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Tracking multiple high-density homogeneous targets

Fabio Poiesi and Andrea Cavallaro

Abstract—We present a framework for multi-target detection
and tracking that infers candidate target locations in videos
containing a high density of homogeneous targets. We propose a
gradient-climbing technique and an isocontour slicing approach
for intensity maps to localize targets. The former uses Markov
Chain Monte Carlo to iteratively fit a shape model onto the target
locations, whereas the latter uses the intensity values at different
levels to find consistent object shapes. We generate trajectories
by recursively associating detections with a hierarchical graph-
based tracker on temporal windows. The solution to the graph
is obtained with a greedy algorithm that accounts for false
positive associations. The edges of the graph are weighted with
a likelihood function based on location information. We evaluate
the performance of the proposed framework on challenging
datasets containing videos with high density of targets and
compare it with six alternative trackers.

Index Terms—High-density targets, crowd, target detection,
multi-target tracking.

I. INTRODUCTION

ULTI-TARGET video detection and tracking in scenes

with a high density of targets can help in a range of
applications, from surveillance to biological studies [1]-[3]. A
feature extraction stage generally processes images using prior
knowledge (e.g. color, shape, size) and generates estimated
target locations using feature values and classification scores
(confidence maps) [2]. A confidence map is a (noisy) scalar
representation of likely target locations [2], [4], [5] that uses
sparse [6] or dense [4] confidence values. Sparse values can be
obtained with Support Vector Machines (SVM) through sliding
windows [6]. Dense values are generated with multi-layer
homographies [7] or derived from sparse values by low-pass
filtering the confidence map [4]. Candidate target locations are
then extracted by thresholding and clustering the sparse values
with the highest scores [6], [8]. Without using classifiers, target
locations can be extracted by enhancing the target appearance
(e.g. by means of color filters) and by localizing the regions
with high-intensity values [9]. We refer to enhanced target
appearance features as target-intensity maps.

Target trajectories can be generated by temporally associ-
ating candidate locations with multi-target trackers [4], [10]-
[12] or directly from confidence maps [2], [13]. Generally,
candidate target locations are generated by applying thresh-
olds, clustering and Non-Maxima Suppression (NMS) to the
confidence values [6]. However, weakly detected features of
different parts of a target may lead to confidence values with
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multiple peaks in the target region [8]. Moreover, multi-peak
confidence values can be due to adjacent targets and explicit
models to separately detect targets are devised. In high-density
scenes with targets having the same or similar appearance,
multi-target tracking is addressed with complex priors on
target motion [14] and appearance [12]. Alternatively, tracking
can be performed directly on confidence maps [2] or on
detections extracted from target-intensity maps [15].

In this paper, we propose a multi-target detection and
tracking approach for videos with a high density of homo-
geneous undistinguishable targets. Unlike [3], the detection is
background independent, suitable for cluttered videos and can
deal with multi-peak target-intensities generated by adjacent
and overlapping targets. Importantly, the detector does not
require learning target appearance models such as colors or
textures [15] . The novelty of the detection algorithm is the
possibility of automatically localizing targets via local maxima
searching by exploiting the 2D gradient inferred from their
outline. This allows us to apply the approach to heterogenous
targets (by only inputting their size) and to achieve robustness
for the localization of targets with irregular outline without in-
troducing temporal dependencies that might lead to drifts when
targets overlap [4]. The detector relies also on isocountours
applied to target-intensity maps, which improve the alignment
of the detections (centering and orientation) with the targets.
We track targets with a greedy graph-based method that
pair-wise matches short tracks [12] and performs backward
validation within temporal windows [16]. The novelty of this
greedy solution is to identify and discard (online) false-positive
short-tracks during the association process. The number of
targets is implicitly inferred by the algorithm. Initialization
and termination of tracks are automatically performed in
any location of the scene. The proposed tracking algorithm
outperforms alternative methods on challenging datasets. The
software of the proposed tracking method is available at
http://www.eecs.qmul.ac.uk/~andrea/thdt.html.

The paper is organized as follows. Sec. II discusses prior
works on multi-target detectors and trackers, whereas Sec. III
presents the problem formulation. Sec. IV and Sec. V describe
the proposed approach for detection and tracking, respectively.
Sec. VI analyzes the computational cost. The results and
the comparisons with alternative methods are discussed in
Sec. VII. Finally, in Sec. VIII we draw conclusions and present
future research directions.

II. STATE OF THE ART

In this section, we review state-of-the-art methods for target
localization that generate candidate locations for tracking and
discuss their strengths and limitations.

Target detectors may extract candidate target locations (mea-
surements) using descriptors designed either for specific object
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representations or for the background [17]. Thresholding fol-
lowed by clustering can be applied on confidence maps gen-
erated with a person detector [8]. The person model embeds
features extracted from image patches (e.g. intensity gradient)
and is trained with an SVM [6]. The feature extractor uses a
sliding window to extract unclassified patches. The patches
are provided to the classifier to determine their affiliation
to the person or non-person class. The confidence values
representing such affiliation in each location of the image are
then generated. Next, candidate target locations are extracted
by thresholding the confidence map and clustered with Mean-
Shift [18]. Negligible overlapping target locations can be
further removed using NMS [8]. Linear [9] or morphological
[19] image filters can also be used for target localization.
The H-dome transform based on morphology can be used to
enhance target intensities and to suppress background noise.
Gradient information can then be employed to improve the
discrimination between clutter and target intensities [9]. Alter-
natively, wavelet filters (B3-spline and Haar) [20] can be used
to segment regions with high-intensity values while discarding
low-frequency regions belonging to the background. Target
locations are finally generated through pyramidal de-noising
based on image cross-correlation. These methods are based
on the assumption that confidence values and target intensi-
ties are modeled as single-peak distributions for each target.
Threshold-based methods followed by clustering and NMS are
then applied to extract target locations. Although extensions to
multi-peak confidence values exist, they are explicitly designed
for human targets only [8].

After the detection stage, tracking temporally associates
candidate target locations sequentially (i.e. online), within a
temporal buffer (i.e. with a delay) or as a batch process (i.e. of-
fline). Sequential tracking methods can be based on Bayesian
filters [4], [21] and can operate directly on confidence maps.
Markov Chain Monte Carlo (MCMC) can be used in the
case of noisy measurements [1]. Simple heuristics such as
elliptical shapes along with a method based on sparse least
squares are then used to temporally validate and link such
measurements [1]. Initialization is performed using the ground
truth. Measurements can be associated frame-by-frame either
via thresholding or optimum association (e.g. the Hungarian
algorithm [22]). The association probability can be inferred
through the product of three independent affinities relying on
target position, size and appearance [12]. However, in scenes
with high-density targets, sequential methods require strong
prior knowledge, such as motion models trained on the same
scene type [14]. Buffered trajectories can be generated with
a track-before-detect algorithm based on particle filtering that
enables multi-target tracking directly on confidence maps [2].
Particles are spread over the confidence map and the clutter is
filtered out through the likelihood function while temporally
linking measurements with high confidence. Markov Random
Fields is employed within the tracker to keep nearby targets
separate whilst tracking. Alternatively, MCMC can be used
to reduce the computational complexity with a large number
of targets. MCMC is employed to generate target trajectories
by confirming track hypotheses within a 100-frame window
using Minimum Description Length [10]. The Vessel filter can

TABLE I
COMPARISON OF DETECTION AND TRACKING METHODS. KEY: NMS:
NON-MAXIMA SUPPRESSION; MCMC: MARKOV CHAIN MONTE CARLO;
N/A: NOT AVAILABLE.

[Ref.][ Features [ Mapping [ Tracking [Operation]Supervised]
[17] backgrognd threshqld /a wa o
subtraction +clustering
[8] gradient thre;hold n/a n/a no
+clustering+nms
[6] gradient thregho]d n/a n/a no
+clustering+nms
[19] || morphology thresholds n/a n/a no
[20] wavelet threshold n/a n/a no
[15]|| gradient threshold Kalman filter | online yes
[4] gradient no mapping | particle filter | online no
[1] color threshold MCMC online no
[9] H-dqme threshold particle filter | online no
+gradient
[10y|| gradient threshold MCMC buffer no
+clustering
[12]]| gradient threshold threshol.d online no
+Hungarian
[26]|| gradient thresjhold min-cost flow| offline no
+clustering+nms
[27] backgrot_md minimization |min-cost flow| offline no
subtraction
[2] n/a no mapping | particle filter | buffer no

be used to filter out noisy confidence values during tracking
(particle filter) and short temporal intervals of accumulated
confidence maps [23]. However, the temporal filtering on short
temporal windows might cause the merging of confidence
values in the case of nearby targets. Finally, trajectories can be
generated offline by formulating the problem as a graph [16] or
as an energy minimization problem [24]. A graph is composed
of nodes representing measurements and edges representing
the cost of moving from one node to another (e.g. via log-
likelihood [12]). Target trajectories are extracted by finding the
minimum-cost paths that connect the nodes of the graph using,
for example, the min-cost flow algorithm [25]-[27]. This
optimization is an NP-hard problem and, hence, it is necessary
to relax the constraints and employ suboptimal solutions. A
greedy algorithm developed with dynamic programming can
be used to compute approximated graph solutions [16], [26].
Table I summarizes relevant state-of-the-art methods.

III. PROBLEM FORMULATION

Let V. = {V(k)}X_, be a video composed of K frames
V (k). Let C;(k) € Ry 1) be the target intensity (feature) value
of the i*" pixel with generic coordinates (z;,v;). The larger
C;(k), the clearer the target appearance. C(k) is the target-
intensity map extracted from V (k) having C;(k) as elements
with ¢ = 1,..., I and I the total number of pixels in a frame.

Let Z(k) = {z"(k)}fj:(’;) be the set of detections, where

N (k) represents the number of detected targets at frame k.
The z(k) of a generic target is represented as

z(k) = [x(k) y(k) S(k) ()], (1)
where (z(k),y(k))T is the position in the image plane, S(k)

ZiECS(k) C;(k)? is the
energy of intensity values C (k) within the region defined by

is a shape descriptor, and ¢(k) =
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S(k). T is the transpose operator of a matrix. Without loss of
generality, we use an elliptical shape [11], [12] and consider
S(k) = (rq,m,0(k)), where the scalar values 7, and 7} are
the major and minor semi-axis, respectively, and 6(k) is the
orientation.

Given Z(k) for k=1, ..., K, tracking temporally associates
detections to generate trajectories. Let 7 = {T,}/_, be the
set of temporally-ordered trajectories, where T, is the a'"
trajectory with an arbitrary duration and A is the total number
of trajectories. The smaller a, the earlier the starting frame of
the trajectory.

IV. DETECTOR
A. Gradient-climbing based detector

The detection of similar targets on high-density videos
is performed by exploiting target-intensity maps using the
intensity-gradient information. We assume that homogeneous
high-intensity values (peaks) of the target-intensity map are
measurements and such a map usually contains broad peaks.
We use the intensity gradient to localize and discriminate
targets since it helps the enhancement of spatial gaps among
nearby targets. In the case of partially-overlapping targets,
the gradient can also help the fitting of a prior shape model
by exploiting visible parts of both the targets involved in
the occlusion (the occluding and occluded target). The target
localization is achieved by using an iterative algorithm that
finds the best fit between the target shape and the target
intensity, while disregarding distractors due to nearby targets
and multi-peak intensities (e.g. region 1 in Fig. 1g and 1m).

The method generates detections over the intensity map
while discarding those located near local maxima. This step
enables the reduction of the computational complexity of the
subsequent steps. Since at this stage there is no knowledge
about the orientation of the targets and their location, detec-
tions are initialized with a square region for each pixel ¢ (i.e. a
single detection is initialized for each C;(k) where the number
of pixels I is large). The square region allows us to start the
detection process with a simple dummy shape, which is a
computationally effective solution to get rid of a few candidate
target locations with low intensity values. This process formu-
lates dummy detections as d;(k) = [z;(k) y;(k) ro Ci(k)]T
at frame k, with D(k) = {d;(k)}!_; and r, is the side of
a square region centered at (z;(k),y;(k)). We use the Non-
Maxima Suppression (NMS) algorithm [8], [26] to remove
detections that are not part of local maxima from the set D(k).
In this process it is essential to set an overlap value (7,,,,5) that
defines how much overlap can occur within (but not between)
subsets of detections. Subsets of detections are then generated
using Tnms- NMS outputs the detection with the highest
intensity values C;(k) within (and for) each subset. The set of
detections given in output is defined as Z (k) = {Zjl(k) 37:1,
with J(< I) the number of detections surviving after NMS.

The survived detections Z,(k) are subsequently made to
align on the actual target locations with MCMC [13], ex-
ploiting the prior shape information S(k). In the case of high
densities of targets, MCMC can probabilistically reach equi-
librium for a large-state spaces with an unknown distribution.

Fig. 1. Detection process using the gradient-climbing based detector and
hierarchical-isocontour based morphology: (a,b) input frames; (c,d) maps
representing the enhanced target intensities (target-intensity map); (e,f) mid-
level step where detections are initialized using the Non-Maxima Suppression
algorithm on the target-intensity map; (g,h) resulting detections obtained with
the proposed approach based on MCMC. (i,j) Multi-layer isocontours on the
target-intensity maps; (k,1) hole filling and erosion followed by dilation applied
at intensities with values 0.7 and 0.6, respectively; (m,n) detections obtained
evaluating shape properties on each region before Mean-Shift clustering. (g,m)
Region 1 and region 2 highlight challenging cases that can be addressed by
taking into account the advantages of the two detectors.

Let 2Z,(k) = {sz}i\n/[;(lk ) be the subset of final detections

Z1,m (k) generated with MCMC, where M; (k) is the number
of detections at k. zy (k) has the same elements of Eq. 1.
Each z ,,, (k) is generated by relying on the matching between
its distribution p(2z1 ., (k)), computed using the intensities of
C%(k), with that expected by the prior intensity distribution
of a single target P(z1 (k) = N(pp, Xp), where pp =
(x1,m(k),y1,m(k)) is the mean location and the covariance
Yp is a function of (74,7, 601 m(k)), which represents the
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target extent. Although in our case P(-) follows a 2D Gaussian
distribution, it can be substituted with another function in the
case of different intensity distributions.

With MCMC the detections Z;(k) tend to align to the
actual target locations and orientations according to S(k) and
P(z1,m(k)), so that it is possible to obtain the final set Z; (k)
such that p(Z(k)) is the equilibrium distribution. The goal
is to take each detection %, ;(k) € Z(k), to propose a
move and to validate it using a likelihood function in order
to create Z;(k). We employ the Metropolis-Hastings (M-H)
algorithm, which enables inference of the global distribution
p(Z1(k)) by sampling from an unknown multi-dimensional
distribution with multi-dimensional states. Let z}',, (k) define
the h'" iteration (move) of a proposed detection and H the
total number of iterations. The initialization of M-H, i.e. h=0,
is done for each m such that z{ ,, (k) = 21 ;(k). M-H moves
the detection z? (k) to a new detection z}ftnl(k) using a
proposal density q(z} . (k)|z},(k),C(k)), only if v < a,

where vy ~ U[0, 1] and « is the acceptance probability

: P2t} (R)|C(K))
a=min | 1, —F———"— | 2)
p(21 , (K)|C(K))
with
p(i7, (K)|C(k)) = p(C(k)|21T,, (k))a(2) ], (k) 23 1 (K), C(K)),
3)
where p(C (k)|z'ftnl(k)) is the likelihood function.
The proposal density ¢(-) defines the dynamic model
21 5 (k) = FY (k)20 (k) + w3, (R), @)

where wy, (k) ~ N(0,3,), and F}, (k) is a linear transfor-
mation dependent on iterations and time

uh
1+ = 0
h 1,m n 02><4
Fl,m(k) = 0 1+ vi,m ’ (5
yl,m
O4x2 | VI

where (ufm,v{‘,m) is a translation vector. To calculate the
translation vector, we firstly compute the normalized cross-
correlation [28] between P(z! ,,, (k)) and a square patch, taken
from C(k), with center (1,9} ,,) and extent r, X ro. Then,
the vector that goes from (zf,,,y},,) to the point with
the maximum intensity in the cross-correlation defines the
translation vector. O,y iS a matrix of zeros and I,y iS
the identity matrix with n’ rows and m’ columns. The noise
wh (k) added to the dynamic model accounts for inaccurate
estimations when the translation vector is calculated. The
translation vector may perform a coarse shift of a detection
from a region with low intensity values to a region with
high intensity values. In order to refine the positioning of the
detection on the top of a target, we need to add some noise to
the linear transformation in order to explore different locations
and to find that providing the highest likelihood. Generally,
with MCMC, the proposal distribution (which proposes a new
state) includes a noise term that enables the exploration of the
distribution (that is unknown).

Fig. 2. Example of detection alignment using the error between the vectors of
the gradient on the ellipse perimeter (black vectors) and normal vectors to the
ellipse perimeter (white vectors). The goal is to minimize the error between
the two sets of vectors: (a) case with a larger error due to misalignment; (b)
case with a smaller error.

The likelihood function p(C(k)|z§”;11(k)) is calculated
through Maximum A Posteriori (MAP) by varying the ori-
entation H?E(k) within the interval ©=[0, 7] of the translated

detection zi”,“nl(k) p(C (k)|z’f;1(k)) employs (i) the 2D gradi-
ent VC (k) and (i) Kullback-Leibler (K-L) divergence dy (+||-)
[29]. The former is calculated as
9C(k) .

9C(k) .

ar °T oy ¥ (6)
and enables directional alignment of the local vectors of
VC(k) for each target to the normal vectors of the perimeter
of S(k) (Fig. 2). The latter enables us to find the orientation
within © that minimizes the divergence between the local
intensity distribution of C(k) at iteration h+ 1 and the rotated

version of P(szml(k:,é)). In particular, we use the gradient

normalized to unit vectors namely VC(k). Specifically, we
have

ve(k)

p(C(R)|z)F) (k) = arg max [p(C(k)|z} ) (,0))] =
6co

[ ( 1 (E(vaz?fn%(k,e))f(e))f)
exp ~3 .

oc
( 1 <dK.L(N<uL,zL>|7><z?j,3(k,o>>>>2>}
exp | —= ) 7

2 OK-L

arg max
0cO

where, with a simplified notation, the argument 6 indicates
the rotated version of the state. The step size for 6 is 7/8.
VC_(z'ffml(k, 6)) is the 2D gradient of C(k) corresponding to
the pixels adjacent to the perimeter £(6), £(6) are the normal
vectors of the #-rotated ellipse perimeter (Fig. 2), and o¢ and
0. are constants. p; and 3, are the components obtained by
fitting a 2D Gaussian [30] in the domain r, X r, of z’f;}(k)
on C(k). E(-) quantifies the orientation error of the ellipse
with respect to the direction of the gradient. The goal is to

—

minimize the error between VC (z?jnl(k7 6)) and £(6):

®)

where || - ||2 is the ¢-2 norm. When all the iterations are
performed by M-H, multiple detections may converge to the
same target. In order to suppress these detections, we apply
NMS on the converged detections using 7,,,,s on the overlap
to obtain Z; (k) (Fig. 1g,h).

E(VC(z 5 (k,0)),£(0)) = [|[VC(2} 1, (k,0)) — E(O)]]2,

B. Hierarchical-isocontour based morphology

Targets may appear at different intensity levels within the
same frame (e.g. due to illumination changes) and a single
intensity level may not be enough to separate all the targets.
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In order to distinguish adjacent targets, we “slice” the intensity
map at different intensity levels (isocontours). Each level
allows inferring shape properties of targets.

Let Z5(k) = {ZQ,m}%i(lk ) be the subset of detections
Z3,m (k) inferred with this method, where M; (k) is the number
of detections. z2 ,, (k) has the same elements of Eq. 1.

Let Z,,,, (k)=g..,(C(k)), with 7;5,€[0,1], be the isocon-
tours extracted from the target-intensity map C(k) at layer
Tiso» Where the function g,__(-) computes the isocontours [31]
on C(k). T;s0—0 might provide large regions encapsulating
multiple adjacent targets, whereas 7;5,—>1 might provide small
regions with high intensity values, with the possibility of
discarding targets with low intensity values. In order to detect
targets appearing at different intensity levels, isocontours are
computed by ranging 74, in the interval {2 (multiple layers)
and the discretization of the values within {2 can be manually
chosen. To separate regions connected by thin segments and to
filter out background clutter, each layer Z,,_ (k) is processed
with morphological operators, which include hole filling [32]
followed by erosion and dilation [28]. At each 7;,,, we select
the connected regions considering shape information [33].
We use eccentricity for the elliptic model. We select target
regions with an eccentricity equal or greater than 0.75. The
selected regions are then used to determine the detections of
the initial set Zy(k). Each Zy,,(k) has the same elements
as those in Eq. 1 and their values are defined according to
the following properties: (T2, (k), J2,m (k)) is defined by the
region centroid, 6 ,, is the region orientation, iy (k) is
initialized at zero value and r,, 7, are defined a priori.

Because extracting regions at multiple layers of isocoun-
tours may lead to multiple spatially-close detections for each
target, we cluster detections in order to remove redundant de-
tections. We use Mean-Shift (MS) [18] to cluster neighboring
detections by using the position information of the detection
of Z,, without any prior knowledge on the number of clusters
and with a fixed kernel size.

Let the kernel size be r;, and the set of clusters ¥(k) =
{wr(k)}z,z:(lf) with v,.(k) the generic 7" cluster and R(k) the
set of cluster indexes. For each v, we generate a detection
Zo,m (k) whose position (22 ,,, (k), Y2,m (k)) coincides with the
centroid position of the cluster. The orientation 65 ,,(k) is
calculated as the circular median [34] of the states belonging
to the cluster and the energy ia,,(k) is calculated as in
Eq. 1 within the region defined by the ellipse with parameters
(rasTb, 02.m(k)) and centered in (22, (k), y2.m(k)).

Fig. 1i,k,m and Fig. 1j,1,n show examples of the method on
bees and ants, respectively.

C. Pruning

Situations with target intensities having multiple peaks may
lead to inaccurate alignments of detections due to gradient
variations in the target region. Moreover, adjacent targets may
appear as large irregular connected regions that do not fulfill
the prior shape constraints. In particular, the gradient-climbing
based detector is likely to fail when targets are characterized by
multi-peak intensity values. This can be observed in Fig. 1g,m
rectangle 1. When a target has multi-peak intensities the local

gradient is non-homogeneous in the target region. The gradient
direction follows peaks and valleys of the intensity, which
leads to different detection configurations due to the low
similarity between the gradient in the image and the normal
vectors of the ellipse perimeter. The isocontour-based detector
seeks regions with connected components throughout different
intensity values and the regions dissatisfying the prior shape
constraints (e.g. eccentricity) are discarded. In the case of
multi-peak intensities, the low intensity values outlining a
target may provide regions fulfilling the constraints.

At high intensity values the isocontours enclose multiple
regions due to the multiple peaks and it is likely that these
regions will be discarded because they do dissatisfy the prior
shape constraints. Therefore, only the regions selected at
low intensity values are considered as valid target detections.
Vice versa, adjacent targets can be effectively detected with
the gradient-climbing based detector. This can be observed
in Fig. 1g,m rectangle 2. When adjacent targets have in-
tensity values connected, the gradient corresponding to the
disconnected parts of each target can be exploited to align
the detections. The isocontour-based detector may fail with
adjacent targets because it is likely that the isocontours would
enclose all the targets together for all the intensity values and
the prior shape constraints would not be fulfilled. Therefore,
the detections generated using the gradient are accounted for
valid target detections.

The selection of valid detections begins by merging the
results of gradient-climbing based and hierachical-isocontour
based detectors, Z(k) = Z1(k) U Z5(k) = {in(k)}g:(’i) We
then eliminate the remaining false positives and repeated de-
tections of the two methods. As done in Sec. IV-B, we cluster
neighboring detections of Z (k) using MS with a kernel of size

equal to the minor semi-axis 7. Let W(k) = {@r(k)}rz(lf) be
the resulting set of clusters, where R(k) is the number of
clusters in frame k. For each cluster z/?r(k), a single detection
z, (k) is selected with the highest {(k), such that

n = arg max(in.(k)), )
n* e, (k)

where i,,- (k) is the i(k) term defined within each ¢, (k). Z (k)
will therefore be composed of the detections Z,, (k) with largest
in~ (k) from each cluster.

The block diagram depicting the main steps of the target
detector is shown in Fig. 3.

V. GREEDY-GRAPH BASED ASSOCIATION
A. Tracking formulation

The association process links detections over time, predicts
detections in frames with miss-detections and prunes false
detections. Short tracks are initially generated by associating
only detections with high similarity in order to reduce potential
errors while reducing the complexity of the overall prob-
lem [12]. We use target-position information for the generation
of tracks.

Let the set of short tracks, T = {t,}Z  , be gener-
ated by optimally associating consecutive detections using
Munkres (Hungarian) algorithm [22]. We will refer to the
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Confidence detector § P rior information

Non-
Maxima
Suppression .
Feature extraction T Candidate Tracking
Feature target GGB
. map . locationsi| Tyacklet
Preprocessingl—7, s—> MCMC Fusion extraction ||
b Buffer
t
Frames . Track:

Multi-layer racks
isocontours [ *{Morphology

Fig. 3. The main stages for target detection and tracking. Tracking can be

either performed using candidate target locations (switch is on “a”) or on

confidence maps (switch is on “b”). Prior information (user intervention) can
be used to improve the confidence detection. The pipeline of the proposed
approach has the prior information input off and the switch on “a”. Key.
MCMC: Monte Carlo Markov Chain; GGB: Greedy-Graph Based.

states belonging to a generic t, as z,(k) for those k where
t, exists. The sequential association is performed while keep-
ing unique identities to the associated detections. Thus for
each pair (Z(k), Z(k + 1)) we calculate the cost € 41 €
RN (F)xN(k+1) ysing the £-2 norm between each position state
in frame k and k+ 1, ¢,y = [[(zn(k), yn (k)" = (znr (k +
1), g (k+ 1) 7|2, where 7, i
the row n and column n/'.

Longer tracks 7 = {T,}/., are generated by sequentially
linking short tracks as a MAP problem [12],

T* = arg max p(T]%),
T

the element of € ;41 on

(10)

with 7 the set of tracks with the highest probability. The
direct maximization of Eq. 10 is computationally expensive
because the number of combinations of the elements of the
set ¥ is large [12]. We decompose the problem as

p(TIT) = p(T1]%) - p(T2|T N T1) - p(T3]T N\ Ta, Ty):-
...-p(TA|‘I\TA,h...,Ta,...,Tl), (11D

and we maximize each probability term iteratively with a
greedy process. This enables us to perform tracking within a
short temporal buffer and, unlike [16] or [12], once a trajectory
is computed within the buffer, we do not change the solution
afterwards.

B. Greedy-graph solution

Methods exploiting dynamic programming, for example the
Viterbi algorithm [35], can find the global optimal solution
that maximizes the problem in Eq. 10 by dividing the overall
problem into simpler subproblems. The Viterbi algorithm for
multi-target tracking assumes that all the nodes (in our case
the short tracks) of a graph should be linked to each other and
the links should be unmerged. Since the graph may contain
many false positive nodes, the use of the Viterbi algorithm
would lead to a wrong association of nodes, for example
when all the good nodes are connected and only false positive
nodes are left. The Viterbi algorithm would also connect these
false positive nodes which would result in an increase in false
positive tracks. Therefore, we use a greedy graph-based (GGB)
method that enables the linkage of short tracks by discarding
false positives and by introducing latency.

Algorithm 1 Greedy graph-based association

T: set of temporally-ordered short tracks. £(t,/ |tp): link probability.
T¢: threshold for negligible link probabilities. (E, £): buffer size and temporal shift.
Tproc: processed short tracks. Bz: number of short tracks within the buffer =.
T+ 0; Tproc + 0
for b < 1 to B= do
Ttemp < 05ty < T
if t, € Tproc then
7’ternp — tI::
while (1) do
T, « findnodes s.t. {£(t; [67) > 70, t; & Tproets € T, f > b}
if T;, # 0 then
while 1 do
jtb/ = argmax; g, f—(t;_\tzr)
if (arg max es,, L(t71t) = t)|(tyr = 0]) then
7;67,,,1_«, — by by — by
break while
else
Tq—z — I"E \ ty
end if
end while
else
break while
end if
end while
Tproc = Teemps T < 9(Tiemp)
else
Tproc < to; T + g(tp)
end if
end for

Let G = (E,%) be a graph, where E is the set of edges
whose weights are calculated via a link probability and ¥
are the nodes. Each node is composed of a sink (child) and
a source (parent), denoted as t, and tg‘, respectively. We
define a function ¢(-) that links short tracks by performing
a non-linear interpolation of the positions in order to generate
detections among linked short tracks and to smooth tracks
T. Eq. 11 can be solved by formulating the problem with
a graph and using the concept of parents and children. A
parent is a short track that ends before the start of another
one, which in turn is defined as a child. A parent can be
associated with a child when the likelihood (weight) from
the parent to the child is the biggest for the parent and also
the biggest for the child with respect to other competitive (or
candidate) parents. We aim to associate parents and children
with a forward association and a backward validation, in order
to achieve the best association between two short tracks with
respect to the competing candidates. Hence, we iteratively and
pair-wisely match parents and children over time until there
are no alternative pairings in which the single best match is
found between each parent and child.

Eq. 11 assumes that each track is temporally dependent on
another track conditioned upon their initial state: s, < Spp1 <
... < sp, where s; denotes the frame of the initial state of a
generic {, and likewise for e; denoting the frame of the last
state. In fact, the calculation of T, depends on ‘T, except those
used for the calculation of T,_;, which in turn depends on T,
except those used for T,_o, and so on. Each probability term
of Eq. 11 is maximized via a recursive process using a link
probability £;(-) between short-track pairs (tp, ),

exp —= (ﬂ"/"’)Q + Cp—en)® | e ey — Spr < Th
A (tb’ ‘tb) — 2 201 202

0 otherwise
12)
where 7, is the temporal interval permitted between the end
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of a short track and the start of another, 3y 4 is a normalized
£-2 norm

Brr b = %H(%(%%%(%))T — (v (s0), yr (s7)) F ]2, (13)

and o, 09 are constants. We use a normalized distance over
the shape model, so that o; is target-size independent.

The linking process is performed within a buffer of duration
= frames, implemented as a sliding window approach with &
overlapping frames and with 7, > 0. The linkage method is
described in Algorithm 1.

Temporally-overlapping tracks for short periods of time
can occur when concurrent detections are generated for a
single target. This is problem is usually addressed with NMS
at the detection stage [8]. However, NMS may fail if the
overlap of the detections is small. Hence, by employing this
additional analysis in GGB, we can reduce the risk of track
fragmentation! due to concurrent detection on the same target.
Hence, after having generated the set 7, we reapply the
Algorithm 1 using ¥ = 7T and the likelihood function

_1
la(ty |t) = {eXp 2 (
0

where 7, < 0 is the number of overlapping frames and

_ 1 1
Borp=7—"""—-
|spr — ep| 7a

Bb/.b 2 .
20, if 7o <spr—ep <0

(14)
otherwise

\sb/76b|71
[z (er — ), wples — )T = (@ (85 + ), v (550 + ) ]2

15)

Finally, we prune tracks within the buffer = with a shorter
duration than 7p.

y=1

VI. COMPUTATIONAL COMPLEXITY

We analyze the computational complexity of the main
stages of the proposed pipeline (Fig. 3). The proposed
pipeline is implemented in Matlab and the code is not
optimized. The gradient-climbing based detector involves
three main steps: Non-Maxima Suppression with dummy
(square) shape, MCMC alignment and Non-Maxima Suppres-
sion of the aligned detections. The first step has complexity
O(( L )TQ)Q) where [ is the total number of pixels.

(1—Trms)r2
The MCMC alignment has complexity O( L Hrir})

1—Tnms)T2
where 7277 is due to the normalized cross-ci)rrelatio)n between
prior and observations, and H is the number of iterations. The
final Non-Maxima Suppression requires O((ﬁ)z)
since it is performed with elliptical-shape detections. The
hierarchical-isocontour based morphology has complexity
O(NqR), where Ng, is the number of thresholds chosen within
[0,1] and R is the number of regions detected at each layer.
Usually R is slightly larger than the number of targets in the
frame. We considered filling, erosion and dilation operations
as O(1) since they are optimized and embedded in Matlab. The
Mean-Shift clustering has complexity O(NqR'log(NqR')),
where R’ is the number of selected regions with eccentricity

IThis occurs when a track terminates in a frame and restarts with another
identity after a few frames.

bigger than the threshold. The optimal association of de-
tections performed with Munkres algorithm has complexity
O(max(N (k)3, N(k + 1)3)), where N (k) is the number of
detections at frame k. The greedy-graph based algorithm
(Algo. 1) in the worst case scenario (when all nodes are
connected) has complexity O(B2log(Bz)) obtained with Bz
operations for spanning each node (short track) and multiplied
by Bzlog(Bz) for the selection of the edge with largest cost
that is employed with a sorting algorithm. Bz is the number of
short tracks (nodes) within the temporal window =. However,
the graph is generally sparse and the average complexity is
much lower than the worst case.

VII. RESULTS
A. Experimental setup

1) Methods under comparison: We compare our detector
with four detection approaches (D) followed by six alterna-
tive trackers (T). D1: threshold based plus Mean-Shift (MS)
clustering applied on C(k) (similar to [3]). D2: D1 followed
by Non-Maxima Suppression (NMS). D3: template matching
on grayscale frames via normalized cross-correlation using
eight target patches at different orientations cropped from
the videos. D4: D3 followed by NMS. D5: maximally stable
extremal regions (MSER) [36] with MS clustering and NMS.
T1: a baseline hierarchical detection association [37] where the
detections are associated frame-by-frame with the Hungarian
algorithm in order to generate short tracks, which are further
globally associated using the nearest neighbor algorithm. T2: a
multi-particle tracker that employes Brownian motion as prior
on the target motion [38]. The detection association is done
by maximizing the probability of finding each target between
one frame and the next. T3: based on multiple Kalman filters
used to predict and update the locations of the targets [21].
The prediction is performed with a linear motion model, and
the association between detections and trackers is performed
with the Munkres algorithm. T4: formulated as an energy
minimization problem between piecewise polynomials (B-
splines) and target trajectories [24]. T5: a multi-target track-
before-detect. T6: TS5 with postprocessing stage with a buffer
of 50 frames [2], as with the proposed approach.

2) Datasets and parameters: We use a bee dataset (B-D),
an ant dataset (A-D) and a cell dataset (C-D)?. The first two
are quantitatively and qualitatively evaluated, the third one
is only qualitatively evaluated. B-D is composed of 28400
frames of size 640x350 and recorded at 29.97 frame-per-
second (fps) from a moving camera. We use two clips of
video footage extracted from B-D to quantitatively evaluate
the detector and the tracker, namely B-D1 (frames 500 to
999) and B-D2 (frames 25500 to 25999). B-D1 contains in
total 81 targets with an average of 31 targets per frame. B-
D2 contains in total 64 targets with an average of 32 targets
per frame. Targets interact, occlude each other and move
with sudden changes in directions. A-D (10400 frames, size
720x480, 29.97 fps, static camera) contains 20 targets always
present and undergoing several occlusions. C-D (131 frames,

2Tracking results and datasets: http://www.eecs.qmul.ac.uk/~andrea/thdt.
html
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size 340x240, 29.97 fps, moving camera) has an average of
34 targets/frame moving quickly in unpredictable ways. There
are variations of illumination and of camera focus.

In B-D, the target-intensity map is the equalized red channel
(RGB colorspace) of the frames with a Gaussian filter applied
to it. In our experiments, the red channel is found to be a
reliable feature since most of the information about the color
of bees lies on this channel. By observing the size of the
objects on the image plane we set the ellipse prior size to
rqo=42, rp,=18. The threshold used for NMS is 7,,,,s=0.3. The
number of iterations for MCMC is H=10 and the likelihood
function used for its computation has variance parameters set
as oc=1 and o0, =0.7; these values of iterations and standard
deviation provide an accurate shape alignment. Smaller values
of o¢,o0x. and larger number of iterations do not further
improve the fitting accuracy, whereas larger values of o¢, oy,
and smaller number of iterations might provide less accurate
alignments. 7;5, values range in the interval Q=[0.5 0.8] with
step size of 0.05. The link probability of Eq. 12 has 07=0.3,
to penalize detections outside the region of the target, and
02=10, to link detections for short temporal gaps. The buffer
is Z=b0 frames with a temporal shift £&=5 frames, 7,=10
To=—10 and 7p=15. In A-D the target-intensity map is the
grey-level image and is filtered with a Gaussian function. The
parameters are the same as for B-D apart from the ellipse
size prior, r,=16, r,=7, and 7p=30. As for A-D, in C-D
the target-intensity map is the grey-level image and is filtered
with a Gaussian function. The parameters are the same as for
B-D apart from the ellipse size prior, r,=8, r,=4, and 7p=5.
A sensitivity analysis of the detector and tracker parameters
is also performed. The computer used to run the experiments
has CPU Intel i5 2.4GHz dual-core with 8GB RAM. We use
B-D1 to compute the execution time per frame of detection
and tracking algorithms.

B. Evaluation measures

We evaluate the performance of the detector and tracker in
terms of Precision (P), Recall (R), F-Score (F) and robustness
to ID switches. P and R measure the accuracy of the tracking
that quantifies the closeness of agreement between estimated
and ground-truth target locations [39]. ID switches quantify the
robustness of the tracker in distinguishing tm%ets throughout

the sequence. Precision is calculated as P = 7—" and Recall
P P
T, . .
as R = ﬁ, where T, is the number of true positive tracks

of the sequence, I}, the number of false positive tracks and
F,, the number of false negative tracks. F-Score is calculated
as F'= 2%. The association between target estimation and
ground truth is performed on a frame-by-frame basis. A true
positive happens when the distance between the estimated
location of a target and its ground truth is smaller than a
threshold 77,,. We use 71,=30 pixels for B-D and 71,=10
pixels for A-D, which correspond to the 83% and 71% of the
target width, respectively.

Moreover, we propose a new measure to quantify the
robustness of a tracker to ID switches by using a two-element
vector measure IDSR = [I" A]. IDSR enables us to measure
the ID switches per frame, I', and ID switches per track, A.

TABLE 11
DETECTION RESULTS. THE THRESHOLD ON THE DISTANCE USED TO
DEFINE A DETECTION RESULT AS A TRUE POSITIVE IS 30 PIXELS FOR
B-D1 AND B-D2, AND 10 PIXELS FOR A-D. KEY: D: DATASET; P:
PRECISION; R: RECALL. D1-D5: ALTERNATIVE DETECTORS.

B-D1 B-D2 A-D
Target detector PIR[F|P[R|[F|P[R[F
D1 ([3]1+MS) .631.90|.74 1| .61|.81(.70]|.60|.93].73
D2 (DI+NMS) 80[.71|.751(].76| .66 .71/ .91 |.88|.89
D3 ([28]) .631.59].611(].70|.64(.67]/.89|.78].83
D4 (D3+NMS) 731.52|.611.82(.57(.67]|.91|.77].83
D5 ([36]+MS+NMS) | .73 .81 |.77([.79| .84 | .83][.98 | .91 |.94
Gradient-based .80(.89.84(/.86(.90 .88 (/.98 (.97 .98
Isocontour-based 92 |.73(.811([.96|.71|.82.98(.93].95
Fusion .81(.88.841(/.89(.89(.89(/.99(.97|.98
IDS

I’ is defined as I' = <%=, where IDS is the total number
of ID switches that occurred in the sequence and K is
the total number of frames (see Sec. V). A is defined as
A= Zle é((],?), where i(k) is the number of ID switches
and ((k) is the maximum number of ID switches that can
occur at frame k. A small value of 7T, is more suitable to
correctly evaluate IDSR. A large 77, may lead to errors in the
evaluation procedure when the optimal association between
ground-truth and estimated tracks is computed.

C. Target detection and tracking

1) Detection: We compare the results obtained with the
proposed method and those obtained with alternative ap-
proaches. Table II shows that on average the gradient-climbing
based detector (GCD) has a higher Recall (R) than the other
methods. Hierarchical-isocontour based morphology (HIM)
provides the highest Precision (P) compared to the other meth-
ods. The fusion operation provides the highest F-Score (F).
By fusing the results we can improve P of GCD, since some
of the false positives are discarded by Eq. 9. Morphological
operators can be very accurate because they can effectively
filter out clutter, but they might not be able to provide reliable
detections in the case of adjacent targets. Even if D1 and D2
provide reasonable results in A-D, e.g. D2 reaches F=0.89,
which does not contain as challenging situations as B-D,
their performance is still lower than those provided by the
proposed method. Interestingly, NMS on D2 effectively prunes
spurious detections in A-D, but not in B-D1 and B-D2 because
NMS suppresses valid detections when the detected regions of
adjacent targets overlap. Overall, template-based approaches
(D3 and D4) have the lowest performance compared to the
other methods, since they are unable to discriminate adjacent
targets in high-density videos (e.g. B-D). The same problem
occurs for D5, where MSER features cannot generate separate
regions with nearby when targets are close to each other.

We also employ the detector proposed in [1] (only for A-D)
followed by Mean-Shift clustering in order to obtain a single
detection for each target. This method provides good P=0.98
and R=0.94, but the performance remains lower than that
of the proposed method, which reaches P=0.99 and R=0.97.
Overlapping and adjacent targets are, in fact, difficult to
separate with the method proposed in [1].
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Fig. 4. Sample detections on the bee dataset superimposed on the target-
intensity maps and on the respective original frames. Most of the targets are
correctly detected: (a) a failure of detected targets can be spotted in the white
box; this is due to its weak intensity with respect to the other targets; the
target on the bottom is not detected because is partially outside the frame. (b)
When the target becomes more visible it gets detected.

Fig. 4 shows sample results with situations of miss-detected
targets (white bounding box). Firstly, the top-left target has a
low intensity compared to the others and it is likely that the
detection is converged to one of those neighbors. Secondly,
for the target at the bottom of the white box, the detection
cannot converge and align to it as it is partially occluded by the
neighboring target and partially outside the frame. Moreover,
the morphological operations does not detect the target since
its intensity values are connected with those of the right-
hand-side target. When this last target moves upwards and the
neighboring one moves slightly farther away, it gets detected
(Fig. 4b). In both Fig. 4a and b there is a target (under the top-
left corner of the white box) with intensity values more spread
out than the others (a bee with open wings) and the orientation
of the state inaccurately matches with that of the real target.
The incorrect estimated orientation is caused by the fact that
we are not using any complex prior knowledge about the
targets, unlike [40], other than that they are approximated as
elliptical shapes. Additional qualitative results can be observed
on C-D from the video of results provided in Sec. VII-A2.
Targets are often correctly detected except when their size get
much smaller (about three times less) than that defined as prior.

Lastly, the median execution time for both D1 and D2
is 210.8 sec/frame; and for D3 and D4 is 33.0 and 33.5
sec/frame, respectively. D5 has the lowest median execution
time per frame (0.3 sec/frame) because the algorithm for
MSER is Matlab optimized. The proposed approach has the
second lowest execution time: 11.5 for Gradient-based, 3.9
for Isocontour-based and 16.6 for the whole detection pipeline
with Fusion included.

2) Tracking: We assess the performance of the proposed
tracker and compare it with alternative trackers (Sec. VII-A1l).
The trackers are tested on B-D, A-D and C-D sequences using
detections generated by the proposed detector.

Tracking results on B-D1 and B-D2 are shown in Table III,
and we can see that overall the proposed method (HA+GGB)
outperforms the other methods: on average F is the highest and
ID switches are the lesser. IDSR of the GGB is ten times better
than the sequential linking performed with the Hungarian
algorithm (HA). T3 has the lowest P in both B-D1, B-D2 and

TABLE III
TRACKING RESULTS. THE THRESHOLD ON THE DISTANCE USED TO
CONSIDER A TRACKING RESULT AS A TRUE POSITIVE IS 30 PIXELS FOR
B-D1 AND B-D2, AND 10 PIXELS FOR A-D. THE RESULTS FOR T4 IN A-D
ARE NOT PROVIDED DUE TO IMPLEMENTATION LIMITATIONS WITH LONG
SEQUENCES. KEY: D: DATASET; P: PRECISION; R: RECALL; IDSR: ID
SWITCH RATES. T1-T6: ALTERNATIVE TRACKERS. (*) T5 IS FROM [2]
WITH NO POSTPROCESSING.
B-D2
IDSR__[[P[R]F]

B-DI
PIRIF]

[ AD
IDSR_||P[R[F] IDSR |
TT ((37]) |.81].88].84] .60 9.53] ||.89].89].89] [.43 6.55] ||.98].97].98] [.09 44.50]
T2 (138]) |.83].86|.84] [.42 6.67] ||.91]-88(-89] [.26 3.92] ||.98].97|.98| [.07 34.65]
T3 ([21]) |.59].93|.72| .80 12.74] ||-81|-93|.87| [.68 10.50] ||.95].98|.96| [.08 42.00]
T4 ([24]) |.76].82|.79] [2.2 35.40] ||-87]-90|.88[[1.05 16.16]|| - | - | - -
T5 ([27%) |.83].84].84|[1.35 21.68]]|.90|-86|-88|[1.15 17.52]||.96].98|97|[.21 109.55]
T6 ([2) |.81].85|.83| [.29 4.70] [|.90|-87|-88[ [.21 3.18] ||.97].97.97| [.13 66.50]
HA 81|.88[.84|[1.97 31.53]]|-.89|-89|-89|[1.69 25.94](|.98].97|.98|[.26 135.05]
T5+GGB |.83].87/.85| [.22 3.51] ||.90|.88(.89] [.17 2.61] ||.98].97|.98] [.06 30.50]
HA+GGB|.82[.89].85| [.22 3.55] ||.90|.91|.91] [.14 2.14] ||.98/.98|.98| [.03 13.40]

Trackers }

A-D, due to the prediction step of Kalman filter (KF) when
no detections are available. Specifically, in situations of abrupt
motion changes of the targets, KF is unable to correctly predict
the future location, and when no detections are available, the
filter uses the predicted state as a valid state (Fig. Sa-c). Then,
KF keeps predicting incorrect states until the error covariance
becomes big enough to consider the target lost. Following that,
the lost target is re-initialized with a new track. Therefore the
tracks generated from spurious predictions increase the false
positive rate. T2 has a higher P than that of T3 since the prior
on the target motion looks closer to the actual movement of
the targets (Fig. 5g-i). However, on average T1 has the same
F of T2, but T2 is more accurate at correctly distinguishing
target identities (lower IDSR). Similarly to T3, T5 uses a linear
motion model to predict target locations. However, the update
is performed using intensity values instead of detections. This
enables more flexibility for the tracker to determine whether
detections belong to noise or not; P is higher, while R is lower,
which means that correct detections are sometimes considered
clutter. The postprocessing applied on TS (T6) dramatically
improves the performance by getting very close to that of
HA+GGB, especially in terms of IDSR. We also apply GGB
to the short tracks generated with T5 and we can see a
considerable improvement when ID switches per frame are
slightly lower in the case of T5+GGB. However, since T5 has
lower R than HA, T5+GGB does not achieve an R as good
as that of HA+GGB. Finally T4 has very poor performance
compared to the others.

Fig. 6 shows results in presence of poor illumination and
low resolution (trajectories are truncated at 50 frames to make
the visualization clearer). On the left-hand side of Fig. 6a,
where there is a high density of targets and the resolution is
low, the frame appears as a dark patch and presents artifacts
due to image compression. In this region we can observe
a few tracking failures that are recovered in the subsequent
frames when targets get farther apart (Fig. 6b,c). The magenta
arrow in Fig. 6b points on a situation of ID switch between
the red identity and the gray identity. The bee with the red
identity is moving from left to right and when she passes on
the top of the other bee, the gray identity passes to the red
one and the red identity gets lost. When the detections of the
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Fig. 5. Example of an abrupt motion change of a target where (a-c) a Kalman
filter-based method can fail. The failure occurs on (a) the green track, where
the tracked target is moving from top to bottom and (b) suddenly changes
direction. The green track will keep going straight on, while the red track
is initialized. (c) The track survives for a few steps before being terminated.
(d-f) Multi-particle tracker based on Brownian motion and (g-i) the proposed
approach can deal with abrupt motion changes. Different rows and different
trajectory colors represent different tracker results.

Fig. 6. Sample tracking results on dataset B-D on challenging situations. (a)
High density of bees on the left-part of the frame; (b-c) ID switch of the red
trajectory in the middle of the frame and gray trajectory on its path (magenta
arrow); (d) Robustness of the method to camera movements. The trajectories
are truncated to the last 50 frames to make the visualization clearer.

overlapped bee become available, GGB associates those of the
flying bee to those of the still bee. Fig. 6d shows a case with
an abrupt motion change, that is when the camera is moved
by the operator. The targets remain tracked and new tracks of
targets in the lower part of the image are initialized. In Fig. 7
we can notice how the central bee is tracked for more than 200
frames. Similarly to the previous case, the camera is moved
by the operator and we can spot it by looking at the position
of the dark-orange trajectory in Fig. 7a and b.

Results of A-D are quantitatively reported in Table IIT and
qualitative in Fig. 8. Even if the same sequence is already
used in [1] and [41], we cannot compare the results since
they employ ground-truth information to initialize the target
locations and when tracking failures occur. Whereas, we do
not use any manual intervention and we let the tracker run
throughout the sequence. The results for T4 in A-D are
not provided due to its implementation limitations with long
sequences [24]. From Table III, HA+GGB has the highest P
and R, and lowest IDSR overall. The ID switches of HA+GGB

Fig. 7. Sample tracking results on the bee dataset (B-D) with long term
visualization. Abrupt motion changes are successfully dealt with the proposed
tracker. The trajectories from (a) to (b) are all shifted on the top-right because
the camera has been moved by the operator. The trajectories are truncated to
the last 200 frames to make the visual representation clearer.

Fig. 8. Sample tracking results on the ant dataset (A-D). ID switches can
be due to (a,b) multiple detections on a single target (top-right corner), or
(c,d) crossing/overlapping targets (middle). The trajectories are truncated to
the last 200 frames to make the visual representation clearer.

are due to two reasons: first, multiple detections are generated
on the same targets when they are close to borders (Fig. 8a,b)
and it is due to the reflection of the ant in the glass; second,
when targets cross each other (Fig. 8c,d) there can be track
interruptions, which is mainly due to the fact that occlusions
have not been explicitly modeled in GGB. Likewise on B-
D, T2 has closer performance to HA+GGB, but the number
of ID switches is still about double. Similarly to B-D, the
performance of T3 is closer to that of T2 and better than T1.
This is due to the different motion of the targets, which can be
better approximated with a linear model. Moreover, with the
same buffer size as T6 (50 frames), HA+GGB is more robust
at keeping the correct identities associated to the targets, even
without employing prior dynamics.

Fig. 9 shows that most of the targets are successfully tracked
in C-D. However, the position of some trajectories is not
accurate due to interpolation in the tracker. Fast variations
in direction are smoothed. For additional tracking results see
Sec. VII-A2.

Lastly, the median execution time for both T2 and HA
is 0.001 sec/frame; and for T1 and T3 is 0.003 and 0.009
sec/frame, respectively. HA+GGB has a higher execution time
(0.064 sec/frame) because it allows pruning spurious tracks
online during the association process. TS5, T6 and T5S+GGB
have similar median execution time, that is 6.652, 6.848
and 6.701 sec/frame, respectively. T4 has the highest median
execution time (73.748 sec/frame).
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Fig. 10. Sensitivity of the proposed detector (Fusion) by changing (a) the
shape parameters (rq,7,) on B-D1 and B-D2. Sensitivity of the proposed
isocontour-based approach by changing values of (b) the interval 2 and (c)
by applying single values of T;s,.

D. Sensitivity analysis

1) Detection: The sensitivity of the detector is assessed
by changing the size parameters of the ellipse (r4,74). The
experimentation is performed on B-D1 and B-D2 since these
are more challenging sequences than A-D. Fig. 10a shows
that smaller (r,,r;,) leads to higher R and lower P. This is
due to the multiple detections that are converged on single
targets, and since they are not accurately aligned to them,
they are not pruned by NMS. While increasing the values
of (r4,7p), R does not decrease as fast as the increase of P,
meaning that the fitting process aligns the shape while enabling
an effective pruning with NMS. Small variations of the size,
between r, = [39 44] and 7, = [17 21] do not affect the
performance considerably. Interestingly, R in B-D2 increases
faster than that in B-D1 due to the lower density of targets,
as the detector is less biased by intensity values of adjacent
targets. P follows a similar trend for both cases.

We assess the sensitivity of HIM on B-D1 for different
values of €2 and 7;5, (Fig. 10b,c). P is the highest for 7;5,>0.5,
whereas R remains at low levels (below 0.60) throughout all
the variations of 7;5,. R is greater than zero for 7,5,>0.4 and
Tis0<0.9, and it reaches the highest value (0.54) for 7;5,=0.7.
This is the reason we employed a multilayer-isocontour ap-
proach with Q=[0.5 0.8]. Indeed, values outside this range
(e.g. [0.3 0.9]) do not further improve the performance. In
particular, for 7;5,<0.5 HIM would mainly outline clutter
and big regions would be discarded by the shape constraint
(eccentricity). On the other hand, for 7;5,>0.8 isocontours
would outline small and negligible regions.

The sensitivity of the likelihood function of GCD is analyt-
ically analyzed by changing o¢ of Eq. 7. Fig. 11a is obtained
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Fig. 11. Behavior of Eq. 7 when varying o¢ with di_r,(-)=0 for (a) an
ideal case and (b) a real case. (d) Cases of local maxima from (b) on real
observations. (c) Case extracted from (b) when oco=1.

through a controlled experiment where we generate a 2D
Gaussian map distributed as the 7 -rotated prior P(-) and we
compute its gradient. We then compute the error E(-) between
such a gradient and the normal vectors of a f-rotated ellipse
perimeter (£(0)). The rotation ranges in [0,7), with g-steps.
The gradient vectors are normalized, dx—r,(-)=0 and we vary
oc in order to observe the effect of the ellipse rotation on an
“ideal” observation. Fig. 11a shows that the likelihood function
is a concave function where the maximum is located at the
5 orientation. Variations of o¢ enhance the localization of
maxima. In this case the observation is noiseless, but in a real
scenario the observations are often noisy and the likelihood
function might have multiple local maxima. An example of
real scenario is in Fig. 11b where the cases corresponding
to the two maxima are shown in Fig. 11d; the case on the
left-hand side provides a local maxima due to the variations
of gradient generated by the neighboring targets. Moreover,
Fig. 11c shows the trend of the function when oo=1, where
the peak corresponds to the orientation of the target on right-
hand side image of Fig. 11d.

2) Tracking: We analyze the sensitivity of the tracking
algorithm on B-D1 by varying the buffer duration = in the
interval [10 100] frames with step size 10, the temporal interval
permitted to merge short tracks 7, for values {5,10,20},
and {01,029} used for the computation of the likelihood
function (Eq. 12) for values {0.15,5},{0.3,10},{0.45,15}.
The performance are shown in Fig. 12. The variation of the
buffer duration does not largely affect tracking performance for
fixed values of {o1,02} (P and R vary within an interval of
0.02). The robustness to ID switches increases with increasing
buffer duration and decreases with a shorter buffer durations.
A larger buffer enables the algorithm to process more data in
order to generate more accurate trajectories. We use a buffer
size of 50 frames since it provides a good trade-off between
tracking latency and performance. The smaller 73, the higher
P and the lower R. In fact, many false (true) detections are
not linked and get discarded because they generate short (frag-
mented) trajectories. Fast moving targets are the main cause of
fragmented trajectories. This is observed also when values of
{01, 02} are small, which is expected since the algorithm does
not link short tracks with large spatio-temporal gaps between
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Fig. 12. Tracking results on B-DI at varying parameters of GGB. (a)
Precision, (b) Recall, (¢) " and (d) A are calculated for different buffer
durations (horizontal axis), different 73, values (dark blue, light blue and green
bars) and different {1, o2 } values (light blue, orange and brown bars). Please
see Eq. 12 for details about the variables.

an end and a start. Lastly, we assess the robustness to ID
switches as a function of {01, 02}. Fig. 12¢,d show the poor
performance of the algorithm when {01,042} are either too
small or too large. On the one hand, the fragmentation of
trajectories leads to continuous track re-initializations when
small values of {o1,02} are used. On the other hand, larger
values of {07,092} provide longer trajectories, but more ID
switches between neighboring targets since the kernel for the
linkage is larger (a less steep likelihood function).

Finally, we analytically analyze the behavior of Eq. 12 when
varying o1 and o9 (Fig. 13) to test how o; and o9 affect
the short track linking. The steeper the functions, the more
sensitive the tracker in linking short tracks spatio-temporally
close to each other. In Fig. 13a we can observe how variations
of oy affect the link probability; the horizontal axis indicates
the normalized distance, the vertical axis the value of the
link probability. Note that the normalized distance takes into
account the size (area) of the target (Eq. 13), meaning that,
if By p>1, the point we are trying to associate is located
outside the target region of the other point. Hence, o1 has
to be set according to the velocity of the targets in the scene.
In Fig. 13b we can observe how the link probability changes
while changing the distance between two candidate points to
be associated. The value of o5 is useful to account for sporadic
miss-detections of targets occurring frame-by-frame. Fig. 13b
shows also that the lower o9, the fewer the frames allowed
for miss-detections. From the graph we can also infer that
7,=10 accounts only for small values of link probability. By
setting 7,=5 (as shown in the analysis of Fig. 12), associations
with link probability below 0.5 might be discarded and true
associations might be ignored. Hence, 7, allows associations
with small link probability (~0.1) to be discarded in order
to avoid spurious long tracks and to reduce the algorithmic
complexity.

E. Application of the tracker on other sequence types

The tracking algorithm (HA+GGB) is further evaluated in
multi-person tracking applications. We aim to infer strengths
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TABLE IV
COMPARISON AMONG TRACKERS ON MULTI-PERSON TRACKING
APPLICATIONS. THE BUFFER IS 25 FRAMES. KEY: P: PRECISION; R:
RECALL; IDS: ID SWITCHES.

[ Tracker [ Dataset [ MOTA [MOTP [ P [ R [1IDS]
CRFBT [11] .67 g7 89 [ .76 | 36
MT-TBD [2] .56 75 81 1.75 | 109
GOG [26] ETH-B .55 75 95 | .60 | 175
HA+GGB .59 76 83 .75 78
CRFBT [11] .62 75 85 | .76 3
MT-TBD [2] .61 73 82 .79 12
GOG [26] ETH-S 65 | 77 [0 415
HA+GGB 58 75 .80 | .79 21
DCO [42] .82 74 - - 15
DLP [43] 91 71 - - 5
K-SPO [5] PETS-S2L1 .80 58 - - 28
GAC [44] .81 .58 - - 19
HA+GGB .89 .88 941 96 | 44
DCO [42] .61 .66 - - 7
DLP [43] TUD .79 74 - - 4
HA+GGB .80 .85 95 | .87 | 27

and weaknesses of HA+GGB with respect to state-of-the-art
trackers that employ appearance and velocity information as
distinguishing features. We use the following datasets: ETH?3
Bahnhof (ETH-B) and Sunnyday (ETH-S), PETS on the se-
quence S2L1% (PETS-S2L1) and TUD Stadtmitte® (TUD). We
use detections from [11]°. We compare HA+GGB with: Condi-
tional Random Field based tracker (CRFBT) [11], multi-target
track-before-detect (MT-TBD) [2], globally-optimal greedy
algorithm for tracking (GOG) [26], multi-target tracking by
continuous energy minimization (DCO) [42], discriminative
label propagation based tracker (DLP) [43], K-Shortest path
optimization (K-SPO) [5] and multi-target tracker under global
appearance constraints (GAC) [44]. We use MOTA, MOTP,
Precision, Recall and ID switches (IDS) as evaluation metrics
[2], [10] for comparison. Note that HA+GGB, unlike CRF-
BT, GOG, DCO, DLP, K-SPO and GAC that work offline,
performs buffered tracking. Unlike MT-TBD, whose delay is
100 frames, HA+GGB has a 25-frame delay.

Quantitative results are shown in Tab. IV. HA+GGB overall
has comparable results in terms of MOTA, MOTP with respect
to state-of-the-art trackers, even without using appearance and
velocity information. However, due to this, the number of IDS
is larger. Below we show how appearance and velocity models
are key for the discrimination of targets in people tracking.

3http://www.vision.ee.ethz.ch/~aess/dataset/. Accessed: May 2014.
“http://www.cvg.rdg.ac.uk/PETS2009/a.html. Accessed: May 2014.
Shttp://www.d2.mpi-inf.mpg.de/node/428/. Accessed: May 2014.
Shttp://iris.usc.edu/people/yangbo/downloads.html. Accessed: May 2014.
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http://iris.usc.edu/people/yangbo/downloads.html
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Fig. 14. Sample tracking results of the proposed tracking method on (a-e)
ETH Bahnhof and (f-j) PETS-S2L1 datasets.

In ETH-B, MOTA and IDS of HA+GGB are the sec-
ond best, Recall is higher than GOG which means that
HA+GGB correctly tracks a larger number of targets. In ETH-
S, HA+GGB has the lowest MOTA value even if it has the best
Recall with MT-TBD and comparable Precision values with
the other trackers. The low MOTA value is due to the large
number of IDS. Fig. 14a-e show cases of identity switches
in ETH-B, where the cyan arrow is indicating subsequent
IDS due to occlusions. These errors occur due to the absence
of the appearance model in HA+GGB. This model can be
included in the likelihood function of Eq. 12. However, the
use of an appearance model is out of the scope of this paper
since it would create ambiguities when objects with the same
appearance are tracked. In PETS-S2L1, MOTA of HA+GGB
outperforms all the trackers except DLP where its MOTA
is 0.02% higher. MOTP of HA+GGB is the highest overall.
IDS occur when there are full overlaps between people. In
Fig. 14f,g, the yellow arrow indicates situations of successful
and unsuccessful associations when occlusions occur. We can
observe that the association is reliable in the case of partial
occlusions, whereas it fails when full occlusions occur. Unlike
in ETH-B, here the target discrimination can be addressed by
including the velocity information (i.e. orientation of motion)
in the likelihood function (Eq. 12). We did not include the
velocity information in HA+GGB since it would have created

ambiguities when bees are tracked due to their unpredictable
motion variations. Lastly, in TUD, MOTA and MOTP are the
best among all the compared approaches.

In summary, HA+GGB demonstrated to be effective in
discarding false positive detections and being precise in gen-
erating trajectories. HA+GGB has achieved average precision,
and in some cases higher performance, than state-of-the-art
trackers that work offline. On the other hand, since we are
not using discriminative features (e.g. color and velocity)
the distinguishability of targets is lower. We showed that
additional affinities can be directly included in the likelihood
function in the case of different applications, such as multi-
person tracking.

VIII. CONCLUSIONS

We presented a framework for detection and tracking in
image sequences with a high density of homogeneous targets.
The detection stage relies on gradient information and intensity
levels of target-intensity maps to extract candidate target
locations. The features are processed using the combination
of a method based on Markov Chain Monte Carlo and one
based on hierarchical isocontours. Moreover, we use a greedy
tracking algorithm that recursively associates detections within
a short temporal buffer.

Future work may involve the extension of the first stage of
the pipeline by adding a complementary shape-fitting detector
or by employing a method for the automatic selection of
shape parameters (ellipse) in the case of targets with different
sizes [45]. A multi-scale approach [6] could be considered to
deal with objects with varying size. Persistent false positive
detections could be discarded either at the tracking stage or at
post-detection via classification, for example by learning color
or texture patterns of the objects of interest.
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