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Abstract—We propose N-consensus, an algorithm that re-
duces the cost of the consensus process for distributed visual
target tracking without compromising on tracking accuracy. N-
consensus fuses target posteriors computed by viewing nodes (i.e.
the cameras viewing the same target) only and limits the number
of nodes participating in consensus to those within a specified
number of hops from the viewing nodes. The number of hops
is computed based on viewing and communication ranges to
identify all nodes within twice the viewing range from the viewing
nodes. Unlike average consensus, the proposed N-consensus does
not require prior knowledge of node connectivity because we
employ an improved fast covariance intersection algorithm during
consensus update.

I. INTRODUCTION

Distributed information fusion is desirable for target tracking
in wireless camera networks (WCN) to achieve scalability and
robustness to node or link failures [1]. Information to be fused
includes the estimated target states and the corresponding error
covariances. Due to the limited communication ranges and
directional field of views (FOV), the wireless cameras (nodes)
viewing simultaneously the same target (viewing nodes) might
be multi-hop neighbours when appropriate lenses are used. In
such cases, distributed fusion of the target’s information from
multiple viewing nodes can be done through consensus [2].

Consensus algorithms are distributed protocols that aim at
reaching an agreement on a decision variable using iterative
peer-to-peer communication among the nodes [3]. An advan-
tage of consensus algorithms is that, unlike other distributed
approaches such as token-passing, they require neither full
connectivity among the viewing nodes nor routing tables.
Each consensus iteration involves two main steps, namely
information exchange with neighbouring nodes and consensus
update (i.e. weighted fusion of local and received information).
Average consensus (A-consensus) is a widely used consensus
algorithm for target tracking in wireless sensor networks [4],
[5] and WCNs [6]–[8]. A-consensus aims at having decisions
at all nodes (e.g. target state) to converge to their average.
The weights used in the consensus update of A-consensus de-
pend on the prior knowledge of connectivity (communication
topology) [9]. Iterative Covariance Intersection (ICI) [10] is
a consensus algorithm that does not need prior knowledge
of connectivity. ICI computes the weights using either the
trace [11] or the determinant [12] of the covariance infor-
mation and achieves better accuracy than A-consensus. Both
A-consensus and ICI achieve consensus among all network
nodes, and therefore the total energy consumption for commu-
nication and computation increases with the number of nodes
(for a given number of viewing nodes) [2].

In this paper, we propose Neighbour consensus, N-
consensus, a distributed algorithm that identifies dynamically

a reduced set of nodes in the neighbourhood of the viewing
nodes and achieves consensus only among these nodes. The
set includes viewing nodes and their neighbourhood up to
a certain number of hops so that all nodes that are view-
ing the target at the current time step and the nodes that
might view the target at the next time step are included.
N-consensus reduces the number of nodes involved in the
consensus process. The software of the proposed method is
available at http://www.eecs.qmul.ac.uk/~andrea/software.htm.

The remainder of the paper is organised as follows. Section
II presents the proposed N-consensus algorithm. Section III
compares the performance of the proposed algorithm with A-
consensus and ICI. Finally, Section IV concludes the paper.

II. NEIGHBOUR CONSENSUS

A. Preliminaries

Consider a WCN, C = {c1, c2, ...}, consisting of homo-
geneous nodes monitoring an area to track a target. Each
node ci has a directional FOV with viewing range rv and
communication range rc. Let Ni be the communication neigh-
bourhood of ci. At time step k, only a subset of cameras, CV

k ,
can view the target because of the directionality and limited
viewing range. The nodes do not have information about the
network or its neighbours such as communication topology,
routing tables, and vision graph (graph representing node pairs
having overlapping FOVs). The network is so large that the
distance between farthest nodes >> 2rv . We assume ideal
communication, no false detections, calibrated cameras, that
the target is visible in at least one camera at any time step k
and that it does not move more than 2rv between consecutive
time steps.

Each viewing node estimates the target state representing
position and velocity on the ground plane. The information is
a Gaussian probability density function (posterior) with mean
xi,k and covariance Pi,k. Each viewing node ci at time step
k computes the local posterior of the target based on the
posterior at k − 1 (prior) and the measurement at k. The
posterior is represented as information vector yi,k = P−1

i,kxi,k

and information matrix Yi,k = P−1
i,k . The goal is to fuse the

local posteriors, [yi,k Yi,k], of all viewing nodes ci ∈ CV
k in

a distributed way with minimum energy consumption when
the viewing nodes are not communicative neighbours. The
distributed algorithm aims at reaching the centralised result:

[yC
k YC

k ] =




∑

ci∈CV
k

wi,kyi,k

∑

ci∈CV
k

wi,kYi,k



 , (1)

where wi,k represents the weight allotted to the information
provided by node ci and

∑

ci∈CV
k

wi,k = 1.



TABLE I: Table of notations

C : set of all nodes

k : time step

rv : viewing range

rc : communication range

CS
k : set of sink nodes

CI
k : set of inactive nodes

CV
k : set of current viewing nodes

CV

k+ : set of future viewing nodes

CN : set of neighbouring nodes (N-Nodes)

NN
i,k : set of all N-Nodes in the communication range of ci

Ni : set of single-hop neighbours of node ci
DH

i,k : hop distance of node ci from the nearest current

viewing node

D : threshold distance (in hops)

EIF() : Extended Information Filter

SEND(ci, cj, m) : node ci sends message m to node cj
RECV(ci, cj, m) : node ci receives message m from node cj
l : iteration index

L : maximum number of consensus iterations∣
∣·
∣
∣ : determinant function

[yli,k Yl
i,k] : posterior information (information vector and informa-

tion matrix) available at ci after l consensus iterations

[yCk YC
k ] : posterior information computed in a centralised way

zi,k : measurement of node ci
Ri,k : measurement noise covariance of node ci
Qk : process noise covariance

The posteriors, [yi,k Yi,k], can be estimated using the
Extended Information Filter (EIF) [13] when the target motion
model, or camera measurement model, or both are non linear,
and the noise in target motion (process noise) and the mea-
surement noise are Gaussian with zero mean and covariances
Qk and Ri,k, respectively. EIF computes the target posterior
at time step k using [yi,k−1 Yi,k−1], the posterior at k − 1,
and zi,k, the measurement at k.

The weights, wi,k, used during the fusion of posteriors vary
depending on the fusion algorithm. Improved Fast Covariance
Intersection (IFCI) [12] computes the weights based on the
determinants of the information matrices and produces better
fusion estimates than Fast Covariance Intersection [11].

B. Node types

We define Neighbouring nodes (N-Nodes) of the target at time
step k, CN

k , all nodes that are viewing the target at the current
time step, current viewing nodes, CV

k , and the nodes that might
view the target at the next time step, future viewing nodes,
CV

k+ . Nodes other than N-Nodes are inactive nodes, CI
k and

they do not participate in the consensus process. The inactive
nodes that are single-hop neighbours of N-Nodes act as border
between the N-Nodes and the remaining inactive nodes by not
transmitting any information. We call them sink nodes, CS

k ,
because they always receive information (from N-Nodes) but
they do not send it. The relation between C, CN

k , CV
k , CV

k+ ,

CI
k and CS

k is as follows:

C = CV
k

⋃

CV
k+

︸ ︷︷ ︸

CN
k

⋃
CI

k and CS
k ⊆ CI

k .

A constraint for using N-consensus is that the N-Nodes of a
target must be connected at any time step. The notations used
in this paper are listed in Table I.

Fig. 1: Illustration of the consensus neighbourhood (red) of a
target. A network of wireless camera nodes, field of view (blue)
of four nodes, viewing range, rv , communication range (dotted
grey), rc, of the current viewing nodes (green) are shown.

Ideally, the future viewing nodes include the nodes having
overlapping FOVs with all the current viewing nodes. How-
ever, nodes are unaware of the FOV information of other nodes
so we consider all nodes that are located within twice the
viewing range, 2rv , distance from each current viewing node
as future viewing nodes. We select the value 2rv because
the maximum possible physical distance between two nodes
with overlapping FOVs is 2rv [14], and a viewing node
passing information to all nodes within 2rv guarantees that the
information is available at all current and future viewing nodes.
Fig. 1 shows a scenario where the number of current viewing
nodes is 2. The N-Nodes (nodes with in 2rv distance from the
current viewing nodes) are surrounded by a red boundary.

C. Iterative algorithm

Relative distances among the nodes are required to check if a
node is within 2rv distance from any of the current viewing
nodes. As the physical locations of the nodes are unknown,
relative distance between two nodes can be approximated
either using hop counts [15] or using radio signal strength [16].
We use the former and perform iterative limited-multi-hop
search [17] to identify CV

k+ . The maximum possible hop count
(hop distance) between a future viewing node and its nearest

current viewing node D = ⌈
2rv
rc

⌉. We use this value as

threshold to identify future viewing nodes, which include 1-
hop, 2-hop, ..., D-hop neighbours of each current viewing
node. Note that we consider current viewing nodes as 0-hop
neighbours. Consensus is achieved among the CN

k nodes (N-
Nodes). Note that, for various rc and rv values D varies as:

D







> 2, if rc < rv,

= 2, if rv ≤ rc < 2rv,

= 1, if rc ≥ 2rv.

At each time step, current viewing nodes initialise their
hop distance, DH

i,k, to zero and compute the local posterior,

[yi,k Yi,k], using EIF [13] to handle the non-linearities. Each
non-viewing node (node with no target measurement) identifies
itself as an inactive node and initialises its hop distance to



Fig. 2: Flow diagram of N-consensus

infinity and its local posterior to [0 0] (Fig. 3a). Current
viewing nodes initiate the iterative process of information
exchange and consensus update.

During the information exchange step, all identified
N-Nodes send messages containing their local posterior,
[yi,k Yi,k], and hop distance, DH

i,k, to all their neighbours. Each
receiving node within the communication range increments the
received hop distance by one (i.e. DH

i,k+1) and uses the value
as a hop distance proposal made by the sender. The receiving
nodes update their hop distances to the minimum of their local
hop distance and the hop distance proposals. CV

k+ and CS
k are

updated based on the new hop distances.

In the consensus update step, all identified N-Nodes fuse
their local posteriors with the received posteriors using the
IFCI algorithm [12] as follows:

[yl
i,k Yl

i,k] =






∑

ci′∈NN
i,k

wl
i′,kyl−1

i′,k

∑

ci′∈NN
i,k

wl
i′,kYl−1

i′,k




 , (2)

where wl
i′,k is

∣
∣
∣
∣

∑

cj′∈NN
i,k

Y l−1
j′,k

∣
∣
∣
∣
+
∣
∣
∣Y l−1

i′,k

∣
∣
∣−

∣
∣
∣
∣

∑

cj′∈NN
i,k

Y l−1
j′,k − Y l−1

i′,k

∣
∣
∣
∣

∑

cj∈NN
i,k

[∣
∣
∣
∣

∑

cj′∈NN
i,k

Y l−1
j′,k

∣
∣
∣
∣
+

∣
∣
∣Y l−1

j,k

∣
∣
∣−

∣
∣
∣
∣

∑

cj′∈NN
i,k

Y l−1
j′,k − Y l−1

j,k

∣
∣
∣
∣

] .

Here |·| represents determinant and l is the iteration index.
N-consensus algorithm is more complex than A-consensus and
trace based ICI because of the computation of determinants.

(a) Initial state

(b) l = 1

(c) l = 2

(d) l = 3, 4, ..., L

Fig. 3: Illustration of N-consensus when the threshold hop
distance D = 2. Red: consensus region, blue: connectivity
among the nodes, brown: information flow, green: current
viewing nodes, grey: future viewing nodes, red: sink nodes,
white: inactive nodes. (a) Initially only the current viewing
nodes identify themselves as N-Nodes. (b), (c) In each con-
sensus iteration (l ≤ D) the neighbourhood of already known
N-Nodes identify themselves as future viewing nodes based
on their hop distance (shown next to each node). (d) During
l = 3, the neighbourhood of known N-Nodes at 3-hop distance
(DH

i,k > D) identify themselves as sink nodes. The nodes
status does not change when l > 3.



In iterations l = 1, 2, ..., D, future viewing nodes that are
1-hop, 2-hop, ..., D-hop neighbours are identified. When l =
D + 1, sink nodes are identified. When l > D + 1, the sets
CV

k , CV
k+ , CI

k , C
S
k do not change. Fig. 2 shows the flow of

operations of N-consensus and how different types of nodes
are identified.

Between two time steps, L consensus iterations are run.
Fig. 3 illustrates the N-consensus iterations with an example.
When using less iterations than the threshold (i.e. L < D), the
posterior might not be available at all future viewing nodes. For
example, in Fig. 3b, l = 1 and D = 2, all 1-hop neighbours
are identified but 2-hop neighbours are not yet identified so
the target posterior is not available at the 2-hop neighbours. In
the next time step, if the target enters the FOV of any 2-hop
neighbour, the EIF running at the node fails to compute the
posterior because the posterior from the previous time step is
not available. Hence, N-consensus can not perform tracking
unless a minimum of L = D iterations are used. Running the
consensus algorithm for D iterations ensures the identification
of all N-Nodes and for D+1 iterations ensures the information
exchange by all the N-Nodes. For example, in Fig. 3, though all
N-Nodes are identified during iteration l = 2 (Fig. 3c), some
neighbouring N-Nodes started exchanging information during
iteration 3 (Fig. 3d). N-consensus ensures that the node having
measurement at k but not at k − 1 holds the posterior from
k−1 because the node must have participated in consensus at
k − 1 as a future viewing node.

III. RESULTS AND DISCUSSION

We compare the performance of four fusion algorithms,
namely centralised fusion using Improved Fast Covariance
Intersection (CCI) [12], distributed fusion using A-consensus
(AC) [8], Iterative Covariance Intersection (ICI) [10] and the
proposed N-consensus (NC) using numerical simulations.

A. Performance measures

We use as performance measures accuracy and communication
cost. At each time step, the average of the position estimates of
all the N-Nodes is considered as the estimated target position.
Accuracy is the Euclidean distance between the estimated
target positions and the corresponding ground-truth positions
on the ground plane. Communication cost can be evaluated
either as the total number of scalars transmitted in the network
or as energy consumption for their transmission and reception.
The energy spent not only depends on the number of scalars
(or number of bits) transmitted but also on the communication
range of each transmitting node. The energy is calculated
by summing transmission energy ET = Eep + ǫapr

2
c and

receiving energy ER = Eep, where Ee is the electrical
energy (Jouls/bit) used for running transmitter or receiver
components, ǫa is the power amplification (Jouls/bit/m2) re-
quired to guarantee acceptable received signal strength within
the communication range rc and, p is the number of bits
transmitted or received [18].

B. Experimental setup

Let the WCN contain 256 homogeneous cameras that monitor
a 500m×500m area. Each camera has a (directional) viewing
range rv = 50m and 90o FOV. The position and FOV of each
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Fig. 4: Simulation setup. (a) Wireless camera network
surveilling a 500m × 500m area using cameras c1, ..., c256.
Each camera has a Field of View (FOV) of 50m × 50m on
the ground plane (black). (b) Sample trajectories used in the
experiments. (c) and (d) N-Nodes at time step 30 of the bold
track shown in (b) when the communication range of nodes
are rc = 30m (D = 5) and rc = 150m (D = 1), respectively.

camera are kept constant (Fig. 4a). A target whose state vector

at time step k is given by xk = [ xk yk vx vy δk ]
T

and
motion model

xk+1 =











xk + vx,kδk + ax
δ2k
2

yk + vy,kδk + ay
δ2k
2

vx,k + axδk
vy,k + ayδk

δk + e











(3)

is considered, where (xk, yk) and (vx,k, vy,k) are the target
position and velocity on the ground plane, respectively; and δk
is the time step between two consecutive measurements [8].
The vector w = (ax, ay, e) is the process noise, (ax, ay) is the
target acceleration and e is the synchronisation error among
cameras. We use 20 trajectories (Fig. 4b) for performance
analysis. The measurement model of the camera ci is:

zi,k =

[
ui,k

vi,k

]

=







Hi
11xk +Hi

12yk +Hi
13

Hi
31xk +Hi

32yk +Hi
33

Hi
21xk +Hi

22yk +Hi
23

Hi
31xk +Hi

32yk +Hi
33






+ vk, (4)

where (ui,k, vi,k) are the pixel coordinates of the target in
the image plane of camera ci at time step k. The values
Hi

11, ..., H
i
33 are the elements of the homography matrix Hi

and are taken from one of the cameras of APIDIS dataset1 as:

1http://sites.uclouvain.be/ispgroup/index.php/Softwares/APIDIS, last
accessed February 2015.



Hi =

[
397.2508 95.2020 287280
51.7437 396.9189 139100
0.0927 0.1118 605.2481

]

.

vk is the measurement noise. The non-additive process noise
and the additive measurement noise are assumed to be zero
mean Gaussians with covariances Qk = diag[1 1 0.0001] and
Ri,k = diag[15 15], ∀ci ∈ C respectively at all time steps.

At each time step the local posteriors (to be fused) are esti-
mated by EIF running at each node. Both in A-consensus and
ICI, non-viewing nodes use predicted posteriors as their local
posteriors. We use 0.65

∆max
as the weight of each neighbour’s

information for A-consensus update assuming that each camera
knows the maximum degree (∆max) of the underlying com-
munication graph [3]. The tracking experiment is conducted
by considering the communication range rc of each node as
30m (< rv) and 150m (> 2rv). We analyse the accuracy and
communication cost of tracking the 20 trajectories for different
number of consensus iterations, L in both cases.

C. Discussion

The hop distance thresholds D = ⌈ 2rv
rc

⌉ are 5 and 1 when
the rc values are 30m and 150m, respectively. The N-Nodes
in each case are shown in Fig. 4c and 4d. More nodes are
identified as N-Nodes for rc = 150m compared to rc = 30m
because the higher communication range turns more nodes
to be 1-hop (future viewing nodes) and 2-hop neighbours
(sink nodes). N-Nodes are not completely identified until
D iterations, so for rc = 30m the percentage of N-Nodes
increases for iterations 1 to 5 and from the 5th iteration the
value does not change. Note that the increment is not linear
and depends on the number of newly identified future viewing
nodes in each iteration. Fig. 5a shows the percentage of nodes
participating in consensus in ICI and N-consensus. By using
N-consensus, the number of participating nodes is reduced to
approximately 35%.

Each transmission of N-consensus involves a message con-
taining information vector yik, information matrix Yi

k and hop
distance. The target state vector size is 5 and the information
matrix is symmetric. To reduce the number of scalar transmis-
sions we send only the upper triangular values, i.e. 15 scalars.
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Hence, the posterior ([yi,k Yi,k]) contains 20 scalars each of
which is a 32-bit floating point number. The hop distance is a
16-bit integer. Therefore, each N-consensus message contains
(20 × 32) + (1 × 16) = 656 bits. The values of Ee and ǫa
are considered as 50nJ and 0.1nJ/b/m2, respectively. As
only the N-Nodes participate in consensus, the number of
transmissions is smaller than that of ICI and A-consensus
in which all nodes participate. The total communication cost
is therefore smaller in N-consensus than that of ICI and A-
consensus. As the N-Nodes are more for rc = 150m than for
rc = 30m, the number of scalars transmitted are also more
for rc = 150m than for rc = 30m (Fig. 5b) of N-consensus.
The energy consumption is also smaller in N-consensus than
that of ICI and A-consensus. While the number of scalars
transmitted by ICI (and A-consensus) is the same for the two
communication ranges, the energy spent is different because
of the different transmission ranges. As one would expect,
N-consensus with rc = 30m consumes less energy than N-
consensus with rc = 150m and ICI (and A-consensus) with
both the communication ranges (Fig. 5c) because of the smaller
number of N-Nodes and the lower transmission range. The
communication cost of A-consensus and ICI are the same so
the cost of A-consensus is not shown in Fig. 5.

As mentioned in Section II-C, N-consensus cannot perform
tracking until all N-Nodes are identified so tracking is not
feasible when using consensus iterations less than D. For
rc = 30m, until the 5th iteration the error is not available
(Fig. 6). For rc = 150m, D = 1 so tracking is performed
for all the iterations used. The N-consensus estimate achieves
faster convergence to the centralised estimate compared to the
other algorithms. The error computed using CCI is 4.9m.
N-consensus with rc = 150m spends 0.34J energy for 2
iterations and has a mean error 5.0m, whereas N-consensus
with rc = 30m spends 0.26J for 20 iterations and has a mean
error 5.1m.

IV. CONCLUSIONS

We proposed N-consensus, an algorithm for achieving con-
sensus on target posteriors among only a set of Neighbour-
ing Nodes (N-Nodes) of the target. N-Nodes include current
viewing nodes (0-hop neighbours) and future viewing nodes
(1-hop, 2-hop, ..., D-hop neighbours). We select D based on
the viewing and the communication ranges of the nodes. Con-
sensus update fuses posteriors using the covariance intersection
algorithm to avoid the necessity of topology information and
provides better fusion estimates. Experimental results show
that the proposed N-consensus approach provides better accu-
racy and requires less communication resources compared to
average consensus and iterative covariance intersection. Unlike
other consensus approaches, in N-consensus, the target state is
available at N-Nodes only so non N-Nodes (inactive nodes)
can not take decisions about the target.

The optimal set of future viewing nodes includes only the
nodes having overlapping field of view with all the current
viewing nodes. The proposed algorithm considers more future
viewing nodes than the optimal case making the set subopti-
mal. As a future work, N-Nodes could be selected based on
a distributively computed vision graph [19] to generate the
optimal set that will lead to saving of more resources than our
approach.
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