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Abstract We present a multimodal method for the automatic synchronization of
audio-visual recordings captured with a set of independent cameras. The proposed
method jointly processes data from audio and video channels to estimate inter-
camera delays that are used to temporally align the recordings. Our approach is
composed of three main steps. First we extract from each recording temporally
sharp audio-visual events. These audio-visual events are short and characterized
by an audio onset happening jointly to a well-localized spatio-temporal change
in the video data. Then, we estimate the inter-camera delays by assessing the co-
occurrence of the events in the various recordings. Finally, we use a cross-validation
procedure that combines the results for all camera pairs and aligns the recordings in
a global timeline. An important feature of the proposed method is the estimation of
the confidence level on the results that allows us to automatically reject recordings
that are not reliable for the alignment. Results show that our method outperforms
state-of-the-art approaches based on audio-only or video-only analysis with both
fixed and hand-held moving cameras.
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1 Introduction

The widespread availability of video cameras and the growing distribution of user-
generated videos through large public repositories, such as YouTube, is favoring
many applications including entertainment, citizen journalism and forensic search.
Multi-camera recordings provide complementary information on the same scene
from different viewpoints. These recordings can be combined to provide new views,
to generate simultaneous visualizations of multiple streams or simply to select the
best view over time [4]. Typically, cameras are controlled from different locations
by different people who might start and stop recording at different time instants.
For this reason, an important problem that one encounters prior to combining
multi-camera recordings is their synchronization.

Multi-camera synchronization in ad-hoc professional settings is performed us-
ing a genlock or a clapperboard. The genlock is a reference signal shared among all
the cameras in a network that provides them the same recording time code. The
clapperboard is a reference object that generates a temporally sharp movement and
sound that are captured by all cameras in the network. This information is then
used for synchronizing the recordings of all cameras and also for synchronizing the
audio and video channels within each camera. However, such settings are generally
not available for non-professional recordings. For this reason, video editing tools
[1, 6] require user interaction to locate in the recordings events that can be used
for manual multi-camera synchronization.

In this paper, we propose a method for the automated synchronization of
multiple camera recordings that emulates the usefulness of a clapperboard, when
such an object is not available. The proposed method identifies audiovisual events
in a scene and uses them as anchors to synchronize cameras. Unlike previous
methods, the proposed method (i) jointly processes audio and video features; (ii)
produces and verifies a global synchronization for three or more cameras; and
(iii) generates a reliability estimate of the accuracy of the result for each camera.
This estimate allows the method to discard inaccurate recordings and to adapt
the features used for synchronization in order to use the most reliable ones. We
also introduce a cross validation procedure to combine partial results obtained
from the analysis of each camera pair in order to position all recordings on a
common timeline, thus enabling synchronization when some of the recordings are
not overlapping with others. The proposed method is applicable to moving and
handheld cameras that are filming the same scene, when similar sounds and related
views are recorded.

This paper is organized as follows. Section 2 reviews the state-of-the-art ap-
proaches in multi-camera alignment. In Sec. 3 we define the synchronization prob-
lem. Section 4 discusses the concept of audio-visual event, whereas in Sec. 5 we
describe the proposed procedure for its extraction. In Sec. 6 we present the match-
ing strategy that combines the detected audio-visual events and estimates the
shifts among recordings. Sec. 7 presents results and comparisons. Finally, Sec. 8
concludes the paper.
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2 Prior work

Multi-camera synchronization approaches generally extract audio or video fea-
tures from each camera and then match the features to determine temporal shifts
(i.e. the offset) among recordings. Based on the analyzed modality, multi-camera
synchronization approaches can be divided into two classes, namely video-based
approaches and audio-based approaches.

Approaches that analyze the video information use global changes or multi-view
geometry (MVG). An approach using global changes happening simultaneously in
all cameras is presented in [18], which is based on the detection of still-camera
flashes. Time instants at which a flash is detected are matched using dynamic
programming in order to estimate the offset among cameras. Although this ap-
proach does not constrain camera geometry or motion, as it relies on the detection
of global events, its applicability is limited as it requires the presence of flashes.
Most methods that use video information are based on MVG, and align sequences
both in space and time by estimating the fundamental matrix and the time shift
among cameras [2, 12, 13, 15, 20, 23, 26]. MVG-based methods can be divided into
two main groups, namely direct alignment methods and feature-based alignment
methods. Direct alignment methods compare pixel intensities in video sequences
from different cameras and estimate the transformation that minimizes the differ-
ences among recordings [2, 23]. As a result, direct methods obtain more accurate
alignment results when the pixels intensities are similar. In contrast, feature-based
alignment methods extract object trajectories [2, 13, 15, 20, 26] or space-time
interest points [12, 25, 27] and use robust algorithms such as RANSAC-like ap-
proaches [2, 12, 15, 25] or Least Median Squares (LMS) [20]. In this case the goal is
to estimate the correspondence between features from different recordings by dis-
carding outliers in order to extract the spatial and temporal alignment parameters
of the cameras. Feature-based methods perform better when the scene presents im-
portant changes among cameras. In general, MVG approaches assume the camera
network geometry to be approximately stationary, i.e. either the cameras are do
not change their position or they move jointly. This characteristic makes these
methods unsuitable for non-professional videos captured by people recording the
scene independently.

Approaches based on audio information generally use two types of features
for synchronization, namely audio fingerprints and energy onsets. Audio finger-

prints describe concisely the frequency characteristics of a recorded sound. Their
main strength lies in their robustness to noise [3, 10, 18]. Audio onsets represent
the time instants when sounds start and can be computed over the whole sig-
nal energy or for partial energy on frequency bands. The use of frequency bands
increases the robustness of onset detections and may help reducing the effect of
noise. Similar synchronization results can be achieved with audio fingerprints and
onsets extracted from multiple frequency bands [18].

Audio and video information have also been used in parallel [18]: two audio fea-
tures (fingerprints and onsets) and one video feature (global changes due to flashes)
are considered separately, with no exchange of information among modalities. Our
proposed approach is the first jointly multi-modal approach that combines audio
and video processing for multi-camera synchronization. The main characteristics
of state-of-the-art methods and the datasets used in the literature are summarized
in Table 1.
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Table 1 Comparative summary of state-of-the-art methods for multi-camera synchronization.
Key: STIP - Space-Time Interest Points; RANSAC - RANdom SAmple Consensus. ’*’ indicates
the special case that requires three cameras, of which two need to be fixed. The letters a, b
and c in the Ref. column denote different approaches proposed in the same paper.
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[20] X Least Median Squares (LMS) 1 3

[13] X Tri-view geometry constraints 4 12 *

[15] X Timeline constraint + RANSAC 4 9

[2]a X Heuristics on the trajectories + RANSAC 3 6 X

[2]b X Sum of Squared Differences (SSD) minimization 4 8

[23] X Normalized Correlation (NC) maximization 2 4

[27] X Cross-correlation maximization 4 8

[25] X Local jets similarity + RANSAC 2 4

[18]a X Dynamic programing 7 30 X X

[18]b X Cross-correlation maximization 7 30 - -

[18]c X Bit error rate minimization 7 30 - -

[10] X Hash values similarity maximization 3 608 - -

This work X X Cross-correlation maximization X X 8 40 X X

3 Problem formulation

Let a scene be recorded by a setC = {C1, . . . , CM} ofM cameras. Each camera Ci

is composed of an image sensor and audio sensors (microphones) whose sampling
rates are siV (in frames per second) and siA (in Hz), respectively. For simplicity, we
consider here that each Ci has only one microphone. Let v(xi) be the video signal
corresponding to Ci with spatio-temporal coordinates xi = (xi, yi, tiV ) and let
a(tiA) be the audio signal from Ci with temporal coordinate tiA

1. The conversion
from the video and audio time indexes (tiV and tiA) to the universal time ti (in
seconds) for each camera Ci is performed as

ti = tiV /siV , ti = tiA/s
i
A , (1)

where tiV and tiA are integers denoting the frame and sample indexes, respectively.
The time shift (offset) between video recordings from cameras Ci and Cj (in

seconds) can be computed as

∆tij(V ) =
tiV
siV

−
tjV
sjV

. (2)

Analogously, the time shift (in seconds) among audio recordings from cameras
Ci and Cj is defined by

∆tij(A) =
tiA
siA

−
tjA
sjA

. (3)

1
tV denotes the discrete temporal coordinate of the video signal (in frames) and tA corresponds

to the discrete temporal coordinate of the audio signal (in samples).
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Fig. 1 Time shifts among cameras and modalities within the same camera. The relative
positioning of audio and video recordings (solid lines) corresponding to each camera indicates
the time shift.

Even if audio and video recordings corresponding to the same camera start
approximately at the same time and are synchronized through the recording pro-
cess, there is usually a small delay among channels. Thus ∆tiAV , the time shift (in
seconds) across the two modalities of Ci, can be computed as

∆tiAV =
tiA
siA

−
tiV
siV

. (4)

∆tij(V ) ≈ ∆tij(A) if the time shift between audio and video modalities in cameras

Ci and Cj is sufficiently small. This is the case when there is no perceived drift
between audio and video modalities: the thresholds for the detectability of the time
shift between modalities are about +45 ms to −125 ms [17], where the positive
value denotes an advance of the sound with respect to the corresponding image.

A schematic visualization of the time shifts between cameras and sensors
(modalities) within each camera is shown in Fig. 1. The multi-camera synchroniza-
tion problem consists in estimating the time shifts ∆tij , ∀i, j = 1 . . .M among
recordings generated by the set ofM cameras in order to align them on a common
timeline.

4 What is an Audio-Visual Event?

We define as audio-visual event a simultaneous change in the audio and video
channels. An audio-visual event is well-localized in time and can be exploited for
synchronizing recordings by emulating the sound and motion generated with a
clapperboard in professional settings.

Audio-visual events can happen by generation, by reaction or by co-occurrence.
In audio-visual events by generation (Fig. 2(a)) the audio and video signals are
physically related: the movement of an object generates a sound that is captured by
the microphones. Examples of this type of audio-visual events are the movement of
the lips of a speaker and the movement of a drummer over a percussion instrument.
Audio-visual events by reaction (Fig. 2(b)) happen when an event in one modality
generates a reaction that is observable in the other one, synchronously or almost
synchronously. Examples are the movements of a dancer correlated with the music
(sound causing motion) and the scream of a person when an object is thrown
over him (motion causing sound). Finally, audio-visual events by co-occurrence

(Fig. 2(c)) are composed of audio events and video events that are not directly
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(a)

(b)

(c)

Fig. 2 Different types of audio-visual events (highlighted with ovals) observed simultaneously
by different cameras. (a) Audio-visual events by generation that are physically related when
movement produces sounds, e.g. when clapping or hitting a drum. (b) An audio-visual event
by reaction, when motion is a consequence of sound, e.g. during a dance movement. (c) An
audio-visual event by co-occurrence, when audio and video are not directly related, e.g. when
the movement of a basketball player and the audience cheering are synchronous.

related, but happen in synchrony. These events are difficult to model and to exploit,
but they can be useful for the synchronization task. An example is the absence or
presence of motion and sounds in a basketball match, that might indicate that the
game is paused or going on. As long as all Ci capture the same sounds and motion
patterns, the coherence among observations will help synchronizing the recordings.
In fact, when events take place simultaneously in the audio and video domains,
they become more robust indicators than audio-only or video-only events.

Synchrony of related events in the audio and video modalities has already been
exploited for joint audio-visual analysis in several other applications. Examples
include speech recognition [16], sound source localization [11], audio [19] and audio-
visual [14] source separation, video content classification [9], and robotics [7]. These
approaches are based on psychophysical studies that show the relationship between
sounds and motion [21, 22, 24]. To the best of our knowledge, our proposed method
is the first that exploits the joint analysis of these two modalities for multi-camera
synchronization.

5 Audio-Visual Event Detection

The proposed process for the extraction of audio-visual events is divided into
three main steps. First, we build an activation vector for the audio modality that
indicates the presence of a sound. Then, we search in the frames for local motion
peaks that match the presence of the sound. Finally, we construct the audio-visual
activation vector for each recording to mark the simultaneous presence of events in
the audio and video modalities. This process is summarized in Fig. 3 and discussed
in the following sections.
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Fig. 3 Block diagram of the proposed approach for the estimation of audio-visual activation
vectors for a single camera Ci. First, we compute an audio activation vector f i

A(ti) that
captures the presence of onsets (audio events) in frequency bands. Then, we extract a set of
video blocks Φi,k presenting an activation (motion peak) synchronous with an audio event.
Finally, the audio-visual activation vector f i

AV (ti) is computed based on the presence of audio
events and the number of associated video events.

5.1 Audio event detection

To detect the presence of an audio event, we first divide the audio signal of each
Ci into 8 non-overlapping frequency bands. These bands are defined according to
the equivalent rectangular bandwidth (ERB) scale and cover the frequency range
between 20 Hz and 6200 Hz [18]. In our approach, the energy measurement in
each band is computed in 0.5-second window at the maximum frame rate among
cameras. Then, we define that an audio event is occurring when an onset is detected
at time ti,k in multiple bands, where ti,k denotes the time index in which onset k
takes place in the audio recording of Ci. To detect onsets we use a peak detector
whose threshold Eb is related to the average audio energy Āb in the corresponding
frequency band b as:

Eb = 0.005 · Āb . (5)

An adaptive thresholding is necessary because different bands present different
energy levels. Next, we extract a set oiA of K audio events that are consistent
across frequency bands:

oiA = {ti,k}Kk=1 . (6)

Finally, we build a binary audio activation vector f i
A(t

i) to encode the presence
of these audio events (energy onsets):

f i
A(t

i) =

{
1 if ti = ti,k, ∀k = 1, . . . ,K

0 otherwise
(7)

5.2 Detection of synchronous local video events

We define a synchronous video event as a region in the camera’s field of view that
presents a strong local variation (motion) at approximately the same time as the
occurrence of a sound onset, detected as described in the previous section. We
choose local variations so that we can determine if an event takes place without
the need to define what the event is. This enables the applicability of the proposed
method to a broad range of scenarios.

To extract local video events that take place simultaneously to audio events,
for each audio onset k = 1, . . . ,K in Ci, we extract a set of video regions that are
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Fig. 4 Example of space-time block around an audio onset. (a) A slice of the video signal is
extracted in a time window of size W around the equivalent in frames of the audio onset time

t
i,k
V

. (b) The spatio-temporal slice is divided into blocks of spatial dimensions Nx and Ny .

active at approximately the same time Φi,k (Fig. 4). The video signal around audio
onset k is divided into a set of L blocks to allow the study of the variations in
sub-regions of the field of view of the camera. Nx, Ny and W are the dimensions

of a block in x, y and tV , respectively. The video time index ti,kV (in frames)
corresponding to the audio onset time ti,k is approximated as

ti,kV = N (siV · ti,k) , (8)

where N (·) denotes the nearest integer function and siV is the sampling rate of
the video signal.

The total amount of variation mi,k,l for each block l and time index ti,kV is
computed as the sum of absolute differences (SAD) among consecutive frames in
this spatio-temporal block as

mi,k,l(wi,k) =
∑

(x,y)∈L

|vi(x, y, wi,k)− vi(x, y, wi,k − 1)| , (9)

where L denotes the part of the image domain that composes block l, and

wi,k ∈ [ti,kV −W/2, ti,kV +W/2] (10)

is the temporal window around onset k in which the absolute variation is computed.

Then, we estimate that a video event takes place in block l in synchrony with
the audio event if the total amount of variation in the block has its global maximum
at the same time as the onset, within a certain temporal tolerance TAV between
modalities. This temporal tolerance allows us to capture related events that are
not perfectly synchronous, e.g. the lips motion and the resulting speech sounds
or the hand of a guitarist and the corresponding sound generated by the strings.
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Fig. 5 Example of active video blocks (rectangles) for an audio-visual event observed by two
cameras. The relative position and angle between the camera and the moving object determines
the number of blocks that become active.

Thus, the set of video blocks Φi,k that are active in the recording corresponding
to Ci and approximately synchronous with audio onset k is defined as:

Φi,k=

{
l ∈ {1 . . . L} : |ti,kV − argmax

wi,k

mi,k,l| < TAV

}
. (11)

TAV is the maximum time shift allowed between audio and video channels in the
same camera (see Fig. 1) and thus we should ensure TAV > ∆tiAV , ∀i. Figure 5
shows an example of active video blocks corresponding to an audio-visual event
captured by two cameras in different locations. In each camera the peak in the
motion is captured with a different number of blocks.

To avoid the detection of single-camera audio-visual events caused for exam-
ple by camera motion, the presence of an audio-visual event is determined by the
number of regions that present an activation (motion peak) approximately simul-

taneous with the audio energy peak. Let Li,k
act be the number of video blocks that

are active during audio onset k in Ci:

Li,k
act = ‖Φi,k‖0 (12)

and γ be the parameter that determines the maximum proportion of active video
blocks to estimate that an audio-visual event occurs in the observed scene. Then
we consider that an audio-visual event takes place at time tk (in seconds) if

1 ≤ Li,k
act ≤ γL , (13)

The upper bound in the number of active video blocks is introduced to discard
the effect of camera motion.

As a result, we have now a set of audio-visual events defined as

oiAV = {ti,h}Hh=1 , (14)

with H ≤ K, since the audio-visual events are the subset of audio-only events with
an associated video event.

The audio-visual activation vector f i
AV (ti) is non-zero only for time indexes

(in seconds) when an audio-visual event occurs:

f i
AV (ti) =

{
1 if ti = ti,h, ∀h = 1, . . . , H

0 otherwise .
(15)
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Fig. 6 Block diagram of the proposed approach for the synchronization of multi-camera audio-
visual recordings. First, audio-visual activation vectors f i

AV indicating the presence of audio-
visual events are extracted from each camera recording. Then, a delay matrix D containing the
time shifts between each pair of recordings is computed from the audio-visual activation vectors
(f i = f i

AV ) obtained in the previous step using cross-correlation. Next, this information is used
in the cross-validation step to obtain time-shift estimates that are consistent among all cameras
and sort the recordings on a global timeline. A final verification step automatically detects
unreliable audio-visual results and opts for an audio-only analysis (f i = f i

A) if preferable.

6 Multi-camera synchronization

Given the set of activation vectors capturing the presence of audio-visual events in
each Ci, our goal is to combine them to estimate the time shifts among recordings
and achieve synchronization. In this section we first measure the temporal co-
occurrence of audio-visual events between each camera pair and then we combine
this information in a global step that verifies the consistency of the obtained values
and the reliability of the recordings. Figure 6 shows the block diagram summarizing
the main steps of the proposed approach.

6.1 Matching

To combine audio-visual activation vectors extracted from each camera and to
estimate the time shifts across camera pairs Ci-Cj we use cross-correlation. The
cross-correlation χij(t′) at time t′ between the activation vectors of Ci and Cj is
computed as

χij(t′) =
∑

t

f i
AV (t) · f j

AV (t+ t′) , (16)

where f i
AV (t) is the activation vector for camera Ci resampled to the highest

sampling rate among all cameras.

Let D =
[
Dij

]
be an M ×M delay matrix composed of the estimated time

shifts between each camera pair, where M is the number of cameras. We compute
the inter-camera time shift as the argument that maximizes the cross-correlation
through time:

Dij = argmax
t′

χij(t′) . (17)
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Fig. 7 Typical situation in which the proposed cross-validation procedure, unlike current
state-of-the-art methods, helps synchronizing a set of recordings. Since recordings from cameras
1 and 3 do not overlap on the global timeline, the time shift among them cannot be computed
directly and recordings 2 and 4 are required for their synchronization.

Ideally, D should be antisymmetric (Dij = −Dji) since the time shift between
cameras Ci and Cj and the time shift between Cj and Ci are opposite numbers,
i.e. if the recording of Ci is in advance with respect to that of Cj then the recording
of Cj starts later. However, in practice this is not always the case and if χij(t′)
presents two global maxima (with the same magnitude) the value chosen for Dij

might differ from that chosen for Dji. Examples of this issue are shown in matrix
D in Fig. 8, where D12 = −15.60 and D21 = 4.27. In this case, we capture at this
stage the two different possible time shifts in D and leave the final decision to the
next stage of our approach.

6.2 Global synchronization via cross-validation

Time shifts have been so far estimated using audio and video signals of each camera
pair independently. However, not all results lead to the same alignment of the
recordings on a global timeline because of errors in time-shift estimates between
camera pairs. An illustrative example of the importance of using a global procedure
to validate the partial results is depicted in Fig. 7. In this case, it is not possible
to directly synchronize recordings corresponding to C1 and C3, because there is
no temporal overlap between these recordings. Our goal is to validate the results
globally to obtain consistent time shifts across cameras. To this end, we propose
a cross-validation approach that locates all recordings on a common timeline by
computing time shifts not only between the two cameras but also for intermediate
cameras (e.g. C2 and C4 in Fig. 7). The time shift among a pair of recordings
that do not overlap in time (and consequently cannot be computed directly) are
obtained through the relative time shifts of each of these recordings with other
recordings. Most previous state-of-the-art methods (Sec. II) were focused on a
one-to-one synchronization (i.e. between camera pairs only) and did not provide a
solution for the global synchronization problem of the entire set of M recordings.

Without loss of generality, we use the time when the recording from the first
camera starts as reference time and we define the estimate time shifts as ∆t1i, ∀i.
Negative time stamps represent recordings starting before that of C1, while posi-
tive values indicate recordings that start after.

In a first stage, we generate the histograms of the obtained time shifts between
camera C1 and the remaining cameras Ci by taking into account the estimated
offsets with intermediate cameras Cj . Then, we choose the consistent time shift
∆t1i between cameras C1 and Ci to be the most frequent value in the histogram.
The proposed cross-validation procedure is explained schematically in Fig. 8.
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Fig. 8 Scheme illustrating the cross-validation procedure. First, a vector z12 (b) containing all
possible time shifts between the recordings of cameras C1 and C2 is extracted from the delay
matrix D in (a). Then, coarse synchronization (c) and fine synchronization (d), are performed
sequentially to obtain a consistent estimate of the time shift between this camera pair ∆t12.
The same procedure is applied for the estimation of the remaining time shifts ∆t1i, ∀i.

The vector z1i that contains a list of possible time shifts between C1 and Ci

is built by taking into account time shifts with intermediate cameras Cj as

z1i = {(Dji −Dj1) ∪ (D1j −Dij) : j = 1, . . . ,M} . (18)

Then, the most frequent value in the vector z1i is chosen as the globally con-

sistent time shift ∆̂t
1i
. A coarse-to-fine strategy is employed to group similar

time-shift values and to avoid the choice of less reliable values. Two consecutive
steps based on histograms perform respectively a broad synchronization (with a
100 ms resolution) and a fine synchronization (10 ms resolution), and provide the

final value for the time shift ∆̂t
1i
. The second step takes the maximum of the first

histogram and computes another histogram at a finer resolution in a time window
of 200 ms around this maximum.
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Input f i
AV , f i

A, ∀i : 1 . . .M (activation vectors)

Output ∆t1i, ∀i : 1 . . .M (time shift between C1 and Ci)

0. m = AV (use Audio and Video jointly)
1. Compute matching and cross-validation with f i = f i

m. Obtain Dm

(delay matrix) and ∆̂t
1i

m (time shifts).
2. Estimate Γ i

m (confidence)
if Γ i

AV is sufficiently large then

∆t1i = ∆̂t
1i

(AV )

else
Repeat steps 1 and 2 using Audio only (i.e. m = A)

∆t1i = ∆̂t
1i

(A) if Γ i
A > Γ i

AV

end

Algorithm 1: Verification of the alignment

6.3 Verification

Once the recordings are consistently sorted on a common timeline, we analyze
the delay matrix D to estimate which cameras might be misleading. This pro-
cedure allows us to isolate cameras whose video/audio modalities are difficult to
synchronize, and to automatically choose between the joint audio-visual method
or an audio-only processing when the video modality is unreliable. This latter case
happens with low-quality video or when a camera points at a different location
compared to the other cameras. Algorithm 1 summarizes the overall multi-camera
synchronization approach from the verification point of view. When the confidence
on the audio-visual result Γ i

AV is low, an audio-only processing is started in order
to obtain more reliable time-shift estimations.

First, we compute the absolute difference E = |D − D̂| between the delay
matrix D that we obtain and a consistent delay matrix D̂ built according to the

time shifts ∆̂t
1i

as

D̂ij = ∆̂t
1j

− ∆̂t
1i
. (19)

E captures inconsistencies between the estimates and the global result. When the
inconsistency Eij is large, the estimated time shift between Ci and Cj does not
match the time shift obtained after cross-validation.

When a camera leads to errors in the estimates of several other cameras, we
conclude that the recording obtained with this camera is misleading and therefore
not helpful for the synchronization task. This results in a a measure of the reli-
ability of the corresponding recording and associated time shift. The number of
wrong estimates, ξi ∈ [0,M − 1], associated to camera Ci is computed as

ξi =
1

2
|ψi|0 , (20)

where ψi is the set of elements in the i-th row and i-th column of the inconsistency
matrix E presenting a large difference with the global result:

ψi = {j ∈ 1 . . .M : (Eij > τ) ∪ (Eji > τ)} . (21)
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Here τ defines the threshold of acceptability for a time-shift estimate to be con-
sidered consistent with the global synchronization result. As the values on the
diagonal of D, D̂ and E are zero, the maximum number of wrong estimates ξi is
M − 1.

Using this information, we define the confidence on the audio-visual result,
Γ i
AV ∈ [0, 1], for camera Ci as

Γ i
AV = 1−

ξi

M − 1
. (22)

This value indicates the confidence on the recording and corresponding result for
camera Ci. When Γ i

AV is high, the time shifts estimated directly between this
camera and the other cameras in the set are coherent with the global result. In
contrast, when Γ i

AV is small, the recording is expected to be a low-quality one and
therefore be misleading for the other cameras.

Small values of Γ i
AV might be caused by low qualities of audio and/or video

recordings, or by a mismatch between modalities. We still have an opportunity to
improve the results when the problem is due to the video signal, by exploiting the
audio-only events detected in Sec. 5.1. When

Γ i
AV < β , (23)

where β defines the minimum confidence allowed, we repeat the matching and
cross-validation procedures (see Fig. 6) with the audio activation vectors f i

A(t
i), ∀i =

1 . . .M , instead of the audio-visual activation vectors. If the confidence on the
audio-only result Γ i

A is higher (Γ i
AV < Γ i

A) then the resulting time shift ∆t1i for
Ci is the one computed by means of the audio-only analysis.

When most recordings are unreliable, most time-shift values estimated at the
end of the cross-validation will be wrong. However, these recordings will have low-
confidence values because the time-shift estimates for each camera pair, Dij , will
not be consistent across the delay matrix (typically, in such cases most values in
the inconsistency matrix are high and therefore the confidence in the audio-visual
estimate becomes small). For this reason, errors in the time-shift estimates after
cross-validation do not affect the verification process and the estimated confidence
is still valid.

6.4 Automatic detection of unrelated recordings

Until now, we have implicitly assumed that all the recordings are related, i.e.
they overlap and can thus be synchronized. However in practice this is not always
the case, since a certain amount of false positives (unrelated recordings) can be
present. In this section we propose a simple criterion for the automatic detection
of recordings that are not related to the considered scene, for sets with M > 3
cameras 2. We classify the recording from Ci as unrelated if the following condition
is fulfilled:

Γ i
m ≤

1

M − 1
∀m = A,AV . (24)

2 Note that with M = 3 cameras the proposed method can detect that there is an unrelated
recording but not which recording is actually unrelated.
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Table 2 Main characteristics of the experimental dataset.
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BasketballA 3 4-6 min 640 × 480 30 fps 44.1 kHz

BasketballB 3 16 min 360 × 288 25 fps 44.1 kHz

Dance 2 10 min 450 × 360 25 fps 44.1 kHz X

Office 3 30-80 s 450 × 360 25 fps 44.1 kHz X

ConcertA 9 20-368 s many 13-30 fps 44.1 kHz X X

ConcertB 10 1-7 min many 25-30 fps 22, 44.1 kHz X X X

Walk 2 30-38 s 492 × 360 25 fps 44.1 kHz X X

UCD 8 1-15 min many 18-30 fps 44.1 kHz X X X X

Dataset 40 4 hours many 13-30fps 22, 44.1 kHz X X X X

Thus, a recording is classified as unrelated to the rest when its estimated time shift
is not coherent with the ones of at least two other cameras, neither with the audio-
visual nor with the audio-only analysis. By combining equations (22) and (24) we
obtain that the recording of Ci is classified as unrelated if the number of wrong
estimates is ξi ≥ M − 2 for m = A and m = AV . In practice, when a recording
has a low confidence on the audio-visual result, the verification steps leads to
an audio-only analysis, and then the recording can be detected as unrelated by
checking both Γ i

AV and Γ i
A.

7 Results

7.1 Experimental setup

We consider a dataset composed of eight different scenes: BasketballA, Basket-

ballB, Dance, Office, ConcertA, ConcertB, Walk and UCD. These scenes include
recordings made with hand-held cameras and fixed cameras, are shot indoors and
outdoors, and the views of the cameras overlap most of the time in some situations
and just for a short period in others. The set of scenes and their characteristics are
summarized in Table 2. The first two scenes correspond to basketball games: Bas-
ketballA depicts a college game and BasketballB shows a female basketball game
[5]. Dance, Office, ConcertA and Walk are scenes taken from [18]. ConcertB and
UCD are two additional scenes that depict a concert and an event in a university
campus. The videos resolutions range from 202× 360 to 640× 360 pixels. In some
cases the cameras are situated at very different distances from the target location
(e.g. in a concert less than 10m, around 50m and more than 200m), which is de-
fined as different distances in Table 2. Other scenes contain different views, i.e.
the cameras point to different locations for most of the time (e.g. UCD). Fig. 9
shows the temporal distribution of the recordings on a common timeline. In some
situations the temporal overlap among recordings is large (e.g. BasketballB), while
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Fig. 9 Temporal distribution of the recordings before [left] and after [right] synchronization
for BasketballA (a), BasketballB (b), Dance (c), Office (d), ConcertA (e), ConcertB (f), Walk
(g), UCD (h). The plots on the right show the results obtained with our method AV-V (in
black) compared to the groundtruth (in gray).

for other scenes the overlap is very short (e.g. UCD). The additional datasets used
in the experiments are available online3.

7.2 Methods under analysis

We compare seven methods (i) from the state of the art that can deal with in-
dependently moving cameras4 as well as (ii) various combinations of elements of
our proposed method. These methods are termed AV-V, AV-X, A-X, A-F, A-O,
A-R and V-F. AV-V is the proposed method: audio-visual events matched by
cross-correlation, plus the verification described in Sec. 6.3. AV-X corresponds to
audio-visual events matched by cross-correlation (i.e. the results obtained with the
method described up to the end of Sec. 6.2). A-X are the audio onsets obtained
as described at the end of Sec. 5.1, matched by cross-correlation. A-F is the audio
fingerprint approach presented in [18]. A-O is the audio-only method based on on-
set detection in 8 frequency bands [18]. V-F is a video-only approach that uses the
flash detection [18] and matches the video activation vector using cross-correlation

3 http://www.eecs.qmul.ac.uk/ andrea/synchro.html
4 The constraints of the method in [13] make it not applicable to our dataset since it requires a

minimum of 3 cameras, of which two need to be static.
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Table 3 Comparative summary of the results. The cells show the number of recordings that
are synchronized with an error that is smaller than T1=50 ms and T2=100 ms; the average
error (in ms) for the synchronized recordings and the computation time (in seconds) for the
whole dataset. Since the values of A-R are averaged over 100 realizations, its computation
time is not depicted. M : number of cameras.

Scene M
Number of synchronized recordings

AV-V AV-X A-X A-F A-O V-F A-R

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

BasketballA 3 3 3 3 3 3 3 3 3 3 3 0 0 2.9 2.9

BasketballB 3 2 2 2 2 2 2 2 2 2 2 0 0 2 2

Dance 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Office 3 3 3 3 3 2 3 0 3 2 3 0 0 1.9 3

ConcertA 9 9 9 9 9 8 8 6 8 9 9 0 0 7.9 7.9

ConcertB 10 7 7 6 6 7 7 7 7 7 7 2 2 6.2 6.3

Walk 2 0 2 0 2 0 2 0 0 0 2 0 0 0 1.9

UCD 8 2 2 2 2 2 2 3 6 3 3 0 0 0.3 0.3

Total synchronized 28 30 27 29 26 29 23 31 28 31 4 4 23.5 26.6

Average error (ms) 10 12 10 12 4 9 15 28 14 18 8 8 7 12

Computation Time (s) 26,372 26,370 978 198,718 467 8,368 -

(instead of dynamical programming). A final method, A-R, keeps a random subset
of audio onsets for each camera to build an activation vector that is then matched
by cross-correlation. The amount of audio onsets that is kept is the same than
with AV-X. Thus, A-R allows the comparison of the results when using video to
select robust onsets with a random approach, and to determine the reliability of
video selection. Please notice that for a fair comparison the consistency of the esti-
mated time shifts across cameras is ensured for all methods by using the proposed
cross validation strategy described in Sec. 6.2. Thus, results might be improved
compared to estimating the time shift among each camera pair independently, as
done in some of the prior work.

The parameters are the same for all the experiments. We use L = 400 blocks
in which the video signal around an audio event is divided, corresponding to 20
divisions in the horizontal axis and 20 divisions in the vertical axis. The temporal
tolerance between events in audio and video channels is TAV = 100 ms according
to the thresholds of detectability in [17]. To assess the video blocks activation we
use a windowW of 1 second duration around the audio onset. γ = 0.3 and thus an
activation in more than 30% of active blocks is considered to be caused by a global
camera motion. Finally, we use τ = 0.1 seconds and β = 0.3 for the verification.

7.3 Discussion

A visualization of the final alignment result is shown in Fig. 9. Results obtained
using the proposed approach AV-V are close to the groundtruth in all scenes
except for UCD. In this scene our assumption does not hold because cameras
record different views most of the time. Figure 10 shows sample results of the
audio-visual event detection part of the algorithm, with the visualization of the
blocks that have been considered synchronous with an audio event.

Quantitative results comparing the accuracy of the different synchronization
approaches are shown in Table 3. The cells show the number of synchronized
recordings when allowing 50 and 100 ms as temporal tolerances between the es-
timated time shifts and the ground-truth values. The number of synchronized
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(a) (b)

(c)

(d)

Fig. 10 Examples of active video blocks for audio-visual events detected with our approach
in multiple cameras. The depicted scenes correspond to (a) a player movement in BasketballA,
(b) a hit in the drum in Dance, (c) a guitarist hand in ConcertA and (d) a dance move in
ConcertB.

recordings using the audio-visual analysis (AV-X ) is larger than that of A-R. A-X

fails in synchronizing C4 in ConcertA, which is the shortest recording in this scene.
In contrast, AV-X can cope with this recording but fails in synchronizing C2 in
ConcertB (apart from C5, C7 and C10 in which all approaches fail). In fact, in
C2 of ConcertB audio and video are not synchronized and the recording starts
with a still image for 2.5s showing the band name while the soundtrack is already
playing. This recording is a mix between unrelated audio and video signals that
our verification method is able to detect (the confidence on the audio-visual result
is small). In all situations AV-V can synchronize more recordings than AV-X and
A-X, because it can get the best features from each modality. For each scene the
value for AV-V is the maximum between the synchronized recordings with AV-X

and those synchronized with A-X. This demonstrates the efficiency of the veri-
fication step in our algorithm. From all scenes, V-F is only able to synchronize
the two recordings in Dance, as well as C1 and C3 in ConcertB. In the first case
flashes are very visible and in the second case the cameras are close to the scene
and variations in their global brightness are comparable. The average overall error
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Fig. 11 Number of successfully synchronized recordings with an error in the estimated time
shift smaller or equal to the value in the x coordinate (in ms) for the recordings with a high
confidence on the result (Γ i

AV ≥ β). The faster the curves reach a high value in the plot, the
better the performance.

in the synchronized recordings is lower when using our method (AV-V ) than with
previous approaches (A-F, A-O, V-F ). Finally, AV-V synchronizes more record-
ings than the other methods with an error in the time-shift estimation lower than
100 ms (Fig. 11) when the confidence on the audio-visual result is high.

The computation time that is required by MATLAB implementations of the
different methods to analyze the totality of our dataset is shown in Table 3. The re-
sults are obtained in a cluster composed of 32 processors Intel Xeon CPU E7- 8837
@ 2.67 GHz and 530GB memory. Please, notice that the methods have not been
optimized or parallelized. The proposed method AV-V requires considerably less
time than the fingerprints approach A-F but longer than the audio-only method
A-O. The time complexity of the current implementation of our method depends
linearly (i) on the number of cameras M , (ii) on the number of audio onsets and
(iii) on the image resolution. As expected, the video analysis is the most demand-
ing part in our approach (AV-X takes much longer than A-X ), and more than
50% of the time required by AV-V is used to read the parts of the video signal
around the audio onsets. The performance of AV-V could be easily improved by
parallelizing its execution (the audio-visual onsets extraction can be performed
independently for each camera and the matching step is computed pairwise) and
optimizing the video processing pipeline.

To evaluate the resilience of the proposed method to unrelated recordings
(Sec. 6.4), we used the scenes in Table 2. For each scene a total of M + 1 record-
ings have been considered, where the additional recording corresponds to the first

recording in the following scene, that is an unrelated recording. The composition
of this modified dataset together with the results obtained with our method are
shown in Table 4. A true positive TP is a recording that is correctly classified as
related to the rest; a true negative TN is a recording that is correctly classified as
unrelated to the rest; false positives FP and false negatives FN are misclassified
as related or unrelated, respectively. The criterion used to classify a recording as
unrelated (or non-overlapping) is described in Sec. 6.4. According to the proposed



20 Anna Llagostera Casanovas, Andrea Cavallaro

Table 4 Resilience to unrelated recordings on the modified experimental dataset. TP , TN ,
FP and FN denote, respectively, the number of true positives, true negatives, false positives
and false negatives obtained with our method. M : number of cameras.

Scene M Recordings TP TN FP FN

BasketballA 4 3 BasketballA + 1 BasketballB 3 1 0 0

BasketballB 4 3 BasketballA + 1 Dance 3 1 0 0

Dance 3 2 Dance + 1 Office 2 0 1 0

Office 4 3 Office + 1 ConcertA 3 1 0 0

ConcertA 10 9 ConcertA + 1 ConcertB 9 1 0 0

ConcertB 11 10 ConcertB + 1 Walk 8 1 0 2

Walk 3 2 Walk + 1 UCD 2 0 1 0

UCD 9 8 UCD + 1 BasketballA 3 1 0 5

Dataset 48 40 related + 8 unrelated 33 6 2 7

classification criterion, we obtain a 94% precision and a 83% recall. The FN result
is mainly driven by the difficulty of the UCD scene: a total of 7 recordings are mis-
classified as unrelated to their corresponding scenes since they cannot be reliably
synchronized. There are only 2 false positives, that happen when the number of
cameras M = 3 and our criterion cannot be applied since the unrelated recording
cannot be distinguished.

8 Conclusions

We proposed a method for the synchronization of multi-camera recordings which
is based on the joint analysis of audio and video signals. Audio-visual events are
extracted from each recording and then matched using cross correlation. Two novel
steps based on cross validation and verification are used to ensure the consistency
of the results globally and to test the reliability of the estimated time shifts.
When the confidence in the joint audio-visual analysis is low due to poor video
quality or very different views, an audio-only strategy is automatically adopted.
Our method is generally applicable and can deal with sets of recordings that do
not necessarily share the same time interval. The proposed method was compared
with alternative approaches over a heterogeneous dataset containing recordings
from handheld cameras at a wide range of distances from the target location
being filmed. As the current formulation is aimed at compensating for time shifts,
in our future work we will incorporate time drifts in order to address its effect on
the alignment of longer recordings. An approach in this direction is presented in
[8], but it requires human interaction.
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