracklet by starting from the lower levels. In Yang et al. [8],
the association is performed using RankBoost applied to an optimization of affini-
ties and dependencies between tracklets by a Conditional Random Field (CRF).
Kuo et al. [6] associate tracklets using an AdaBoost classifier that learns online
the discriminative appearance of targets based on their color histogram, covari-
ance matrix features and HOG. Kuo et al. [9] extract motion, time and appearance
from different body parts of each target in order to perform a re-identification step
to resolve long-term occlusions. Yang and Nevatia [11] learn online the non-linear
motion of people and a Multiple Instance Learning (MIL) framework for the ap-
pearance modeling using the estimation of entry and exit regions. Furthermore,
Yang and Nevatia [12] use CRF to model affinity relationships between tracklet
pairs, where the association of tracklets is based on Hungarian algorithm and a
heuristic search. Table 1 summarizes the methods covered in this section and the
dataset on which these methods have been tested.

Similarly to Stalder ef al. [21] and Breitenstein et al. [20], the proposed MT-
TBD is a causal method that makes use of confidence maps as measurement for
tracking. However, compared to [21], we use the confidence maps online with-
out the need of any temporal processing and, compared to [20], an automatic
assignment between confidence map and targets is performed. Moreover, un-
like [20], which uses manually selected areas at the borders of the image to ini-
tialize tracks, we do not use any prior information about the scene. This becomes
extremely advantageous when targets temporarily undergo a total occlusion in
any position of the image. In addition to this, we overcome the limitations of
OFTP approaches [20, 22] with a global and instantaneous optimization of target
tracking in MT-TBD by employing a general likelihood function obtained from a
controlled sequence (Sec. 5.1). Finally, unlike De Leat ef al. [22], the use of mul-
tiple measurements per target is tested in various crowded scenes with different
camera perspectives.



Table 1: Summary of state-of-the-art methods for multi-person tracking and datasets used (see
text for details). Key: CM = Confidence Map; OSPT = one-state-per-target; CRF = Conditional
Random Field; OLDAMs = Online Learning of Discriminative Appearance Models; PIRMPT =
Person Identity Recognition based Multi-Person Tracking; MIL = Multiple Instance Learning;
KLT = Kanade-Lucas-Tomasi feature tracker; MCMCDA = Markov-Chain Monte-Carlo Data As-
sociation; JPDA = Joint Probabilistic Data Association.

Ref. Method CM | OSPT | Causality Dataset
[3] Three-stage algorithm, Hungarian algorithm v CAVIAR, iLids
[4] HybridBoost v CAVIAR, TRECVID
[8] CREFE, RankBoost v TRECVID
[6] AdaBoost on OLDAMs v CAVIAR, TRECVID
[9] PIRMPT v CAVIAR, ETH, TRECVID
[11] Learning of motion map, MIL for appearance v CAVIAR, PETS2009, TRECVID
[12] CRF, Hungarian algorithm/heuristic search v ETH, TRECVID, TUD
[17] Bayesian filter, Hungarian algorithm v CAVIAR, TRECVID
[10] KLT, MCMCDA v v v iLids, PETS2007, TownCentre
[16] Particle filter v Bangkok station
[15] Particle Filter, Hungarian algorithm v CAVIAR, ETH
[20] Particle filter, Greedy algorithm, Boosting v v iLids, PETS2009, soccer, TDU campus, UBC Hockey
[7]1 KLT points, Crowd density estimation v v v Political rally
[26] Floor fields v Marathon, train station
[27] Correlated Topic Model v Mall, sport crowd
[22] Automatic relevance detection, JPDA v v v Ants, laser output
Our approach | Multi-target track-before-detect v v Apidis, ETH, iLids, TownCentre, TRECVID

3. Sequential Monte Carlo estimation for multi-target track-before-detect

3.1. Confidence maps and track-before-detect

Let a confidence map 91 provide the information on the estimated position of
targets through spatially-localized intensity levels (Fig. 1). The ideal representa-
tion of the target position on a confidence map is a Dirac delta (a point target), with
maximum confidence. In practice, such Dirac delta is a spread function centered
in the target position and affecting neighboring pixels.

Let the state vector x; € X, where X is the state space, be defined as

X = [zp dx yk Uk I)", (1)

where (xy, yx) is the position, (i, ) the velocity, I the intensity and 7T is the
symbol for the transposed matrix. TBD is a time-discrete system that observes
multiple moving targets on a 2D image. The evolution of the targets at each time
step k is described by a discrete and linear Gaussian model [23]:

Xy = FXp_1 + V1. ()



The transition matrix F' describes the evolution of the target at a constant velocity:

1 K 0 0 0
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where K denotes the sampling period. The noise of this evolution is normally
distributed and defined as v, ~ N (0, Q), with
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where ¢; and ¢- are noise levels in target motion and intensity, respectively.

Let the spread function of the estimated positions of targets (over the 2D im-
age) be modeled as
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where X is a known parameter that represents the amount of blurring (i.e. the
spread of the confidence) and (4, 7) is the pixel position.

The recursive Bayesian filtering involves the calculation of the posterior prob-
ability density function (pdf) p(xx|Zx) of X, given the observations up to time £,
Zy, = {21, 22, ..., 2z }. The posterior is calculated in two steps: prediction and up-
date. In the prediction step, the probability density function is calculated through a
prior distribution, which determines the state evolution through the motion model.
In the update step, when the observation z; is available, the prediction is updated
using the likelihood function. The posterior pdf is thus obtained with the Bayesian
recursion as
(2 |xi) (X1 | Zi—1)

p(Zk|Zy—1)
where p(zg|xy) is the likelihood function, p(xy|Zk_1) is the prediction density
and p(zy|Z—_1) is a normalizing constant calculated as

p(Xk|Zy) = : (6)

P(zi|Zy—1) = /p(zk|Xk)p(Xk|Zk—1)ka- (7N
x



3.2. Multi-target identity

The framework for single-target tracking described in [23] (Ch. 11) includes
in the state vector x; an existence variable £, € {0, 1}, where 0 (1) indicates
the absence (presence). The global existence over time (i.e. target birth and target
death) of the target is modeled with a two-state Markov chain. The further exten-
sion to multi-target [14] leads to the expansion of the state vector x; and of the
Markov chain proportionally to the number of the targets. Since the number of
states of a Markov chain is fixed, the maximum number of targets must be known
a priori. In addition to this, the Markov chain may not allow transitions from
zero to two targets, and vice versa [14]. Alternatively, birth and death of multiple
targets can be modeled with greedy algorithms, where a target is declared born if
the tracker receives its measurements within a certain period of time [30], or by
a multi-Bernoulli distribution defining birth and death probabilities, and used to
declare a target birth when the existence probability of a candidate target is larger
than a certain threshold [31].

In order to be independent of the number of targets, we include in x;, the state
variable ¢ for representing the target identity (ID). IDs are represented by the set
of random variables £, = {L¢}¢cs,, where = is the set of IDs at time k& and
p(Le = &) = p(L¢). The IDs within =, at time & depend on two factors: the
IDs at k£ — 1 and x;. Hence, we define =, = g(=;_1,xx), where g(-) represents
the function that (i) maintains target IDs; (ii) assigns new IDs to appearing targets
(target births); and (iii) removes the IDs of disappeared targets (target deaths).
Targets can move in any locations of the observed area and they might cross or
move close to each other. By considering the IDs as random variables, we can
assign to each target the probability of having the corresponding ID, such that

p(Xk, Le) = p(xx|Le)p(Le). (8)

A target may spatially interact with other targets in its vicinity (neighborhood).
When targets are close to each other, there is uncertainty in assigning IDs. The
main goal is to keep their identities separate and associated to the correct targets by
maximizing their probability of having the assigned ID. To this end, we take into
account the selected targets with respect to the neighboring ones in the calculation
of the probability p(L¢) V £. The probability of a target having an ID depends
only on the spatially close targets and, hence, the dependencies for the calculation
of the probability follow the Markovian property. For this reason, to consider
the state and its neighborhood, we model the set £; as a Markov Random Field
(MRF). With such definition of g(-) and p(L¢), the proposed method of target
birth and death lies between greedy and probabilistic methods.

8
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Figure 2: ID assignment, from prediction to state estimation. (a) Monte Carlo representation at
the prediction step (red particles: existing particles propagated with the motion model from the
previous time step; black particles: new-born particles). (b) Mean-Shift clustering result on the
particles approximating the posterior distribution (blue markers: centroids of the clusters; yellow
particles: particles kept in the resampling process). (c) Distribution of the particles with different
IDs (color-coded) superimposed on the actual observation (the confidence map).

Let us denote the neighborhood of L, as 91(¢), hence the Markovian property
of L is defined via local conditions

P(Lel L1\ €) = p(Le| N(E)). )

The information on the target identity within the state leads to the calculation of
the likelihood and the prediction depending on the set Ly, such that

(zw| Xk, Li)p (X, Lic|Zr—1)
P(Zk|Zk—1) '

(i, L1|Zi) = 2 (10)

By construction £, is conditionally independent of the time and the observations
Z,., and hence Eq. 10 can be rewritten as

P(Zk |Xk)p(Xk | Zk—l)p(ﬁk)
p(Zk ’ Zk—l)

p(xk, Lk|Zy) = ) (1)
where the prediction term p(xg, Li|Zk—1) = p(Xk|Zk—1)p(Li|Zk—1) = p(Xk|Zr—1)p( L)
and the update term p(zx|xx, Lr) = p(2k|Xk).

3.3. Sequential Monte Carlo estimation

In order to make the Bayesian recursion of Eq. 11 computationally tractable,
we use the Sequential Monte Carlo estimation to approximate the probability den-
sities with a set of particles [23] (Fig. 3). The N particles used to describe the
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Figure 3: Block diagram of the proposed multi-target track-before-detect (MT-TBD). The filter
receives as input the confidence map (z;) and draws the distribution of the target states using the
Bayesian estimation with Monte Carlo approximation (particles). The weights of the particles are
carried throughout the framework and used in the state estimation stage to find the target locations
(Xgk)- The states marked with the superscript * are generated after resampling. After the multi-
target management stage, the weight distribution is uniform with respect to the number of the
targets, Oy, at time k.

N
n=1>

posterior p(Xy, L|Zy) at time k are denoted as {x}, £, w}
importance weight of the n-th particle.

In the prediction step there are two sets of particles: existing and new-born
(Fig. 2(a)). The set of ()}, existing particles are drawn from the motion model of
Eq. 2 and the set of .J;, new-born particles are drawn from the proposal density
qr (X |2y ); both are chosen a priori. Hence, N = Qy + J. g distributes particles
in z; proportionally to the intensity values of the input confidence map, thus re-
sulting in a high concentration of particles in high-intensity regions. The proposal
density for the velocity is uniformly distributed for both x and y components, e.g.
for z, g (x) = U|—Vmaz, Vmaz |, Where v,,4, is the maximum target velocity. The
proposal density for the intensity component is gy (Ix) = U [l min, Imaz), Where
Lin and I,,,,, are the minimum and maximum intensity values, respectively. & is
initialized with null value.

In the update step, the importance weights w;' are computed using the likeli-
hood function. The likelihood modeling is performed in two steps: the extraction
of intensity values of true and false target locations over time using ground-truth
data from a training set (Sec. 5.1), and the fitting of a function on the collected
data. The distribution of intensity values of true locations over time is referred
to as signal-plus-noise, the distribution of intensity values of false locations as
noise. The ideal case is with a Dirac delta in O for false locations (no noise) and
a Dirac delta in 1 for true locations (clean signal). The likelihood is calculated as

the ratio between the distribution of the target signal-plus-noise pgs. N(z,(:’j ) |x7)

where wy, is the

and the distribution of the noise py(z . In the former case, we use a Normal
distribution and in the latter case a Pareto distribution [32].

10



Given the observation zy, the likelihood E(Z,Ef’j )|XZ) for the n-th particle at

time k and position (i, j) is calculated as

o (’LJ) n
(D) = argmax pS+N(Zk,(i j)|xk) , (12)
1€C; (x3),J€C; (x}) pN(Zk7 )

where C;(x}) and C;(x}) are the set of pixels centered on pixel (7, ) and af-
fected by the uncertainty mentioned in Sec. 3.1 during target localization. The
importance weights are finally calculated as

(17.7) n Ln
W = 0z, ) _ p(Len) (13)

Zivzl €<Zk|XZ) 22[:1 p(LE") ’

where p(L¢n) is the ID probability of the n-th particle (Sec. 4). The importance
weights approximate the updated posterior p(xy, Lx|Z;) whose modes represent
the estimated state of the targets (Fig. 2(a)). To avoid the degeneracy problem [23],
the particles are resampled using multinomial resampling. Resampling eliminates
(duplicates) samples with low (high) importance weights. To retrieve the modes of
the posterior distribution, we perform Mean-Shift (MS) clustering [33] using the
position of the particles, i.e. (2}, y}") V n (Fig. 2(b)), without any prior knowledge
on the number of clusters or their shape, and with a fixed cluster size.

Let us define the size of the cluster as Ay and the set of clusters at time & as
Uy = {¢, }rer,» With ¢, the generic r-th cluster and R, the set of cluster indexes.
At this stage, the function g(-) introduced in Sec. 3.2 assigns a different ID to the
particles belonging to different clusters at £ = 1. At k > 1, if a cluster contains
only new-born particles, they are all initialized with a new ID. Otherwise, the ID
is assigned to the new-born particles with a method based on Gaussian Mixture
Model (GMM), as explained in the next section.

4. ID management with Markov Random Field

We address now the issues of managing multiple target identities in the pres-
ence of interactions, target births and target deaths. We use the random variable
L¢ as a contribution to the posterior distribution of Eq. 11 for penalizing parti-
cles belonging to a target that either mix with particles of other targets or move
far from the target they represent. Being the target location spatially spread in a
kernel (i.e. C;(x}) and C}(x})), particles belonging to a target are in turn spread
over the kernel (Fig. 2). Hence, when targets get close to each other, particles are

11



Figure 4: Example of Gaussian fitting on the particle states of two close targets. The GMM is used
to assign IDs to new-born particles within a cluster containing targets with different IDs. (a) Red
and yellow represent existing particles belonging to different targets, whereas black represents
new-born particles. (b) Corresponding Gaussian mixture fitting on the particles.

likely to mix (Fig. 4(a)), thus creating a challenging situation to manage in order
to separately maintain the identity of multiple targets.

To address this problem, let us characterize the set £; and the joint probability
distribution p(Ly). Since L is a MRF, in order to construct the joint distribu-
tion of £, considering the Markovian property of Eq. 9, we employ the Gibbs
distribution [34],

p(L0) = T ep{U(L)} (14)

where D is a normalization factor and U (-) is the energy function

U(Le) = Y Ve (Le), (15)
NE)en

where 1 represents all the possible neighborhoods in the state space and Viy(¢) is
the potential function defined for the neighborhood 9%(¢). Since a potential func-
tion is defined on a single neighborhood, it ensures that it is possible to factorize
the joint probability such that the conditionally independent variables, for instance
from non-connected neighborhoods, do not contribute to the same potential func-
tion.

Given a particle x}, the probability of ™ is p(L¢n ) and its neighborhood 91(£")
corresponds to the domain defined by the pixels affected by the blurring intro-
duced during target localization, i.e. C;(x}) and C;(x}) (Eq. 12).

12



The potential function of £" at time k associated to particle x}, is calculated as
Vm(&")(Lﬁn) = Val‘t(gn)(Lfn) + Va/{(gn)(Lfn)a (16)

where Vi .y (Len) evaluates the agreement of the ID of particle n with respect to
the IDs in 91(£") and Vg ;. (L¢n ) evaluates the distance between the ID of particle
n and the center of mass of particles with the same ID of particle n. We define

/ n Ln
Vaeny(Len) = exp {—041(1 — 5k)f} : (17)

where ¢} quantifies the agreement of the IDs and «; regulates the strength of the
agreement. For instance, a high value of «; leads to a low probability of having
an ID when a particle is surrounded by particles with different IDs, instead a low
value of oy keeps the probability p(Le») high when a particle is surrounded by
particles with different IDs. p normalizes the agreement value over the number of
particles in the neighborhood,

= NE e, (182)

p=dy " +ap, (18b)

with dzt(fn) as the number of different IDs and ac‘,?(gn) as the number of same IDs
with respect to £ within the neighborhood 91(£"). 6} is the Dirac function that
indicates if n is a new-born particle or not,

. 1 ifer=o0
5k_{0 e zo (19)

In fact, if n is a new-born particle, then p(L¢n) = 1 with null ID. The ID will be
assigned to the new-born particles at the multi-target management stage (Fig. 3).
The potential Vi ..y (Legn) is defined as

4o o'y, 0)

Vo’t/(gn)(Lén) = exp { 2y

where the rise (-)* and o, are used to regulate the decreasing trend of the function.
The higher «,, the higher the probability of having an ID far from the group
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Figure 5: Potential V] ) (L¢n ) used for evaluating the distance between particle » and the center
of mass of particles with the same ID. (a) Decreasing trend of the function when changing the
order of ~;'. (b) Changes at different distances from the center of mass of the particles with the
same ID.

of particles with the same ID. ~; is the normalized Euclidean distance from the
center of mass and ¢;; is defined as in Eq. 19.

Figure 5 shows the trend of the function with different parameters: the hori-
zontal axis represents the variation of ;' and the vertical axis represents V;}{( €n) (Lgn)
as a function of 7. Figure 5(a) shows the decreasing trend of the potential func-
tion when changing the order of 7', whereas Fig. 5(b) shows how the potential

9’{(@) (Len) changes at different distances from the center of mass. The center of
mass is calculated by utilizing the geometric mean of the position of the particles
with the same " and the normalization is calculated by taking into account the
area of the pixels affected by the blurring introduced during target localization,

2 2
1 y
= 42¢ (ot = Y o)+ (o - YT o) @1

where the normalizing factor 43 takes into account the 95% of the area affected
by the blurring and M = |91(£")] is the number of neighbors of the n-th particle.
Finally, the value D in Eq. 14 used to normalize the energy function for each
particle is defined as

D(Len) = exp{on (1 —0;)}. (22)

The computation of the probability of £" leads to the ID assignment to the
new-born particles. The general concept is to assign to the new-born particles that
belong to a cluster the same ID of the existing particles within the same cluster.
This assignment is based on the probability of existing IDs. When existing parti-
cles are already initialized with an ID in a cluster, the ID assignment is performed

14



e *
e Ll
s.:‘ .

ﬁﬁ%‘v

X X

(a) (b)

~
~

Figure 6: Two sample cases of ID assignment to the new-born particles (black) using Mean-Shift
clustering. (a) Cluster (green) containing existing particles with the same ID (red) that is assigned
to all the new-born particles within the cluster. (b) Cluster (green) containing existing particles
with different IDs (red and yellow) that are assigned to the new-born particles within this cluster
using a GMM approach (see text for details).

by considering two cases: (i) clusters with existing particles and the same ID
(Fig. 6(a)), and (i1) clusters with existing particles and different IDs (Fig. 6(b)). In
the former case, when a cluster contains new-born particles and existing particles
sharing the same ID, the ID assigned to the new-born particles is the same as that
of the existing particles. In the latter case, when in a cluster there are new-born
particles and existing particles with different IDs, we use a method of ID assign-
ment based on GMM'. By fitting a GMM with mean components placed on the
center of mass of each group of particles with same ID and variance proportional
to the probability of the respective ID, we ensure a fair assignment of IDs to the
new-born particles located in the cluster. As shown in Fig. 4, the widest GMM
component belongs to the target with widest spread function. Vice versa the nar-
rowest GMM component belongs to the target with narrowest spread function.
Each fitted Gaussian approximates the spatial distribution of particles sharing the
same IDs, and the assignment of the ID to each new-born particle within the clus-
ter is performed according to the Maximum A Posteriori (MAP).

Let us define the set X, = {(z}, vy, &") @ a},yp € .} of particle locations
and IDs belonging to the r-th cluster at time k. Using A, we calculate the mean
position of the respective IDs, 0V " € X,.. Let us denote the set of mean posi-
tions as ©, = {0 : £&" € X, }. We then define the covariance matrices using the

"We choose a probabilistic model, rather than an ad-hoc assignment, since it can be easily
extended or replaced with other probabilistic models in case of different applications of the tracker.
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total probability of each ID p(Lgn ), such that

pe = p(Len) - {é 2}, (23)

and, as for the mean positions, we define the set of covariance matrices ®, = {¢¢ :
¢" € X.}. In this way, the fitting is performed using Gaussians with covariances
proportional to the probability of the IDs within X,.. Note that |©,.| = |®,.|, where
| -| is the cardinality of a set. The GMM is defined as a weighted sum of Gaussian
densities given by

O]

F(X) = T N (X0, Do) (24)
m=1

where ©,.,, and ®, ,, denote the m-th mean and covariance component of the
corresponding sets, respectively, and each ID ¢ € A, is associated to each com-
ponent m, i.e. ¢ — m. The best fitting of the mixture is performed through
the Expectation-Maximization algorithm [35]. Figure 4(b) shows an example of
GMM fitting when two nearby targets are present. Once the GMM is fitted to the
particle locations, the affiliation of the new-born particles to the targets is derived
through the calculation of the MAP and the ID assignment is performed with re-
spect to such information. Hence, V (2}, yp,£") € A&, with &" = 0, the ID is
assigned using the MAP

gn — E : 5 — m/’ m' = 8{% m%X| {p(m|(I27yZ))}7 (25)

where ¢ is the ID associated to the component with the highest probability and

n n p(m)p((xZa yﬂ)|m) Tm N((.IZ, yZ)‘GT,ma q)T,m)
, = p— = . (26)
p(m\(xk yk)) P((xk’?/k)) Zln(?jl WmN((HCZ,yZ)‘@r,m, ®T7m>

The state estimate Xg, = (T, Uk) is finally calculated using the weighted
sum of the particle positions on their relative weights,

T
Rijoe = Zn Wy e - [$Zg yi?,g]
klkE = 5
Zn w}g,i
where the subscript £ is used to indicate that the state estimate is calculated among
particles sharing the same ID.

27)

16



Once the IDs are assigned, the resampling of the particle weights is performed
for each cluster independently by assigning the same number of particles to each
cluster. Ideally, each cluster contains a single target, hence by resampling each
cluster independently we ensure that all clusters/targets evolve over time with the
same number of particles.

5. Application to people tracking

In this section, we model the likelihood function and develop a postprocessing
stage for people tracking applications. The postprocessing makes use of track
duration in case of moving cameras, and of background information and people
appearance in case of static cameras.

5.1. Likelihood modeling

The likelihood function (Eq. 12) for MT-TBD is modeled using automatically
generated confidence maps filtered by ground-truth information (Sec. 3.3). The
intensity distribution of true locations is referred to as signal-plus-noise, since
manifold factors may affect the response of the target localization method, such
as objects with similar shape or color. The intensity distribution of false locations
is referred to as noise. Ideally, a specific likelihood function should be modeled
for each scenario. However, in order to demonstrate the flexibility of the pro-
posed MT-TBD in different scenarios and for different targets, a single likelihood
function is defined and used throughout our experiments. In particular, we model
the likelihood function using highly noisy data, such as head locations obtained
by Support Vector Machine (SVM) [36] and by using HOG features [25] in the
TRECVID dataset. The distribution of head/non-head confidences is shown in
Fig. 7(a). Figure 7(b) shows the fitted curves on the data for modeling the like-
lihood function. The signal-plus-noise distribution is fitted by a Normal distribu-
tion and the noise distribution by a Pareto distribution [32]. Since the exponential
function goes quicker to zero than the Pareto function, the Pareto distribution is
more suited for modeling the noise in Eq. 12 (at the denominator). In fact, very
high values of likelihood for high values of observed intensities would lead to the
divergence in the estimation of the posterior distribution (Eq. 11).

The final likelihood ratio (Eq. 12) is calculated as

psen (X
P (=)

(4,5) S (4,5) _ 3 (4,3)
_ o2 ZE o (27 =hy, " (%K)
o V2o <1 + N o2 > exp 20'% )
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Figure 7: (a) Distribution of the signal-plus-noise (blue) and noise (red) extracted from real data
represented by the head locations [25] on the TRECVID dataset. (b) Normal distribution fitted on
signal-plus-noise (blue) and Pareto distribution on noise (red).
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Figure 8: Variation of the parameters of the fitted distributions for the likelihood function (Eq. 28):
(a) 01, (b) o2 and (¢) <.

where o is the standard deviation of the Normal distribution, and o, and < are the
scale and tail parameters of the Pareto distribution, respectively.

Figure 8 shows the effect of the parameter variations on the numerator and
denominator of Eq. 28. When pN(z,(;’j )) quickly decreases to zero, i.e. small o9
and small ¢, the likelihood ratio gives high values. Vice versa, when pN(z(i’j ))

k
slowly decreases to zero, i.e. if 05 and ¢ are large, the likelihood gets more biased

on the value of the numerator.
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5.2. Data-driven postprocessing

We use a shifting temporal window of 7 frames overlapping of one frame over
time. The tracks within this temporal window are collected into the set

;c— = {Tg,g 1 EE,R= [kj&ke}vﬁ - [k -7+ 1,/-(3]}, (29)

where TF . is the generic track with ID £ within the interval & = & = [k, k.| and
ks, k. are the starting and ending instants of the track within the temporal window,
respectively.

Each track is defined as T, = {(Xpe,bre) : € € Ep, k € A7 }?, where the
state estimate Xy, ¢ corresponds to the top-left corner of the bounding box and by, ¢
is the bounding box associated to the state X;, ¢ retrieved using the scene calibra-
tion information. Note that the postprocessing introduces a delay in the tracking
output that is analyzed in details in Sec. 6.5.

The postprocessing stage for multi-person tracking is divided into (i) track
pruning to remove tracks with a score s less than 3 within a temporal window
71 = 25 frames, (i1) track fusion within a temporal window 7, = 7 and directly
proportional to 7, and (iii) track pruning to remove fused tracks with score less
than 75/10 for a temporal window of 7.

For track pruning, let us consider a generic track Tg, with generic ID ¢ that
exists within the temporal interval 7;. A score sgl is assigned to each track, such

that
sge= D (T, (30)

T1
ke,

where r : R™ — {0, 1} and m is a set of rules used to define the score. This leads
to s, being equal to the duration of a track (in frames) if (T}',) = 1V k € &',
otherwise, if r( Zlg) = 0 for some k € ?, the score 321’5 is smaller than the
duration of the track. The same process is performed into the temporal window
T2.

In case of moving cameras, the function r(-) only evaluates the duration of
the track in frames. In case of static cameras, the function r(-) is modeled as a
logic AND of two rules, 1 (-) and r5(+), obtained from a background subtraction

step. Given B( 2175), a patch within each bounding box from the difference image

’The conditional dependency on k of X |k,¢ is omitted for simplicity in the notation.
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between the current frame fj, (‘1215) and the background, we define
0 if u(B(T}} T
T1 ): { 1 ILL( ( k,f)) <11 ; (31)

1 otherwise

where p(-) calculates the mean pixel intensity and 77 = 20-25 depending on the
contrast between targets and background, and

0 if o TN > T
P(TE,) = UelEie)) = T2 (2)
1 otherwise

where o(-) calculates the standard deviation of the pixel intensities in gray level
and 7, = 5 to remove false positive tracks on flat surfaces such as walls. For the
specific case of head tracking, we define an additional rule, r3(-), to calculate the
relative distance and size between bounding boxes in order to remove false tracks
originated due to shoulders, when they are erroneously detected as heads.

We formulate the track fusion process as a re-identification problem. The last
available position of a track, the velocity and the color extracted from the upper-
body patch [37] are used to find the best match between the final position of a
track and the initial position of another track ahead in time.

Let us define the function x(-) that calculates the cost between each track
pair within the temporal window 75: /ﬁ(‘Z};ig, ;2,5/) is the affinity between track
¢ and track £, V ¢’ € E; \ & Using the temporal gap between two tracks and
the last available position of TTQ, we predict the target position with a linear
motion model. The affinity is thus calculated from the end point of a track (‘Zz,g)
to the start point of another track (“Szf,), with ks > k.. The calculation of the
affinities is based on the Euclidean distance between predicted and current starting
point, and the Bhattacharyya distance of the image patch at k. and that at k,. The
Munkres algorithm? is then iteratively computed to associate all the possible track
pairs.

6. Experiments and results

6.1. Datasets and algorithms

In this section, the proposed MT-TBD is tested as multi-person tracking on
confidence maps generated by six person localization algorithms (see Dallar et

3http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html. Last accessed: March 2012.
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al. [38] for a complete survey on person localization). In particular, we retrieve
person locations using information of: full-body [25, 29], head [25, 10], full-body
based on parts [39] and full-body from multiple views [40]. We firstly use reli-
able confidence maps obtained (i) from head locations guided by the ground truth
and (i1) from multiple views of the same scene. Then, we compare the proposed
method with the state of the art by employing automatically generated confidence
maps on single-view.

The experiments are performed on one sport video, four surveillance videos
and two videos obtained from a moving camera. The first set of reliable confi-
dence maps are extracted on 2400 frames of size 720 x 576 pixels from Camera 1
of the London Gatwick airport dataset* that is recorded at 25Hz. The confidence
maps are generated as the output of a SVM trained with HOG features [25], where
false positive confidences are removed using ground-truth information. Let us call
this dataset TRECVID-HOG+GT. In addition to this, we perform tracking on two
different cameras of a basketball scenario (APIDIS dataset®) composed of 800
frames of size 800 x 600 pixels and recorded at 25Hz. Let us call them APIDISCI1
and APIDISC?2. Here, the reliable sets of confidence maps are obtained by a multi-
layered homography method [40] that exploits the seven cameras available in the
dataset. Results on TRECVID-HOG+GT, APIDISC1 and APIDISC?2 are reported
in Sec. 6.4.

In Sec. 6.5, MT-TBD is then tested on automatically generated confidence
maps on single views. Firstly, we use the TownCentre dataset® composed of 4500
frames of size 1980 x 1080 pixels, recorded in Oxford (UK) town center at 25Hz.
For a fair comparison with Benfold and Reid [10], we use the head locations pro-
vided by the authors, which are generated using HOG features and SVM. As the
provided person locations have already been thresholded, they are not in the form
of intensity levels. For this reason, the input to MT-TBD is a confidence map with
2D Dirac delta in correspondence to each localized head. Moreover, we use the
iLids Easy’ dataset composed of 5220 frames of size 720 x 576 pixels recorded
at the London Westminster subway station at 25Hz, where we obtain person loca-
tions using an approach based on body-parts proposed by Felzenszwalb et al. [39].
Another localization method based on HOG features and SVM [25] is trained on

4LIDS, Home Office multiple camera tracking scenario definition (UK), 2008.

Shttp://www.apidis.org/Dataset/. Last accessed: March 2012.

®http://www.robots.ox.ac.uk/Active Vision/Research/Projects/2009bbenfold_headpose/project.html.
Last accessed: March 2012.

"http://www.eecs.qmul.ac.uk/ andrea/avss2007_d.html. Last accessed: March 2012.
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Table 2: Summary of the datasets and person localization methods used for validation. Key: H:
Head; B: Body; P-B: part-based.

| Dataset | Image size | Localization method | Body part |
TRECVID-HOG+GT | 720 x 576 | HOG + SVM [25] + GT H
APIDIS 800 x 600 | Multi-layer homography [40] B
TownCentre 1920 x 1080 | Binary (HOG + SVM) [25] H
iLids Easy 720 x 576 | HOG + SVM [39] B, P-B
TRECVID 720 x 576 | HOG + SVM [25] H
ETH 640 x 480 | Binary (Edges + Weak Classfier) [29] | B

head patches of 24 x 24 pixels, and applied to the London Gatwick airport dataset
that has the same specifications as above. Let us call this dataset TRECVID to
distinguish it from TRECVID-HOG+GT. Finally, we test MT-TBD on two videos
from the ETH dataset® recorded from a moving camera at 13-14Hz on outdoor
scenarios, and composed of 353 and 999 frames of size 640 x 480 pixels. For a
fair comparison with Kuo et al. [9] and Yang and Nevatia [12] in this dataset, we
employ their full-body locations’, and, as for the TownCentre dataset, the input
of MT-TBD for ETH is a confidence map with 2D Dirac delta since the provided
locations have already been thresholded.

Table 2 summarizes the datasets and the localization methods used for testing.

6.2. Parameters

This section describes the parameters used for MT-TBD. Similarly to Breiten-
stein et al. [20], some parameters are set experimentally.

The choice of the maximum values of velocity, v,,.., used to propagate the
particles by the proposal density gx(-) (Sec. 3.3) depends on the frame resolution.
Higher resolutions lead to higher values of the maximum velocity. TRECVID
and iLids Easy datasets have the same frame resolution and, because they contain
walking people, the variance of motion is low. For this reason, we set ¢; ~ 0.3
and v, ~ 3. Similarly, the TownCentre dataset contains walking people, but the
frame resolution is much higher (Tab. 2), thus leading to larger displacements on
the image plane. Hence, we set ¢; = 4 and v,,,, = 12. Since the ETH dataset
is recorded with a moving camera and at low frame rate, the displacement for
walking people is larger than TRECVID and iLids Easy, and we set ¢; = 2 and

8http://www.vision.ee.ethz.ch/~aess/dataset/. Last accessed: March 2012.
“http://iris.usc.edu/people/yangbo/downloads.html. Last accessed: March 2012.
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Umaz = 14. Finally, in the APIDIS dataset, we set ¢; = 3 and v,,,, = 12 because
people movements can be subject to sudden variations.

The noise g2 associated to the intensity of the confidence map is then chosen
according to the specific confidence map given in input to MT-TBD. The confi-
dence maps of TRECVID, iLids Easy and APIDIS datasets are not thresholded,
and we set 1,,,;, = 1, L4 = 3 and ¢o ~ 0.3 for all of them. In case of ETH and
TownCentre datasets, the confidence maps are thresholded (there is no variation
of intensity) and we set I,;, = Inas = 2 With noise gy = 1072,

The amount of blurring introduced in the target localization process is modeled
by > in Eq. 5: its value is dependent on the precision of the person localization
method and on the resolution of the confidence map where higher resolution leads
to a higher spread in intensity values. For example, >. = 1.3 for both TRECVID
and iLids Easy datasets that have the same person localization method and the
same frame resolution. On the contrary, in case of the 2D Dirac delta confidence
maps where blurring is absent, > = 4 in order to have a similar spread of the
particles over space.

The values of a; and o for the MRF modeling (Sec. 4) depend on the desired
strength level for maintaining the particles alive in case of mixing with different
IDs. We use ar; = 0.2 and as = 0.02 for all the datasets.

The value of 01, 0 and ¢ of Eq. 28 are provided in Tab. 3. The values of
o1 used in TRECVID-HOG+GT and TRECVID datasets are similar because the
same person localization method is used in both datasets, while the variation of
05 and ¢ is due to the employment of the ground-truth information in TRECVID-
HOG+GT. Since in TRECVID-HOG+GT, the noise due to false localizations is
absent, we set 0y and ¢ such that the numerator (signal-plus-noise) of the like-
lihood function is predominant on the denominator (noise). Vice versa, in case
of TRECVID, the confidence maps are more noisy, and o2 and ¢ are set in order
to take into account also the contribution of the denominator. The person local-
ization method used in iLids Easy [39] provides a more stable signal-plus-noise
compared to the method used in TRECVID, thus leading to a smaller variance
of the confidence values and hence to a smaller ;. However, the noise is still
high and o5 is set as for TRECVID. The value of ¢ is large, in order to avoid
the divergence of the likelihood function in case of large confidence values. For
APIDIS, TownCentre and ETH datasets the confidence maps are provided as 2D
Dirac delta functions and this justifies the similarity of oy and o5 values. The
parameters are chosen such that the likelihood function does not diverge. Unlike
TownCentre and ETH datasets where the 2D Dirac deltas are binary, in APIDIS
the 2D Dirac deltas represent confidence values and, similarly to the iLids Easy,
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Table 3: Parameters of the likelihood function (Eq. 28) used in the experiments.

Dataset | o1 | o2 | s |
TRECVID-HOG+GT | 0.70 | 0.10 | 0.60
TRECVID 0.60 | 0.30 | 0.15
iLids Easy 0.15 | 0.40 | 1.70
APIDIS 0.70 | 0.16 | 0.25
TownCentre 0.80 | 0.20 | 0.04
ETH 0.80 | 0.22 | 0.05

we keep the value of ¢ large in order to avoid the divergence of the likelihood
function for large confidence values.

6.3. Evaluation procedure

Given a bounding box for each target along with the confidence map at each
time step, a true positive track is defined as the one having a bounding box over-
lapping at least 25% the ground-truth box in case of heads as targets, and at least
50% in case of full bodies as targets [10]. Let ¢p be the number of all the true
positive tracks in a video sequence, fp all the false positive tracks, fn all the
false negative tracks, /DS the number of all ID switches, and N the number of
ground-truth targets. Performance scores are obtained by calculating the Multi-
ple Object Tracking Accuracy (MOTA), the Multiple Object Tracking Precision
(MOTP), Precision and Recall [41]. MOTA is calculated as

MOTA =1 — (Ng —tp) + fp+IDS

Ne (33)
and MOTP as 0
MOTP = N—’* (34)

where O, quantifies the overlap between the tracked bounding boxes and the
ground-truth bounding boxes, and /N, is the number of ground-truth targets mapped
with the tracking output for the whole video sequence. Precision, P, is calculated

as
ip

P= (35)
tp+ fp
and Recall, R, as .
D
R = : 36
tp+ fn (36)

The results on the ETH dataset are evaluated using the toolbox provided by Li
et al. [4].
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6.4. Validation

The validation for the robustness of the proposed method is performed using
the datasets TRECVID-HOG+GT, APIDISCI1 and APIDISC2, and in particular,
we analyze the tracking results generated by (i) MT-TBD without any postpro-
cessing, (ii) track pruning on the tracks from MT-TBD, (iii) track fusion on the
tracks from the previous track pruning, and (iv) track pruning on the tracks from
the previous track fusion.

The analysis of the tracking results generated by MT-TBD without any post-
processing demonstrates the proposed filter, especially in situations with close
targets where the MRF modeling helps avoiding particles of different targets to
be mixed together. The first dataset we employ is the TRECVID-HOG+GT. In
Fig. 9, a situation of a significant overlap (> 50%) between two targets is shown.
In Fig. 9(a), all targets in the scene are correctly tracked. Subsequently, when
two targets get closer (Fig. 9(b)), the target far apart from the camera gets almost
completely occluded, however, since the confidence map still localizes the tar-
get, MT-TBD correctly tracks it. In Fig. 9(c), when the targets are completely
overlapped, the intensity levels on the confidence map appear as a single target
with a large spread. Even if the tendency of mixing of particles with different IDs
is visible, the MRF modeling consistently assigns the correct ID to each parti-
cle. Figures 9(d-f) finally show how the particles remain associated to the correct
target over time.

Figure 10 shows an example of incorrect ID assignment leading to an ID
switch generated by MT-TBD without any postprocessing. In this case, the con-
fidence intensities are completely overlapped with a mixing of IDs. Initially,
two close targets move in the same direction (Fig. 10(a)) and suddenly one tar-
get changes direction and becomes completely occluded (Fig. 10(b)). Although
both IDs remain alive for a few time steps, the particles with magenta ID die
(Fig. 10(d)) and the green particles move on the visible target. When the occluded
target becomes visible again on the confidence map (Fig. 10(e-f)), MT-TBD im-
mediately initializes a new track and correctly tracks the target in the following
frames. Note that MT-TBD is not designed to reinitialize a target track with a
previously existing ID, hence a different ID is assigned to a target that disappears
and reappears in a scene, thus leading to an ID switch (Sec. 6.3).

Quantitative results for MT-TBD and postprocessing are reported in Fig. 11(a).
After the first track pruning, Recall and MOTA are slightly decreased because the
short tracks are removed due to their low score. However, after track fusion has
been applied, Recall reaches a higher value because short but reliable tracks are

25



it

()

Figure 9: Example from TRECVID-HOG+GT dataset which represents a situation of a significant
overlap (> 50%) between two targets (red and gray color-codes). Before the occlusion occurs
(a) the targets are correctly tracked with unique IDs. When the occlusion starts (b) particles start
mixing but the IDs are still well-separated. During the occlusion (c), particles and IDs are mixed,
but it is possible to notice that the mixing remains limited. When the targets start splitting (d),
there is a tendency of the particles to mix (the red particles mix to the grey particles). When the
split of targets occurs (e-f), the particles are again well-separated with their own IDs.

correctly fused. Lastly, by pruning the unreliable tracks generated by the fusion
stage, it is possible to keep the same value of Recall while increasing Precision.

The second validation of MT-TBD and post-processing is presented using
APIDISCI and APIDISC2 (Fig. 11). By analyzing the results shown in Fig. 14(a-
d), we see the tracking succeeding in most cases even while players are very
close to each other. The main challenges here are the sudden movements of
players. Recall is larger than 90% in both datasets even if some of the tracks
are lost (Fig. 14(d)). A possible solution for this problem is the use of multi-
dynamic model particle filters [23], which are able to perform nonlinear filtering
with switching of dynamic models.
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Figure 10: Example from TRECVID-HOG+GT dataset which represents a situation of significant
overlap (= 100%) between two targets where an ID switch occurs. Before the occlusion (a), the
targets are correctly tracked with unique IDs. During the occlusion (b), the particles are mixed
and the algorithm cannot maintain the correct IDs. When the targets start splitting (c), the number
of magenta particles start getting smaller. Then particles belonging to the magenta target die (d)
and the green particles swap target (they get attached to the target in front). When the target that
is behind becomes visible, MT-TBD immediately starts tracking it again but with a new ID (e-f).

6.5. Comparisons and discussion

As far as TownCentre dataset is concerned, we show how our method outper-
forms the recent work by Benfold and Reid [10] by using the same observations
for tracking. This scenario is fairly challenging as it contains very close targets
and the field-of-view of the camera is very large, hence ID switches are likely to
be frequent. For comparison, we present the results with the same latency used
in [10] for postprocessing and, in particular, of 1, 2, 3, and 4 seconds (1 second =
25 frames). In order to show the global improvement of our proposed method, we
also include the performance of MT-TBD without any postprocessing. Note that,
unlike our tracker, the work in [10] cannot work with no latency.

Figure 12 shows the quantitative results. The superior performance of the
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Figure 11: Tracking results of the proposed method at different stages of computation: MT-TBD,
Track pruning 7, Track fusion 72 and Track pruning 75. Dataset: (a) TRECVID-HOG+GT, (b)
APIDISCI1 and (c) APIDISC2. The numbers between round brackets in the legend of the bar plot
refer to the length of the temporal window and to the threshold applied on the minimum track
length in the track pruning stage. IDS: ID Switches.

Table 4: Summary of the comparison with the best results obtained using the proposed method.
The number of frames between round brackets represents the temporal window duration 7. Key:
IDS: ID Switches.

| Sequence | Method | MOTA | MOTP | Precision | Recall | IDS |
TownCentre | MT-TBD (100frs) 0.546 | 0.637 | 0783 [ 0.762 | 285
Benfold2011 [10] 0454 | 0508 | 0738 [ 0710 | -
MT-TBD (100frs) 0622 | 0695 | 0914 [ 0.690 [ 35
iLids Easy | Breitenstein2011[20] | 078 [ 0.670 | 0947 [ 0836 | 18
Stalder2010 [21] - - 0894 [ 0533 | -
Benfold2011 [10] 0.599 | 0736 | 0.803 | 0.820 | -

proposed method is highlighted by the value of Recall that is consistently higher
than [10] at various latencies. For MT-TBD without latency (and no postpro-
cessing), the value of Recall is already comparable with that of 4-second latency.
However, Precision in this case is lower due to the short and false tracks gener-
ated by the temporally-consistent false positives head locations. By applying the
proposed postprocessing, Precision drastically increases. Table 4 summarizes the
final results. Figure 14(i-1) shows sample tracking results: it is possible to notice
that the method is robust under severe occlusions with few fragmented tracks.
The results of iLids Easy and TRECVID are quantitatively evaluated in Fig. 13.
For these two cases, the input confidence maps to MT-TBD are given as inten-
sity levels. For this reason, it is possible to analyze the results in detail by com-
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Figure 12: Comparison of our results on TownCentre dataset with the Benfold and Reid
method [10]. The graphs show the variation of the scores as a function of the latency introduced
by the postprocessing: (a) MOTA, (b) MOTP, (c) Precision and (d) Recall.

paring the accuracy of target localizations with the accuracy of MT-TBD. In the
graphs of Fig. 13(c)-(d), the variation of Precision and Recall of the localization
results with respect to the threshold variation on the confidence maps is shown,
and the improvement that MT-TBD carries out can be appreciated. With the iLids
Easy dataset, an indoor video surveillance scenario is analyzed where the main
challenges are due to (i) the perspective of the scene (which leads to occlusions
among targets), (ii) a column in the middle of the scene (which causes complete
occlusions), and (iii) a dynamic background (which does not allow an effective
background subtraction). Since a full-body person detector [39] is used, half-
visible people in the scene cannot be localized, thus leading to the failure of our
multi-person tracking in the lower part of the image (Fig. 14(h)). The graph in
Fig. 13(c) shows that the maximum value of Precision is about 0.6 in person lo-
calization and the maximum value of Recall is about 0.8. The MT-TBD, in this
case, can achieve Precision of 0.490 and Recall of 0.676, while the postprocessing
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Figure 13: Results of the proposed tracker and person localization methods obtained on iLids
Easy and TRECVID datasets. (a-b) Bar plots of MOTA, MOTP, Precision and Recall values by
varying the temporal window 7 used in the postprocessing. (c-d) Precision and Recall rates for the
thresholded confidence map plotted along with the tracking scores that show tracking performance
with respect to the input with varying threshold. The duration of the temporal window is indicated
in frames (frs) within the legend. IDS: ID Switches.

considerably increases Precision while maintaining high values of Recall. These
results are compared with the recent state-of-the-art methods and are summarized
in Tab. 4. Considering the difficulty of localizing people in the lower part of the
image, the difference between Recall of the proposed method and Breitenstein et
al. [20] is 0.146 (such method uses the more effective Implicit Shape Model (ISM)
for person localization) while a comparable Precision is obtained. In Fig. 14(e-f))
it is possible to see how track fusion allows tracking in case of complete occlu-
sions.

With the TRECVID dataset, we validate the proposed method using a confi-
dence map built on head localizations. The head localization reduces the effect
of occlusions among targets in crowded scenarios, but since many objects in the
scene have shape similar to heads (e.g. bags, shoulders and luggages), the local-
ization contains a large number of false positives (Fig. 13(d)). Comparatively with
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Table 5: Comparison of results on the ETH dataset using the evaluation toolbox provided by Li et
al. [4]. The number of frames between round brackets represents the temporal window duration
7. Key: GT: Ground-Truth trajectories; MT: Mostly Tracked; PT: Partially Tracked; ML: Mostly
Lost; Frag: Fragments; IDS: ID Switches.

| Method | Recall | Precision | GT | MT | PT | ML | Frag | IDS |
MT-TBD (75frs) [ 0.787 | 0.855 [ 125]0.624 [ 0.296 [ 0.080 | 69 | 45
Kuo2011 [9] 0.768 | 0.866 | 125]0.584 | 0.336 | 0.080 | 23 | 11
Yang2012[12] [ 0.790 | 0.904 | 125]0.680 | 0.248 | 0.072 | 19 | 11

iLids dataset (Fig. 13), Precision remains higher in TRECVID since the spread
function of the localized heads is smaller than the person localizations in iLids.
Hence, head localization turns out to have higher Precision than that for bodies
at same Recall values. Qualitative tracking results are shown in Fig. 14(m-p): it
is possible to notice the long tracks belonging to the heads and the false positive
tracks. The quantitative evaluation is given in Fig. 13(b,d). The improvement
of the tracker with respect to the confidence map is shown in Fig. 13(d), where
Recall of 0.813 and Precision of 0.324 are achieved. Then, the postprocessing
phase improves the Precision rate by around 20% at the cost of a slight decrease
of Recall.

The last dataset we use for validation is ETH (Fig. 14(q-t)), where full-bodies [9]
are represented as 2D Dirac deltas over the space. The experiments on this dataset
are run with a latency of 3 seconds for the proposed approach and compared with
the recent offline methods proposed by Kuo et al. [9] and Yang and Nevatia [12].
The performance comparison is shown in Tab. 5. The performance of the proposed
method is comparable with the state-of-the-art methods, despite the diversity of
the working modalities. Recall is at the same level as the one obtained in Yang
and Nevatia [12] and Precision is slightly lower. Note that, since our method is not
offline, some short tracks may not be fused together leading to a higher number
of fragmented tracks (second-last column in Tab. 5).

6.6. Computational cost

The overall complexity of MT-TBD with N particles has an upper bound of
O(N log(NN)) operations. Specifically, for the motion model, the proposal distri-
bution and the multinomial resampling (Sec. 3.1 and 3.3) the cost is O(N), as
these operations are sequential on the number of particles. For the neighborhood
search of Eq. 15, we give as input a set of spatially ordered particles at the cost
of O(Nlog(N)) and we use a method based on binary search [42] whose cost
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Figure 14: Sample tracking results of the proposed method on (a-d) APIDISC2 dataset, (e-h) iLids-
Easy, (i-1) TownCentre, (m-p) TRECVID and (g-t) ETH datasets. The visualization of tracks for
APIDISC2 and TRECVID are truncated to the last 50 frames to make the examples clearer. The
tracks for TownCentre, iLids and ETH are shown from the initialization of the track.
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is O(log(N)). For the Mean-Shift clustering, the operation is performed on the
complete set of IV particles with complexity O (N log(N)) [43].

7. Conclusions

We presented a Bayesian method for multi-object tracking based on track-
before-detect, which utilizes a Markov Random Field applied on the particles to
perform tracking of unknown and large number of targets, and by probabilistically
managing the ID assignment to avoid ID switches of close targets. The state esti-
mate of a target is performed via Mean-Shift clustering and supported by Mixture
of Gaussians in order to enable an accurate assignment of IDs within each single
cluster. The birth and death of the targets at each iteration of the filter is modeled
with a Markov Random Field. The computational complexity is proportional to
the number of particles only. The robustness of our algorithm was demonstrated
by applying the method on sport and surveillance datasets with different perspec-
tive views, partial and full occlusions of targets, different backgrounds, variable
number of people and moving cameras. We showed the flexibility of the proposed
tracker by giving as input the results of different target localization methods, and
by obtaining comparable or better results compared to recent methods from the
state of the art.

As future work, the proposed method will be improved by including a multi-
dynamic switching model [23] to deal with different motions of the observed tar-
gets and by developing an automatic method for estimating the filter parameters,
such as the variance of the target spread function, the motion model and the like-
lihood function.
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