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Action-based multi-camera synchronization

Luca Zini, Andrea Cavallaro, Francesca Odone

Abstract—We propose a video alignment method based on
observing the actions of a set of articulated objects. Given ob-
ject association information, the proposed video synchronization
method is applicable to general and unconstrained scenarios in a
way that is not feasible with current state-of-the-art approaches:
the proposed method does not impose constraints on the relative
pose or motion of the cameras, on the structure of the time
warping between the videos and on the amount of overlap among
the fields of view. The proposed method uses a high-level video
analysis (object actions) and models the alignment as a frame
association problem (as opposed to the traditional continuous
time warping). We present a qualitative and quantitative analysis
of the results in real-world complex scenarios, showing the
robustness of the method and higher accuracy compared to
the only approach from the literature that works under similar
conditions.

Index Terms—Multi-view synchronization; object matching;
motion description; video alignment.

I. INTRODUCTION

Given the widespread availability of amateur video cameras
in different types of handheld devices, the synchronization of
different recorded videos is important when the same dynamic
event is captured by different devices from different view-
points. The objective of video synchronization is to estimate
the correspondence between frames of different videos using
geometrical or dynamical constraints.

The relative pose type among cameras can be classified
into one of three groups: paired, frontal or generic (Fig. 1).
Cameras are paired when their relative rotation is negligible
[1], [2], [3] and they differ for translation or focal length [4],
[5]. Cameras are frontal when they are framing each other
and their relative rotation is approximatively 180 degrees [4],
[1]. Cameras have a generic relative pose when they have
non-negligible relative rotations and translations that reduce
the common Field of View (FOV) or pose under which they
capture objects [6], [7].

Existing methods for video alignment are generally based on
strong assumptions on their relative camera location and pose
(i.e. the geometry), on the structure of the time misalignment
[8], [3] or on the combination of audio and visual features
[9]. Assumptions include the explicit knowledge of the scene
geometry [6], [10] or that geometry can be retrieved accurately
by feature matching [4], [5]. The pose is an important variable
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Fig. 1. Relative camera poses: (a) paired, (b) frontal, (c) generic. Implicit
or explicit assumptions in state-of-the-art algorithms limit the use of methods
to a subset of configurations only. The proposed approach works instead with
generic camera configurations.

both in the estimation of the geometry and in the alignment,
and restrictions on the configurations allow one to use specific
algorithms and heuristics (e.g. [4]). State-of-the-art methods
lack the capability of aligning a set of videos without implicit
or explicit requirements on the geometry and on the time
misalignment. Our objective is therefore to extend video
analysis to data acquired by different cameras in arbitrary
poses (generic configuration) and with non-linear and non-
smooth time-warping functions.

In this paper we present a method to compute a frame-
level video alignment with the assumption that cameras view
articulated objects and that objects association information
is given as input. From the observation of objects actions,
we compute a robust estimate of the alignment by exploiting
generic or periodic actions, such as walking or running, and
isolated or anomalous events, such as a jump or a fall.
The key insight is that, even if the same action appears
differently from different viewpoints (Fig. 2), repetitions of
the same pattern are approximatively view invariant. Unlike
existing works, we use an alignment algorithm that models
synchronization as a frame association problem, instead of
a continuous time warping. The use of a view-invariant
description of objects actions allows us to align videos in-
dependently of restrictions on the geometry of the observed
scene using a multiscale representation of the actions over
time to compare each instant being invariant w.r.t. time mis-
alignment. The software of the proposed method is available
at http://www.eecs.qmul.ac.uk/~andrea/software.htm.

The reminder of the paper is organized as follows. Section II
overviews the state of the art on video alignment and analyses
the strength and weakness of existing algorithms. In Section III
we describe the proposed method. Section IV discusses the
experimental results and comparisons, whereas Section V
concludes the paper.

II. PRIOR WORK

Video alignment methods differ on the assumptions they
require on the positioning and pose of the cameras (i.e. their



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, JUNE 2013 2

<%
¢

H.

111
B

Fig. 2. Example of an action captured by two frontal cameras with different
frame rates. Even if the setting is simple the appearance of each frame differs
significantly.

geometry) and on the structure of the time misalignment
among the recorded videos.

Algorithms might require an explicit geometry estimate as
input to compute the alignment [6], [10]. Starting from a
tracked object and an estimate of the fundamental matrix,
one can look for time alignments that result in geometri-
cally consistent tracks. Epipolar geometry is exploited directly
looking for intersections of tracks and epipolar lines in [6];
whereas the trajectory is warped to make it a valid set of
points for the computation of the fundamental matrix in [10].
Other methods use implicit geometry information based on
the extraction of high-level features [11], [S], [1], [4], [8].
To derive alignment information, visual changes among two
sequences can be correlated [11], or spatio-temporal corners
can be matched using the local jet [5]. The timeline of each
video can be represented by a descriptor of the repetitions
of the same configuration of a tracked point, warping the
videos to minimize the distance between descriptions [1]. This
work shares some similarities with the proposed approach,
as discussed in Sec. III-D. Assuming similar Points of View
(POV) of the cameras, it is possible to use methods that
maximize visual similarity [3], [8]. Finally, methods exist
that compute directly the alignment without any geometric
information by matching positions and trajectories with robust
statistics and then estimating the alignment [12] or both
geometry and alignment [7], [4]. The computation of the
solution requires a filtered set of matches, which can be
obtained either with assumptions on the geometry (e.g. planar
[7]), or by using heuristics (e.g. [4]), which restrict the type
of camera configurations whose videos can be aligned.

As for the time misalignment, algorithms might assume
a constant shift [7], [11], [8], [12], [13], an affine warping
[4], [6], [14], [15], or just a monotonic relationship among
recordings [1], [10], [3], [16]. All methods making the weak
monotonic assumption use Dynamic Time Warping (DTW)
to obtain the alignment [1], [10], [17], [3]. DTW [18] is a
similarity measure between sequences that assigns each frame
of a video to at least one frame of the other video, thus
assuming a continuous transformation of the timeline. This
is in general a very strong assumption as it re a complete
association that is not available in case of stream interruptions
or frame drops.

Table I summarizes the main characteristics and the assump-
tions of state-of-the-art alignment algorithms. In addition to
geometry independence and the assumption on the temporal
misalignment, the table compares the capability of methods
to work with only partially overlapped Fields of View (FOV)

TABLE I
COMPARISON OF CHARACTERISTICS AND ASSUMPTIONS OF ALIGNMENT
ALGORITHMS. WHEN AN ALGORITHM HAS NO EXPLICIT LIMITATIONS OR
PROOF FOR A FEATURE, THE SYMBOL ”-“ 1S USED. (KEY. H:
HOMOGRAPHY, F: FUNDAMENTAL MATRIX; FOV: FIELD OF VIEW).

Moving Geometry Partially Temporal
Method | cameras | independence | overlapped warping
support FOV
[4] no F yes affine
[1] yes yes no monotonic
[6] no F yes affine
[10] no F - monotonic
[19] no F - affine
[5] - - yes affine
[7] no H - constant
[11] yes - - constant
[17] no H - monotonic
[8] yes - - constant
[20] no H - constant
[14] no yes yes affine
[21] no yes - constant
[3] no no no monotonic
[15] yes yes yes affine
[22] no H yes monotonic
[12] no yes yes constant
[13] no F yes affine
[16] no H yes monotonic
proposed yes yes yes monotonic

Objects bounding boxes
objects association

Objects bounding boxes
objects association

Action description Action description

SSMs ¢

Muti-scale temporal
description
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multi-scale
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matching

Alignment: {(m,n)}

Fig. 3. Block diagram of the proposed approach. Given the segmented and
associated objects, we compute a set of SSM-based action descriptions from
which we extract a temporal representation that is used to match frames for
the alignment

and with moving cameras.

IITI. PROPOSED METHOD

The proposed algorithm is a two-step approach to video
synchronization. In the first step we extract from each camera
independently a description of the action of moving objects.
In the second step we fuse and compare the data from all the
cameras to produce the video alignment (Fig. 3). These two
steps are detailed below.

A. Action description

Let Vi = {fi : i=1,2,...,Ni}and Vo = {f] : j=
1,2,...,Nao} be two views of the same scene, where fi and
fg are their frames whose total number is N; and N,. Let
V¥ be a sequence of observations of object k in V; (i.e.
the region inside the bounding boxes of the tracked object)
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Fig. 4. Examples of structures induced on a Self-Similarity Matrix by
Histogram-of-Oriented-Gradients description of moving articulated objects.
(a) A person standing and producing limited movements generates an uniform
block; (b) a walking person generates a regular grid.

and let |V*| be the duration, in frames, of V;*. Given object
association information, we first extract a description of the
action of the objects detected and tracked in each camera
and we encode their appearance variations. To this end, we
describe the appearance of objects within each bounding box
as a sequence of Histogram of Oriented Gradients (HOG) [23]
in each view. Then we compute a |V;*| x |V;*| Self-Similarity
Matrix (SSM), S¥, as [1]

Sf(y,l‘) =1- ||¢(‘/zkam> - ¢<‘/;k7y)||2a (1)

where qS(Vi’“, 7) is the HOG description of the area containing
object k in frame j of V; and = and y are frame indexes.

An example of structures induced on the SSM by common
actions of articulated objects is shown in Fig. 4. A person
standing generating small movements and a person walking
produce very different structures that we will aim to match
between the two views.

B. Multi-scale temporal description and matching

Our objective is to define the set A; o = {(f{", f3) : m <
N1, n < Ny } of frame pairs that were acquired at the same
time instant. Let T;(f/) = ¢/ be a function that computes
the timestamp for each frame of V;. When the frame rate is
not fixed (due for example to bandwidth limitations or frame
dropping), we can only assume that 7;(-) and its inverse are
monotonic. When the frame rate can be modelled as constant,
this leads to an affine relation between the frame indexes of the
two videos: T (i) = To(«i+3), where o models the frame rate
difference and f is the offset between the first frame acquired

Fig. 5. Example of two videos warped with an affine transformation. The
first frame is delayed by S frames and their frame rates differ by a factor a.

by each camera (i.e. the offset between V; and V5). Finally,
when the frame rate is known or assumed to be constant and
identical in both videos, we can relate the two functions T;(-)
with a constant shift only (Fig. 5).

We convert the description of the action of each object in
a structure invariant to time misalignment that describes how
the object appearance changes over time. The key idea we
pursue is to create a multiscale description of S¥(.) for each
video V; and each object k with two aims: to obtain a more
representative description and to match precisely structures
with different scales on the SSM (i.e. different video frame
rates).

To this end, we extract a description from each point of the
diagonal of the matrix, aiming to capture the structure of the
SSM (i.e., the structure of the repetition) in a time interval cen-
tred on the frame under analysis. To be invariant with respect
to time misalignment means that the description extracted from
the matrix must be independent of the warping of the matrix
itself. We assume that, locally, the time misalignment can be
modelled with a linear function, whose effect is a resizing of
the SSM (Fig. 7).

We use a Polar HOG (PHOG) structure that has been shown
effective in [1], [24]. We devise an alternative grid (Fig. 6) to
better deal with the SSMs borders and to avoid the use of small
cells, whose histograms may be less stable with a few samples
(i.e. small radii of the description). Also, instead of estimating
the radius of the PHOG from the maximum of the Laplacian
[25] as proposed in [1], we compute a multiscale description
that embeds information of different time extents (radii). More
in details, in frame f; for each object k& we extract a multiscale
PHOG description PF(j) from S¥(.) centred in (j, j)

PF(j) = {p(SF,j,r) ¥ri € R}, 6)
where p(S¥

.4,7) is the PHOG description with radius r;
centred on pixel (j,7) and R is the set of radii parametrized
by the minimum radius 7,,;,, the maximum radius 7,4, and
a constant b. The radius of the level ! of the multiscale
representation has a radius r; = Fominbt.

We now want to compare two descriptors, Pf(m) and
PJ(n), using an invariant measure D(-) . These descriptors
contain a subset of levels that are in common and are shifted in
the representation (see Fig. 8). The distance D(-) is computed
as the distance between the optimal alignment of the two
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Fig. 6. Comparison between structures used to compute the PHOG descrip-
tion. (a) Structure used in [1]; (b) structure used in the proposed method. The
stripped area contains all the possible comparisons between the considered
instant (i.e. the center of the support of the description) and the past, the
dotted one compares it with the future. In the corners of the SSM at least
one of them can be computed and it contains all the available information.
Moreover all the cells of (b) have the same size.

13s 16s 19s 2.3s 2.7s
ig _____ |
22s 29s 35s 4.1s

Fig. 7. A comparison of two SSMs with different frame rates. The distance
between their multiscale description is computed by shifting one description
until a minimum distance is reached. The correct scale for the alignment is
shown with black arrows and is the one that gives the best match between the
temporal scale (in seconds) of the representation. The overall distance will be
the mean of the distances of the descriptors connected by the lines.

descriptions:

|R|
o1
D(Pf(m), Py(n)) = min 7~ > PF(m)iss — PEm)l,
S 1=0

3)
where the difference is zero if [ +s < 0 or if [+ s > |P¥| and
L, is the number of the levels common to the two multi-scale
representations after an appropriate shifting (see Fig. 7). The
functional is minimized with an exhaustive search over the
parameter s. To compute the alignment, we extract the list
of distances D(Pf(m), P¥(n)) from all possible pairs (m,n)
for each object k in the scene. The result is used to derive the
sequence of the desired paired frames

Ao ={(f", f3) : m< Ny, n< Ny }

“)
The alignment algorithm should be able to manage explicitly
situations where a description has not a correspondence in the
other video (due to different fields of view, occlusions, or time
misalignment) with a predictable action. This is not feasible
with DTW, as it searches for at least one correspondence for
each frame. To overcome this problem, we propose to use
the Needleman-Wunsch string alignment algorithm [26] that
can be optimized with dynamic programming. The notion of
a gap in a string can be transferred to a frame that has no
correspondence in the other video. To compute the alignment,
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Fig. 8. Distances between descriptions computed by varying their relative
misplacement (horizontal axis) from the correct value (0 displacement) on a
test football sequence.

we first create the N7 X Ny matrix Cpyw:

Cyw(m,n) = max((1 — d(m,n))+
Cnw(m—1,n—1),Cyw(m —1,n)+ G,
CNW(ma n— 1) + G)v

where d(-) is the distance function between frame m of V; and
frame n of V4, and G is a constant, defined in the range [0, 1],
that controls the similarity of a frame without association.
The alignment is found by looking at all the coordinate pairs
that give the maximum-score path starting from the lower-
right corner of matrix Cyy and moving toward the upper-left
corner (see Fig. 9). The difference between NW and DTW
is in that the latter looks for the minimum-score path on the
matrix:

&)

Cprw (m,n) = d(m,n)+
min(Cprw(m — 1,n — 1),
Cprw(m —1,n),Cprw(m,n — 1)),

(6)

i.e. the cost of an unpaired frame in NW is fixed. The use
of the parameter GG gives also the possibility to tune the
tradeoff between trusting the data (and the noise they contain)
and having a smooth solution that strongly penalizes frame
dropping. As with DTW, in case of strong noise or very weak
signal, the solution will be biased toward the diagonal of the
matrix: in case of DTW this is true as the diagonal of C' is the
shortest path between the two corners and, in the presence of
uniform similarities, it will be the path that accumulates the
smallest cost. In the case of NW, this depends on the value
of G that, if it is set too small, will block the algorithm from
discarding frames.

We compute the distance d(-) between two frames in NW
as

d(m,n) = Mrep(D(Pf (m), Py (n))), ©)

where M is the median that filters out the noise on the tracking
data and errors due to occlusions between objects, and B =
Ov, (m)NOv;, (n)» With Oy, () (Ov,(r,)) being the list of objects
that appear in Vi (m) (Va(n)).

C. Computational complexity

First, the algorithm extracts the HOG description from each
bounding box and updates the SSM by comparing each HOG
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Fig. 9. Given the matrix containing all the distances d(m,n) between the
frames f] of the first video and f3' of the second video, the alignment
algorithm looks for the path from the lower-right corner (the end of both the
videos) to the upper-left corner (the beginning of the videos) with the aim
of passing through the coordinates that correspond to the indexes of instants
framing the same action.

against the last 2r,,,, descriptions. Since the information
needed to compute a PHOG description is in the lower right
part of the SSM of size (T, T'maz), the rest can be dis-
carded. Therefore the computational cost of these operations is
constant with time and linear with the number of objects in the
scene. Second, the algorithm extracts the PHOG description of
each instant and for each track. In this case the computational
cost is constant for each object and for each instant and is
linear with the number of frames and the number of objects.

The object descriptions are then used within the NW algo-
rithm. The cost of each comparison is linear with the number
of objects and constant with all the other variables, hence the
cost of this step and of the whole algorithm is dominated by
the cost needed to fill the matrix Cnyy that is equal to the
product of the number of frames used for the alignment.

For long video streams the quadratic complexity of the
algorithm can be bounded by limiting the size of the matrix
CnNw obtaining a constant computational cost at each step
to the price of bounding the maximum misalignment that it
is possible to recover to a fixed amount of frames. All the
steps until the computation of the alignment depend only on
the number of objects. Since no information sharing is needed
these may be computed in a distributed way directly across
cameras.

With respect to the algorithm proposed in [1], where the
description is composed by one level only, we have a penalty
on the comparison of two frames that is linear with the number
of levels used. However, since the levels are fixed, it is only
a constant factor that does not influence the final complexity
of the algorithm. Moreover, we do not need to compute the
Laplacian for all the possible radii of the PHOG description as
in [1], and, since all the parameters are fixed, all the steps in
analysing an object terminate always in the same fixed time.
Bounding the size of C'yyy an optimized implementation of
the algorithm can run in real-time.

D. Discussion

The general idea of using the SSM to generate a view-
invariant representation was used in [24] for action recognition
and in [1] for video alignment. Unlike [1], where the analysis
is performed at feature level (the input is the tracking of
a set of points extracted from the observed videos), we

use explicitly the appearance of multiple objects and exploit
implicitly and simultaneously information from the pose of the
object and its motion. Differently from [24], [1], we extract a
multi-scale descriptions from multiple SSMs whose structure
is explicitly stored and exploited in Eq. 3 to take into account
the misalignment. Moreover the alignment algorithm differs
both from [24] and [1] and allows to handle discontinuous
time warping. As the proposed approach aligns video pairs,
multiple video streams can be aligned pairwise or by selecting
a common reference video to align the others.

Unlike methods based on assumptions on geometry [6], [4],
we remove constraints such as planar scene, known geometry,
restrictions on the time misalignment. Moving cameras are
supported when the motion does not change significantly the
viewpoint of the observed object within the duration of the
description window (7,4, frames). The cost for relaxing the
assumptions on the geometry, the camera configurations and
the restrictions on the temporal misalignment is that we reach
a frame-level accuracy, instead of a sub-frame accuracy [6],
[4].

A source of error for the proposed algorithm is obviously
the absence of relevant actions in the time window observed
for the alignment. Moreover, when there are just a few
objects with similar actions in different time intervals, if the
relative order between actions is preserved there can be a
mismatch in the alignment (see as example Fig. 10). Overall,
the alignment of videos with very different viewpoint and
frequent occlusions may need a considerable temporal overlap:
as an example the most complex videos tested can be aligned
with an error bound to ten frames when the temporal overlap
is at least 2/3 of the timeline. Simpler videos can be aligned
even if they have larger misalignments. This characteristic is
shared by DTW and NW: if the signal is not strong enough
with respect to the shift, the cost of moving away from the
diagonal of Cyw could be dominant in the computation of
the solution.

Detailed quantitative discussions and comparisons are pre-
sented in the next section.

IV. EXPERIMENTS
A. Experimental setup

To evaluate and compare the alignment results of the
proposed algorithm in real-world scenarios we use two public
datasets, namely the ISSIA football dataset [27] and the
APIDIS basketball dataset'. The ISSIA dataset is captured
by six cameras, has 2700 annotated frames acquired from
frontal cameras and shows the same configuration complexity
on all sequence with an uniform background. The APIDIS
dataset is acquired by seven cameras positioned with different
orientations and has annotations for 1500 frames with a
more complex background and frequent occlusions. From the
original dataset we disregard two fisheye cameras and one
camera whose FOV is not overlapped with the others. We split
the APIDIS dataset in a set composed of sequences with paired
viewpoints and a set containing all the other combinations of
cameras, which have generic viewpoints (Fig. 11).

Uhttp://www.apidis.org/Dataset/
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Fig. 10. Example of configurations where the accuracy is reduced in presence
of complex warping or noise due to ambiguous data in the scene. (a) Similar
actions and only one object in common between the views. (b) In a scene
that is static for a long period all the frames are similar.

To control and quantify the results, the data to align are
created by misaligning the videos according to ¢, = at — (3,
with @ € {1,1.1,1.2,1.4} and § a constant shifting the frames
by reducing the overlap up to 2/3 of the duration of the
sequences. The model used is equivalent to a random frame
dropping model. All the tests have been repeated removing
up to 200 frames by the end of the warped sequence in
order to have a solution that is not in correspondence to the
diagonal of Cyy and to obtain an unbiased estimation of
the performances of the algorithm. We consider the starting
point of the video in correspondence of the first object. For

(b)

Fig. 11. Datasets used in the experiments. Sample frame from each POV.
(a) APIDIS cameras. (b) ISSIA football dataset.

this reason, the APIDIS videos start with up to 500 frames of
difference: setting (3 varies this displacement.

The following algorithmic parameters are the same for all
the experiments. The HOGs have blocks of 2 cell of 16
pixels and 9 bins. The multiscale parameters and G have
been chosen to minimize the error on the sequences of three
players of the ISSIA dataset (i.e. a subset of a single video):
Tmin = 20, Tae = 75, b = 1.2 and G = 0.2. In principle
Tmin, Tmae Should be chosen so that their ratio is larger than
the expected ratio between the mean frame rates of the two
videos. b rules the tradeoff between the precision that can be
achieved in the alignment of the descriptions in Eq. 3 and the
final computational cost. Instead G acts as a regularization
parameter: smaller values promote solutions closer to the
identity, larger values encourage frame dropping.

Errors will be reported as the median error (in frames) with
respect to the correct timeline. We use as reference the errors
reported in [1] that, using frontal cameras shifted and not
warped (i.e. a = 1) reports an error of 7.29 frames. Our aim
is to work with different FOVs and general viewing angles
with an error bounded by the same order of magnitude. In
the next section we discuss the results of the comparison
between our proposed approach and [1], which is the only
method in the literature that shares similar hypotheses to
ours (i.e. non-parametric time misalignment, moving cameras
support, geometry free model) and thus the only meaningful
comparison.
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TABLE II
MEAN ERRORS OBTAINED WITH DIFFERENT WARPING PARAMETERS «.

«a

1 11127 14
APIDIS (camera 1 and 7) 1.00 | 1.00 | 1.50 | 1.50
APIDIS (all other cameras) 4.00 | 449 | 3.83 | 433
ISSIA 0.66 | 1.16 | 2.00 | 2.16

B. Comparative analysis

Because in [1] the input used to compute the SSM makes
the algorithm not suitable to work with different FOVs, in
order to conduct a fair comparison of the individual steps we
use their pipeline with the HOG description in input. In order
not to modify the original pipeline we use only one object
(player) for each sequence. The comparative analysis is carried
out considering all the objects with a long continuous track
in the football dataset, and the four objects with the longest
continuous track from camera 1, 2, and 7 in the basketball
dataset (combination used: camera 1 and 2; and camera 1 and
7).

The improvement of our pipeline compared to that of [1]
are computed as relative difference:

_ i E; (Z) — Em(z)
E=x2 min(Em (i), Ei(i))

%

(®)

where N is the number of experiments, F; is the set of the
errors (in frames) obtained in the tests with the original method
based the maximum of the Laplacian, while F,, contains
the corresponding results obtained with our multiscale feature
comparison. Based on the experiment described above we
obtained a consistent improvement over the original algorithm,
with E/' = 1.49 for the basketball dataset and &£ = 0.96 on the
football dataset (see also Fig. 12).

The second comparison is between the commonly adopted
DTW and the method we propose based on NW (Fig. 13). It is
possible to notice a clear superiority of NW, which is mainly
due to parts of the videos that have not got correspondence and
for the effect of static scenes, on which NW is more robust.
In Fig. 14 are visible two examples of two warped timeline
of two videos to show how NW is more stable and robust to
ambiguous configurations retaining the ability to identify real
shifts in the data. In complex configurations where the NW
algorithm fail due to lack of sufficient information in the data,
DTW usually fails similarly (see Fig. 14 (b)).

C. Overall evaluation

This section discusses the results obtained on the full dataset
and the analysis of the robustness of the proposed approach.

Table II summarizes the results of the proposed algorithm
obtained with all the objects in the scene using different values
of a; [ is not reported explicitly as it has no significant
effect. Fixing o and varying [ has in fact produced a standard
deviation of the error of 0.63 frames. A more critical parameter
of our algorithm is the number of objects that are needed to
align the video to a certain accuracy. Fig. 15 shows the error
for a different number of objects in ten random experiments.
The algorithm starts being stable with five objects. This result
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Fig. 12. Comparison of our pipeline with the multiscale PHOG descriptor
with the PHOG-Laplacian descriptor used in [1] on a subset of the (a) ISSIA
and (b) APIDIS dataset chosen to be compatible with [1] (see text for details).
The gap of performance is more visible with the more complex sequence of
the APIDIS dataset.

is an upper bound of the error as objects were extracted
randomly and could not be always in the scene at the same
time. Moreover, the results with few people also suffer from
the occlusions by all the other objects that are still present in
the video, even if in this experiment they are not considered
for the alignment.

To analyse the robustness of the proposed algorithm to work
with noisy detections we modify the object bounding boxes by
varying their size and position with uniform random noise. To
reach significant results we test the noise with o = 1.4 using 3
equal to 1/3 of the video. Fig. 16 shows the results: the noise
is the maximum displacement due to a given noise in two
consecutive frames, and is expressed as a percentage of the
size of each side of the bounding box of an object. The break
point of the proposed method in this difficult setting is above
10% of noise (see Fig. 17). Notice that the original annotation
data themselves are not always accurate and therefore this
amount of noise induces considerable errors that can be usually
attenuated by dynamic filters. As a reference an unfiltered
Mean-Shift tracker [28] used on a random subsampling of
sequences with no id-switch has shown an error comparable
to 4% of uniform noise (see Fig.17).

Another source of noise is given by association errors
both during the tracking and between the camera views. The
experiments in this setting have shown that, thanks to the
filtering effect of the median used to compare the frames, with
the 20% of wrong associations, the algorithm is able to align
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Fig. 13. Comparison of NW with the commonly used DTW on a subset of
the (a) ISSIA and (b) APIDIS dataset.
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Fig. 14. Example of two alignments from real noisy data computed with

DTW and NW. It is visible (a) how the parameter G affects the action in
ambiguous situations by regularizing the solution, but it does not compromise
the ability to adapt to useful signal in the data. In more critical scenarios with
greater noise and big gaps in the data w.r.t. the length of the timeline both
the algorithm may fail in similar ways (b).
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Fig. 15.  Comparison of the performance of the proposed algorithm with a
varying number of objects used for the alignment. The errors are generated
using randomly selected objects of different cardinality and different mis-
alignment parameters. (a) Results for the APIDIS dataset. (b) Results for the
football dataset. The results shown are an upper bound to the error of the
algorithm (see text for details). Note that, to include the extreme elements
in the visualization, the vertical scales of the two plots are different.

all the videos in the football dataset and the 92% of the difficult
sequences of the basketball dataset introducing at most 3
frames of error. This result is significant since our experiments
have shown that, by using a brute force approach on subsets of
data to minimize the functional of NW, it is possible to ignore
the input association obtaining the equivalent of the 15% of
errors on the ID switches.

V. CONCLUSIONS

We presented a general method for video alignment based
on the observation of the actions of multiple objects. Given
object association information, the proposed method can work
in real-world complex scenarios without assumptions or re-
quirements on the geometry, on the similarity of the points
of view and on the structure of the warping functions. The
main novelties of the proposed method are the use of an
algorithm for the alignment that models the problem as a
frame association, instead of a continuous time warping; the
use of a multiscale representation of the actions in time to
compare each instant being invariant w.r.t. time misalignment;
and the combination of HOGs and SSMs in the context of
video alignment. The proposed method was validated on two
datasets of real sport sequences, reaching an accuracy of a
few frames, which is superior to the results obtained by [1]
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Fig. 16. Performance of the proposed alignment algorithm when adding
uniform random noise on the position of the bounding box. The range of the
random movements is reported in the legend as a percentage of the size of
the sides of the bounding box. (a) Errors on the football dataset. (b) Errors
on the APIDIS dataset.

(b)

Fig. 17. Examples of shifts from the correct position of the bounding boxes
that can be observed in two consecutive frames with two level of noise. (a)
10% of noise. (b) The level of noise registered with a mean-shift tracker
(~4%).

on simpler datasets. The source code of the proposed algorithm
will be made available to the research community.

Our future work includes the estimation of a confidence
value for the alignment estimate in order to automatically
detect which videos cannot be aligned (instead of generating a
wrong alignment) and to extend the algorithm to the problem
of retrieval, that is the ability of aligning videos even in
presence of large displacements. Moreover the method can
be implemented on smart cameras to align video streams with
a small delay. Thanks to the low constraints on the system, on
the scene and the low amount of (meta)data to be transferred
for computing the alignment, the proposed approach fits well

such scenario.
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