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Cost-effective features for
re-identification in camera networks

Syed Fahad Tahir and Andrea Cavallaro

Abstract—Networks of smart cameras share large amounts of
data to accomplish tasks such as re-identification. We propose
a feature selection method that minimizes the data needed to
represent the appearance of objects by learning the most appro-
priate feature set for the task at hand (person re-identification).
The computational cost for feature extraction and the cost for
storing the feature descriptor are considered jointly with feature
performance in order to select cost-effective good features. This
selection allows us to improve inter-camera re-identification while
reducing the bandwidth that is necessary to share data across
the camera network. We also rank the selected features in the
order of effectiveness for the task to enable a further reduction
of the feature set by dropping the least effective features when
application constraints require this adaptation. We compare
the proposed approach with state-of-the-art methods on the i-
LIDS and VIPeR datasets and show that the proposed approach
considerably reduces network traffic due to inter-camera feature
sharing while keeping the re-identification performance at an
equivalent or better level compared with the state of the art.

Index Terms—Smart camera networks, person re-
identification, data reduction, cost of features, feature selection.

I. INTRODUCTION

SMART camera networks are composed of nodes that
perform image processing locally and aim to transfer the

minimum amount of data over the network to accomplish
collaborative tasks such as object detection and tracking [1],
[2]. The challenges involved in smart camera networks include
reducing the amount of data to be processed and shared across
the network, real-time operation and energy efficiency [3],
[4]. Data reduction can be achieved by using image com-
pression [5], [6] and metadata reduction, which are generally
obtained via trade-offs between data-transmission rate and
distortions [2].

An important example of the use of metadata (features) is
for describing objects such as people for their re-identification
across the network [7]–[9]. Multiple object features are com-
bined and shared among cameras to improve performance [8]–
[16]. Gabor and Schmid filters that define two kernels applied
to the luminance channel to extract textures may be used,
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followed by learning and probabilistic approaches for feature
optimization [14]–[17]. The histogram of the RGB [12], [13]
and the HSV [10] color space are also used as features.
Alternatively, the two chrominance channels of the YUV space
are used [18] with a Gaussian Mixture Model to encode
the most relevant color clusters. Features from multiple color
spaces (RGB, YCbCr, and SV) and texture types (Gabor and
Schmid) may be concatenated to increase their discriminative
power [14]–[16]. However, after a certain number of feature
concatenations, any additional features might decrease the re-
identification performance. This problem can be addressed by
feature selection. However, very little work has been done
to consider the cost of a feature, such as, for example, the
computational time for its extraction and the amount of data
that is necessary for its storage. We argue that the cost of
a feature should be considered jointly with its performance,
namely its ability to represent and to discriminate an object
for the task at hand. The cost constraint in feature selection
becomes particularly important when the cost varies signifi-
cantly across features to be shared among nodes of a smart
camera network.

In this paper, we propose a Cost-and-Performance-Effective
(CoPE) feature selection method that combines the cost of
using features with their performance in order to identify the
most inexpensive feature subset for person re-identification in
a smart camera network. To the best of our knowledge, the
proposed approach is the first to apply explicit feature selection
for re-identification while considering the cost of features.
Instead of optimizing the combined contribution of the best
set of features, the most discriminative, well-performing and
cost-effective features are selected by evaluating each feature
individually and then by ranking the selected features based
on their contribution to the task, thus making the approach
scalable in transmitting data over the network. CoPE is
evaluated in the person re-identification task using Direct
Distance Minimization (DDM). The results are compared with
two existing re-identification approaches, namely PRDC [15]
and ASFI [17], and five feature selection approaches: Fisher
score [19], Information gain [20], mRMR [21], ReliefF [22]
and Bi-clusters [23]. We also demonstrate that CoPE features
further improve the performance of learning methods for re-
identification with rankSVM [14] and AdaBoost [16] by reduc-
ing the feature dimensions, the training time and by improving
their effectiveness. The software of the proposed method is
available at http://www.eecs.qmul.ac.uk/~andrea/software.htm.

The paper is organized as follows. Section II discusses the
related work on feature selection and the features used in
person re-identification. Section III analyzes the performance
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and the cost of features, defines their combination strategy and
discusses the implementation in multi-camera networks under
constrained environments. In Sec. IV, the proposed approach
is validated and compared with existing feature selection and
re-identification approaches using the challenging i-LIDS and
VIPeR datasets. Finally, Sec. V draws conclusions.

II. RELATED WORK

In this section, we discuss relevant feature selection ap-
proaches and the features used in the re-identification, while
highlighting properties and inadequacies of current feature
selection and re-identification approaches.

A. Feature selection

Feature selection aims at finding the most important features
and their combinations for effectively describing and matching
objects [24], [25]. Feature selection is an NP-hard problem.
Approaches based on heuristics exist, which approximate the
solution by exploiting problem-specific properties. Selection
approaches produce a subset of features [26] and reduce
redundancies among features [27]. Feature selection is also
an important pre-processing step in machine learning to avoid
over-fitting and to increase the effectiveness of learning. Fea-
tures can be selected either based on group performance or
on their individual performance [28]. The set of individually
selected features may not collectively provide good classifica-
tion performance due to the lack of information about feature
correlation, while individual weak features may provide strong
discriminatory power in a group [23]. However, individually
selected features can perform well in constrained environments
when some features need to be discarded adaptively because
of user requirements or application constraints with resource-
constrained devices; whereas in the case of feature grouping,
the removal of a single feature may significantly reduce the
effectiveness of the whole feature set.

A method for ranking of selected features according to their
contribution to the tasks is presented in [29]. The similarity
measures between each feature and all the rest are added to
generate a feature score. The highest-scoring feature is selected
and the process is repeated to choose the next relevant feature.
The feature importance and similarity between features can
be exploited with a greedy selection method [27] or boosted
regression trees can be applied [30]. A hierarchical feature
selection method is developed by using rankSVM along with
a quality measure to predict the number of selected features
[31]. The best-first search can be used to partition the features
into subsets that are then combined to maximize the defined
information retrieval measures [25]. The coherence between
subgroups of data can also be used to rank features [23].
An approach based on cooperative game theory evaluates
the power of each feature individually and within groups
[32]. The structural similarity between data before and after
feature selection is maintained and topological neighborhood
information is used for computing the structural similarity
[33]. An unsupervised feature ranking algorithm can discover
Bi-clusters that are used to evaluate feature inter-dependencies,

TABLE I
STATE-OF-THE-ART FEATURE SELECTION METHODS.

[27] [33] [28] [31] [32] [23] [25] [34] [35] [21] [22] [17] CoPE

Selection

Best First Search X X X

approach

Structural Similarity X
Feature Cooperation X
Hierarchical Clustering X X
Game Theory X
Co-ordinate Ascent X
Kernel Class Separability X
Random forest X
Bi-clusters X
mRMR X
ReliefF X
Distance Discriminant X X

Dataset

Text Retrieval X
Medical Data X
UCI ML Benchmarks X X X X X X X
LETOR 4.0 X
Handwriting Images X
Carnegie Mellon Datasets X
Bio-Informatics X X
UCI regression X
Surveillance Videos X X

Evaluation Performance X X X X X X X X X X X X X
criteria Cost X

separability of instances and feature ranking [23]. This ap-
proach inherits some characteristics from ranking and wrap-
pers, which use learning methods for feature selection and
are classifier-dependent. A minimum-redundancy maximum-
relevance (mRMR) based approach can be combined with a
wrapper method to select a more compact subset from the
candidate features [21]. A kernel-based feature selection cri-
terion incorporates the kernel trick with the class separability
measures [34], where the kernel parameters are automatically
tuned by maximizing kernel class separability criteria. Feature
selection based on a distance discriminant method converts the
search problem of feature selection into feature ranking. The
approach achieves feature selection performance comparable
to exhaustive-search methods with a lower computational
complexity [35]. Finally, hierarchical clustering is applied to
select the optimal feature subset [28]. Table I summarizes and
compares state-of-the-art feature selection methods.

B. Person re-identification

Various feature types have been used for image-based
person re-identification [7], [8]. Features can be extracted
from the image using a Region Covariance Descriptor (RCD)
[36] to preserve shape, location and color information also
using a multi-scale quadtree descriptor [37]. An unsupervised
clustering approach based on appearance attributes can be
used to mine Attribute Sensitive Feature Importance (ASFI)
[17], which are then combined with global features. Random
forests can be used to group images of the same person
into sub-clusters based on color and texture features. Features
relevant to each sub-cluster are weighted to improve the re-
identification rate. A spatio-temporal relationship is learned to
find the probability of matching a person from one camera
to another, coupled with an adaptive Brightness Transfer
Function (BTF) to handle illumination changes [38].

Local Binary Patterns (LBP) are used to describe spatial pat-
terns using normalized color intensities, followed by a pixel-
based thresholded color distance to depict structural informa-
tion [39]. The Mean Riemannian Covariance Grid [40] is used
to generate a human signature from the detected persons using
LBP on the head regions [41]. Histograms of Oriented Gra-
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dients (HOGs), the Scale Invariant Feature Transform (SIFT)
and weighted HSV histograms can be used for shape, texture
and chromatic content to build a discriminative signature along
with a weighted distance measure [42]. The mean color values
from small image regions can be combined with the histogram
of LBP to represent an image, and then pairwise sample
differences are learned for re-identification [43]. Multi-shot
re-identification approaches combine the information from
multiple instances of the same object [11]. HSV histograms
of the image-epitome group extract patches from multi-images
with similar properties. Alternatively, the image can be divided
into small components and the difference from an existing
bag of components is considered. The difference vector is
represented as a descriptor of the image [44]. For a detailed
analysis of the state of the art in person re-identification and
related taxonomy the reader is referred to [7]–[9].

Existing re-identication approaches exploit features for im-
proving the re-identication rate without considering constraints
on resource utilization, which significantly vary between fea-
tures. This limits their usability and scalability in real-world
applications. Unlike existing methods, the proposed approach,
CoPE, selects good-performing less-expensive features.

III. COST-AND-PERFORMANCE-EFFECTIVE (COPE)
FEATURE SELECTION

Let C = {Cn}Nn=1 be a network of N cameras and
Pn = {Pmn}Mm=1 be a set of M persons in the Field of
View (FoV) of Cn. Each Pmn is represented by a feature set
Fmn = {frmn}Rr=1 containing R feature types fr, where
r = 1 · · ·R.

To characterize a feature we consider a performance vector
and a cost vector. The performance vector, Πr, measures
the discriminating ability of fr in person re-identification;
whereas the cost vector, Ψr, measures the extraction time and
the storage size associated to fr. Πr and Ψr are iteratively
combined to generate cost-effective well-performing features.

A. Feature performance
Let a training set be composed of P1 = {Pk1}Mk=1 and

P2 = {Pm2}Mm=1, where M is the number of persons visible
in both C1 to C2. The same value of k and m represents
the same person. The feature sets Fk1 = {frk1}Rr=1 and
Fm2 = {frm2}Rr=1 are extracted from person Pk1 and Pm2,
respectively. We measure the performance of a feature by
analyzing the similarity of the representation of the same
person in two views using feature fr as well as the similarity
with the other M − 1 people.

We define the performance vector Πr representing the
performance of fr on M persons. We measure the similarity
between two instances frk1 and frm2 of fr by a relative matching
distance D(·), which receives as input a feature pair and
returns the feature similarity drmk between Pk1 and Pm2:

drmk = D(frk1, f
r
m2). (1)

For each Pm2, we measure M distances from P1. Each drmk
is then normalized (0 ≤ d̂rmk ≤ 1) as

d̂rmk =
drmk −mink d

r
mk

maxk drmk −mink drmk
, (2)

where mink d
r
mk and maxk d

r
mk are, respectively, the mini-

mum and the maximum distances of Pm2 from P1 using fr.
The set of M normalized distances d̂rm = {d̂rmk}Mk=1 contains
one distance corresponding to the same person in C1 and C2

(d̂rmm: correct matching distance) and M − 1 distances of
Pm2 from the instances of other persons in C1 (Ωr

m: the set
of incorrect matching distances).

In the ideal case, a feature fr is considered well-performing
for Pm2 if the distance in fr between the correct matching
pair is smaller than the minimum value of distances in Ωr

m.
However, in real-world re-identification scenarios the ideal
condition is fulfilled only for a limited number of people.
Therefore, we relax the criterion and use the median value
of the incorrect distances, Ω̃r

m, and measure the performance
score Πrm as

Πrm =
d̂rmm

Ω̃r
m

. (3)

The condition d̂rmm < Ω̃r
m leads to 0 ≤ Πrm < 1 in

Eq. 3. The smaller Πrm, the better the performance. Πrm ≥ 1
indicates that fr performs poorly. For each fr, we define the
performance vector Πr using M persons as

Πr = {Πrm}Mm=1, (4)

where each element Πrm corresponds to the performance
score of fr for a single person in the training data. fr with
minm Πrm ≥ 1 for all M persons are discarded before
performing the feature selection thus resulting in R̂ ≤ R
remaining features. We then define the R̂ ×M performance
matrix ∆ as

∆ =
[
Πrm

]
R̂×M , (5)

where r = 1, . . . , R̂ and m = 1, . . . ,M . Πr is the rth row
representing the performance of fr for P2, while χm is the
mth column representing the performance comparison of Pm2

for R̂ features. ∆ is further analyzed jointly with the cost of
features as discussed next.

B. Feature cost

We define the cost vector of feature fr by considering two
components, namely its storage size, βrmn, and the computa-
tional time for feature extraction, Γrmn. The range of both
components can vary largely across different fr. To avoid
one of the two components dominating the other for feature
selection in case of large values (e.g. large storage size or
high computational time), we define the cost vector, Ψr, as
the inverse of the average of the two cost components:

Ψr = (ΨΓr,Ψβr) =

 αMN
N∑
n=1

M∑
m=1

Γrmn

,
(1− α)MN
N∑
n=1

M∑
m=1

βrmn

 , (6)

where α ∈ [0, 1] is a weight that helps accounting for cases
when one constraint is more important than the other (e.g.
when a limited storage space is available with no constraints
on the computational time, or vice versa). In this paper we
consider the byte as the unit for βrmn and the millisecond
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Fig. 1. Block diagram of the proposed Cost-and-performance-effective
(CoPE) feature selection approach.

(ms) as the unit for Γrmn. We measure the magnitude of the
cost vector by calculating the Euclidean norm ||Ψr||, where
||Ψr|| ∈ [0, 1]. The larger ||Ψr||, the cheaper the feature.
Note that as this cost score is obtained by combining two
independent components in Eq. 6, new cost constraints can be
included as additional independent components of the vector.

C. Feature selection

We perform a competitive feature selection such that the
least costly features exhibiting the best performance are se-
lected by exploiting Ψr and Πr of each fr (Fig. 1). We define
a vector V that contains the elements Πrm ≤ 1 from ∆ sorted
in ascending order. We divide V into bins Ii, where 1 ≤ i ≤ R̂
and each bin contains M performance scores such that in the
best case a single feature with the best performance for all the
M persons can be selected in a single iteration. A set Φir is
defined which contains the performance scores Πrm within Ii
for each fr.

Figure 2 shows an example of performance matrix ∆, and
highlights the vector V, the bin Ii and the set Φir. We
iteratively traverse each bin Ii until all performance scores in
V are exploited for feature selection. Cost is considered jointly
with performance to select a cheaper feature when comparable
results can be obtained by the features in the set. We calculate
the combined importance score Sir of each fr within Ii as

Sir =
|Φir| ||Ψr||

Π̃r

, (7)

where ||Ψr|| is the Euclidean norm and Π̃r is the median of
the values in Πr. |Φir| is the cardinality of Φir, which repre-
sents the number of persons for which fr has the performance
scores within Ii. Sir combines the cost with the performance
within the bin Ii such that fr with the least cost, the highest
overall performance and the maximum number of Πrm within
the interval Ii gets the maximum importance score Sir. As the
bins are sorted in decreasing order of performance, the best
performing feature can be selected as

r∗ = arg max
r

Sir, (8)

where r∗ is the ID of the feature with the highest combined
importance score Sir.

Let Y12 be the list of selected features for C1 and C2.
If fr

∗
/∈ Y12 then fr

∗
is appended in Y12. The list Y12 is
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Fig. 2. Example of performance matrix ∆ containing performance score
values Πrm (horizontal axis) obtained for R features (vertical axis) and M
persons (color coded), where r = 1 · · · 6, m = 1 · · · 7, R = 6 and M = 7.
V contains Πrm in the range [0, 1]. The bin Ii within V contains M values
of Πrm. The values within Ii are spread among R features such that each
feature has a set Φir containing Πrm and

∑R
r=1 |Φir| = M . The bin I1

for i = 1 is illustrated in the figure. For each feature fr we define a set Φ1r ,
e.g. when r = 5, f5 contains Φ15 = {Π53,Π57,Π54}, |Φ15| = 3 and∑6

r=1 |Φ1r| = 7; f4 is discarded because minm Π4m ≥ 1; person m = 6
is discarded because minr Πr6 ≥ 1.

progressively filled with fr
∗

in order of importance. However,
repeating the selection process of the next best feature may
result in performance overlapping. Performance overlapping
occurs when the performance scores of data points (persons)
already considered in the previously selected features are used
to measure the importance score Sir of a new feature. To
avoid performance overlapping, we remove from V all the
performance scores χm of a person Pmn for which at least one
performance score Πrm exists in the set Φir∗ of the selected
feature fr

∗
. Person Pmn is included in the set Z∗ containing

the persons that have already taken part in the selection of
fr

∗
, given as Z∗ ∪ Pmn ∀ Πrm ∈ Φir∗ . We then repeat

the process for selecting the next best feature. Each selected
feature is now representative of a unique subset of data and a
selected new feature now increases the diversity in the feature
set by covering a wider range of data.

Feature selection continues within the same bin Ii until all
performance scores have been utilized for the selection. Then
we move to the next bin in V. The algorithm stops when all
persons in the training data are exhausted (|Z∗| = M ) or
when all features are selected (〈Y12〉 = R̂, where 〈·〉 counts
the elements in the list). In the former case we obtain a subset
of features. In the latter case the method returns the complete
feature set with features ranked in order of importance.

Note that because the selected features in Y12 are ranked by
decreasing importance, the feature set can be further reduced
by dropping the IDs of the least important features should the
constraints of the application become more restrictive. CoPE
is summarized in Algorithm 1.

D. Discussion

Feature selection using CoPE is performed once using
training data when a camera network is set-up. Then each
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Algorithm 1 CoPE feature selection
M : total number of persons;
R̂ : number of features;
Cn : nth camera in the network;
fr : rth feature in the feature set;
Pmn : mth person in Cn;
Ψr : cost vector of fr ;
Πrm : performance score value for Pmn using fr ;
Πr : performance vector for fr ;
∆ : performance matrix;
χm : R̂ performance scores for Pmn;
V : vector containing sorted values of Πrm ≤ 1 from ∆ ;
Ii : ith bin with values from V;
Sir : combined importance score of fr in Ii;
Ynq : list of selected features for Cn and Cq ;
Z∗ : set of people taking part in the selection;
Φir : set of Πrm in V within Ii for fr ;
〈·〉 : number of elements in the list;
| · | : cardinality of a set;

1: Z∗ = φ , Ynq = φ
2: while |Z∗| ≤M or 〈Ynq〉 ≤ R̂ do
3: while 1 ≤ i ≤ R̂ do
4: for r = 1 to R̂ do
5: Φir = Πrm in V within Ii for fr

6: end for
7: for r = 1 to R̂ do
8: calculate Sir using Eq. 7
9: end for

10: get r∗ using Eq. 8 . ID of selected feature
11: if fr

∗
/∈ Ynq then

12: append fr
∗

to Ynq

13: end if
14: remove χm from V; ∀ Πrm ∈ Φir∗

15: Z∗ = Z∗ ∪ Pmn; ∀ Πrm ∈ Φir∗

16: remove Πr∗ from V
17: end while
18: end while

camera locally stores the list of selected features Ynq for each
neighboring camera Cq . Cn and Cq are neighbors if an object
exiting the FoV of a camera is expected to enter the FoV
of the second camera without passing through the FoV of a
third camera. If a new camera is added to the network, the
training is performed pair-wise between the new camera and its
neighbors only [45]. Note that features selected for a camera
pair may not always be appropriate for another camera pair
because of differences in illumination conditions and camera
pose with respect to the targets. This approach, developed
for camera pairs, is appropriate for distributed multi-camera
settings where each camera communicates with its neighbors
without a central control unit.

A performance matrix ∆ is generated for each camera pair,
while the cost vector Ψr already takes into account N cameras
and therefore remains the same. N cameras in the extreme
case form a complete graph, where each camera has N − 1
neighbors. The time complexity of feature selection for such a
network is N(N + 1)/2 times that of the feature selection for
a camera pair. In the case of multiple neighboring cameras, it
is also possible that the locally stored lists of selected features
may together result in the extraction of the complete feature
set. Such a scenario may occur in the case of neighbors located
far away and reduce the benefits of feature selection.

When machine learning is used for re-identification, two
training phases are involved, namely the training for feature

selection and the training for learning the re-identification
model. Each camera stores the trained models (weights) in
addition to the selected feature IDs between (neighboring)
camera pairs. The inclusion of learning models with the CoPE
feature selection is independent of the feature selection itself,
and there is an increase in the storage cost (fixed) due to the
local storing of the trained models (and not because of the
feature selection).

IV. EVALUATION AND COMPARISONS

We evaluate CoPE on the initial feature set as in [14]–
[17]. We test the re-identification capabilities with existing
approaches based on DDM, namely Bhattacharyya distance
[10], [16], L1-Norm [9] and Chi-square distance. CoPE with
DDM is further compared with recent re-identification ap-
proaches such as Probabilistic Relative Distance Compari-
son (PRDC) [15] and Attribute-Sensitive Feature Importance
(ASFI) [17]. We further compare CoPE with the following
feature selection methods: Fisher score [19], Information gain
[20], mRMR [21], ReliefF [22] and Bi-clusters [23] for re-
identification using DDM (Bhattacharyya) and learning ap-
proaches (rankSVM [14] and AdaBoost [16]). Finally, we
perform a cost-performance analysis for CoPE.

A. Evaluation criteria

We consider three validation criteria, namely cost of fea-
tures, re-identification rate and feature budgeting. The cost of
features is calculated for the initial feature set and then for the
selected features to analyze improvements in data reduction
and computational time. In addition, we evaluate the training
time for feature selection. The re-identification rate for the
association methods is compared with the initial feature set and
then with the selected features using the Cumulative Matching
Characteristics (CMC) curves [16]. The curves show the true
target rates for given false target rates. The overall performance
is also evaluated using the Area Under the CMC Curves
(AUC). Finally, we consider feature budgeting in constrained
environments to analyze the scalability of CoPE and the effects
in terms of cost and performance of further feature reductions.

B. Experimental setup

The datasets for the evaluation are VIPeR [16] and i-
LIDS [46]. These datasets present a mix of characteristics
such as outdoor and indoor settings, variations in viewing
angle, occlusions and illumination changes. The VIPeR dataset
(outdoors) contains 632 pairs of persons from arbitrary view-
points. The images of people in VIPeR are not occluded,
but present significant appearance changes. In the i-LIDS
dataset, C1 is Camera 1 and C2 is Camera 3. These two
cameras represent non-overlapping views with considerable
illumination changes. We represent each person with a single
image per camera. In total, we have 348 people that go from
C1 to C2. Single images of 124 people are manually extracted
while exiting C1 when the person is completely in the FoV
of C1 and the first image of a person on reappearance when
(s)he is completely in C2. People can be partially visible due
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Fig. 3. Examples of upper-body stripes (cropped region) extracted based
on the location of the head (green bounding box) Eq. 9 in (a) VIPeR and
(b) i-LIDS. (c) Comparison of re-identification rates using the initial feature
set from the full-body patch (solid lines) and the upper-body stripe (dashed
lines), without feature selection, using i-LIDS (M = 174). For association
three DDM approaches are compared.

to occlusions. For the remaining 224 people, we utilize the
existing ( [9], [15], [40])images of persons extracted from i-
LIDS videos and select one image per person per camera, such
that no person is repeated.

The head and the upper-body are the most frequently
visible and recognizable parts of a person (Fig. 3 (a, b))
in case of surveillance settings and multiple people in the
scene. We assume that the person detection phase is solved
using a head detector [47], [48] resulting in a bounding box
Bmn = (x, y, w, h), for the head of person Pmn in Cn, where
x and y are the x-y coordinates of the top left corner, w is
the width and h is the height of the bounding box. From a
given bounding box Bmn (in this paper manually defined),
a vertical stripe of the upper-body is generated using the
approach described in [9]:

Pmn = f(Bmn) = [x+ w/4, y + h/4, w/2, h ∗ 2]. (9)

The area of the defined upper-body shape is 8 times smaller
than that of normalized full-body patch.

We use the commonly employed color and texture features
[14]–[17] for the comparison. Existing approaches use a 2784-
dimensional feature vector by dividing the full-body person
image into a set of stripes (6) and then concatenating the
corresponding features from each stripe. We reduce the size
of the object representation by extracting features from the
defined upper-body shape only (better suited for crowded
scenes). Each feature is a 12-bin histogram of a color channel
or a filtered image of the defined shape. Nine color channels
(R, G, B, Y, Cb, Cr, H, S, V) from RGB, YCbCr and HSV
color spaces are used. We divide the upper-body patch into
two halves and extract the features. Instead of concatenating
the extracted features, we add the corresponding bins. This
operation results in a single feature set with twice the weight
to the upper region of the defined shape. For texture, 8 Gabor
and 13 Schmid filters are applied on the Y channel of the
defined shape. The parameters of the Gabor and Schmid
features are indicated in Fig. 4. Figure 3 (c) shows the
re-identification results in i-LIDS for the complete feature
set extracted from the defined upper-body and the full-body
patches without feature selection. It can be observed that a
better re-identification rate can be achieved with the upper-

body shape in the case of occlusions and crowd.
The data generated for each feature is encoded using the

lossless data compression algorithm ‘deflate’, which combines
LZ77 and Huffman coding. The average storage size and
computational cost of a single feature (per person) is calculated
for each camera. For each dataset, we apply the two-fold cross
validation. The experiments are carried out using Matlab 7.11
on a 3.3 GHz dual core desktop system with 3 GB of RAM.

C. Analysis and discussion

Figure 4 shows the storage size βr and the extraction time
Γr of the 30 features used. A fixed number of bins is used
for histograms. However βr varies between 29 and 56 bytes
because the data encoding is applied before the feature storage.
Γr of the feature extraction varies between 16 and 60 ms. The
overall computational time and the storage size required by a
single camera Cn for R̂ features and M persons is given by
Tn as

Tn =

 M∑
m=1

R̂∑
r=1

Γrmn,

M∑
m=1

R̂∑
r=1

βrmn

 . (10)

For the comparisons, we measure the normalized cost E of the
selected feature sets from the cost score Ψr (Eq. 6) as

E =

fr
∗
∈Ynq∑

1/||Ψr∗ ||
R̂∑
r=1

1/||Ψr||
, (11)

where Ynq is the list of selected features. The set of 30
features has the maximum cost Emax = 1. We consider 316
and 174 persons in VIPeR and i-LIDS, respectively.

Figure 5 shows the analysis of CoPE on i-LIDS with
three selection criteria: (i) feature selection as a function
of performance only keeping the cost fixed (CoPE-FC); (ii)
feature selection considering both cost and performance of a
feature (CoPE); and (iii) feature selection as a function of
cost only while keeping the performance fixed (CoPE-FP).
The cost of the selected features is the highest for CoPE-
FC, since the selection is carried out based on performance
only. However, in the absence of cost constraints CoPE-
FC is also able to achieve the highest re-identification rate
using DDM. Both the cost and the re-identification rate of
the selected features are reduced with CoPE. When varying
the cost parameter α in CoPE, while the composition of the
selected features remains similar their order changes (top three
rows of the table in Fig. 5 (a)). Since cost and performance
are independent in the feature selection, varying α does not
affect the performance of a feature. The selected features may
vary based on the requirement of a system controlled by α,
i.e. for good-performing features with a limited extraction time
α = 1, and for features with limited storage size and good
performance α = 0. Note that a limited extraction time may
not imply a higher storage size (and vice versa). The smallest
cost for CoPE is obtained when there is an equal contribution
of computational time and storage size (α = 0.5).

In CoPE-FP, although performance is not used for feature
selection, in order not to obtain a sorted list of all features
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Fig. 5. Analysis of feature selection with varying selection criteria: CoPE (both cost and performance), CoPE-FC (fixed cost, performance only) and CoPE-FP
(fixed performance, cost only), and with varying α values: α = 0 (black), α = 0.5 (blue), α = 1 (magenta) in i-LIDS (M = 174) in terms of (a) selected
features, (b) normalized cost E, (c) CMC curves, and (d) AUC of CMC curves.

based on cost, we remove the people from the training
data for which the selected minimum cost feature has good
performance so that the algorithm stops when all the people
in the training data are exhausted. For α = 0 the order of
selection is controlled by the storage size, while for α = 1
the features with the shortest extraction times (color features)
are selected first (see Fig. 4 for time and size). An interesting
case is when the features with IDs 8 and 9 are selected for all
three values of α, since these features have both the shortest
computational time and the smallest storage size. In contrast,
the feature with ID = 1 has the shortest extraction time and a
large storage size. This makes it the first feature with α = 0.5
and 1, while it is not selected with α = 0. The order of
performance of the selected features for the three criteria is as
follows CoPE-FP < CoPE < CoPE-FC. The rest of the
evaluation is performed for α = 0.5, in order to have an equal
contribution from the storage size and the extraction time.

1) CoPE vs all-features: Table II shows the storage size and
the computational time for the features extracted from each
person observed in one camera using Eq. 10. We compare
the results of the initial feature set with that of the three
non-unique sets of selected features obtained by CoPE using

TABLE II
STORAGE SIZE, COMPUTATIONAL TIME AND NORMALIZED COST OF THE

INITIAL FEATURE SET PER CAMERA USED IN EXISTING
RE-IDENTIFICATION APPROACHES COMPARED WITH COPE FEATURES

OBTAINED FOR THREE SIMILARITY MEASURES (IN EQ. 1).

Dataset Distance Total Feature IDs as in Fig. 4 Size Time Cost E
as in Eq. 1 features (KB) (sec) (Eq. 11)

- 30 1-30 466.43 314.83 1.00
VIPeR Bhattacharyya 6 4 8 9 5 7 25 82.46 38.34 0.16

(M=316) L1-Norm 6 8 9 4 7 5 12 86.46 34.56 0.16
Chi-Square 8 8 9 4 5 7 18 17 25 114.07 60.75 0.23

- 30 1-30 256.83 173.35 1.00
i-LIDS Bhattacharyya 10 7 3 9 8 25 11 4 19 21 29 80.74 47.70 0.29

(M=174) L1-Norm 8 3 9 7 25 8 4 18 29 61.90 35.48 0.24
Chi-Square 9 7 9 3 8 25 6 15 29 16 70.97 41.64 0.26

three similarity measures: Bhattacharyya distance, L1-Norm
and Chi-square distance in Eq. 1. For VIPeR, the number of
selected features are 6, 6 and 8, respectively, for the three
similarity measures that reduce the storage size per camera to
11%, 18% and 24% of the total size (466.43 KB) of the initial
30 features. In i-LIDS, 10, 8 and 9 features are selected for the
three similarity measures that respectively reduce the storage
size to 31%, 23% and 27% of the storage requirement for the
initial feature set (256.83 KB). Similarly, the computational
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Fig. 6. Person re-identification comparison using CMC curves representing true target rate for the top 30% of false target rate, and the AUC of the CMC
curves in VIPeR (M = 316) and i-LIDS (M = 174) datasets. (a-d) CoPE features selected using three similarity measures, namely Bhattacharyya distance
(blue), L1-Norm (red) and Chi-square (green) in Eq. 1, compared with the initial complete feature set using DDM approaches for re-identification. (e-h)
Existing re-identification approaches: PRDC [15] (magenta) and ASFI [17] (green) using the complete feature set are compared with DDM (Bhattacharyya)
[16] using CoPE features (blue) and the complete feature set (black).

time of feature extraction per camera is reduced significantly.
In the VIPeR dataset, the computational time is reduced
to 12%, 10% and 19% for the three similarity measures,
respectively. In the case of i-LIDS, the computational time
is reduced to 27%, 20% and 23%. It can also be observed
that the normalized cost E of the selected CoPE features is
reduced more in VIPeR than in i-LIDS because mostly the
color features are selected in VIPeR. The color features are
fast to extract with less or comparable storage size (Fig. 4) and
perform better than texture features. In VIPeR, we reduce the
cost E of the feature set to 20%, while in i-LIDS we reduce
it to 33% of the initial feature set.

Figure 6 (a-d) compares the re-identification rate for the
three DDM approaches with the state of the art. In a DDM
approach, two persons are considered correctly matched for re-
identification, if their obtained feature sets have the minimum
matching distance between them. The performance of the
selected features is measured in terms of improvement of the
re-identification rate of DDM approaches compared to that of
using the initial feature set. CMC curves highlight the true
target rate for the first 30% of false target rates (the most
important part of CMC for evaluation). In VIPeR, a higher re-
identification rate is obtained using the selected features. For
example, at 20% false target rate in the CMC curves, the true
target rate is above 65% for selected features compared to the
initial feature set with true target rates between 40% to 50% for
all the three measures. Due to the limited illumination changes
between cameras, mostly color features are selected (Table II).
In i-LIDS, both color and texture features are selected. The re-
identification results for association using the selected features
are improved and in some points are comparable to that of

using all features. The AUC shows that the features selected
using all the three similarity measures have overall better
performance than that of the initial feature set. The highest
re-identification rate is obtained when the features are selected
using the Bhattacharyya distance. Therefore, in the following
experiments we use the Bhattacharyya distance as a similarity
measure while comparing with existing re-identification and
feature selection approaches.

Figure 6 (e-h) shows the performance comparison of DDM
(Bhattacharyya) using CoPE with two recent state-of-the-art
re-identification approaches: PRDC [15] and ASFI [17]. The
extracted features from the upper-body patch are given as input
to PRDC and ASFI. In both i-LIDS and VIPeR, a better
or comparable re-identification performance is achieved by
CoPE with less storage and computational requirements. CMC
curves show a higher re-identification rate for CoPE especially
at lower false target rates. CoPE outperforms PRDC and ASFI
(AUC in the case of VIPeR), with a cost of 20% of the
initial feature set used in these methods. In i-LIDS comparable
results can be observed at 33% the cost. The results of
PRDC and ASFI in the original papers used the full-body
patches and a large 2784-dimensional feature set. Therefore
we also include a comparison with the reported results while
performing the CoPE feature selection on the larger feature set
and full-body patches. Figure 7 shows the cost-performance
comparison on ViPER, which has less occlusions and thus
justifies the use of the full patch for person description. It can
be observed from the CMC curves and the AUC that CoPE
selected features with DDM show a better re-identification
rate than ASFI with a 73% reduction in the storage size and
a 77% reduction in the extraction time. Finally, the use of
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Fig. 7. Person re-identification comparison using full-body patches and 2784-
dimensional feature vector on VIPeR (M = 316). (a) CMC curves and (b)
AUC of CMC curves obtained by existing re-identification approaches: PRDC
[15] (magenta) and ASFI [17] (green). The results are compared with CoPE
using DDM (cyan) and PRDC (blue) for association. (c) The storage size and
the computational time of the extracted features.

the CoPE features as input to PRDC further improves the re-
identification rate of PRDC at 24% the cost of the complete
feature set.

2) CoPE vs feature selection methods: We compare CoPE
with 5 existing feature selection and ranking methods, namely
Fisher score [19], Information gain [20], mRMR [21], ReliefF
[22] and Bi-clusters [23]. Since these are single-objective
feature selection approaches, for comparision we perform
feature selection using the performance only while keeping
the cost fixed (CoPE-FC). The similarities between the feature
pairs obtained using Eq. 1 along with the assigned labels as
correct/incorrect matches are given as input to the feature
selection methods. Feature selection methods return a ranked
list of features and a weight vector in the case of Fisher score,
Information gain and ReliefF methods, while mRMR and Bi-
clusters return only a ranked feature list.

Table III shows the training time for feature selection
and the obtained features ranked in order of importance
for re-identification. Training time is useful to understand
the feasibility of the single time set-up off-line process and
becomes crucial as the size of the network increases. The
training time is measured using 316 and 174 people in the
VIPeR and i-LIDS, respectively. With VIPeR, CoPE takes
0.76 seconds, 5 times less than the next shortest training
time by the Fisher score. ReliefF requires the maximum time
(124.70 seconds) for training, while Bi-cluster could not be
trained for VIPeR even after 25 days. With i-LIDS, the training
time of Bi-clusters is nearly 20 hours. Therefore, in a larger
camera network Bi-clusters may not be applicable for feature
selection. CoPE and CoPE-FC take 0.30 and 0.20 seconds,
respectively. The Fisher score takes 0.15 seconds. As the
dataset size almost doubles from i-LIDS to VIPeR, the time
requirement for Fisher Score is increased by nearly 24 times,
whereas others are only 3 times longer. With the smallest
ratio and minimum training time CoPE is desirable for feature
selection in a camera network.

In Table III, each selection approach returns a different
ranking order of features, since there exists no unique feature

subset to solve the same task. If two features show an identical
performance then any of the two can be selected. In performing
a cost-aware feature selection, CoPE returns a subset of well-
performing cost-effective features until any further addition in
the cost of features does not improve performance. In VIPeR,
most feature selection methods including CoPE and CoPE-FC
return similar sets with color features in the top ranks. CoPE
and CoPE-FC returns the same set of 6 features because of the
similarity in the selection procedure. In i-LIDS, 10 features are
selected by CoPE, while 13 features are selected by CoPE-FC.
We fix the number of selected features for the existing methods
to be equal to the number of features selected by CoPE-FC
(a comparison with varying number of selected features can
be seen in Fig. 11). We pick the top 13 features in i-LIDS
and the top 6 features in VIPeR from the ranked features of
the existing approaches. Figure 8 (a, d) shows the normalized
cost E (Eq. 11) of the obtained selected features. Even after
fixing the number of selected features, E for CoPE features
remains the smallest. mRMR features show the highest cost
in both datasets, while those of Fisher score, Information gain
and Bi-clusters have costs comparable with that of CoPE-FC.
In VIPeR, the CoPE feature set contains all color features
because of the limited illumination changes, while in i-LIDS
both color and texture features are selected. CoPE selects the
color features first and then the texture, resulting in the least
E of 0.15 and 0.30 in VIPeR and i-LIDS, respectively.

Figure 8 (b, c, e, f) shows the re-identification performance
of the selected features using DDM (Bhattacharyya) as the
association method. In both VIPeR and i-LIDS, the selected
features using CoPE and CoPE-FC reach the highest re-
identification rate. In i-LIDS, CoPE-FC reaches the highest
performance in the absence of the cost constraints. Unlike the
existing approaches based on overall performance only, CoPE
selects features by iteratively relaxing the performance score
Sir, thus achieving cost as well as performance advantages.

Finally, features are selected on one dataset and tested on the
other to analyze the amount of degradation in the results. We
compare CoPE with two feature selection approaches, namely
Fisher score and Information gain, which have the highest
performance in the cross validation within the same dataset.
Fig. 9 shows the cross-data robustness of selected features. In
VIPeR, the performance of CoPE is degraded less compared to
the other two methods. The performance of features selected
using VIPeR deteriorates at a greater rate in i-LIDS, which
is a more challenging dataset. The results are degraded at a
comparable rate for all the feature selection approaches, since
almost the same 6 color features are selected by the three
feature selection approaches.

3) CoPE with learning models: The top-ranked selected
features are used as input to the two learning methods, namely
rankSVM [14] and AdaBoost [16] for re-identification, which
apply implicit feature selection by weighting the feature set.
In these cases, feature selection may be used to remove
poorly performing features as a pre-processing step to improve
the effectiveness of learning methods. Since the features are
rearranged and weighted within the specific learning method,
the order of selection is not important and only the difference
in the selected features affects the performance. We compare
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TABLE III
THE TRAINING TIMES AND THE RANKING ORDER OF FEATURES FOR RE-IDENTIFICATION USING FISHER SCORE [19], INFORMATION GAIN [20], MRMR
[21], RELIEFF [22] AND BI-CLUSTERS [23] AS FEATURE SELECTION METHODS COMPARED WITH COPE AND COPE-FC USING VIPER (M = 316) AND

I-LIDS (M = 316).

Training time (sec) Ranking order (Feature IDs as in Fig. 4)
Feature selection VIPeR iLids Ratio VIPeR iLids
Fisher score 3.67 0.15 24.47 4 8 9 5 1 2 6 7 3 17 14 13 11 10 23 30 16 12 18 21 26 27 24 28 22 29 19 25 15 20 3 4 7 6 2 10 11 9 1 13 19 30 16 20 17 26 14 27 12 8 28 23 21 24 18 25 15 29 22 5
Information gain 14.10 4.99 2.82 4 8 9 5 6 2 1 3 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 7 3 6 11 10 20 13 9 16 4 17 2 14 19 12 30 26 27 15 18 28 21 23 8 25 24 29 22 5
mRMR 29.06 9.54 3.04 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 9 8 5 7 6 3 2 1 1 30 26 23 7 6 2 24 28 3 27 29 21 17 14 22 15 18 20 12 10 19 16 11 13 25 8 4 9 5
ReliefF 124.70 44.98 2.77 4 8 9 5 27 25 24 2 13 29 6 1 28 30 10 7 3 26 23 22 11 15 16 19 12 21 20 18 17 14 8 4 9 25 13 22 23 16 7 26 1 5 18 2 29 15 21 24 19 28 30 6 27 14 12 20 3 11 17 10
Bi-clusters - 72000 - - 9 8 24 25 12 14 5 11 4 15 10 21 17 16 6 1 28 13 26 23 7 3 20 18 2 19 30 27 29 22
CoPE 0.76 0.30 2.53 4 8 9 5 7 25 7 3 9 8 25 11 4 19 21 29
CoPE-FC 0.52 0.20 2.60 4 8 9 5 7 25 7 10 25 9 19 3 8 30 4 27 21 29 5
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Fig. 8. (a, d) Normalized cost, (b, e) CMC curves and (c, f) AUC of CMC curves obtained for re-identification by applying DDM to the features selected
using the Fisher score [19] (cyan), Information gain [20] (magenta), mRMR [21] (black), ReliefF [22] (yellow) and Bi-clusters [23] (green), CoPE (blue) and
CoPE-FC (red) on (Top row) VIPeR (M = 316) and (Bottom row) i-LIDS (M = 172).
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Fig. 9. Cross Data (CD) performance comparison in re-identification for the
top-two performing existing feature selection approaches, namely Fisher score
[19] (cyan) and Information gain [20] (magenta); and CoPE (blue). The CMC
curves are obtained by (a) feature selection on i-LIDS (M = 174) and testing
on VIPeR (M = 316) and by (b) feature selection on VIPeR (M = 316)
and testing on i-LIDS (M = 174).

the performance of RankSVM and AdaBoost with their default
settings. The comparisons are performed with and without
feature selection keeping the same settings, which may not
be optimal. However, the improvement in the results can be
observed after the feature selection by the proposed approach.

RankSVM assigns relative weights to the input features
based on the combined contributions in the feature set. Fig-
ure 10 (a-d) shows that rankSVM has a better re-identification
rate for both VIPeR and i-LIDS using the features selected
by CoPE compared to those from existing feature selection
methods. The variation in re-identification rates using the
selected features from different approaches is smaller in VIPeR
than in i-LIDS because mostly the same color features are
selected (Table III). With i-LIDS, the features selected by
different methods (and the re-identification rate) vary in their
composition. The best performance of CoPE-FC in the true
target rate (CMC curves) is almost 15% higher than that of
mRMR at the same false target rate, followed by CoPE with a
slightly smaller re-identification rate because of the additional
cost constraints. However CoPE remains higher than existing
feature selection approaches. Also the obtained AUCs are
highest for CoPE and CoPE-FC.

AdaBoost combines multiple weak classifiers/features to
improve the matching performance. Figure 10 (e-h) shows the
performance for AdaBoost. In both VIPeR and i-LIDS, the
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Fig. 10. CMC curves and AUC of CMC curves for re-identification using learning methods: (a-d) rankSVM [14] and (e-h) AdaBoost [16] applied to the
features selected by CoPE (blue) and CoPE-FC (red) and existing methods: Fisher score [19] (cyan), Information gain [20] (magenta), mRMR [21] (black),
ReliefF [22] (yellow) and Bi-clusters [23] (green), using (a, b, e, f) VIPeR (M = 316); and (c, d, g, h) i-LIDS (M = 174).

features selected by CoPE have an overall better or comparable
re-identification rate than existing feature selection methods.
In VIPeR, similarly to the rankSVM, CMC curves show a
smaller re-identification rate variation among existing methods
because of the limited number of selected features (i.e. only
6). In i-LIDS, the variation in performance between CoPE and
existing feature selection methods is high as the number of
selected features is increased (up to 13). AdaBoost has a better
learning ability in i-LIDS than in VIPeR. The performance
on the CMC curves, especially in the starting part, shows
that CoPE and CoPE-FC are able to remove noisy features
more effectively than existing feature selection methods thus
resulting in a better re-identification rate. In Fig. 10 (g), the
CMC curve for ReliefF shows a marginal improvement of up
to 2% in true target rate between 20% and 25% of false target
rates at the expense of more costly features than that of CoPE
(Table: III). In CoPE because of the cost constraints, we may
observe a drop in the performance in a few instances in favor
of cost reduction and an overall performance improvement.
Overall CoPE-FC remains the highest (AUC) followed by
CoPE and ReliefF features.

Since learning algorithms are dependent on the training data
in addition to the selected features, in challenging scenarios
the performance of learning methods can be reduced. In
re-identification, a single person may exhibit several pose
and illumination changes, while we can only extract a few
patches thus resulting in an under sampled data representation
[15]. For example, in VIPeR (CMC curves in Fig. 6 (a) in
comparison with Fig. 10 (a, e)), the performance of learning
methods is slightly reduced. In Fig. 6 (a) we can see that after
CoPE feature selection the performance is improved (almost
double compared to using the initial feature set). A further
improvement through a learning method will require a more

robust training set.
4) CoPE and feature budgeting: In a constrained environ-

ment, a further reduction of the feature set might be necessary.
In such cases the performance needs to be reduced in a
predictable manner (feature budgeting). Figure 11 shows the
cost vs performance comparison of feature selection methods
for re-identification using DDM. The performance is measured
using the area under the first half of the CMC curves and the
cost is measured using Eq. 11. In CoPE, a consistent increase
in performance and cost can be observed with the addition
of each new feature. Since the most important features for
re-identification are selected first, the rate of improvement in
the performance is high at the beginning and the performance
monotonically increases as the cost increases, the most desir-
able behavior in feature budgeting.

In VIPeR (Fig. 11 (a)), the performance of Fisher score and
Information gain becomes constant after selection of up to 9
features due to minimal weighting to the lower ranked features.
However, the low ranked features keep increasing the cost of
the feature set. Such feature selection represents the majority
of data with similar properties while neglecting the features
with discriminating capability for small amounts of data. The
mRMR feature selection produces a monotonically decreasing
performance after reaching a high performance point because
of the ranking only strategy. Since VIPeR requires up to 6 dis-
criminant features as selected by CoPE, the additional features
result in redundant information and the performance decreases
(mRMR) or remains constant (Fisher and Information gain),
while the cost increases. In i-LIDS dataset (Fig. 11 (b)), Fisher
score shows a non-monotonically increasing performance at
the start and while selecting the second feature shows a
higher performance than CoPE because of the selection of
a comparatively costly feature (with Feature ID=4). However,
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Fig. 11. Cost vs performance analysis of CoPE (blue star) and existing feature selection methods: Fisher score [19] (cyan plus), Information gain [20]
(magenta triangle), mRMR [21] (black circle), ReliefF [22] (yellow triangle) and Bi-clusters [23] (green circle) using DDM (Bhattacharyya) for re-identification
on (a) VIPeR and (b) i-LIDS. Features are added in order of decreasing performance. Solid lines show the number of selected features equal to those generated
with CoPE. Dotted lines extend the cost vs performance comparison for the feature excluded by CoPE. The cost (horizontal axis) is measured using (Eq. 11)
and the performance (vertical axis) is measured as the area under the first-half of the CMC curves. At each marker point a new feature is added.

as new features are added, the performance starts decreasing,
while CoPE preserves a balance between cost and perfor-
mance, which results not only in a monotonically increasing
performance but also in the highest performance with the
smallest cost when the same number of features are used. The
specific feature (with ID=4) is selected by CoPE at a later stage
when its cost justifies the performance. A non-monotonically
increasing performance is observed in the Information gain
and Bi-clusters, however their performance is lower than that
of CoPE as the cost increases.

This evaluation shows how CoPE can select, in the correct
order, less expensive and well-performing features. Improved
or comparable performance compared to existing selection
approaches is achieved for DDM and learning methods for
re-identification with cost-effective features.

V. CONCLUSIONS

We proposed a feature selection approach that identifies
the most appropriate features for person re-identification. The
amount of data stored for each feature and the computational
time for its extraction are used jointly with their performance
to generate an overall feature score. The best features are
selected in a defined range of scores to reduce the performance
overlap, a measure of similarity among features. A further
reduction of the selected features is made possible to account
for additional operational constraints (e.g. limited resources).
The proposed method decreases both the amount of data
generated per feature set and the amount of time needed for
the extraction of the selected feature set, up to 80% in VIPeR
and up to 70%, in i-LIDS dataset without compromising
the re-identification rate compared to existing re-identification
approaches (PRDC [15] and ASFI [17]). We also demonstrated
that CoPE improves the performance of other learning-based
re-identification approaches such as those based on rankSVM
[14] and AdaBoost [16] compared to the existing feature
selection methods. Future work includes implementing the

proposed approach on actual smart cameras and to extract the
head locations using the trained detectors.
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